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Abstract: We consider the effect of real spectral singularities on the long time 
behavior of the solutions of the focusing Nonlinear Schroedinger equation. We find 
that for each spectral singularity 2 t E ~-., such an effect is limited to the region 
of the (x,t)-plane in which 2 ~ is close to the point of stationary phase 20 = 
(the phase here being defined in a standard way by, say, the evolution of the Jost 
functions). In that region, the solution performs decaying oscillations of the same 
form as in the other regions, but with different parameters. The order of decay 
is 0((~)I/2). 

We prove our result by using the Riemann-Hilbert factorization formulation 
of the inverse scattering problem. We recover our asymptotics by transforming 
our problem to one which is equivalent for large time, and which can be inter- 
preted as the one corresponding to the genus 0 algebro-geometric solution of the 
equation. 

1. Introduction 

We consider the nonlinear Schroedinger equation (focusing case) 

iq, + qxx + 2qM 2 = 0 (1.1) 

under initial data 

q(x, O) = qo(x), (1.2) 

belonging in the Schwartz class. 
As is well known (see [NMPZ], [FT]), the problem (1.1)-(  1.2) can be integrated 

through the method of inverse scattering. We will present here some of the results 
we will need without proof. 

The associated linear system is 

i2 iq(x) ~ 
~,x = q(x)  -i;o j 0 ,  (1.3) 
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where the bar denotes conjugation. Jost functions ~1, ~2, q51, q52 are defined on the 
real line as (column vector) solutions of (1.3) satisfying the asymptotic conditions 

Ol(X, 2)~( eiLr ) 
0 , as x - - +  + o o ,  

e 

(/)1(x, 2 ) ~ (  ei;x ) 
0 , a s  x - - +  -cx::~, 

q52(x'2) ~ ( e  -0/z~)' as x---+ - e c .  (1.4) 

Furthermore, 01 and q~2 can be meromorphically extended to the upper half-plane, 
while 02 and r can be meromorphically extended to the lower half-plane. Indeed, 
one has 

( ~11 (X, 2)e -i2x ~b2(x, 2)e ir ) ---+ I, as 2 -+ oc, Im 2 > 0, 

( 01(x, 2)e -i;~ O2(x, 2)ei;~ ) ~ I, a s 2 ~ e c ,  I r a 2 < 0 .  (1.5) 

I is here the identity matrix. 
We point out the symmetry 

( 0  1 )  
~(x,/T)= _ 0 0(x, 2),  (1.6) 

where ~ = (01 ~2); the same symmetry is satisfied by q5 = (r r 
On the real line, q5 and ~ are solutions of system (1.3). Hence there exist 

"scattering coefficients" a(2), b(2) such that 

q~2(x, 2) = a(2)O2(x, 2) + b(2)Ol(x, 2),  

~bl(X , 2 )  = d(2) l~l  (x , 2 )  - t~(2)~/2(x , 2 ) .  ( 1 . 7 )  

Although ~7 and b are a priori independent of a and b, one can see from the 
symmetries above that they are after all their conjugates. Furthermore one can show 

la(2)l 2 + Ib(2)l 2 = 1. (1.8) 

The time evolution of the scattering coefficients is given by 

a(2, t) = a(2, 0),  

b(2, t) = b(2, O)e  4i22t . (1.9) 

It turns out that a(2) can be analytically extended to the upper half-plane, while 
d(2) can be analytically extended to a function a*(2) = d(2) in the lower half-plane. 
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In general, this is not also true for b. Generically, a has only a finite number of  
zeros in the upper half-plane and no zero at all on the real line (cf. [BC]). However, 
there are cases where this is not true. One can have, for example, an infinity of  
non-real zeros with a limit point on the real line (see [Z] for an example). 

It is well-known that in the generic case, non-real zeros of  a correspond to 
solitons for long times (see [FT] for example). Our goal is to study the effect of  
real zeros of  a. We will only consider the case of  finitely many zeros (real or not). 
This is indeed the case if we restrict ourselves to initial data such that 

O(2 

f e~lXlluo(x)ldx < oo, for some t/ > 0 ,  (1.10) 
- - O O  

(cf. [F] for a proof). For simplicity we will state and prove our results in the case 
where no non-real zeros of  a are present and only one real simple zero exists. 
However, it should eventually become clear that this is only a superficial constraint, 
and indeed we will indicate at the end of  this work what happens in the more 
general case (of  finitely many zeros). 

An example of  initial data producing exactly one real spectral singularity is the 
following ([CK]). Let X > 0 and 

7"C 
u0(x) = ~ ,  0 < x < x ,  

= 0, otherwise. 

Then a(2) has exactly one (simple) zero at 2 = 0 and at(0) - -2ix 
We define the 2 x 2-matrix-valued function ~g as follows. Let ~ 

~ = ( O l e  iz~ ~ 2ei2x ) for I m 2  > 0 
a(2) ' 

--(dple-i'~a*(2) ~12ei)'x) , f o r I m 2 < 0 .  (1.11) 

Letting 7% and 7 j_  denote the limits o f  7 j on the real line from above and below 
respectively, we have (after a few calculations) 

( 1 2  r( 2 )e2i2x +4i)? t ) 
7J+(z) = 7J_(z) I m 2  = 0 (1.12) y(2)e-2i)ac-4i2 t 1 + jr(2)[ 2 ' 

where r(2)  - b(;,,t=0) a(;~,t=0)' Note that the jump matrix has determinant 1. 

Finally, one can prove that a(2) = 1 + O(1/2) as 2 ~ c~, I ra2  > 0. Hence 

~ (2  = o c ) - - - I .  (1.13) 

We thus end up with a Riemann-Hilbert factorization problem: tp is a matrix func- 
tion, analytic in the complement o f  the real line, satisfying the jump condition (1.12) 
and the asymptotic condition (1.13). 

Note that in the generic case of  finitely many zeros off the real line and no 
real zero, 7 j is meromorphic and neither ~P+ or ~ _  nor the jump matrix have 
any singularities. In the case we are interested in, however, both T •  and the jump 
matrix have singularities exactly at the zeros o f  a(2). 
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Conversely, the solution of the Riemann-Hilbert problem enables us to recover 
q(x, t). Indeed (see e.g [NMPZ]) 

q(x,t) = - 2  lira 2~P12. (1.14) 
2---+oo 

Thus, the initial value problem (1.1)-(1.2) is reduced to the above Riemann- 
Hilbert on which we focus from now on. 

The interest of  the problem treated in this paper is twofold. On the first hand, 
as we will see later, the physical effect of  the spectral singularity is a "collisionless 
shock" type phenomenon; we thus have an interesting connection with the theory 
of "dispersive shocks" for nonlinear wave equations (cf. also [DVZ], [AS]). On the 
other hand, ours is a first step towards the completion of the solution of the problem 
of long-time asymptotics of integrable equations in the case of Schwartz data, in 
the following sense: although the related direct and inverse scattering problems 
are now completely solved (see [Z], [DZ2]) for the most general cases of  Lax 
operators and even in the non-generic exceptional cases of data for which there 
are either infinitely many spectral singularities off the associated Riemann-Hilbert 
contour or (possibly infinitely many) spectral singularities on the contour, the long- 
time asymptotics problem is still far from having a complete solution, even in cases 
as simple as the NLS equation. In fact, the present paper is the second of a series; 
in a recent article (see [K]) we treat the infinite-soliton case, while a treatment 
of the case of  infinitely many real (i.e. on the Riemann-Hilbert contour) spectral 
singularities for the NLS equation will appear soon. 

We now state our main result, to be proved in Sect. 3. 

Theorem 1.1. Let q be the solution of(1.1)  with initial data in the Schwartz class, 
and such that a (simple) spectral singularity exists at 2 = 0 and nowhere else. Let 
20 = ~a~t, ~ = t22 and K ,M be given positive constants. Then the leading order 
asymptotics of  q, as t ---+ oo, is as follows. 

In region/: x < 0,20 < - M ,  q is given by formulae (2.5) and (2.6). 
In region II: x < 0,20 --+ 0,~ --+ oo, q is given by formula (3.18). 
In region III: 20 --+ O, ~ < M, q is given by (3.19). 
In region IV: x > 0,20 -* 0,~ ~ oc, q is given by (3.18). 
In region V: x > 0, 20 > M, q is given by (2.5)-(2.6). 

The plan of the rest of  the paper is as follows. In Sect. 2, we solve the 
Riemann-Hilbert factorization problem in the case where the zeroes of a, are away 
from the stationary point 20 = ~ of the phase O = 2x + 222t. Indeed, we show 
that no spectral singularity has any effect at all in the long time behavior of  q(x,t). 
In Sect. 3, we consider the more interesting case where 20 - 2 / --+ 0 with time, for 
some real singularity 21. In Sect. 4, we discuss a generalization of our results. 

The problem of a real spectral singularity was first considered by Ablowitz and 
Segur. In [AS] they study the collisionless shock phenomenon for the KdV equation 
with decaying initial data and they dedicate a small section to the focusing nonlinear 
Schroedinger equation, where they address the problem of a real spectral singularity 
by considering non-real ones, say ~c0, and taking the limit as Im~c0--+ 0. Their 
treatment is heuristic and non-rigorous. It is satisfactory however that their estimate 
for the decay of the solution on the "shock" front agrees with ours. On the other 
hand there are two discrepancies, concerning the phase and the coefficient of the 
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decay term. For the sake of the reader, we present the result of Ablowitz and Segur 
below. 

Result of [AS]. In the shock front region (corresponding to our regions II and IV), 
the solution of (1.1)-(1.2) has the following asymptotic expression: 

q(x, t) = t-l /2 R(x/t, t ) e  itO(x/t't) , 

where 

l x  2 g t f e ( t ) + O Q ~ )  , 0 ~ ~p-  + 21~ 

R~ f ( t ) + 4 f ( t )  (3[ f , ( t ) ]2+ f ( t ) f , , ( t ) )  logt 
t ' 

1 
f 2 ( - 4 k )  ~ ~ ( l o g t  - loglog t - 21ogre), 

In particular (cf. (4.10) of [AS]) 

where k = At + m  ( ~ )  
1/2 

(1.15) 

Iql ~ 2 ~  

Note that this formula agrees only partially with (3.18). Indeed, as we show, the co- 
efficient has to depend on the initial data through d(0). Furthermore, (1.15) implies 
that the second term of the phase is of order log2t, while we find that it has to be 
log t. 

The method of this paper follows the spirit of the work of Deift and Zhou (see 
[DZ], [DVZ]), who invented a new (and for the first time rigorous) method for 
recovering long-time asymptotics of integrable "soliton" equations, by using the fact 
that the inverse scattering problem for such equations can be stated as a Riemann- 
Hilbert factorization problem. We also make use of results of Deift, Its and Zhou for 
the defocusing nonlinear Schroedinger equation ([DIZ]). We note that the present 
work is the first in this spirit that deals with problems for which the jump matrix 
blows up at a point. 

2. Away From a Singularity 

As mentioned in the introduction, Deift, Its and Zhou have analyzed the long 
time behavior of the defocusing nonlinear Schroedinger equation. In that case, the 
Riemann-Hilbert problem agrees (modulo a minus sign) with ( 1.12)- (1.13) except 
that no spectral singularities exist at all (real or non-real). The question is how is the 
analysis of the problem affected when ~ and the jump matrix in (1.12) have a sin- 
gularity. In this section, we show that when for all singularities )/, 20 - ) / =  O(1), 
they have no effect at all. We will only restrict ourselves to the case 20 > )/, since 
obviously the case 20 < 2 t is similar (and easier). 
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1. We begin by considering an auxiliary scalar factorization problem. Let d be a 
function analytic in I E \ ( - o c , 2 0 ]  such that 

d+(2)  = d_(2) (1  + Ir(2)l 2) for - ~ < 2 < 20, 

d+(2)  = d _ ( 2 )  for 2 > 20 

d ---+ 1 as 2 ---+ oc .  (2.1) 

Proposit ion 2.1. Problem (2.1) has a unique solution which has no zeros and whose 
only singularities are at zeros of  a. More precisely, near a zero of  a,d+(2)a(2), 

d(2)a(2) ,  a_(,~) and ~ are bounded above and below. 

Proof First note that 

1 1 
1 + I r ( 2 ) l  2 - la(,~)12 - a(s163 for 2 E IR. 

Also recall that a is analytic in the upper half-plane, a* is analytic in the lower 
half-plane and a(2) = 1 + 0 ( 4  ) as 2 ~ ec, I m 2  __> 0. 

Consider the contour depicted in Fig. 2.1 (the choice of  lines 12 and 13 are 
irrelevant provided a,a* have no zeros in regions A2,A3 or on lines 12,13) and 
define 

6 ( 2 ) = d ( 2 ) ,  2 c A 1 ,  

6(2) = d(2)a(2) ,  2 C A2, 

6(2) = d()~)(a*(J~)) -1,  )~ E A3. 

6 satisfies the following scalar problem: it is analytic in 11~\(12 LJI3) and, 

~+ = 6 _ a ,  on l 2 , 

b+ = 6 _ ( a * )  -1 ,  on 13. 

As a has neither zeros nor poles o n  12 U13 we see that this scalar factorization 
problem has a unique solution with neither zeros nor poles; even though a has 
a discontinuity at 20, g is bounded near 20 (see e.g. [G], p. 448). The result 
follows. 

~2 

A2 - A 1 

ko + 

A 3 A1 

g3 
Fig. 2.1. 
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2. We will next provide an appropriate contour deformation (following [DIZ]) which 
will be guided by an analysis of the signature of the phase O = 2x + 222t appearing 
in the exponents of (1.12) (see Fig. 2.2). 

Re(i0)>0 

Re(i0)<0 

Re(i0)<0 

~'0 

Re(i0)>0 

IR 

Fig. 2.2. 

A fundamental fact is that the jump matrix of (1.12) admits the following fac- 
torizations (hence justifies our construction of d). 

( d 0 ) ( d o 1  r d - l e  2i0) 
Fde -2i~ d -1 d for 2 > 20 

and 

l+lrl 2 d~ 1 0 

d -  1 ~d+e :io , 
a+lr[2 d+ 

for 2 < 20. 

We deform our contour as follows (see Fig. 2.3). 

g2 gl 

+ 

~3 g4 

IR 

Fig. 2.3. 
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Guided by the above factorizations, we define 

d - r d - i e  2i0 
~1 = ~ ~ )~ C D1 , 

0 d 1 J '  

0 d -1 , 2 ~ D 2 ,  

o) 
~1 = ~ - fd  e-2io  d-1 , 2 C D3 ,  

( ~ rd le2i~ ) 
t/tl = t/t l+lrlZ , 2 C D 4 ,  

d - 1  

~1 = ~p(d 0 )  
0 d -1 , 2 E D s ,  

( d  o) 
~1 = ~ 2 �9 D 6 .  (2.2) 

~de-2io d-1 , 

Remark. For such a deformation we need to assume that b, b can be analytically 
extended, at least in a small strip containing the real line (note that the actual choice 
of the curves lj is not important as long as they are in the right quadrant). This 
would be indeed true under more restrictive data ((1.10) for example). However, 
such an assumption is not necessary. As shown in [DZ] (see also [DIZ]) b can 
be harmlessly approximated by a rational function whose poles do not affect the 
analysis. 

A straightforward calculation shows that there is no jump across the real line. 
We have 

7~1(~) = I .  (2.3) 

The jump relation is 

where 

~ 1  1 1 = tI't_blx, t, 

u l ( 1 r d 1 2 e 2 i ~  
x,t = 0 , on  l l  , 

(1 z _fid2e 2i0 
l+lrl 2 

10 rd 2e2i~ ) 
= ~ , 

1 

on  12, 

on  13 , 

( , 0) 
= fid2e -2i0 1 on  14. (2.4) 
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3. The important observation is that this is a Riemann-Hilbert factorization problem 
without singularities at all. Indeed, the jump matrices have no poles as a has no 
zeros on ll U 12 U l 3 U 14. Also, ~I has no poles even at the points where a(2) = O. 
This follows easily from the scattering relations (1.7), the definition of ~ (1.11), 
and Proposition 2.1, which gives the behavior of d• near the zeros of a. 

In other words, we end up with exactly the same problem as the one corre- 
sponding to initial data that produce no real spectral singularities at all. Hence, the 
analysis of Deift, Its and Zhou goes through completely unaltered. Note also that 
the solution of (1.1)-(1.2) is still recovered in the same way (see (1.14)) since the 

1 modifications above have no effect on 7 ~ up to order i .  
We will not provide the analysis of Deift, Its and Zhou in detail. We refer the 

reader to [DIZ] instead. We will only recall that as the jumps (2.4) are exponentially 
small away from the stationary phase point 2o the problem is reduced to one on a 
small cross near 2o. The new problem can be solved explicitly (after some rescaling) 
in terms of parabolic functions. For the reader's convenience we provide the leading 
order asymptotics for q. 

Theorem 2.1. Let  M > 1,K > 0 be f i x ed  and assume that f o r  any real zero o f  a, 
say 2', we have 2 -  21 < K. We have 

q(x, t) = t-1/2e(2o)e @-iv(;~~ log(St) + E(x, t ) ,  (2.5) 

where, as t -+ o% 

and for  any j ,  

where 

E(x , t )  = O(t l logt), f o r  ~ M ,  (2.6) 

E(x , t )  = O(Ixl - j  + cj(2o)x -1 log Ix]), Jor I)~ol M-1 

1 
V()L) = ~ log(1 + Ir(2)l a) > O, 

2 ' 

1 ;.o 
arg~()oo) -- argF(iv(2o)) - argr(2o) + ~ + - ~ _ f  log(2o - 2)d(log(1 + Ir(2)12). 

3. Near  a Singularity 

In this section we consider the effect of a real spectral singularity which is close 
enough to the stationary phase point 2o. For simplicity, we will assume that there 
are no non-real singularities and that there is only one real simple singularity, i.e. a 
has a simple zero, say at zero (but see Sect. 4 about these assumptions). We write 
a(2) = 2 g(2), with d (2)#0 .  

In this case, the analysis of [DIZ] breaks down, so the method of Sect. 2 is no 
longer useful. The behavior of d (the solution of problem (2.1)) is more complicated 
near 2o; it is no longer bounded there, and the relevant resolvent operators are also 
unbounded, so the standard method of [DIZ] cannot be applied directly. We will 
instead study this case by deforming the original problem in a different way. 
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e; e', 

+ :4_ 

IR + l IB + IR 
6 [1 

E4 + / / ~ +  E6 

/_ _N 

e; e; 
Fig. 3.1. 

1. Let 
x 2 

-- 16t -- tZ2" (3.1) 

We consider the region defined by 

20 --+ 0,  ~ ~ oc, as t ---+ oc. (3.2) 

Our first step will be to rescale appropriately so that the distance between the 
spectral singularity and the stationary phase point is O(1). We next introduce a 
contour deformation (different from Sect. 2) which is still guided by the signature 
of the phase O. It now turns out that, in the region we are interested in, the 
factorization problem takes a very special shape. After a final conjugation involving 
an appropriate multi-valued function we end up with a problem on a vertical band, 
that can be solved in terms of the genus-0 algebro-geometric solution of Eq. (1.1). 

Remark. A comprehensive reference for scalar problems with singular jumps (like 
(2.1)) is the book by Gakhov ([G]). 

2. Let ~ 0 ) ( 2 ) =  ~(202). Condition (1.13) becomes 

IIJ(l+)=tfI(1)eiz(222-42)a3( 1 -  /=(}~0,~) 1 +r(2~ 2 )e_i.c(222_4)0~ 3 . (3.3) 

The rescaled phase is 
(~ = 27(J~ 2 --  2 2 ) .  (3 .4 )  

The singularity of the problem is now at 2 = 0 while the stationary phase point is 
at 2 =  1. 

3. Let d be the solution of the scalar problem (2.1). We introduce a new contour N 
as shown in Fig. 3.1. We denote the vertical band joining points 1 § iA and 1 - iA 
by lB. A is a real positive parameter depending on 2o and z, to be specified later. 
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Let 

(D  O -~-1e2ir 
~v(2) z ~(1) D _  1 , ,~ E E1,  

335 

~j(2) = t/.t(1) ( D  0 ) 
D_  1 , J~ C E2,  

~(2) tpO) ( D 
/LO _--2iq5 \ 

0) 
D_ t , 5{EE3 ,  

0 RD I e2iq, ) 
t / / (2) = I/ /(1) I+IRI2 , 2 E E4,  

D-1 

7,(2) = 7 , 0 ) ( D  0 ) 
D_ ~ , 2 C E s ,  

fidDe_2io) D_ 1 , ~ E E6 �9 (3.5) 

Here R(2) = r(202) and D(2) = d(202). 
A straightforward calculation shows that there is no jump across the real line. 

We also have 
~ r J ( Z ) ( o O )  = I .  (3.6) 

The jump conditions for 7,(2) are 

~(+2) = ~(2)u(2), 
- -  X , ' ~  

where 

u(2) = (10 --RD12e2i~) 
X~T 

(1 o) 
_ ~D2 e_ 2i~5 

l+lRi 2 1 

I RD 2e2iea I 1 i<<2 
z 

0 1 

~ 2e_2i # 

on l~1, 

on l~,  

on l~ ,  

on l~, 
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1 -RO~2e2ieb I 
~ D 2  e 2i~ 

I+IRI 2 ~ / ( _RD2e2i ) 
1§ 12 a+lRI 2 

\ ff~O2e - 2 i ~  l 

on the top half of  lB, 

S. Kamvissis 

on the bottom half o f  lB. (3.7) 

Once more this is a Riemann-Hilbert  factorization problem without singularities 
at all. The proof  of  this is the same as in Sect. 2. 

4. We observe that, as in Sect. 2, because of  the structure sign of  ~b the jumps 
across Z \ lB are exponentially close to I as z - +  +ec .  We thus end up with a 
Riemann-Hilbert  factorization problem across lB. 

Theorem 3.1. Let tp(3) be analytic in II;\lB, such that 

t//?) = I//(3)U(3) on ,  
- -  X , T  

where 

U (3) ( 1 -RD-2e2i~' I 
x,r ~ ff~D2e - i~ 1 ' 

\ ~ 1 +I-R] 2 

, 
\ f i t J 2 e  -2iq~ l 

on the top half of lB, 

on the bottom half of lB. (3.8) 

and 
gJ(3)(oc) = I .  (3.9) 

Then ~v(2) _ ~v(3) = O(z- l ) ,  for any positive l, as z ~ oc, uniformly in x, in com- 
pact subsets of the 2-Riemann-sphere. 

Proof The details o f  the proof  are omitted (see [DZ]). The important observation 
Y3Y here is that RD -2 and ~ are actually under control on the top half  o f  113 while 

--RD -2 p~D 2 I+IRL2 and are under control on the bottom half. For example (again see [G], 

p. 448) D behaves like 2ol/2(2 - 1) -1/2 and RD -2 is bounded. Note here that it is 
crucial to chose the segment 113 at right angles with the real line; the behavior of  D 
depends essentially on the direction in which we approach 2 = 1. 

5. We introduce the multi-valued function 

~2 = 2 ( 2 -  1 ) ( ( 2 -  1)2 + A 2 ) 1 / 2  _ A 2 _ 2 .  ( 3 . 1 o )  

We consider this as a function on 112, chosing the branch consistently with the 
condition 
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Naturally, f2 has a jump across lB. Also, 

f2+ + (2_ = - 2 ( A  2 + 2 ) ,  

i(O+ O _ )  < 0, on the top half  o f l B ,  

i((2+ - f2_) > 0, on the bottom half  of  lB. 

Defining 

}/2(4) = i [ t ( 3 ) e i ( 2 ~ - z f 2 ) ,  

we end up with the following Riemann-Hilbert  problem: 

tp(+4) = to(4), (4) 
1 Wx z ' 

where 

u (4) 
X,r 

eiV(t2+_ ~ ) _RD-2eiz(f2++o )~ 
= ~O2e i~(o++~ ) 

,+IRI ~ ~e-i+C~+-a-),] 
1 z ei~(Q+ Q _ )  _ R O - 2 e i Z ( o + + Q _ )  \ 

! I+IRI 2 I+IRI 2 ) = / 
/ 

\ p~D2e-i-ffo+ +o_ ) e-iZ(f2+-o_ ) 

337 

(3.12) 

(3.13) 

on the top half  of  IB, 

on the bottom half  o f  IB, 

7J(4)(oc) = I .  (3.14) 

Remark. The choice of  f2 is inspired by the theory of  algebro-geometric solutions 
of  the NLS equation (cf. [BBEIM]). We are seeking a generalized differential zdO 
on a Riemann surface, whose integral behaves like the phase 2~b as 2 --+ ec. The 
actual Riemann surface (of  genus 0 in our case) is dictated by the Riemann-Hilbert  
contour lB in (3.8). 

6. As it stands, (3.14) does not look like an improvement over the original Riemann-  
Hilbert problem. However,  we shall now show that near the "shock" region, it can 
be much simplified. In this subsection, we consider the "shock front," i.e. the region 
II o f  Theorem 1.1. 

We choose A such that 1201 = e -~A2, i.e. 

/ = ( - l ~  12~ 1/2 �9 
(3.15) 

A and z depend on x and t and should be thought of  as a "slow" and a "fast" 
variable, respectively. 
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Because of  (3.15), the diagonal terms of  ~x,~' (4) tend rapidly to 0, as r --+ oc. As in 
Subsect. 4, we end up with 

where 

where 

0 2 Ce--iff2A2+4) ) 
U(5)x,z = _leiz(2A +4) 0 ' .~ C ]B, 

7J(5)(ec) = I ,  (3.16) 

( 2~i_~ l~176 " 
b(o) 

C -- a ' (0 )  exp (3.17) 

Note that there is no discontinuity at 2 = 1. Here one uses the fact that when 
a(2)  = 0, ]b(2)] = 1 (see (1.8)), hence /~(0) = b(-~5" 

Problem (3.16) can be solved explicitly. It can be interpreted as a form of  the 
Riemann-Hilbert  problem for the genus-0 algebro-geometric solution of  (1.1) (see 
e.g. [MA], [LM], [BBEIM, eh. 4]. We analyze and solve (3.16) in the appendix. 

Keeping track of  the different transformations of  7 j and recalling (1.14), 
we have: 

Theorem 3.2. The effect of  a real spectral singularity at 2 ~ is only felt in the 
region 2 ~ - 2o -+ 0. In the case, say, 2 ~ = 0 we have, as 20 ---+ 0 and "c ---+ cx~, 

( - l ~ 1 7 6  �9 e x p ( - 4 i z  + 2ilog(t20]) + iarg(b(0)) 
q(x, t) ~ la,(O)ltl/2 

i 0 
i a rgd(0)  - ~ -~ j~  l o g ( - s ) d  log li(s)l 2) ,  (3.18) 

where 20 = ~ ,  a,b are the scattering coefficients defined in (1.7) and if(s) = a(s_A) 

- log t ~1/2 the amplitude of  the solution decays In particular, in the region ~ ~ ( ~ - ,  

like 0((~)1/2). 
7. The region ~ -~ ~ ,  20 --+ 0 corresponds to the "front" of  the region in which 
the effect of  the real singularity is felt. We conclude this section by considering the 
region where r is bounded and 2o ---+ 0, t -+ c~. 

We now use a different rescaling, i.e 2 ~ ~0ogtf/2 The phase becomes 
. ~  t l / 2  �9 

X 
O = 222 log t + t--~(log t)1/~2. 

The function ~ (see (3.10)) should now be 

X 
Q = 2log  t(2 + 1)(2 - 1 + ((2 - 1) 2 @A2) 1/2) Jr- t~(.;L + ((2 -- 1) 2 @A2)1/2). 

We still define A by (3.15) and we still end up with a Riemann-Hilbert  problem 
on a vertical band. Following the steps outlined in Sect. 6, we end up with the 
following asymptotics for q: 
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Theorem 3.3. In region III, with 2o ~ 0,r bounded, as t --+ oc, the asymptotics fo r  
the solution of  (1.1),(1.2) is 

Ik01 2ix 
q(x, t )  ~ Ct -I/2"~~176 exp(-2i(A 2 + 2) logt § -yr,(log t)1/2), (3.19) 

"C 

where 20, r,A are as above, and C is defined by (3.17). 

4. Higher Order Zeros and Finitely Many Singularities 

It should be clear by the discussion of Sects. 2 and 3 that there is nothing special 
about a singularity at zero. In the general case of finitely many singularities the 
following is true: for each real singularity ,~i, there is a region where 2i - 2o ~ 0, 
as t --+ ec, in which the solution decays with leading asymptotics similar to (3.18) 
and (3.19). Non-real singularities correspond to solitons as usual (see e.g [FT], [K] 
for the infinite case). 

On the other hand, it is clear from Sect. 3 that the order of the zero of a is not 
important; the order of the solution remains the same but there is a minor change 
in the phase. We leave the details to the reader. 

As mentioned in Sect. 1, a study of the interesting generalization of our result 
in the case of infinitely many real singularities is under way (for examples of such 
initial data see [Z]). 

Appendix. The Riemann-Hilbert Problem for the Genus-0 Solution 

In this appendix we solve the Riemann-Hilbert problem (3.16). We do this by 
diagonalizing the jump matrix and thus reducing the problem to a scalar one which 
can then be solved explicitly. 

Let G = C exp(-iz(2A 2 + 4)) and 

, 1) 
1 

The eigenvalues of S are i and - i ;  we have 

Define 

A = l z T ~ ]  

Then A solves the scalar problem 

A+ = A_i, on IB, 

A ( ~ )  = 1. 

(A.1) 

S -1 . (A.2) 

(A.3) 

(A.4) 
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Let the matrix # be defined by 

Then 

#+ = # -  

s. Kamvissis 

0 ) S _  1 
A 1 �9 (A.5) 

(o  ~ 
_ , o n l B ,  

# ( ~ )  = I .  (A.6) 

Thus # is the solution of  (3.16). Furthermore, near infinity, 

) 0 2(2--1-iA) 
#(2) = 1 + 2 0 " (a .7 )  

GA(2--1-iA) 

In particular l im ; ,~oo (22#12)= -GA.  The asymptotics o f  q is now immediately 
recovered through (1.14). 

Remark. One can interpret problem (3.I6)  as the Riemann-Hilbert problem for 
the genus-0 solution o f  the NLS equation. Although the use o f  the term "algebro- 
geometric solution" may sound pretentious in the very simple special case of  genus 
0, it is worth pointing out the fact that what we encounter here is an instance 
o f  a very general phenomenon, where the long-time behavior o f  the solution of  
a soliton equation in a particular region is related to a different type of  solu- 
tion, which is indeed connected with Riemann surfaces, and the associated the- 
ory of  theta functions connected with the Abel map. For a discussion of  that 
theory in the context o f  the nonlinear Schroedinger equation (focusing and defo- 
cusing) see [MA], [LM] and [BBEIM, ch. 4]. 
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