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Abstract: Large time asymptotics of statistical solution u( t , x )  (1.2) of the Burgers' 
equation (1.1) is considered, where ~(x) = ~L(x) is a stationary zero mean Gaussian 
process depending on a large parameter L > 0 so that 

 L(x) (L --, oo), 

where crL = L2(2 log L) 1/2 and r/(x) is a given standardized stationary Gaussian pro- 
cess. We prove that as L ~ eo the hyperbolicly scaled random fields u(LZt, L2x)  
converge in distribution to a random field with "saw-tooth" trajectories, defined by 
means of a Poisson process on the plane related to high fluctuations of  ~(x), which 
corresponds to the zero viscosity solutions. At the physical level of  rigor, such 
asymptotics was considered before by Gurbatov, Malakhov and Saichev (1991). 

1. Introduction 

The Burgers' equation 
c~tu § U~?xU = #t?Zu, (1.1) 

t > O, x E R ,  u = u ( t , x ) , u ( O , x )  = uo(x), admits the well-known Hopf-Cole explicit 
solution 

O 0  

f {(x - y) / t ]  exp [(2#)-l(~(y) - ( x  - y)2/2t )]  d y  

u ( t , x )  = 

7 exp [(2)~)-1(~(y) _ ( x  - y ) 2 / 2 t ) ]  d y  
O 0  

(1.2) 

where ~(x)  = - fx_~ u o ( y ) d y  (see Hopf (1950)). It describes propagation of non- 
linear hyperbolic waves, and has been considered as a model equation for various 
physical phenomena from the hydrodynamic turbulence (see e.g. Chorin (1975)) to 
evolution of the density of matter in the Universe (see Shandarin, Zeldovich (1989)). 
Due to nonlinearity, solution (1.2) enters several different stages, including that of  
shock waves' formation, which are largely determined by the value of the Reynolds 
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number R = al l#  (see Gurbatov, Malakhov, Saichev (1991)). Here, # .,>. 0 is ~the 
viscosity parameter, while a and l have the physical meaning of characteristic scale 
and amplitude of ~(x), respectively. 

Starting with Burgers' own papers ~(see Burgers' (1974) for an account of the 
early work in the area), numerous works discussed statistical solutions of (1.1), ~.e., 
solutions corresponding to random initial data ~(x) = ~(x; co) (see, e.g., Kraichnan 
(1959)). The random process ~(x) is usually assumed to be stationary or having 
stationary increments. Although many of these works are not quite rigorous math- 
ematically, they reflect the interest of physicists in the "Burgers' turbulence" and 
other physical phenomena described by this equation (for a survey of past and 
current work on the stochastic Burgers equation, see Fournier, Frisch (1983), Woy- 
czynski (1993), Funaki, Surgailis, Woyczynski (1995), and other papers quoted in 
references). 

From the probabilistic point of view, a study of the limiting behavior of u(t ,x)  
as t --+ co, or as # -~ 0, seems to be most interesting. If # > 0 is fixed, then, 
under some additional (exponential) moment conditions on ~(x), and in absence 
of the long-range dependence, u(t ,x)  obeys a "Gaussian scenario" of the central 
limit theorem type (see, e.g., Bulinskii, Molchanov (1991), Albeverio, Molchanov, 
Surgailis (1993)). Non-Gaussian limits have also been found under less restrictive 
conditions on ~ (see e.g. Funaki, Surgailis, Woyczynski (1995)). 

On the other hand, if the initial fluctuations ~(x) are large enough to make the 
exponential moments of ~(x) infinite, and the marginal tail distribution function 

P [exp (~(x)/2#) > a] 

varies slowly as a -+ oo, then the behavior of u(t, x )  is very different from the 
"Gaussian scenario," namely, 

x - y* 
u(t ,x)  ~ - -  (t --+ ~ )  , (1.3) 

t 

where y* -- y*( t , x )  is the point where S ( y )  := ~(y)  - (x - y)2/2t  attains its maxi- 
mum. For a degenerate shot noise process ~(x), the asymptotics (1.3), together with 
an estimate of growth of the right-hand side of (1.3), was rigorously established in 
Albeverio, Molchanov, Surgailis (1995). 

In their important physical works, Gurbatov, Malakhov, Saichev (1991 ) (see also 
Kraichnan (1968), and Foumier, Frisch (1983)) discussed asymptotics of u(t ,x)  
at high Reynolds numbers, in the case when the initial Gaussian data ~(x) are 
characterized by large "amplitude" a = ( E ( ~ ( 0 ) ) 2 )  1/2 and large "internal scale" L = 
a/cr' > > 1, where cr I = (E(~t(0))2) 1/2. At time t = tL "~ {L(tL), where 

SL(t) = (~t)l/2(log (~r't/2~zL)) -1/4 (1.4) 

is the "external scale" at time t, they demonstrated (at the physical level of rigor) 
that "[...] a strongly nonlinear regime of sawtooth waves [...] is set up, [...] and 
the field's statistical properties become self-preserving" (ibid., p. 163). In particular, 
they were able to find explicitly one- and two-point distribution functions of the 
(limit) sawtooth velocity process (ibid., Sect. 5.4). 

In the present paper, we formulate the problem in mathematical terms and give a 
rigorous derivation of the "large intemal scale asymptotics" of the above type in the 
sense of the weak convergence of finite dimensional distributions of hyperbolicly 
scaled velocity random field u(L2t, LZx). The particular asymptotic form (2.1) of 
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the initial Gaussian process is a simplification assumed for technical reasons; even 
in this case the proofs are rather involved. The limit "sawtooth" process, which 
corresponds to.zero viscosity limit solutions of the Burgers' equation, is defined 
with the help of a Poisson process on R 2 corresponding to high local maxima of 
the Gaussian data. The n-point distributions and correlation functions of the limit 
field are given. For n = 1, 2, they coincide)'with the corresponding expressions 
found by Gurbatov, Malakhov, Saichev (1991). The paper makes an extensive use 
of a modern theory of extremal processes; the comprehensive account thereof can 
be found in Leadbetter, Lindgren, Rootzen ([983). 

In Sect. 2 we formally present our main result and  take first steps towards 
its proof. Section 3 studi~s the Poissofi COlavergence ot' high local maxima of the 
Gaussian processes together with the deterministic (parabolic) behavior of  their 
trajectories near the extreme points. Section 4 introduces the Burgers ( ~ - )  topology 
on point processes - a natural topology for the problem at hand. The convergence 
and compactness criteria Yor that topology are then provided. In Sect. 5 we return 
to the study of the Hopf-Cole functional and complete the proof of  our main 
Theorem 2.1. Finally, Sect. 6 discusses explicit formulas for the multipoint space- 
time densities and correlation functions of the limit velocity field. 

2. Internal Scale and Hyperbolic Asymptotics 

The "internal scale" that was discussed above on the intuitive level will be formal- 
ized roughly as follows. We shall start with a zero-mean stationary differentiable 
Gaussian process r/(x) and take as the initial data process 

~.L(x) = aLrl(x/L) , (2.1) 

where 
aL = L 2 ~  . (2.2) 

The particular asymptotics of  aL is dictated by the standard normalization constant 
(see (2.7)) in the extremal theory of Gaussian processes, and the scaling properties 
of the Hopf-Cole functional (1.2). Then, 

( ( x )  = ( a L / L ) r  , 

and the "internal scale" 
[g(~(x))2] 1/2 

[E(~t(x))2 ] 1/2 

is proportional to parameter L. Studying the solutions at large "internal scales" will 
mean letting L --+ co. 

We shall assume that the covariance function r ( x ) =  E~(O)~(x)  o f  the process 
~7(x), x E R, satisfies the following two conditions: 

and 

r (x )  = o ( 1 / l o g x )  (x ---+ e~)  , (2.3) 

1 o 2 1 2 4 x 4 + o ( x  4) (x---+0) (2.4) r (x )  = 1 - ~ . .~2 x -~ 4 .  
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~(L2xl 

9. 

I 

Fig, 1. Points (yj, uj) of the Poisson process (marked by o) correspond to high local maxima 
of the Gaussian curve ~(x). Critical parabolas define discontinuity points and zeros of the limit 
velocity process v(t,x). 

Then, our main result can be formulated as follows. 

Theorem 2.1. Let u(t, x) be the solution (1.2) of  the Burgers' equation (1.1) 
with the initial datum ~(x) = ~.L(x), x E R, of  the form (2.1) and satisfying con- 
ditions (2.3) and (2.4). Then, as L --+ oc, the finite dimensional distributions of  
u(L2t, L2x),(t,x) E R+ x R, tend to the correspondin9 distributions of  the random 
field 

v(t,x) - x - yj*(t,x) (2,5) 
t 

Here, yj*(t,x) - yj* is the abscissa of  the point of  a Poisson process (yj, uj)j~z on 
R 2, with intensity e-Ududy, which maximizes u j -  ( x -  yj)2/2t, ie. 

( x - y j * ) 2  - m a x  ( 2t  " (2.6) 
uj. 2t j 

The intuitive meaning of Theorem 2.1 can be best explained with the help of 
the geometric construction presented on Fig. 1 which, actually, goes back to the 
original Burgers' (1974) work. Also, notice that the limit random field v(t,x) does 
not depend on the viscosity parameter # in Eq. (1.1), and that its shape is what 
one usually sees in the study of the Burgers' equation in the zero viscosity limit. 
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Proof of Theorem 2.1. To simplify the notation, we shall consider only the con- 
vergence of  one-dimensional distributions of  u(L2t, L2x) for # = t = 1/2, x = 0. Af- 
terwards, we shall explain how the general case can be obtained. 

Put 

HL := u(L2/2, 0), 

ar := aL/L 2 = V/2 logL ,  (2.7) 
C1 

bL := V/2 logL + - -  (2.8) 

where c~ = log (V~z/27z). According to (1.2), (2.1), 

- 2 f y  exp [L 2 ( r / L ( y ) -  y2)] dy 
R , (2.9) 

HL = f exp [Z 2 (tlL(Y) -- y2)] dy 
R 

where 
ilL(y) = aL (q(Ly) - bL) �9 (2.10) 

Let y~qL),@~IL)= tlL(yJ~L)) be positions and heights of  local maxima of  the 
process tlL(X),X E R, respectively. Due to condition (2.4) of  the theorem, their num- 
ber is a.s. finite on any finite interval (see Leadbetter et al. (1983), Sect. 7.6). Let 
(yS~.z), uS.~.D ) be the pair which maximizes uSeD-(JS~/L)) 2 = 1~L(y5 rlL)) --(J51/L)) 2, j E 
Z, i.e., 

t~j(r/L, (. (r/L ,,2 = mjax (ua(SL) (,5~L ,)2) . . -- ~yj. } . (2.11) 

(In the case when the last maximum is achieved at several points, we chose the 
one with the smallest ordinate.) Now, put 

I(AS~.L) ) = f exp [L2(t/L(y) -- y2)] dy,  
A(~L) j* 

where 
(,TL) { ,(~D, I/LaL} Zip = y C R : ] y -  < Yj* I 

Then, HL of  (2.9) can be written as 

. ( ~ L )  

HL = _2 yj. + Rc + pL 
I + Q L  

where 

and 

RL = f y e x p  [LXO1L(y)--yX)] dy/I(AS.~.z)), 

QL = f exp [L2(r /L(y)-  y2)] dy/i(AS~.D), 

PL = f ( Y -  YS~* L)) exp [L2(~IL(y) -  y2)] dy  / [(AS~L) ) . 
A(~IL) j* 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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HL ~ v(1/2, 0) = - 2 y j .  , 

follows from the facts that 
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(2.17) 

yj(qL) . :::k yj* =_ Yj*(1/2,0) , (2.18) 

RL ~ 0 ,  (2.19) 

QL ~ 0 ,  (2.20) 

and from the trivial bound IPLI < 2/LaL --+ O(L --+ co).  
Proof of the theorem requires a study of the Poisson convergence of functionals 

of  a Gaussian trajectory near high local maxima, in the spirit of Chapter 10 of 
Leadbetter, Lindgren, Rootzen (1983). Moreover, to prove (2.18) we need a criterion 

(~L) (qL), :_ 
for convergence of the point process tY)  ,u j  ) j c z  u~ a topology matched to 
the Burgers' equation. That topology will be introduced and studied in Sect. 4. 
The proof of Theorem 2.1 will then be completed in Sect. 5. 

3. Poisson Convergence of Local Maxima 

Let ~/~ be the space of all locally finite point measures o n  R 2, with the topology of 
vague convergence of measures, denoted by --+ (see Kallenberg (1983)). Introduce 
also the space ~ (  of all locally finite point measures on R 2, taking values in the 
Banach space C[ -1 ,1 ]  of  continuous functions, equipped with the supremum norm. 
I[" II. Elements ,7 c - ~  can be identified with countable sequences 

,7 = (y j ,  uj, gj ) j~z  , (3.1) 

where ( y j ,  u j )  C R 2 and gj E C [ - 1 , 1 ] , j  E Z. Write v = ( y j ,  u j ) j c z .  Then v can be 
identified with the element ~-~J~z 6(y j ,  u j )  E ~ .  The convergence `7r ---+ 

(`7L, ,7 E J/{) is equivalent to the condition that VL -+ v (in Jr and that 

Ilgj, L --  gjII -~  0 (3 .2 )  

for any j E Z. It is clear that ~ ,  as well as Jr are complete, metrizable spaces 
with respect to the above topology. Without any risk of misunderstanding, we will 
use the same notation ~ for the weak convergence of random elements from JCl, ~ ,  
and/or from a finite dimensional Euclidean space. 

With the Gaussian process ~L(x) of  (2.10) we associate the point process v(~L) = 
(y~nL),@qL))jCZ E J g  of local maxima, and the point process 

`7(~D - (~L) (~L) (nL)- = t y )  ,u) ,g)  ) j~z  E ~ , (3 .3 )  

which includes the "germs" _(nL)r vj t ' )  E C[ -1 ,  1] of the trajectory near local maxima, 
where, for y E [ -1 ,  1], 

gj(•L)t .  ~ . r .  ( i l L )  
t y )  = , IL~, j  + y / L a D  - ~L(y~ "L)) 

= ,ILt*j + y /LaL)  -- , j  . (3.4) 
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Proposition 3.1. The point process 

~(,~L) ~ ~7, (3.5) 

where ~ = (yj, uj, gj)j~z, with v = (yj, uj)isz being the Poisson process of  Theorem 
2.1, and 

1 2 9j(y)=~g(y) = - ~ 2 2 y  , y E [ - 1 , 1 ]  (3.6) 

bein9 a deterministic parabola. 

Proof The lemma is equivalent to the statement that both 

v (~L) ~ v ,  (3.7) 

and 
P - lim ][g~.~L) _ gll = 0 ,  (3.8) 

L----~ oo 

for any j E Z such that the corresponding local maximum " (~L) . (~L), ty) ,uj ) lies in a 

fixed compact set [Xl,X2] • [ul, u2] C R 2 for all, sufficiently large L. Relation (3.7) 
is well-known, see e.g. Leadbetter, Lindgren, Rootzen (1983), Theorem 9.5.2. State- 
ment (3.8) can be proved using the Slepian model process representation near a local 
maximum (due to Lindgren (1970)) as follows. In view of  the above, it suffices to 
prove that, for any e > 0, 

~ P  [[ 0~ t/L) - g H > ~, (Yj  ,u j  ) ~ [Xl,X2] x [b/1,/A2] ---+ 0 ,  (3 .9)  
J 

as L ~ oc. Write the left-hand side as 

P[llyj -0lk> ,y/ ,-j j ' l  j 
J 

(3.10) 
According to Theorem 3 of  Lindgren (1970), 

.(nD . (~L) . .('tD P[Llyj -glL> l-; =-,y; =y] 

=p[sup ]aL(n  (x/aL)-vL)+l, 2x (3.11) 
~lxl _-< 1 

where vL = aL + (u + c~ )/aL and, for any v E R, 

tl~(X) = vA(x) + ~l(x) - ff2,v(X), X C [ - 1 ,  1],  

is the Slepian model process conditioned at a local maximum of  height v at 

x = 0. Here A(x) = (24r(x) + 22r"(x))/D, D = 24 - 22 > 0, while ~l(x) and ~2,v(x) 
are independent stochastic processes with 

where B(x) = (22r(x) + r"(x))/D, and ~c~ > 0 is a random variable with the density 
proportional to z e x p [ - ( z -  22v)2/2D],z > 0. The process ~l(x) is a zero mean 
Gaussian process with the covarianee function C(x,y)  given in Lindgren (1970), 
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Eq. (8). Making use of  condition (2.4), and the fact that A(0) = 1, A'(0)  = A"(0)  = 
0, one easily obtains that 

aLvL(A(x/aL) -- 1) ~ 0 ,  

uniformly in x E [ - 1 ,  1],u E [ubu2]. Next, using the fact that (l(X) is a.s. continu- 
ously differentiable, and that ~1(0) = ('1(0) = 0, similarly as in Leadbetter, Lindgren, 
Rootzen ( t983) ,  p. 203, we conclude that 

sup arl~l(x/aL)l ~ O, a.s . 
Ixl <= l 

Finally, noting that 

1 
sup --aLVL)~2B(X/aL) + g)~2x 2 ---+ O, 
Ixt__<l L 

and denoting by pL,,  the probability in (3.11), we obtain that 

pL,~ = P [ t l  - (~C~L/22VL)I > e] + O(1) ---+ 0 ,  (3.12) 

uniformly in u E [ubu2], as ~c~/22v--~ 1 (v--+ oo), in probability. Since 
(yJnL),U~r/L))jcZ = V (r/D converges to a Poisson limit (see (3.7)), relations (3 .10) -  
(3.12) imply (3.8) and the proposition itself. QED 

Proposition 3.1 immediately yields the following lower bound for the exponential 
integral in (2.12). 

Corol lary 3.1. For any compact A C R 2, and any e, (~ > O, there exists an Lo < oc 
such that, f o r  every L > Lo, 

I exp rr2," (r/L) / (r/L)'2 1 IL tU)* -- tY)* ) -- 3)] .(~D . (r/L), 
P (A~. ~>) < ~ c 2 a  L % .  , ~ A < , "s* ~ . (3.13) 

4. Burgers' Topology on Point Measures 

Fix ~o, fl0 > 0, and consider the subspace N = N~0,~0 C ~ consisting of  all mea- 
sures v E d/{ such that for any c~ > ~o, fl > fl0, 

I~,~(v) := fe~U-flY2dv < o c .  (4.1) 
R 2 

Definition 4.1. Let  vL, v E N. We shall say that vL ~ v as L ~ oo, i f  VL ~ v and 

I~,~(vL) ~ I~,fl(v), L ---+ oo ,  (4.2) 

f o r  any c~ > ~o, fl > flo. The convergence ~ defines a topology in N which hence- 
for th  will be called the Buroers'  topology (N-topology) .  

The next lemma provides a criterion of  compactness in the N-topology, 

Proposition 4.1. N is a complete separable metrizable space in the N-topology. 
A Borel set A C B is compact in the N-topology if, and only if, A is compact in 
the vague topology, and f o r  any c~ > %, fl > fl0, 

sup I~,p(v) < o c .  (4.3) 
vGA 
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Proo f  The lemma follows easily from the well-known properties o f  ~/H and of  
the vague topology (Kallenberg (1983), 15.7), and from the following observa- 
tion. Let VL --+ V and supL(I~,3,(VL ) +/ , , , f i , (v r ) )  < oc for some cr < c~' < e < 

< oo, fl0 < < ft. Then /~,fl(v) < oo and (4.2) holds. Indeed, as I~3(vL ) < 
/~,3,(vL) +/- , f l , (VL),  SO supLI~,~(VL) =:  /~,fl < Oo. Assume that I~,p(v) = oo. Then, 

one can find a compact A C R 2 such that 

f e x p  [~u- flx2]dv > 2[~,f l  . 
A 

On the other hand, from vL --+ v it follows that 

f e~-fiX2dv <= lim sup f  e~U-flX2dvL < [~,fl , 
A A 

which is a contradiction, i.e. I~,fl(v) < oc. To prove (4.2), note that, by a similar 
argument as above, lime f I~3(vr)  > I~3(v ). Assume that limkI~,fl(vLk) > I~3(v) for 
some sequence {Lk}; for simplicity take Lk = k. Then, since vk --, v, one can find 

> 0 and a sequence R1, ---+ oc such that 

ik(Cqfi) :=  f eZ~U-flX2dvk > e .  (4.4) 
(l<+lxl>Rk} 

Write 

where 

Obviously, 

where 

ik(cq fi) "' " = zk(C~,fi ) q- ik(~,fi) , 

i~(a, fi) = f e ~"-fix2 dvk . 
(M+lxl>Rk, u>O} 

i'k(~,P) < L,, e,(~k)e-4 

dk : = i n f  { ( c ~ " - ~ ) u + ( f l - f l ' ) x  2 "u > O, lul+lx[ > Rk}---+oo,  

as k ---+ ec. Since 
sup/ , ,  ~,(v~) < oc ,  

k 

I I  

we have that limk i~(~, fl) = 0. Similarly, limk i k (~, fl) = 0, which contradicts (4.4). 
QED 

Let P(Jh~), P ( ~ )  denote the family of  probability measures on ~ ,  ~ ,  respec- 

tively. Write ~ and ~ for the weak convergence of  probability measures on, or 
random elements in, Jr and ~ ,  respectively. The next proposition provides a char- 
acterization of  the latter convergence. 

Proposit ion 4.2. Let  PL,P C P ( ~ ) .  Then PL ~ P if, and only if, 
(i) PL ~ P, and 
(ii) PLOI~,~ ~ P o / 7 ~ ,  V~ > ~0,Vfi > flo. 
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Proof The necessity of  (i) and (ii) for PL ~ P is easy. In particular, (ii) follows 
from the fact that I~,p(v) is continuous on N. 

To prove the converse part, it suffices to show that {PL} is tight in P (N) ,  i.e., 
that for any e > 0 there exists a compact K C N such that 

sup PL(N\K)  < e .  (4.5) 
L 

By (i), there exists a compact K ~  C ~ such that supLPL(N\KM) < #2,  and by 
(ii), for any k > 1 there exists a compact Ck C R such that 

( ) sup PL o ~o+/c,/~o+/c_i + p / ;  o1 -1  1 i (R \Ck)  < e/2 k+l 
L % + k -  ,D'o +k - " 

Put 

k = l  

Then, from Proposition 4.1, we obtain that K C N is compact, and 

g oo g 

PL(N\K)  < ~ + ~2U+l -- e,  

which proves (4.5). QED 

Now, we can return to the study of  the convergence of  the point processes from 
Lemma 3.1 in the N-topology. Fix c~0 = 1, fl0 = 0, so that 

N = N1 ,  0 = {V E r  :I~,fl(V) • 0(3, VC~ > l , f l  > 0 }  . 

Proposition 4.3. For any L > O, the point processes v ("L) and v of  Lemma 3.1 
belon9 to N a.s. and, as L ~ oc, 

v.  (4.6) 

Proof The relation v = (yj, uj)jez E N a.s. follows from the facts that 

f f e-"dudy = of e_(~/~)y2dy < oo, 
{o:u--fiy 2 >0} --oo 

and 
f f e~U_13y2e_Ududy 1 eo 2 -- - f e -(e/~)y dy < oo 

{~u-/~y2 <0} c~ 1 -co 

(see e.g. Kwapien, Woyczynski (1992), Chapters 7 and 8). According to Proposition 
3.1 and Proposition 4.2, the N-convergence in (4.6) will follow once we demonstrate 
that, as L --~ oc, the (one-dimensional) distributions of  

I~,~(v (~D) ~ I~,B(v), (4.7) 

for any c~ > 1, fl > 0, where 

I~,/~(v ("r)) = ~ exp [c~u~ "L) - fl(y~L ) )2]  = f eC~U-13y 2 dv(~L). 
j E Z  R 2 
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We shall prove (4.7) by first decomposing 

3 

p=l  

where 

and where 

yl(V (~L)) = f e~U-~Y2dv(Uf) 
Ac~,f3,./N{u<K} 

J 2 ( v  (tlL)) : f e . . . .  'By2dvQIL) 

Ac~,~,Tn{u> K} 

J3(v (uL)) = f e~U-Zy2dv(~D, 
A c 

c~,fl,,/ 

A~,fi,.y =- { ( y , u )  C R 2 " o:u - f l y 2  q_ 7 > 0} 

is the set above the parabola 

(4.8) 

0A~,/~,7 = { (y ,u )  �9 eu - fly2 + 7 = 0 } ,  

7 C R2; A c = R2\A~fi-/." cqfl,7 , , 
From Lemma 3.1 one easily obtains that, for any 7, K C R, 

J l (V  (~L)) ~ Yl(V) = f e a U - ' G y 2 d v ,  

Ac~,fl,TA{ u <K } 

as L --~ c~. Moreover,  as ~, K -+ <x~, 

Jl(V) ~ &~(v). 

Therefore (4.7) will follow once we prove that 

P - lira J3(v (~D) = 0 ,  
7---+oo 

(4.9) 

and that, for any 7 E R, 
P -  lim J2(v ( ~ D ) = 0 ,  

K---*oo 

uniformly in L -+ oo. 
Let us begin with the proof  of  convergence of  ,/2 in (4.10). Write 

(4.10) 

OO 
J2(V(~L)) = E f 

k=--oo Ac~,[~,TN{u > K, yE( j , j+  I ] } 

cyo 

- E ~;,K,L. 
k=--oo 

e ~ - / ~ g d v  (~z) 

Here, for j > 0 and L > 1, 

P [~j,K,L > 0] < P [  max ~L(X) > ((fij2 _ y)/c~) VK]  
xE(j , j+l]  

C1 exp  [ -  ( ( f l j2  _ .~)/~ V K ) ]  , 
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with C1 < ec independent of j ,  K, L, and other parameters (see Leadbetter, Lind- 
gren Rootzen (1983)). A similar estimate clearly holds for j < 0. Consequently, 
for every L > 1, 

oo 
P [J2(~2 (t/L)) > 0] ~ ~ P [~j,K,L > 0] = O ( e - C 2 K ) ,  

j = - o o  

with c2 = c2(c~,fl, 7) > 0, which proves (4.10). 
Next, we shall prove (4.9). Here, the expectations exist, so we can work directly 

with them rather than with probabilities which were needed in the analysis of J2. 
According to Leadbetter, Lindgren, Rootzen (1983), p. 161, 

Ev(~L)(dy, du) = FL(u)e-"dudy , 

where, with cl = log(v~2/2~z) and D = -)~4 - /~2 ~> 0, 

FL(U) = exp [--24(u + cl)2/2Da2] 

x (1 + (1//t2aL 2~/~D) ~)(x V (-ag22)) 
--(DO 

exp [-x2/2D + -~2 (U -t-  C 1 )x/DaL]dx) . 

From there, it easily follows that 

Fg(u) < exp [ - (u  + cl)2/2a~] 

22@ + cl )  V (--aL22)'~e-Z2/2Ddz "~ x ( 1  + ( 1 / 2 2 a L ~ )  ~ ((z + ) / ] 
--co aL 

< C ,  

with C < oc and independent of L, and u E R. Therefore 

2 
EJ3(v (~L)) = f e ~u-[~y FL(u)e-Ududy 

A c 

<= C f e~U-~y2e-Ududy 
A c 

~,A7 

_ C e ,~(~-1)/~ ~e-(~/~)y2dy_+ O, 
(Z--  1 --oo 

and 7 ---+ ec, uniformly in L > 1. This proves (4.9) and the Proposition 4.3 as well. 
QED 

Below we use Proposition 4.3 to prove the convergence (2.18) of the local 

maximum point tY)*" (~),"/*" (~r)~/. 

Proposition 4.4. A s  L --+ co,  

. (,TL) . ('IL)~ yj. ,uj. ) ~ ( y j . , u j . ) ,  (4.11) 

where (yj*,Uj*) is the Poisson point process described in Theorem 2.1. In 
particular, 

tyj(~lL) ( ,  (r/L) -~2 2 (4.12) . -~ . , j .  , = r  
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Proof  Consider the set ~0  = N A ~ 0 ,  where -~0 is the set o f  all simple point 
measures v ~ J//. Each v E N0 can be identified with its range, that is, a locally fi- 
nite, countable set �9  uj)} (without any danger of  misunderstanding we shall 
use for the latter the same notation v = (yj, uj)jcz). Note, that for any "parabolic" 
set A~,&,,~ > 1,13 > 0,7 E R (see (4.8)), and any v E ~0  such that v(~A~,&,) = O, 

we have that vr --~ v implies VL(A~$,~) = v(A~,A ~) for all sufficiently large L, and 
that 

dist (vL AA~,~,~,v NA~,~,~) ~ 0 .  (4.13) 

Consider the functional 

h(v) = (y j , ,u j .  ), v = (yj, uj)jez , (4.14) 

with values in R 2, where j* : j * ( 1 / 2 , 0 ) .  Then h(v), which is clearly not con- 
tinuous in the usual vague topology, is a.e. well defined and continuous on N0 
in the N-topology,  with respect to the Poisson measure of  Theorem 2.1. Indeed, 
for every c~ > 1 and almost all v ~ ~0  one can find ? ~ R such that h(v) ~ A~,~,~ 
and v(#A~.,~.,~) = 0. Moreover,  for a.e. v = (yj, uj)jez ~ .~o, the maximum on the 
right-hand side of  (2.6) is attained at a single point ( y j . , u / . ) E  v. Hence, if  

VL ~ V, VL = (Yj, r, Uj, L)jeZ, then (4.13) clearly implies that h(v~)-+ h(v), i.e., the 
functional h(v) is a.e, N-continuous. Now, (4.11) and (4.12) follow from Proposi- 
tion 4.1 and from the well-known properties of  the weak convergence. 

5. Proof  of  Theorem 2.1 (continued) 

Let us return to the proof  of  convergence in (2.18)-(2.20) of  Sect. 2. Consider the 
set f26, 7, x,L of  points co E (2 satisfying the following four conditions: 

y). , C A2,2,y , j .  ~ , ( 5 . 1 )  

(y,r /L(y))  ~ A2,1,~, for lyl > K ,  (5.2) 

I(A~.~. L)) > (1/v/-eL2aL) exp rT2, (,TD t-(~L),2 l~  t u ) ,  - , , j ,  j - ~ ) ] ,  ( 5 . 3 )  

(~L) . (~r)~2 r /L (y ) - -y2  < ~'J* _ ( y j ,  ) _ 2 6 ,  for every y ~ A ~ .  L),jy] < K .  (5.4) 

Then, in view Proposition 4.4, Proposition 4.3, Corollary 3,1 and Proposition 3.1 
(in that order), for any e > 0, 6 > 0 we can find 7 > 2c5, K < oc, and L0 > 0 
such that for all L > L0 , 

P[f26,~l,K,L] > 1 -  e .  

Therefore, it suffices to prove (2.18)-(2.20)  with RL, and QL replaced by R E = 
RLl(co E f2a, y,K,L) and Q2 = QLl(co E!~26,.e,X,L), respectively. In view of  (5.2), 
(5.3), 

' < v/eL2aL(Ke -L2o QL=- 

+ exp l r  lu). -- ( & . )  -- ~)] f exp [L2(rlL(Y) -- y2)]dy) 
{lyl >K,(y,~L(y))~&,~,~} 
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which proves (2.20). In a similar way, one can prove (2.19). Finally, (2.18) follows 
from Proposition 4.4. This proves (2.17). 

We complete the proof o f  Theorem 2.1 with a few remarks about the conver- 
gence o f  general finite-dimensional distributions, i.e. 

(u(L2t l ,L2x~)  . . . . .  u (LZ t , ,L2x , ) )  ~ ( v ( t l , x~)  . . . . .  v ( t , , x~) )  (5.5)  

for any n ->_ 1, and any points ( t i ,x i )  E R+ • R, i = 1 . . . . .  n. 
Similarly as in (2.13), we write 

. (nz)~/t u(L2l i ,L2yi)  = ((xi - y j[  ) /  i + RL,i ~- OL,i) / (] + QL,i) , 

i = 1 . . . . .  n, where 

u(~.L ) 1 (x i  .(~L),2 _ m _ .  tu(~L)- 1 +  . . . . .  (~L),2, 
s, . . . .  2%i'_" YY/?  , - ) a ~ t  j 2t~,~, yj  J } ,  

Rr, i = f exp [L2(r/L(y) -- (xi - y ) 2 / 2 t i ) ] d y / I ( A ~ ! L ) ) ,  
A (~L) t i  

Qz, i = f exp [Z2(r/z(y) - (xi - y ) Z / 2 t i ) ] d y / I ( @ ! L ) ) ,  

y(~.~) 
Y -  j~ 

PL,, = f exp [L 2 ( rlL ( y ) - (xi - y )2 /2t,  ) ] d y  / I ( A~.~ L ) ) , 
A(~L ) ti 
i;  

and 
A(.~ L) = {y ~ R "IY - Y (EL)) < 1/La~} 

Ji Ji" ' 

I ( @ !  L)) = f exp [L2(qL(y) - (xi - y )2 /2 t i ) ]  d y .  
A(nL) 

s; 

Then, similarly as in the proof  o f  (2.17), one can show that for any i = 1 , . . . , n ,  

P - lira [RL, il + QL, i + IpL, il = O, 
L ---* oo 

so that (5.5) follows from the fact that 

(y(~.L) . (qL)~ ( y j ; ,  , y j : )  (5.6) /~ . . . .  yg; ) ~ . . . .  

where j [  = j * ( t i , x i )  �9 
Consider a fimctional i f ( v ) =  ( h i ( v )  . . . . .  h , ( v ) ) ,  v ~ ~ ,  taking values in (R2) ", 

where, for every i - 1 . . . .  , n, 

h g v )  = ( y / ; , u  V ) E v = (Ys, us) /~z  " 

In the same way as in Proposition 4.4 one can show that h'(v) is a.s. well defined 
and continuous in the ~-topology.  Hence, in view of  Proposition 4.3, 

as L --+ 0% which proves (5.6). 
This concludes the proof  o f  Theorem 2.1. QED 
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6. Densities and Correlation Functions of  the Limit Velocity Field 
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Using the Poisson process representation (2.5) of  the limit velocity field v (t,x), one 
can obtain explicit formulas for its time-space multipoint distribution and correlation 
functions. Note first that for n > 1, the joint distribution o f  

(V(tl,Xl),. . . ,  v(t , ,x,))  (6.1) 

is not absolutely continuous in R ~ but rather a sum of  absolutely continuous dis- 
tributions on some k-dimensional hyperplanes of  R n, 1 =< k < n. This is due, of  
course, to the fact that P[Yj*(tiai) = Yj*(tjgrj)] > 0 for i=t=j. 

It follows from (2.5) that both the distribution of  (6.1), and its joint moment 
(n-point correlation function) p(')(tl,Xl . . . . .  tn,X,) = Ev ( tbXl ) . . .  v (tn,X,), can be 
obtained from the distribution 

of  the random vector 

where 

P*(. ;( t ,x) ,)  = P[(y*)n �9 .] 

(y*) ,  * , , = ( Y l , ' . ' , Y n )  

Yi = Yj* =- Yj*(ti, xi) , 

i = 1 , . . . ,n ,  and we use the notation 

(Y)n = (Yl . . . . .  yn) E R n , 
(t,x)~ = (( t l ,xl)  . . . . .  ( t , ,x , ) )  �9 (R+ x R)" . 

In particular, 

We have 

p(')(t,X)n = f f l  ~ P * ( d ( y ) , ; ( t , x ) , )  . 
R n i=1 

(6.2) 

(6.3) 

(6.4) 

Note that the last event occurs if, and only if, for every k = 1 . . . . .  m, and any 
Poisson point (y j, uj) , j  .i= k, the following inequality is true: 

where 

blj < A g i k ( Y j ) ,  ( 6 . 7 )  
iEA k 

1 
gik(Y) = uk 4- ~ i  ((y - x i ) 2  - ( Y k  - -  Xi) 2) (6.8) 

is the parabola passing through the point (Yk, Uk) and "centered" at xi, i E Ak. Using 
the well-known formula for the Poisson probabilities, we obtain from (6.7) that for 

Yi =Yk,  i E A ~ ,  k =  1 . . . . .  m .  (6.6) 

where the sum is taken over all partitions (A)m =-(A~ . . . . .  Am) of  {1,.. . ,n},Ai~=O, 
Ai NAj  = O(i@j),uim=lAi = {1 . . . . .  n}, m = 1, . . . ,n ,  and P~A)m(d(y)m;(t,X)n) is a 
measure o n  R m which can be identified with the distribution o f  (y*) ,  on the m- 
dimensional hyperplane 

; P *  , P*(.  ( t , x ) , ) =  ~ (a)~(';(t,x)n) (6.5) 
(a)m 
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each partition (A)m, the measure P~A)m(" ;(t ,x)n) is absolutely continuous in R m, 
and that the corresponding Radon-Nikodym density is given by 

* " - -  f V V e--gik(Z)dz d(bl)m, (6.9) P(A)m((Y)m'(t'X)n)= W(y)mf e x p -  ui Rk=liEAk j 

where 

W ( y ) m = { ( U ) m C R m : u j  < Agik(Y) ) ,  f o r a l l j 4 : k , j , k = l  . . . . .  m } .  (6.10) 
iEAk 

For n = 1,2 formulas (6.4), (6.9) can be made much more explicit. Con- 
sider first a 1-dimensional distribution of  v(t,x). Then, according to (6.9) (with 
n = in : 1,(t,X)l = (t,x), (Y)I = Y, W(y)I  = R), we obtain 

p*(y ; ( t , x ) )  : f exp [ - u -  f e x p  [ - u -  ( ( z -  x) 2 -  ( y -  x)Z)/2t]dz]du 
R R 

: f e x p  [ - u -  exp [ - u  + (y-x)2 /2 t]v /2-~t]du  
R 

= (1/ 2X/-~)e-(Y-X)2/2t ' 

i.e., Yj*(t,x) is Gaussian with parameters x,t, and consequently, v(t,x) is Gaussian 
with parameters 0, 1/t. 

Consider the case n = 2,(t,x)2 = ((t l ,xl) ,( t2,x2)).  There are two partitions of  
{1,2}, namely, (A)I = {1,2}, and (A)2 = ({1) ,{2) ) .  From (6.9), we have 

p~(y)  =-- p(A) I (y,  (t,x)2) = [BI(0; y, y )  + 92(0; y, y)] -1  (6.11) 

and 
P~(YI, Y2) ~ p(*A)2(Yb Y2; (t,x)2) 

a2 
= f[e-~/2Bl(V; Yl, Y2) + eV/2B2(v; Yl, Y2)] -2dr , 

a! 

where 

I 
ai = ~/i ((y2 - xi) 2 - (Yl - xi )2) ,  

Bi(v; Yl, Y2) = e(Yi-Xi)2/2ti f e-(Z-Xi)2/2tidz , 
Ci(V;Yl ,Y2 ) 

(< z E R " (z - yl )(z + y~ + 2xl ) 
Cl(V; Y;) yl ,  

L 2t~ 

and 

(z - y2)(z + y 2 + 2 x 2 )  

C2(v; Yl, Y2) = R\CI(v;  Yl, Y2) �9 

Also, we are able to compute the time-space covariance 

p(2)(h,Xl; t2,x2) = Ev (h , x l )  v (t2,x2) 
1 

-- f (Xl  -- y)(x2 -- y ) p ~ ( y ) d y  
tit2 R 

+ i 

2t2 

1 
f (xl - Yl )(x2 - Y2)P~(Yb Y2) dyldy2 �9 

tl t2R2 

(6.12) 
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Let  tl < t2; the case tl = t2 is simpler and should be treated separately. By the 
translation invariance of  the Poisson process, p(2)(tl ,xl; t2,x2) = p(2)(tl, t2;x2 - Xl), 
and we can assume, without loss of  generality, that Xl,X2 satisfy 

(X2 - -  Xl )h (x2 - xl )t2 
X l  - -  , X2 -- , (6.13) 

t2 -- tl t2 -- tl 

or xl / t l  = x2/t2. Substituting (6.13) into (6.11) and (6.12), after some elementary, 
but tedious, transformations we arrive at the formula 

O(3 

p(2)(h,x l ; t2 ,x2)  = ~ f (z - xl ) (z - x2)A - j  (z;x2,x2)dz  
1 2 - - c o  

t _ l l  oc 
t~2 f Izl(1 -- e-2(x2-x~)z/( t2- t l ) )2A-2(Z;Xl 'x2)dz '  

- - O O  

where 
A(z ;x I , x2)  = e (z-xl)2/2q f e-(y-xl)2/2tldy 

lyl < Izl 

47 e(Z-X2)2/2t2 f e-(y-x2)2/2tZdy . 

lyl > I'-I 

The corresponding expression for fixed t ime (tl = t2 ~ t) covariance was ob- 
tained in Gurbatov, Malachov, Saichev (1991) p. 181, and is somewhat simpler, 
namely 

l d  
p(Z)(t, Xl; t, x2) :- 7 ~ x  (XPt(x))  , 

where 

OQ 

P,(2x)  = ( 1 / ~ )  f [e(X+z)2/2t~t(x + z)  + e(X-Z)2/2t~t(x - z ) ] - l d z  , 
--0<3 

with, as usual, qSt(x ) = ( l / K )  f~--o~ e-"2/2tdu, being the probabil i ty that the points 
Xl, x2, x2 - xl = 2x, belong to the same line segment of  continuity of  the sawtooth 
process v( t ,x)  (see Gurbatov, Malachov,  Saichev (1991), pp. 175-181, for details). 
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