Commun. Math. Phys. 176, 421 — 445 (1996) Communications in
thematical

© Springer-Verlag 1996

Invariant Measures for the 2D-Defocusing Nonlinear
Schrodinger Equation

Jean Bourgain
School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

Received: 29 August 1994 /in revised form: 23 May 1995

Abstract: Consider the 2D defocusing cubic NLS iu, + Au — u|ul> = 0 with
Hamiltonian [(|V¢[? + 1|¢|*). It is shown that the Gibbs measure constructed from
the Wick ordered Hamiltonian, i.e. replacing |¢|* by : |¢|* :, is an invariant mea-
sure for the appropriately modified equation iu, + Au — [ulul* — 2( [ |u[>dx)u] = 0.
There is a well defined flow on the support of the measure. In fact, it is shown that
for almost all data ¢ the solution u, u(0) = ¢, satisfies u(t) — €4 € Cys(R), for
some s > 0. First a result local in time is established and next measure invariance
considerations are used to extend the local result to a global one (cf. [B2]).

Introduction

Consider the Wick ordering Hy = [ |Vul* + I [ [u}* — 2ay [ |u? + &3, of the 2D-
Hamiltonian [ |Vul? + 1 [ |u[* corresponding to the 2D-defocusing cubic NLS.! It
is shown that the solutions uy = ufy of the Cauchy problem

{ (un): = ia(%v = Auy — Py(un|uy]?) + 2ayuy =0

j (1)
uy = Pyuy , un(0) =3, <y %‘r’)el(mm

converge weakly for all time, for almost all w.> Here {g,(w)|n € Z} are indepen-
dent L?-normalized complex Gaussians and Py denotes the usual Dirichlet projection
on the trigonometric system.

In fact, there is some s > 0, such that

MN(t) _ eZiCN(a))t Z gn(w)ei((x,n)+\n|2t) , (11)
|n| <N |n|

U u is a complex function.

2 We ignore for notational simplicity the problem of the zero Fourier mode in (i). This problem
may be avoided replacing |n| by (In]°> +x)2, x > 0 (redefining the Laplacian).
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n(w) 2 1
% (i)

en(w) =

n| <N

converges in H*(T?), for all time ¢.
The study of (i) mainly reduces to the truncation independent equation

U = Au— lu|u|2 -2 (f |u|2dx> u} , (iv)
T2

where the expression between brackets has to be considered as the usual cubic term
ulu|? with suppression of certain square-terms (which are obviously divergent for
the data considered in (i) when N — o0).

The main point is that (iv) is well posed for typical elements in the support of
the Gibbs measure, or, equivalently, for data ¢, = > %‘l"—)e"@"”), almost surely in
. Once a local result is obtained, one proceeds as in [B2], using the invariance
of the Gibbs measure e #¥IT1d¢ for the flow of the truncated equations (i), to
get the results on solutions for all time. The limit flow for N — oo and the flow of
(iv) have the normalized Gibbs measure dy = limy_, o, e WP [Td¢ as an invariant
measure.

This problem was considered in the paper [L-R-S]. The present work extends
the one-dimensional result in [B2] to the 2D-defocusing case.

1. Wick Ordered Hamiltonian for Cubic 2D-NLS (Defocusing Case)

We first recall the process of Wick ordering the |u|*-nonlinearity (we are in the
complex case). This Wick ordered Hamiltonian will lead to the modification of the
cubic nonlinearity appearing in (iv) above. For the general theory of Wick ordering,
the reader may consult [G-J].

The Wick ordered “truncated” Hamiltonians are given by

1
Hy = f]VuN|2+ Eflu,,l4 —2aNf|uN|2+a12V,

where

2
1

aN jrany E W =

[n| <N
n+0

Z gn(w)ei(n,x>

|n| <N |n|

L2(dxdw)

The corresponding Gibbs measure is

e ™ Idpy = exp [—% [1nl* +2ay [ |¢n]* — a%,} exp (— [ |Von|*) T dy .

Wiener measure

Denoting ¢ = ¢, one has

—% T1el* +2ay [ 19" - ay = —% J($P —2avy +ay < (log N (0)
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Fourier expansion yields

1 4 2 2 1 gnl(w) gnz(w) g,,3(a)) gn4(w)
- +2a —ay=—= 1
sz¢| Nf|¢)l N 2 gy b — g0 |n1| |n2| |n3| |n4l ( )
nl*nz,n4
n Q0 a0 2
| <N |n| <N ln|
2 n| <N |}
|gn(@)|? |ga(@))* — 1
= ¥ Sty
mn  |nl? men Il
hence

Ign(m)[ —1
Thus (1), (2), (3) are finite a.s. in .
Also for N > N, there is the following distributional inequality:

Pu[[(~3 10wl + 200 [ 67 - )

(for some 6 > 0).

To prove (4), one considers the different terms (1), (2), (3) and uses the standard
moment inequalities for linear combinations of products of Gaussians (obtained
from hypercontractivity estimates). The contribution of expression (1) above to the
difference in (4) is given by

> 1] <ce ™M @)

gnl(w) gnz(w) 9n3((l)) gn4(w)

m-mim-n=0 | |m| ms|  [na
nl#nz,n4
max |n;| >N

Since these are products of 4 Gaussians, there is equivalence of the L?(dw)-norm

and the Orlicz norm L¥(dw), with Y(1) = ™ 1. Since the {gn(w)} are inde-
pendent complex Gaussians, one clearly gets for the L2(dw)-norm

1/2
{ [ U+ )72+ )72+ s )71+ | — x +x3|)_2dx1dx2dx3}
|x1|>Np

< N0—1/2 .
The contribution of term (2) to the difference in (4) is

lgn(@)? — 1 |gn(@)? — 1
([n?L;N |n|? ) <N0<%:|§N |n|? ) '

Since [ |gy(@)[*dw = 1, the norm is estimated by (Z|n|>N0 l—an)l/zéNO_l .
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Similarly, term (3) contributes for Z|n[>N0 ﬁ ~ Ny 2. Estimate (4) easily

follows.
One deduces the following stability estimate (4 > 2)

1 57
P(u _EII¢NI4+2aNfl¢N|2_a%/>’1 éeve . (5)

Proof. Choose Ny with (log Np)? < % From (0) applied with N = Ny and (4), (5)
follows.

Hence, the renormalized Gibbs measure is a weighted Wiener measure with
density in (1, L?.

2. Truncated NLS

oH
Wl = ia—_j\\; = il — M + Py |u|?) = 2apu™ = 0.
U
Rewrite equation (u = u") as
i — Au+2( [ |uf® — an)u+ Py(uul* —2u [ |u?) =0, 6)

’ 2
-1 . . .
where [u* —ay =32, <y 'gn(mg = cy{(w) is time invariant, and converges to

Coo(®) < 00 as. in w. Define uy = e¥¥(@)* .y reducing Eq. (6) to
iv; — Av + Py(v|v]* — v [v]?) =0. (7

The nonlinear term is given by

Pl 3 ) om) i) el ®)
ny Fny,n3

OO )
|n| <N

3. Cauchy Problem

iy — Au+ Py(uju)® —2u [ |ul?) =0
u = Pyu, (0) = py(x) = 3,y B2el ) (10)

In]
on time interval [0, 7].
Proposition. The Cauchy problem

{ ity — Au+ (uul? ~2u [ |u*) =0

(0) = do(x) = 3 B i=n (11)

_
is well posed on [0,1] except for w in a set of measure < e ©° (6 > 0) and the
solution u is the (distributional) limit of the solutions uy of (10) when N — oc.
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In fact

u— 5 98D iy tlnfiey
|
is the limit in LI";(TZ)[O, 7] of

uy — 3 9_’*(“’_)ei<<x,n>+ln!2z)

|n| <N |n|
for some s > 0.
Corollary. Solutions of
V=%
{ LT e (12)
uV(0) = ¢w(w)

—L
for t €[0,7] and N — oo converge for w outside a set of measure < e . In
Jfact

Uy — glien(w)t Z gn(w)ei((x,n)—%t}n[z) (13)

in| <N ld

converges in L7 (TZ)[O’ 7] when N — oo for those w.

Using invariant Gibbs measures e “¥ ITd¢y (forming a convergent sequence to
a measure y ~ Wiener measure) and probabilistic considerations, one shows next
that a.s. in the o solution uy = uy,, of (12) converges on [0,00[ and also (13)
converges in H* for all ¢. The limiting flow leaves y invariant since e ¥ [Td¢y
is invariant under the flow of the truncated equation (12). The reasoning followed
here is completely analogous to the argument in [B2] for the 1-dimensional NLS.
4. Estimates on (11)

Consider the integral equation associated to (11)
t
u(t) =8(t)p +i [ St — ON(uful* — 2u [ [u* Y1)z, (14)
0
where S(¢) = e"*. Consider the norm (space-time on [0, t])
1/2
Il = (£ Jaict 4 fya - Ebla o) as

Here %(n, A) denotes the Fourier transform u, in the sense that

u(r,t) =3 [dA 050, 3)  for (x,1) € T x [0,1]

(strictly speaking, % is not uniquely defined and (15) should be understood as a
restriction norm). The exposition below will be closely related to [B1], which the
reader may wish to consult for more background and details.
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1
We will show that for @ outside an exceptional set of size < e +, the trans-
formation

u— S+ ifS(t — D)[(u|u* = 2u [ [u*)(1)]dz (16)
(1}

defines an ||| |||s-contraction on the set S(#)¢ + (||| [||s-ball).
Write, cf. (8), (9),

ulu> = 2u [ lul = Y d(n)i(ny)di(ny) €/t
Hy Fh1, N3

— S i) [a@(n)? ) (17)

The contribution of the second term in (17) is 1mmed1ate We consider the first as

a trilinear expression, replacing the %, u, u factors by #, Ty, 1 resp. We limit each
Fourier transform to a dyadic region |n,| ~N; (i=1,2,3). Denote w the first term
in (17). Since

e _ ei|n\2t
fS(t——r)w('c)dr =—i 3 [dAS W(n, ) X>z_—|n|2— ,

nez?

there is an estimate of

s

by (cf. [B1])

nffivn, )P | (7 1) N
e {Z" e )} 09

where the denominator |1 — |n|?| means |4 — |n|*| + 1 (because estimates are local
in time).

For each of the u; (i = 1,2,3), there are 2 possibilities,

e S ga(e)elm ) M
Ni pnj;
[lleillls < 1, f019)

decomposing as S(¢)¢ + (H*-ball).
Denote N', N2, N? the decreasing ordering of {N1,N,, N3} and u',42,4* the cor-
responding u;-factors. The estimates from [B] permit to bound (18) by

log N?

P Tog M e s Wee? 1o el - (19)

This estimate appears in [Bl} in the discussion of the 2D cubic NLS. The
main underlying (Strichartz-type) inequality is inequality (26) below. The factor
exp 10;10;\’ % appears from bounding the number of lattice points on a circle of ra-
dius £ N.
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The exponent s will be a sufficiently small positive number. It follows from
(19) that the following cases are taking care of

u' (I0), 1(11), (20)
u!(IT), *(I1) and log N? ~ log N°. (21)

If |||lo|lls £ 1, we may clearly write v as

1/2 , .
Jarqri+n=2 (}: n* (14 2 DIECn * + z’>|2> {eﬂ S ap ()i |
n n

(22)

.2
where ay (1) = 0"+ ) 77> hence Y, n¥|ay(n)[* = 1. Also be Holder’s
(Zn nzslﬁ(n,nz-i—l’)Iz) "

inequality,

1/2
[ a+ A7 <Zn25(1+|A’r)|a(n,n2+z’)|2> d) < (log K)?. (23)
|| <K n

Next, we aim to bound the range of //. Observe that we may assume (restricting
) that say

”l S g(w)e®m| < clog N (24)
N <n o
for all N. Hence,

luilloo = clog N; if w; is of type (I). (25)

Recall also the main estimate used in the Cauchy problem for the 2D-cubic NLS
(Strichart-type inequality)

log N

i((x,n)+t|n|2)
L ane og log N

|n—n0| <N

(X lan)2. (26)

This L*-inequality reduces to lattice point counting on circles and the exponential
factor bounds the divisor function. For details, see again [B1].
Hence

> [dia(n, el bem+4)

|n—n0| <N

LT %[0,1])

1/2
<« N¢ (2 J A1+ |4 — ) |a(n,,1)|2> ) 27
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To prove (27), write n=ng+ny,|m] <N and A=|n|*+ 1. Estimate for
-l < K

2 [ dia(n, h)e=mTiny

la—nol <N J3—|n|2] <K

LHTZ x[0,1])

S alngtm, o m 244y )G Hznonm) il
lmi<N

< [ di

[11 l <K

< by (26)
LAH(T2 x[0,1])

12
N® ] d/h( > la(n0+n1,|n0+n1\2+il)lz>

l41l<K 1| <&

1/2
< Nt(logK)'? (Z |n*Dla(n, A)F) .

This bound is conclusive, except if log K >> log N. Now the range |4 — |n)?| > N
may be trivially estimated, writing from the triangle and Hausdorff-Young inequality
w.r.t. the z-variable

[ dia(n2)et=mTio

fn—ng| <N {j—{n2|>N20

L4(dxdt)

34
< ¥ { f |a(n,/1)|4/3dﬂ,} .

{n—ng| <N | }2—{n|2|>N20

This expression is bounded by N ZN3, from Holder’s inequality, which estab-
lishes (27).
By interpolation, for 2 < p < 4,

S [dha(n 1) Bm

\n—nol <N

LP(T?x[0,1])
12
<N (£ i1+ 12 - ol R ) (28)

Consider first a triplet (u1,uy,u3), where «! is (II) and hence % is (I) (otherwise
we are in case (20)). We estimate using duality (18) by
WY u i, (29)

where

”—Zfd 7 U(}; (/12)(1/2 Wmx)+i) - o v—Zfd/l U(n‘)} 7 )+ 30)
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with Y [diju(n,A)* <1 and Y, |v(n)> < 1. Applying (28) with p =3 and
(24), estimate (29) by

(N'Y X 1Pl - ] - 1] - 1Prol £ (N X (Pt + || ool |2 [13]1Pyolls
Jeg Jeyg

" 1/2
< (NSNS (z fdii— |n|2|2/3tu1(n,/1)|2)

Jeg \neJ

neJ

- 172 1/2
X(EIMM—MW”WWJW) (ZJMM—W%W“mmmﬁ

1/2
< (VP ( > [dan[*la~ |n|2|2/31t71<n,i)|2)

[n|~N1

12
: ( > fd/1|i—!”?2|2/3f1:3‘(n,/1)12>

|| ~N3
12
x(szu—wﬂﬁﬂmmmﬁ . (30)

Here ¢ denotes a partition of the set [|n| ~ N'] in intervals J of size ~ N? and
P; is the corresponding Fourier restriction operator in the x-variable.

Thus the preceding estimate (30) is conclusive provided for some u; of type (II)
we consider the contribution of i |fj;, |2/ x2y; or if the denominator A — [a[* in

(18) satisfies |4 — |n[?| > (N?). Hence we may in the estimate of (18) assume
|4 —|nf| < (N?) and |4 — |m]?] < (N?)® if u; of type (II). (31)

It follows from (22), (23) that, up to introducing a factor log N; in estimating (18),
the u; of type (II) may be taken of the form

" = ot )’ ai(n)ei((n,x)+t|n|2) i (32)
[r|~N;
where ,
A< Nf and Y n¥|la(m)? < 1. (33)

> ay(n)ax(ny)as(n3)

Thus (18) with w the first term in (17) is bounded considering an expression of
n=n| —ny+n3,ny Eny,n3

the form
2}1/2
n[2=]ny 12— iny |24 1m3 |24

(|n1! ~N, = 192’3) > (34)

(logNz)z{ 2.

fn] <A1

where [u| < (N2, 3 lal(n)? £ 1, aX(n) = 2@}, &3(n) = 22 or T [P ()] <
(N3)‘Zs.
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Next, assume u! of type (I). Estimate by (24), (28),
(29) = (N[l lloo 1?1122 |13 10l

1/2
< (N'Y¥(logN') - (N?)° ( > [dija- |n1212/31172(n,z>|2>

|n|~N2

12
( ) fdm—|n12i2/3|u3<n,z)|2)

|n|~N3

12
< (S far= AP ) (35)

Thus the estimate (35) is conclusive provided for some u; of type (1I), we consider
the contribution of |, |, 2| viys) or if the denominator 4 — [n]? in (18) satisfies
|4 = |n*| > (N')’. Thus in this case, (18) may be estimated assuming

L= nP] < (NYY* and |4 —[m] < W)™ if u; is of type (I1),

and hence is bounded by
> ai(ni )ax(ny )as(n3)

n=n] —Hy 13, ) F 11,13
[nl 2=ty [2—Imp |2 +Img |24p

25 172
} (Il ~ Ny, (36)

(logNl)%N‘)S{Z

n

where |u| < (WD, a'(n) = gﬂ% and a'(n) = % or Y |di(n)]* < (N*)™ for
=23
Observe that for n = ny — ny + n3,

i — (|1 = |m2f? + |n3*) = 2{ny — m,mp — n3) , (37)

hence the second condition in the summation in (34), (36) may be written

<n2 — NN — n3> = % . (38)
If |ny| > 10(|ny| + |m3]), [{ma — n1,m2 — n3)| ~ |n2)* and it follows from |u| <
(N?) or |u) < (N'Y* that thus |m |~ N! or |n;] ~ N'. Hence, we may assume
ny = N1, since the role of uy,u3 is identical. We assume here s small enough
(s < %)
Our next aim is for given n and u to estimate

# {(i’ll,l’lz,ng;)l |ni{ ~ N; and n=mny —ny +n3, (ny — ny, ny — n3) = E} . (39

ny Fny,n3 2

In the proof of Lemma 1 below, we will use some elementary facts about lattice
points on circles in the plane. First, on a circle of radius R, there are at most

expl—ol;%:? < R lattice points. As already mentioned above, this bound is an es-

timate on the divisor function (considering factorization in the ring of Gaussian
integers a + bi, a,b € Z). Secondly, if I' is an arc on a circle of radius R and
II'| < cR'3, then I' may only contain two lattice points. Indeed, if there were 3
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distinct elements Py, P,,P3 in I' N Z?, then

Irp? 1 P
e > 2 area triangle (P1,P»,P3) =det |1 P, | € Z\{0}
1 P;

leading to a contradiction. This last argument is the essence of Jarnick’s theorem
on the distribution of lattice points on strictly convex arcs {see [BP]).

Lemma 1.
(39) < min{N;(N; A N3 Y, N*N3(N?)}. (40)

(Recall that N',N?, N3 is the decreasing ordering of Ni,N»,N3.)
Proof.

(1) Fix ny and write (n; —na,n; —n) = =5 as
2 2
n—l—l’lz U n—n
B Y 41
" 2 2 2 (41)

Thus (41) corresponds to the lattice points #; on a given circle with |n;| ~ Ny. Their

number is bounded by explogﬁ)g}vl (distinguish the cases log Ny = log radius and
log N1 < log radius; in the second case, the number is at most 2, by the triangle
argument). This gives the first bound in (40).

(ii) Write the equation as (n —n;,n —n3) = 4 and assume |n3| < |n;|. Write
n —n3 = r(a,b), with a,b relatively prime, v=4=0. It follows that

(m.(@,5)) = 1= + (n,(a,b)) (42)

If 4,50, the number of solutions of (42) in »; is at most 1 + |a|\,|b|.

Consider the case a,b#0, |n3| > |a| V |b|. Fix 4, B, |a| ~ 4, |b| ~ B. The num-

ber of n3’s satisfying n — n3 = r(a b), |m3| > |a| v |b| is at most AVB The corre-
sponding number of #;’s is m This gives the bound >, , 4 - B - A\/B . ANﬁ =

N1N3 10g N3

Assume now n3 satisfies [n3] < |a| V |b|. Fix n3, thus N7 choices and estimate
the number of n;’s by 1 + IaINW < %—; Thus this contribution is bounded by N N;.
If a =0 (b=+0), n3 is restricted to N3 choices (»,n; with same first coordinate). The
first coordinate of n; is arbitrary and the second defined by (n — ny,n —n3) = £
This gives again a bound by N;N;.

Hence there is also the estimate by NiN; log(N; A N3).

(ili) Write the equation as (n—n3,n3 —m) = §. Write n —n3 = r(a,b) with
r+0,a,b relative prime. As in (ii), the contribution of a,540, |n, |n3| > |a| Vv |b],
is estimated by N,Nj3log(N, A N3). The contribution of |n3] < |a| V |b| < |ny| is
bounded by Nf% = N,N; and the contribution of |n;| < |a| V |b| at most NZ. For
a =0 or b =0, the number of possibilities is N, N3.

This yields the estimate N;N;log(N, A N3) + N2.
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From (i), (ii), (iii), it follows that
(39) <K mln{sz(Nl A N3 )S,N1N3(N1 A N3)8,N2N3(N2 A ]Vg,)8 + N32,

NoNi(Ny ANy Y+ NEY (43)

In case {N?,N3} = {N,,N3} and N3 > N,, write N3 (Ny A N3 ) < NiN§ < NyN3Nj
and similarly if {N2, N3} = {Np, N, }.

This proves the lemma.

Lemma 2. Consider the set
S = {(m,n2,n3) | myFn,n3 and (ny —n,ny —n3) = p}.

(i) For fixed ny, #S(n;) < NaN3(Na A N3 )* and #S(n) < NZN§.
(11) For ﬁxed ny, #S(ny) € NiN3(N; /\Ng)g.
(iii) For fixed ny,ny, #S(n1,m) < Nj.
(iv) For fixed ny,n3, #S(ny,n3) < N5,

Proof.

(i) Fix n; and consider estimate (i) in Lemma 1, with n < 1y, 1y < ny, 1y <
ns. This gives the bound NZN$. Apply next estimate (iii) of Lemma 1 with #
ni, n3 < ny, ny <> n3, giving the bound NoN3(Ny A N3)? + NZ. In case N > Nj,
use the NZN§ bound.

(ii) Follows from (ii) of Lemma 1.

(iii) Immediate.
(iv) Follows from lattice point estimate on circles.

We list the different (uy,up,us)-cases to be considered in bounding (18). As
mentioned earlier, we may assume n; = N'. Cases (20), (21) are already considered:

Case (a): n; = N'(I), ny = N*(I), n3 = N3(1I).
Case (b) : n; = NI(Il), ny = N3(Il), n3 = N2(1).
Case (¢) : ny = N'(I), ny = N*(Il), n3 = N3(II).
Case (d) : ny = NY(I), ny = N3(I), ny = N2(1D).
Case (e) : ny = NY(ID, ny = N*(1), n3 = N*(D).
Case (f):n; = N'(ID), ny = N3(1), n3 = N2(D).
Case (g) : n; = NY(I), ny = NX(I), n3 = N3(1D).
Case (h) : ny = NYI), ny = N3(1), ny = N2(1D).
Case (i) : n; = N'(I), ny = N*(I), n3 = N3(D).
Case () :m = N'(1), ny = N3(I), n3 = N*(I).
Case (k) :n; = N'(1), ny = N2(1), n3 = N>(1).
Case (1) : ny = NY(1), ny = N3(I), n3 = N(l).

Consider first cases (k), (1) depending only on the data ¢ = %e"’m.

Thus we have to estimate (36), where a;(n;) = g'];(f), |n:] ~ N;. Assume ny, 1,13
distinct. We may assume o satisfying
2
w 1) W
s m@Em@e@F e vy
n=ny—na-+n3 lmi| |l I3 n=ny—ny+n3
[a]2=|n1 12— {np |2+ |n3 |2 +u n2=lmq 12— |np |2 +|ng |2 44

(43)
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the w-exceptional set being of size e~V "’ Summation of (43) vields for (36) the
bound

1/2
(Nl )E(Nl)s{ Z N1*2N2—2N3~2} < (Nl )S—1/2+8 (44)
ny *ny *n3, |ni|~N;
(nz—nl,nz—rg):%
1

applying Lemma 2, (iii) with n; < n3. We take s < 5.

Next assume n; = n3 +n,. The conditions n = 2n3 — ny, [ny — m3[* = £ yield a
number of terms at most (N, A N3)°. Hence the (43)-bound is still valid. Thus (44)
gives a bound on (18) in cases (k), (1).

We analyze the cases (a)—(j). Some of them will require additional arguments.

Case (a). Use the estimate (34). The number of terms in the second summation is
at most N2N31+£, by Lemma 1. Thus, by Holder’s inequality, Lemma 2 (iv),

1/2
(34) <<(N2)3{N2N31+5 > 1a1(m>|2N;2“|a3(n3>|2} (45)
7124:}11,1’!3
(n2~n1,n2—n3):%

A 12
<oy (f2) w5 <ng. )

Observe that for N; >> N,, the w-expressions corresponding to different dyadic vai-
ues of N are orthogonal and hence the ||| |||;-norms of the corresponding contri-
butions to the nonlinear term add up in /2. This leads to a bound of the form
M| |Jur||ls |[lus]ls, if we restrict N» > M. On the other hand, exploiting the
small time interval [0,7] and the |4 — |nf*|-factor in the definition of the ||| |||s-
norm, one also has an estimate of the form MC<|||u]||s|||us|||s, using for in-
stance a straightforward L* x L* x L* x L* estimate (after projection) on (29) and
Nuilla < MY4<Y4=|l|u]]| for i = 1 or 3. Consequently an estimate 7°|||us]||; []fus3|s
in (18) is obtained, for some J > 0. We don’t repeat those considerations again
later on.

Case (b). Use estimate (34). Applying the Holder’s inequality in the inner summa-
tion w.r.t. the ny-summation, an laz(m)* < Nz"zs. This gives

2}1/2

12
<<N§N;S{ > 1a1<n1>|2N;2“}

fty Fny,n3

gny(@)
> ai(n)=
n=n]—ny+n3,ny £1,03 1”3!
(my—ny,my—nz)=4

| =

2,89

(my—ny,my—my)=4
&K NEN;S(N2NsNEN; )2 < NS5 (47)

Applying the estimate from Lemma 1 (i) (replacing »; by n3) and Lemma 2, (i).



434

J. Bourgain

5 gn (@)

Case (c¢). Use estimate (36). Proceeding as in case (b), we estimate by
24 1/2
Nf“NZ‘S{Z as(n3) }
n=n] —ny+n3,ny TN ,N3 |n1|
(my=ny,my—n3)=§

1N
12
<<Nf+sN2_S{ > Nf2|03(n3)|2}

(ny~ni.ny—n3)=5§

1
N\ 7?2
< NEPN;S(NT2N; B NN NGV < NE (—1) NyE, (48)
applying Lemma 1 (i) and Lemma 2 (i) with #; replaced by n;.

Next, we make another estimate using the Gaussians {g, (w)| |n1| ~ Ni}. Ap-
plying Holder’s inequality with respect to n3 in the inner summation, estimate by

25 172
Nf“N;S{Z } . 49)

n,ng
Fix n3, [n3| ~ N3. Define the matrix % = %, = (Guny ) (o] <Npontny DY

gn (@)
> "L ay(np)
n=ny—ny+n3,np #0113 |1
(nz—nl,n2~n3)=%

\n2|<N2
-1 .
S {N1 Ininy—ny(@) if {n3 —m,my —n3) = £ ny%m3 (50)
0 otherwise .
Estimate (49) by
NYENG Ny Nl D5 G| 2 (51)
and
2 172
991 5 max (Slownt) = (£ [Somom| ) - )
" ny nxn | 1
The first term in (52) is bounded by NpN;>"¢. Write
2 2
Y OOy | =N Y Y ningns(O) Gy (@) 5 (53)
n$n’ | 1 n+n (n3—n,n2—n3)=ﬂ

e M

(n3—n,my—n3)=
ny $n3

which expression depends on the initial data ¢,. Observe that the Gaussian
2-products in the inner sum are at most repeated twice. Hence (53) may be es-
timated by

N1_4#{ (n, 0’ ny) | nn’,nny,n’ Fn3,ny%n3, (n3 — n,ny — n3)

<}’l3 *nl,nz —I’l3> = g} .

>

N

(54)
The condition (13 — n,ny — n3) = & allows NN} pairs (n,n,), by Lemma 2 (ii).
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Next, since #; $#3, there are at most N, possible choices for n’. The resulting
estimate on (54) is N1_2N21+£. Consequently, from (51) and the preceding

1
~L N\ T4
(49) < NTFN; TNy SN 2N T4 = Ny <ﬁ;> N (55)

Combining (55) with the previous bound (48), one easily gets the bound Nl_‘s—‘ﬂ in
Case (c).

Case (d). Same estimate applies as in Case (c).

Case (e). We have to estimate (34) with #;, € J, where J is a subinterval of length
~ N, in [|f11| NNl] Thus

2 172
ny (@) Gny (@)
N X > ar(ny )= , (56)
nEj n:n%—n2+n3,n2)#n1,n3 |l12| |I’l3l
n—ni,n—n3)=p

where (a1(n1))s e/ satisfies aneJ laj(n)]> < 1 and J is a doubling of J. Define
the matrix 4 = %, = (0, )nEJ,nleJ by

—157—1
Onny = N, N3 Z gnz(w) gn3(w) > (57)
n=n]—ng+n3,ny Fny,n3
(n—ny,n—n3)=p

where the summation extends over indices 7y, n3.
Estimate (56) by N%||9%*|"? and

z O'nnl En’,nl
n&J

2 12
199°] < max T Joum |2 + ( > ) L 68
" omeJ

na4n!

Since #y +#3 in the summation (57), we get

Z |0nn1 |2 < (N2N3)_2 *
nmat

#{(ni,m,m3)|n=ny —ny +n3,my%ny,n3, (n—ny,n—n3) = By Ny
< (NoN3) 2NZN, NG < N1 (59)

assuming
! /
|32 gy (@) gy (@) < N5 31, (60)

where 3’ denotes the (57)-summation.
Write explicitly

2
=(MVN) Y

n#n'

2

>0 (@) (©) (@) 35 (@) . (61

2

n+n’

Z O-nnlan’,nl
meJ
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where (x) refers to the set of (n;,n2,n3,n%,n5) such that

meJ

n=ny—m+n3,nyEn,ng, (n—n,n—n3) =p (62)
14 !/ / 7 / 7 ! !

W =m—ny+ny, nhEn,ng, (0 —n,n —nf) =p.

Consider the following cases:

case (i). The indices ny,n3,nh,n% are distinct.
case (ii). my = nb (n3=*£nj).

case (iii). n3 = n} (my%nb).

case (iv). ny = nh, n3=+nj.

case (v). ny=%njy, n3 = nj.

case (vi). ny = njy, n3 = nj.

Case (i). Denote Z(l*) the corresponding subsummation of ) ,,. Clearly each of

the order 4 Gaussian products in Z(l*) can only appear a bounded number of times.
Hence we may assume

2

<N YL, (63)

11— _
Z Gny Iny gné gng
(%) (*)

Hence, the corresponding contribution to (61) is bounded by
(NaN3)TINE(#S) (64)
where S stands for the systems (ny,n,n3,n5,n5) such that

n EJ, !nZI NNZ: |n3| NN39 |né| NN27 In,3| NN3
nZ:i:nlan:i’ nlz#nlsng (65)
(ny —ni,my —n3) = p, (ny —m,my —n3) = p.
Hence
#S < NF(NINS)
fixing n; € J and applying the second estimate of Lemma 2, (i). Hence

(64) < Nf 2, (66)

Case (ii). ny = nb = n3=%nj. Denote Z?*) the corresponding subsummation of

> (s)- Thus
2

" o Gy G, T | < N3 30 (#S(n, ', )Y (67)
(%) n3,n}
where
S(n, 1 m3, ) = {(m,m2) | (1, ma, ma,my, m) satisfies (+)} (68)
Thus

#S(n,n' n3,m) < #{(n,m)|m €J, n=n —m+n3,(n—n,n—n3) =pu} <N,
(69)
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and the contribution of Z(Z*) to (61) is bounded by

(N2N3) AN, P (#S) (70)

where now S consists of the systems (n;,ny, n3,n4) such that (ny,ny, 13, ny, n}) fulfills
(65). Hence clearly

#S < NFNZNiN; (71)
and

(70) < NFINS (72)

Case (iii). n3 = ny = ny%n). Denoting 2(3*) the corresponding subsummation of
D (+)» We have

2
2 G Gy 9 G| < N5 22 (#S(n, 0 ,mamy)Y (73)
(*) NN
where
S(n,n' ,my,ny) = {(n1,n3) | (ny, ny,m3,my,n3) satisfies ()}, (74
and thus

#S(n,n',my,my) < #{(m,m3)|n=mn —ny +n3,{n3 — na,n —n3) = u} < N%.
(75)
The contribution of Zi*) to (61) is bounded by

(MaN3) NS (#S) (76)
where S consists of the (n1,712,n3,15) such that (1, n;,n3,715,n3) fulfills (65). Thus
#S < NIN}N§ (77)

and _
(76) < Ny *TeN; 2. (78)

Case (iv). ny = nj, n3=+nj). Denoting Z?*) the corresponding subsummation, we
have

2
S Ty Oy 0y Tt | < N3 X (BS(n, s, 7)) (79)
() ny, nj
where
S(n,n',n3,ny) = {(n1,n2) | (n1, ma, n3, 15, my) satisfies (x)}, (80)
and thus

#S(n,n',ny,my) < #{(m,m)|m €Jn=nm —ny+n3,(n—ny,n—n3) =pu} <N.
(81)
The contribution of Z?*) to (61) is bounded by

(V2N3) TN, S (82)
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where S consists now of the (n,n,n3,n5) such that (ny,na,n3,n), ny) fulfills
(65). Hence
#S < N2TEN7, (83)

by Lemma 2 (i) and Lemma (2) (iv) and
(82) < N; MteNS2. (84)

Case (v). ny=*n}, n3 = ny: Same as (iv).

Case (vi). ny = nj, n3 = nb. Denoting Zgi)) the corresponding subsummation, we

have
2

< NE(HS(n,n'))? (85)

6) — -
E( ) GIny Iny In! Gu!
) 2 3

where
S(n, nl) = {(nl,n29n3) I (nl,nz,n3,n3,n2) satisfies (*)} » (86)

meaning that ny,n;,n3 are different and

nI: n—ny+m (n/— nl,n,—ng) = &7)
W=m-—-m+n @#—n,n—m=u.
Thus n +n' = 2n, and #S(n,n') < Nj.
The contribution to (61) is thus
NE(N2N3)Y ™4 32 (#S(n,n'))* < Ny YENT3(#S) (88)
n4n'
where S consists of the pairs (#1,n2,73) such that
(ny —mi,my —m3) =y, (3 —m,n3—m) =4, (89)
hence
|n2 - n3|2 = 2,u . (90)
Thus
#S < NZNSN, (91)
and
(88) < N; P TeN; T (92)
Collecting the various bounds (66),(72),(78),(84),(92), it follows that
(61) < Ni(NaN3) ™' < Ny 12 (93)
From (59),(93),
|9%*|| < N, 2 (94)
Hence
(56) < N, V/4Fe (95)

which is the bound on (56) and thus for Case (e).
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Case (f). By Lemma 1 and Lemma 2, (i) we get applying first Holder’s inequality
12
(56) < N;Nz( X lam)PNy ZN{Z)

ny kny,n3,n €J
(my—ny,my—n3)=u

< NNo(N] N3Ny 2N 2) 2 = NNy AN 12 (96)

-

, we get an estimate N; %

. 1— ks . .
Hence, if N, < N; 'O , say. Otherwise the estimates

_.L
made above in case (e) will yield a saving of N; ** also.

Case (g). We use estimate (36)

3 Iy (@) gny(@)

n=ny —ny+nz,ny+ny,m3 |I11| |i’l2|
(n—ny,n—n3)=p

az(n3)

2y 172
Nf“{ )Y ) (97)

]

with 3~ |as(n3)]* < N; . From Hélder’s inequality and Lemma 1, we get

1/2
(97)<<Nf+‘*(NzNa)”2< > Nf2N2—2|a3(n3)|2) , (98)
ny Eny,nw
(nz—;?l,nzl—r%)zu

and from Lemma 2 (i)

1
N3\27°
(98) < NiTo (N N3 )A(N 2N AN NG ) 2N < N§ (ﬁ) . (99)

1—1ds .
Thus we may assume N3 > N, '® and we can use then the estimates from cases

(), (e).
1—-L

Case (h). Estimate (36) as in case (g) with the same result. Again if N3 > N,
the estimate in case (f) applies.

Case (i), (j). Estimate (36)

E

gny ()
1]

dz(nz)

S gy (@)

n=ny —ny+n3,ny Fh,03 |n1l
(n—ny,n—n3)=p

2\ 172
Nf“{z ) . (100)

n

1/2

ny *ny,ny
{ny—ny,my—n3)=p

1
N\27°
< NSY(NoN3)Y2NNT TN (N N )Y < N2 (ﬁ) . (101)
1
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We may also apply the estimate from case (e), introducing an extra factor Nj to
control #® in H*. This yields the bound

_1
N * N, (102)

from (55). Thus it follows from (101),(102) that we may assume N, > Nll_ﬁ,
Ny > NP,

We next prove one more estimate, repeating mainly the argument from case ().
Define ¥ = 9, = (Onny ) n<n, by

[np} Ny
Guny = Ny "Ny ! Y (@) (@), (103)
n=nj —ny+n3,ny+ny,ny
(n—ny,n—n3)=u
Estimate (100) by
NNl (104)

where

Z Onny Op, ny
ny

2\ 172
) . (105)

By the condition (n — ny,n; — n2) = g, the number of summands in the definition
of @,,,, is at most N}. Hence the first term of (105) is bounded by

557  max (o) + (£

n¥n’

NZNENTAN;2 < NP (106)

since we assumed N3 > Nll/ .
We analyze again the second term in (105). Write explicitly

2 2
_ _4 .
Z Z On,ngOnl | = (N1N3) Z ng Ins gn’1 gn’3 » (107)
n+n | ny nkn! | ()
where () refers to the set of (n1,n2,n3,n,15) such that
n=m —ny+ny, mFEn,n, (n—n,n—ny)=p (108)
W=nl—ny+n}, mEan, 0 —ni,n—nf)=p.

Consider the following cases:

case (i): The indices ny,n3,ni,n} are different .
case (ii): m =ny (n3+nj).
case (iii): m =nj (n3+nj).

There are the symmetric cases. Observe that if n; = n3 say, we get gﬁl and the

{2} are still independent of mean zero, since the g, are complex Gaussians. Hence
this case does not require a separate argument.

Case (i). Denote EI the corresponding subsummation. If the ny,n3,7),7} are all
different, each of these order 4 Gaussian products only appears a bounded number
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of times in the summation and
2

K NiYT.
()

1 o
Z gi’l] gn3 gn/‘ gng
(%)

Thus
(107) < (ViN3) *NI(#S),
where S stands for the systems (11, n,,n3,n},n5) such that
{ ny =Eny, 03,1, 1Y
(m—m,m—m3) =y, {my—ni,nm—nj)=u.

Hence
#S < NENZ(N N3 Y

and
(110) < NiN2NZN;2 < NP

Case (ii). Denoting 22 the corresponding subsummation,

2
37 G ns T G| < NP 3 (#S(n,n,m,m3))
) s n3.n
where
S(n,n', n3,ny) = {(n1,ny) | (n1,mz, n3,n1,13) satisfies ()} .
3 3
Hence

#S(n,n',n3,n3) < #{m||ni| ~ Ny, (n—ni,n—n3)=pu} <Ny,

and the contribution of 22 to (107) is bounded by

(N1 N3) N TE#S)

441

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

where S consists of the (n,n2,n3,n5) such that (ny,ny,n3,ny,n5) satisfies (111).

Thus
#S < NINEN{N3N;

and
(116) < NiNT2NZN;2 < NP

Case (iii). Denoting 23 the corresponding summation,

2
3 I
Z gnl gi’l3 gni gn; << le Z (#S(na n',n3,n'1))2,
(%) n3,n'1
where
S(n, 7' n3, 1) = {(m,m2) | (my, n2,m3,m7, 1) satisfies (x)} .
Hence

#S(ﬂ,nljn3’}’l;) < Nl s

(117)

(118)

(119)
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and the contribution of 23 to (107) is bounded by
(MiN3) N F(#S) (120

where S consists of the (n1,m2,n3,n]) such that (n,ny,n3,nl,n1) satisfies (111).
Thus
#S < NININN;

and
(120) < NiN72 < NTV2 121)
143 1

Summarizing, it follows from (113), (117), (121) that (107) < Nl_l, thus by
(106)

| 99 | < N7V (122)
Hence
_ N\ Ll
(36),(100) < Ny~ V"2 (#) < Nj 2T (123)
2

From the preceding, we get in case (i), (j) the estimate

L

N, 9 (124)
This completes the analysis of the different cases (a)-(1).

It follows from this analysis that fixing an interval [0,1], we have
(18) < ¢1° (125)

for some 6 > 0. Here w=uwujiru3 with u € S, + (Il |l|s-ball), ¢w =

3 —'ﬁﬂe %) and (125) will hold outside an w-set © of measure < eV , for

some 5’ > 0.

Observe also that if for one of the u; we consider 3, ., %e‘(("’xm”lz’),

there is an extra saving of M2, i.e.
(18) < er’?M~° . (126)
The transformation 7 defined in (16) is a contraction, since
II7u = Tl < el — vl - (127)

In this estimate, one of the u;’s equals u — v € H®. Hence, for w ¢ @, Picard’s
theorem gives a solution u to (11).

Let ¢ = qﬁm be a “good data” as above with solution u, u(0) = ¢. Let ¢y € H®,
llo —lls < f. Consider the map T1v : S(t ) + i fo S(t — D(wlp* — 20(Jv]*)(1)1d7.
Writing Thv = Tv + S() (Y — ¢), it follows that

170 = SO llls = ¢ — dlls + 1 To = SOl < - +T <1

Hence T maps S(#)}¢ + (||| |||s-ball) to itself and is a contraction, since T3(v) -
T1(v') = T(w) — T(¥'). Thus (11) has also a solution v for initial data v(0) = .
Moreover

e —vllls < 2lle — ¢lla (127"
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and also (cf. [B1] or the discussion in [B2], Sect. 2).
[ut) — v(®)llws = Cllo = Yllgs for [f < 7. (127")

5. Comparison and Convergence of Solutions

Let us compare next the solution of the truncated equation (10)

il — A + Py(uV [uV? - 24V [N]?) =0
©) ilnx s (128)
uV = Pyu, uV(0) = ¢N(x) = z|n[<N g"[ﬁ,[ ) i)
and the solution u obtained above for
i, — Au+ (ulu)* = 2u [ {u>) =0
. (129)
u(0) = folx) = X HPe .

In (128), u" € S(£)¢" + (J|| |/ls-ball) and in (129), u € S(¢)¢ + (||| |||s-ball). Fix
0 < 51 < 5. Analyze the expression

ulu* — 2u [ uf? — Py [ ? — 20" [|V]?), (130)

writing it as a sum of products v;7;v3 where for some i, either Pyv; =0 or v; =
3

u — u". Taking (126), (127) into account, we get
([ — S()$] — [ — S(6)pn]1llls,

S NN el - S@O] - [ - SOdwllls . (131)
Here we perform the analysis of the nonlinear term in ||| |;,. For P%v v; = 0, either
v; appears in the ||| ||[;-ball in which case there is an N*1~* bound in ||| |||, or

v = Z\n|>%v %‘I")e’“”’”“"[z’) in which case we invoke (126). Write

u—u" = (SO — SOpy) + [(u—S(1)p) — " = SW)py)] s

and apply again (126) if one of the v;’s equals S(z)¢ — S(¢t)dy.
From (131), we get an approximation

i~ S)p) — @ —S@Ols, = N1+ N2, (132)
and also
I = S8 @ =50 @0y SN HNT L (133)
The conclusion is that for @ outside a set Q of measure < e‘l/fél, ull — SV
will converge to u, — S(t)¢, in H* for some s > 0 and, more precisely
ey = S(O)pa) — (s, = SO < N7 for £ €[0,7]. (134

Denote V() the flow map associated to (128). Fix a large positive integer N' and
denote uy; the Gibbs measure e_Hﬁqu’). Thus pz; is invariant under the flow of
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(6) and hence of (10), thus Sﬁ(t). The solutions are indeed related by e?ev(@)

2
multiplication, where cy{(w) = Z|n{§ N |g"(|“;)“2 ~! and thus only depends on |gn(w)].

It follows from (134) that

1570 = ) = (8" ) = SenPulg | < e (135)

/
for N <N, t€[0,7] and ¢ = Py¢ taken outside a set A of measure pg(A4) < e
Our next purpose is to extend (135) for ¢ in an arbitrary interval. Consider say
[0,1], fix a small number v > 0 and partition [0,1] in 1/7 intervals I, of size 7. We
will mainly repeat the invariant measure consideration from [B2].
Thus for ¢ ¢ 4, (135) holds

|57~ s* Py - s - Pyio| =N e,  (36)

and thus, denoting ¢, = Sﬁ(r)q&,
161 = [S¥(D)Py + S(O)U = Pw)llls S N7°. (137)
Assume ¢; is again a “good” data, thus ¢ ¢ A, hence
¢ & AUSY ()N (A). (138)
Repeating (136), one gets again for N < N, ¢ € [0, 1],

1570 = 5" Py ~ S@)1 = Pl || < N2,

. H‘Sﬁ(f +0¢ — SV (OPy + 8 ~ PN)](bl‘Hs <N (139)
It follows from (137) that

IS — Pr)r — S(x+ )T — Py)glls N2, (140)

1Py — SV ()Pyplls S N2 (141)

Since ¢; is a “good data”, S¥(¢) acts in a Lipschitz way on Py¢; + (H*-ball),
t £ 1, and (141), (127") implies

SN )Py — SV (x4 )Py S N 0. (142)
Combining (139), (140), (142), it follows that for ¢ € [0, 7],
H[sﬁ(r + 1) =S¥+ )Py — S(z+ ) — PN)d)]” <N“P, (143)

and thus (136) holds for ¢ € [0,27], provided (138).
The continuation of this process is clear. One gets eventually (136) on [0,1],
provided

¢ EAUSY ()N U---UST () HUA) (k~1), (144)

and since Sﬁ(t) is py-preserving, the set A, defined in (144) satisfies

1 ! .
ppd) < 2o 0. (145)

=0
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It follows from (145) that given ¢ > 0, there is a set A,, uyx(As) < o, such that
for ¢ ¢ A, and ¢ € [0,1],

”[sﬁ(z) —SY(OPy — ST —PN)]quH <o)N? for NSN.  (146)

Since uy converges to the normalized Gibbs measure p defined in Sect. 1, letting
N — oo in the preceding shows that

(18" (1) — S1Pw, — [S™2(2) = SW)1Pw,)olls < (o) N: AN) ™ (147)

for all £ € [0,1], ¢ ¢ A, with u(A,) < ¢ and any integers Ny, V.
We get in particular from (147) for N, > Ny, ¢ ¢ A,

1P, S™2(8)Px, — ™1 (1)Pw )le < C(INT° . (148)

Also S¥(t)Py¢ converges weakly to some S*®(¢)¢ € S(¢)¢ + Bys(C(c)) (take
N, =0 in (147) and let Ny — o0o). From (147), (148), for t € [0,1], ¢ ¢ A,,

(IS ) — S(1)] = [$"(2) — S(OIPx)$|ls < C(a)N™? (149)
and
IPxS>(1) = S¥()Py)$lls < C(ON2. (150)
S°(t)¢ is the solution of (11) obtained in Sect. 4 and from (150), it easily follows
that p is invariant under the flow $°°(¢) (using again the invariance of uy for
SN(1)).
Coming back to Egs. (6),

.0Hy
W=37, wV(0)=Py¢, (151)

. 2
we have uV = e#NONSN(Py¢, where cy(d) = cy(w) = S <n ——Ig”(T;TL =L for

ESY %‘l")e“"’@. Thus cy(¢p) converge p-almost surely to some co.(¢), and hence

the #V(¢) converge weakly for N — oo to e¥¢(#¥ . §°(1)¢ for all time, p-almost
surely in ¢. In fact, from (150)

V(1) — VO PyS=(1)p|| . < (o, TINT? (152)

for ¢ € Ay 1, (A7) < 0. In particular, (ii) converges in H* for some s > 0.
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