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Abstract. In this paper we exhibit the Toda lattice equations in a double bracket 
form which shows they are gradient flow equations (on their isospectral set) on an 
adjoint orbit of a compact Lie group. Representations for the flows are given and 
a convexity result associated with a momentum map is proved. Some general 
properties of the double bracket equations are demonstrated, including a discussion 
of their invariant subspaces, and their function as a Lie algebraic sorter. 

O. Introduction 

In this paper we present details of the proofs and applications of the results on 
the generalized Toda lattice equations announced in [7]. 

One of our key results is exhibiting the Toda equations in a double bracket 
form which shows directly that they are gradient flow equations (on their isospectral 
set) on an adjoint orbit of a compact Lie group. This system, which is gradient 
with respect to the normal metric on the orbit, is quite different from the repre- 
sentation of the Toda flow as a gradient system on N" in Moser's fundamental paper 
[27]. In our representation the same set of equations is thus Hamiltonian and a 
gradient flow on the isospectral set. 

While the double bracket equations mentioned above are fundamental in 
demonstrating properties of the Toda flow, they are in fact more general and are 
of interest in their own right. These equations arose originally in the study by 
Brockett (see [10 and 113) of the steepest descent equations corresponding to 
certain least squares matching and sorting problems. In [5] it was noticed that a 
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particular case of these equations give the Toda (sl(n)) equations in the Flaschka 
([!5]) form. In fact it can be shown that these equations have many different 
invariant subspaces as we prove here. 

Just as it can be shown that the time-1 map of the generalized Toda flows is 
equivalent to the QR algorithm for diagonalizing symmetric matrices (see [14, 25, 
30 and 31], for example), these double bracket equations provide a method for 
solving the symmetric eigenvalue problem, which coincides with the QR algorithm 
in the tridiagonal case. Recall also that the Toda equations in Flaschka's form sort 
the eigenvalues of a given symmetric matrix into ascending order. Here we show 
that the double bracket equations give a general Lie-algebraic sorter, which will 
sort in any prescribed fashion (corresponding to a choice of Weyl chamber). 

We also show here how the equilibria of the double bracket equations are the 
vertices of a convex polytope which is the image of a momentum mapping associ- 
ated with the problem (see the work of Schur-Horn [19], Kostant [21], Atiyah 
[3] and Guillemin and Sternberg [17]). The image of the isospectral Toda orbit 
is shown to be a complex object lying in the interior of the polytope defined by 
the momentum mapping. That a convex polytope may be associated with the 
Toda flows, was observed originally by Deift Nanda and Tomei [14] and Tomei 
[33] (see also van Moerbeke [34], Fried [16] and Davis [13]). In a related paper 
[6], by exploiting the K/ihler structure of the problem, we show that the isospectral 
Toda orbit may in fact be mapped onto the polytope by a momentum mapping, 
thus putting the topological observation of Tomei et al. into a symplectic context. 

The outline of this paper is as follows. In Sect. 1 we discuss the double bracket 
equations, indicate how they arise as gradient flows and describe certain of their 
invariant subspaces. In Sect. 2 we show how a special case of these equations gives 
the generalized Toda lattice equations (see Kostant [22, 23], Symes [30] and 
others). A Lie algebraic explanation is given for the double bracket form of the 
equations in the Toda case. In Sect. 3 we give explicit representations for the Toda 
flows in double bracket form for the classical Lie algebras. In Sect. 4 we discuss 
the convexity and momentum map result and the sorting result mentioned above. 

I. The Double Bracket Equations and Gradient Flows 

In this section we begin by discussing gradient flows on compact Lie groups. We 
derive an explicit equation for a particular gradient flow relative to a left-invariant 
Riemannian metric. We then show that projecting the flow onto an adjoint orbit 
of the Lie algebra by taking the natural projection yields a flow which is itself 
gradient with respect to the "normal" metric on the orbit. This flow is shown to 
be of the "double bracket" form L(t) = [L(t), [L(t), N]] where N is a given constant 
matrix. This flow is isospectral and we show that in fact this double bracket flow 
is the compatibility condition for the "spectral equations" for the flow at the group 
level. This is related to the classical theory of integrability of Hamiltonian systems 
as we shall see in the next section. Finally, we discuss some invariant subspaces 
of the double bracket equation. 

Let G, be a compact Lie group with Lie algebra fr and let x(,) denote the 
Killing form on aj.. Define the smooth function F(O) on G. by 

F(O) = x(Q, Ado N) (1.1) 
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where Q and N are fixed elements of f~u and Ad denotes the adjoint action of G. 
on f~.. Then we have (see [10] for the unitary case) 

Proposition 1.1. The gradient flow ofF(O) relative to the left-invariant Riemannian 
metric on Gu whose value at the identity is minus the Killing form is given by 

O(t) = O(t). [Ad0(t)-, Q, N], (1.2) 

where O.P denotes the left translation of P by O. 

Proof. Let Vo = O.R where ReN, and denote by ( . , .} the metric on G, obtained 
by left-translation of -x( ' , . ) .  Then 

dF(O).vo = d ,-o- F(0.exp tR) 

= dt t = o x(Ad~ ' Q' Ad~xptR N) 

= tc(Ad0-, Q, [R, N]) 

= ~([N, Ad0-, Q],R) 

= _ ( O . [ N ,  A d o _ l  Q ] , v o ) ,  

whence 
VF(0) = 0-lAd0-, Q,N]. [] 

Let Nu be the compact real form of a complex semisimple Lie algebra N. Then 
the equation (1.2) have the normal real form of N intersect the compact real form 
as an invariant submanifold. The gradient flow can then be formulated as a gradient 
flow with respect to the normal metric on this intersection. Equation (1.2) first 
appeared in this form on SO(n) (see [10]). 

Corollary 1.2. The projection of the flow (1.2) onto the adjoint orbit containing Q, 
obtained by setting L(t) = Ado(t~- , Q is given by 

L(t) = [L(t), [L(t), N]].  (1.3) 

Indeed, by the Chain Rule and Proposition 1.1 we get 

L = [L,O-lO] = [L, [L, N]]. 

It is interesting to notice that Corollary 1.2 can be interpreted as a compatibility 
condition between an "eigenvalue equation" and the time evolution of the 
"eigenfunction." Indeed L(t)= Ado(o_, Q says that L(t) and Q have the same 
spectrum, if they are matrices. In other words, this relation can be thought of as 
the totality of eigenvalue equations for L, with the columns of 0 as eigenfunetions. 
The time evolution for 0 is given by (1.2). The usual cross-differentiation argument 
repeats the proof of Corollary 1.2. 

Corollary 1.3. The Eq. (1.3) is the compatibility condition for the system L(t)= 
Ad0~t)-, Q and O(t) = O(t)" [L(t), N]. 

Note that the flow (1.3) is the image of (1.2) under the quotient map G, ~ G,/H, 
H the stabilizer of L(0)= L0, where G,/H is identified with the adjoint orbit 0 
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through L o. This "projected" flow turns out to be itself a gradient flow on the 
adjoint orbit (9 endowed with the "standard" or "normal" metric (see Atiyah [3]). 
Explicitly this metric is given as follows. 

Decompose orthogonally, relative to - lc( ,  ) =  ( , ) ,  (r = (r @ (~uL, where (~uL 
is the centralizer of L and (r = Im ad L. For Xeffu denote by xL~ff~ the orthogonal 
projection of X on ff~. Then set the inner product of the tangent vectors [L, X] 
and [L, Y] to be equal to ( X  L, yL). Denote this metric by ( , )N.  Then we have 

Proposition 1.4. The flow (1.3) is the gradient vector field of H(L) = x(L, N), ~c the 
Killing form, on the adjoint orbit (9 of flu containing the initial condition L(0)= L o, 
with respect to the normal metric ( , ) N  on (9. 

Proof. We have, by the definition of the gradient, 

dH'[L, bL] = (grad H, [L, bL] )N, (1.4) 

where �9 denotes the natural pairing between 1-forms and tangent vectors and 
[L, bL] is a tangent vector at L. Set grad H = [L, X]. Then (1.4) becomes 

o r  

Thus 

and 

-- ([L, bL] ,N)  = ({L, X], [L,~SL])N 

( [L, N], 6L) = ( X  L, tiLL). 

X L = ([L, N])L = [L, N] 

grad H = [L, [L, N] ] 

as required. [] 

The "double bracket" flow (1.3) is in the "Lax pair" form L = [B, L] and is 
thus isospectral. This of course plays a key role in our Toda lattice analysis. 

Now for the Toda lattice analysis we need to consider the invariant subspaces 
of the equation L = [L, [L, N] ]. We prove here some general results regarding the 
invariant subspaces of this equation. For this analysis we may take L and N to 
be the elements of any Lie algebra ff over the real or complex field..The differential 
equation L = [L, [L, N] ]  then evolves in ft. 

Proposition 1.5. Let r ~ , .  and let ff be a Lie algebra. Let N e f f  and suppose (ad N) 2 
has an eigenvalue r 2 with corresponding eigenspace V in ft. Let fin be the centralizer of 
N. Then (#N | V is an invariant subspace for the nonlinear operator on f4 given by 
L ~ [L, [L, N]] ,  L~ff. 

Proof. Set V =  VrOV-r, where Vr and V_, are the + r  and - r  eigenspaces, 
respectively, of the operator ad N. We can write a typical element of fq~ �9 V as 
v+ + v _ + h  with [h,N] =0 ,  [N,v+]=rv+ and [ N , v _ ] = - - r v _ .  By the Jacobi 
identity, we have IN, [v+, v_]]  = 0, and [N, [h, v+]] = r[h, v+] so that [h, v+]~v~. 
Similarly, [h, v_]ev_,.  Together these identities imply 

[v+ +v_ +h,[v+ +v_ +h,N]]Ef fN•V.  [] 

We also have the following. 

Proposition 1.6. Suppose e is an involutive Lie algebra automorphism of ~. Let ff . . . .  
and ffoda be the + 1 and - 1 eigenspaces of e. Then if ad N maps ~oda into ~e ... .  it 
follows that (~N 0 V)c~ ffodd is an invariant subspace for the operator [', [', N] 3. 
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This follows from Proposition 1.5 and the obvious relation [ffodd' ff~wn] ~ (/~odd" 
The Toda flows will be seen to evolve in a subspace of the form defined in 

Proposition 1.6 with r 2=  1. 

2. The Double Bracket Equations and the Toda Lattice 

In this section we show that the generalized Toda lattice equations may be written 
in the double bracket form (1.3) and hence are a gradient flow on their isospectral 
set. 

Let ~,  be the normal real form of ~. 
Then the Flaschka form of the generalized Toda lattice equations associated to 

~ ,  are given by A = [B, A] where 
l ! 

A = ~ bih J + ~ aj(e,~ + e_, ) ,  (2.1) 
j = l  j = l  

! 

B = ~ a j ( e , j -  e_,:), aj > 0. (2.2) 
j = l  

This form of the Toda lattice equations is the one adopted in Moser [27] for 
ff,=sl(n,]R), and is equivalent to, but different from, the conventions used in 
Kostant [22] and Symes [30, 31]. This is a Hamiltonian system on the coadjoint 

t 
orbit of the lower Borel subalgebra of ft, through ~ (% + e_,j) called the Jacobi 

orbit, with Hamiltonian function �89 A). All the elements of this orbit which are 
of the form (2.1) we call Jacobi elements. This system is integrable; the integrals 
are the basis of the ring of invariants of ft. restricted to the orbit. Level sets of the 
integrals of motion are called isospeetral sets. 

In what follows, let ~ ,  be a compact Lie algebra, ~ a maximal abelian 
subalgebra and ff the complexification of ~,, and choose ~ = d O i d  as the 
Cartan subalgebra of ft. We let r denote the system of roots of ~ defined by ~ ,  
let A denote the simple roots and choose {h j, e~lj = 1 . . . . .  l, ~Er a Chevalley basis 
of ~, with hj~A. ~ . . . . .  ~ denote this simple roots. 

Let G and G, denote the Lie groups with Lie algebra ff and ft, respectively. 

Theorem 2.1. I f  N is i times the sum of the simple coweights off#, then, for 
l l 

L = Z ibjhj + Z ia~(% + e_,) ,  (2.3) 
j = l  j = l  

Eq. (1.3)gives the generalized Toda lattice equations on the level set of all the integrals 
of the Toda flow. Explicitly, N is given by 

N = ~ ixjhj, (2.4) 
J 

where (xl, x 2 . . . .  , xl) is the unique solution of the system 

~ x j e i ( h j ) = - l ,  i= l . . . . .  l. (2.5) 
J 
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P r o o f .  F r o m  (2.3) and (2.4), 
t t 

[ L ,  N ]  = Z ~ ,  x i a i c h ( h i ) ( %  - e _ , , ) .  
i=lj=l 

But for the generalized T o d a  flow, L = [B, L]  where B is given by (2.2) 
It  is known that  there is a unique element N in the Car tan  subalgebra  (see 

[20], p. 1014) such that  [N,  e~] = height (7)e,. This element is found in the following 
_ 2~i - - - ,  way. Let  ~i (el, el) where ( , )  denotes inner product ,  be a dual root  and let 2i, 

t 

where (2i, e j ) =  ~ij, be the corresponding dual weight. Set h~ = ~ ~-i. Then 
i = 1  

(h~, % )  = 1 and  we set N = - ih~.  Note  that  N is the Car t an  par t  of a principal sl(2). 
Explicitly, [L, N]  = - B  if and only if the coefficients x~ in (2.4) are the solution 

of the system 
l 

x j c h ( h j )  = - 1. 
j = l  

It is a s tandard  result that  cq(hj) is the Car tan  matr ix  of  f#. [ ]  

We list now the coefficients x~ (i.e. the solutions of  the equat ion  C x  = - 1, C 

the Car tan  matr ix  for all the semi-simple Lie algebras (see [8]): 

ff x 

G 2 11 -- --3,  X 2 = - - 5  

F 4 X 1 = --11, X 2 = --21, X 3 = --15, X4 = - -8  

E 6 x x = - - 8 ,  X 2 = --11, X 3 = --15, 

X ~ = - - 2 1 ,  X 5 = - 1 5 ,  X 6 = - 8  
4 9  E 7 x 1 = - 1 7 ,  x 2 -  2, x 3 = - - 3 3 ,  

75 = - 2 6 ,  x7 27 
X 4 = -48, x5 - -  2 ~ X 6  - -  2 

E8 xl  = - 4 6 ,  x 2 = - 6 8 ,  x 3 = - - 9 1 ,  

x 4 - = - 1 3 5 ,  x5 = --110, x6 = - 8 4 ,  

x 7 = - 5 7 ,  x s = - - 2 9 -  

T a b l e  1 

A t x i = - � 8 9  - i + 1), i = 1, 2 . . . . .  1 

B t  x i = - � 8 9  i = 1 , 2 , . . . , 1 - 1  

x t  = - �88 + 1) 

C t  x i  = - � 8 9  - i), i = 1, 2 . . . . .  I 

Dt x i = - � 8 9  i = 1 , 2  . . . . .  l - 2  

x t -  1 = x l  = - �88 - 1) 
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Now we can show quite intrinsically that Eq. (1.3) with L and N given by 
(2.3) and (2.4) respectively are the Toda lattice equations; that is, the Toda 
Hamilton• on a coadjoint orbit of the lower Borel subalgebra of ~4, gives rise to 
the Eq. (1.3) 

We first derive an explicit formula for the Kostant-Kiril lov Souriau (orbit) 
form on the coadjoint orbit of the lower Borel subalgebra. Before we do this we 
need some notation and definitions: 

Let q~, �9 +, and ~ -  denote the system of roots, the positive and negative roots 
of ~ respectively. Let 

ff,,={~bjhi+~c~e~,bj, c~lR } ] =  1 ~ (2.6) 

be the normal real form of ft. 
Now consider the decomposition 

where 

s  | [_j r~, (2.7) 

(r the IR span of the c~ root space, and let 

J{'={~+G(e~--e_~)lc~EN.}. (2.8) 

Then the complements of 2 '  and J# under - ~ ( , )  are 

~ •  L_] (r (2.9) 
asq~-  

and 

Also 

and 

~•162 @{=5+d,(e=-e_=)ld~E~,}. (2.10) 

(2.11) 

(2.12) 5 a* =~ C/{ "• X *  =~ s177 

Let n~,  n.xc, na~, and n ~ l  denote the associated projections. 
Now consider the tridiagonal elements of W and x (  • i.e. if A denotes the set 

of simple roots of ~r set 

a@={~ac~(e~-e-~),c~t. } (2.13) 

a~" i = ial G I ~ a~(e~ + e-~)la~eP" } (2.14) 

I 

Let M = - iNeL~r i.e. M = ~ xjhj, where x l , . . .  , xj is the solution of the linear 
system (2.5). ~ = 1 
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Then a d M : s  ~ a C •  is the isomorphism sending an element of J(? to 
minus its symmetrization and adM:a(( • ~ a f f  sends an element AeSC • to minus 
its skew-symmetrization (i.e. to - B  in (2.22)) and has kernel equal to i d .  Thus 
ad u: o,~ • (3 i d  ~ ~ is also an isomorphism. The map ad~ t :S  • --* s • (Z) i d  is the 
projection. 

For a fixed AeJ(( • with all a, > 0, TeA (see (2.1)), the operator adA: id~. . ,~  is 
an isomorphism. Indeed, proceeding as in the proof of Theorem 2.1 and denoting 

P =  ~ p~(e~-e_~), p~elR, (2.15) 

l 

Z = ~ zihi, z i G ~  , (2.16) 
i = 1  

we have [A, Z] = P if and only if 
l 

~. zjoq(hj)= -p~,/a~,,, i= 1,...,l. (2.17) 
j = l  

Denote by adAl:Yf ~ i d  the inverse of this isomorphism. 
The operator a d t A , M j : i d ~  r•  O i d  is also an isomorphism, for if Z is as in 

(2.16~ and 
Q = ~ q~(e, + e_,), q~elR, (2.18) 

~eA 

then [[A, M], Z] = Q if and only if(2.17) holds with p,, replaced by q,,. Let adt~Ml: 
9ff a @ i d  --* isr denote the inverse of the isomorphism. 

Theorem 2.3. The orbit symplectic form on a co-adjoint orbit of the lower Borel 
subalgebra of ff, is given by 

co = �89 A ~(ad~ 1 + adt~laj adM)ad M dA) (2.19) 

where /~  is the wedge product associated with the bilinear form ~. 

Proof. For X, YeL, e, the orbit symplectic form on a Jacob• orbit is given by 

o)(uor~[A,X]. 7r~[A,  Y]) = -tc(A, IX, Y]). 

Consider then 

�89 (dA/x~ (ad A 1 + adtM1.Al adM) adM dA)(Tz jr ~ [A, X],  7r or �9 [A, Y]) 

= �89 ~:(TC or~ [A, X], (ad A i + ad[M1,A] adM) ad M g or~[A, Y]) 

} K(~zor~[A, Y], (adj  1 + ad~i, al adM) adM ~or• X]) 

Since 

adM ~or�9 , Y] = -- ~or[A, Y] e9r ad~ i ~or[A, Y]ei~r ~ JT "• 

and 
(adM) 2 ~ or ~ [A, Y] = 7~ or ~ [A, Y] -- diag [A, Y] �9 X • Q i d 

the above equals: 
1 2 i tc([A,X], --(adA a)rcor[A, Y] + adtM.AladM~or~[A, Y]) 

-- �89 K([A, Y], - (ad] i)gor [A, X] + adtMl, a] ad 2 nor�9 [A, X]) 
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= �89 n~[A,  -1 2 Y] - adA ad[M,nl adM n x• [A, Y]) 

�89 K(Y, n~[A, X] -adA  ad~l.Al ad~t n~I[A, X]) 

= �89 nx[A,  Y])- �89 n~[A ,X])  

- �89 [a,  Z])  + �89 [a ,  Z']), 

where - 1 2 adtM,A~adMna~[A, Y] = Z ,  and ad(M1aladZMnx~[A,X ] = Z ' ~ i d ,  and we 
also have Z = - diag Y, Z' = - diag X, projections into i d  of Y and X respectively. 
Therefore we get 

= �89 K(n.w X, [A, Y]) - �89 ~r ~1 Y, [a ,  X]  ) 

+ �89 ~(X, [A, diag Y]) - �89 K(Y, [A, diag X])  

= �89 [Y, n .wX]  + [Y, diag X])  

I ~( A, [ X, n ~ Y] + IX, diag Y]) 

= - K(A, [X, Y]) 

as required. []  

Then we have the 

Theorem 2.4. For the orbit sympleetic form given in Theorem 2.3 the equations of 
motion on the Jacobi coadjoint orbit of the lower Borel subalgebra of if, corresponding 
to the Hamihonian �89 A) are A = [A, [A, - -M]] .  

Proof. co([A, [A, - M J ] , n : ~ [ A , X ] )  

= �89 ~([A, [A, -- M] ], (ada i + ad~l, al adM) adM ( n ~  [A, X])  

- �89 ~(nx,[A, X] ], (ad~ 1 + ad~l.A~ ad~t) adM ([A, [A, - M]  ]) 

= �89162 M], [ M , n ~ [ A , X ] ] ) - � 8 9  

+ �89 K(EA, [A, - M] ]), Z') - �89162 :61 [A, X], Z"), 

where Z, Z', Z"~i~r are uniquely determined by the conditions 

[A, Z] = [M, [A, [A, - M] ] ], [ [M, A], Z']  = ad 2 nw~ [A, X], 

and [ [ M , A ] , Z " ] = a d 2 [ A , [ A , - M ] ] .  Since [ A , M ] = B  given by (2.2) and 
ad~ erases the Cartan part of elements in J'~• the last equation is equivalent to 
[B, Z"] = ad 2 [A, B] which in turn determines Z " =  - d i a g  A. Thus we get 

�89 [A, X], A - diag A) + �89 A], Z) 

+ �89 ~(A, [ [M, A], Z '])  + �89 ~c(nx~ [A , X], diag A) 

=�89189 _M]]] )  1 2 + ~/r adza nw~ [A, X]) 

= �89162 n x~ [A, X])  + �89162 [A, ad~ A]) + �89 n ~  [A, X] - diag [A, X])  

= ~c (A, n ~  [A, X]) + �89 [A, A - diag A]) - �89 diag [A, X]) 

=/c(A, n ~  [A, X])  -- �89 A], diag A) - �89 K(diag A, [A, X] ) 

= Ir nx~[A,X])  = dH(A) .n~[A ,X] .  [] 
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We remark that the Toda lattice is gradient on its restriction to the isospectral 
set, since it is the restriction of a gradient vector field on a G, orbit. There appears 
to be no appropriate metric off the isospectral set. Similary, Moser's form of the 
gradient flow (see [27]) also occurs on the isospectral set and is given by 

dr k OV 
- k =  1 . . . . .  n ,  

dt cqr k' 

where 

~ 2 k r ~  
k = l  

V -  
2 2 ~ r k  

k = l  

Here the 2 i are constant and satisfy '~1 < •2 < " '" < 2n,  and the r k are strictly positive 

and satisfy ~ rk _2_ 1. For  the precise relationship between Moser' flow and the 
k = l  

double bracket flow see [6]. 
We remark also that for sl(l + 1) our function x(L,N) is (modulo a trivial 

normalization) the Morse function discussed in [13, 16 and 33] and used to analyze 
the topology of isospectral sets of Jacobi (symmetric, tridiagonal) matrices. We 
have shown that this Morse function gives the Toda flow as its gradient flow with 
respect to a suitable metric, and, moreover, we have given a natural 
generalization of this function to arbitrary semisimple Lie algebras. 

We note also that in view of the above analysis, it is natural to write the 
Poisson bracket on Jacobi elements as 

{f(L), g(L)} = - ~:(L, [Vf  - [N, V f ] ,  Vg - [N, Vg]), 

where V f  is the gradient of f in ~n defined by dr(L)" 6L = - x ( V f ,  6L), 6 L ~ , .  
This is equivalent to the bracket given in Symes [29]. 
The overall picture we have developed is as follows. The Toda flow is 

Hamiltonian in the Jacobi elements embedded in ~r via (2.3). The level sets of the 
integrals of motion are Lagrangian submanifolds of the set of Jacobi elements. 
Also the level sets lie on orbits of (~u- These level sets are invariant submanifolds 
for the gradient flow of the function •(L, N) with respect to the normal metric. 
On the level sets the Hamiltonian and gradient flows are identical for-N as in 
Theorem 2.1. 

Remark. We note also that one can compute quite explicitly the gradient flow 
with respect to the normal metric of an arbitrary function q~(A) on an orbit (9 
passing through Ao~qu, = ~q, c~ ~q,. Let V denote the gradient relative to the non- 
degenerate bilinear form ( , )  = - x(,) on ~q,. Then the flow is given by 

/] = [A, [A, - Vq~] ]. (2.20) 

The proof is essentially the same as that of Proposition 1.4. 
Further, if I : ~ , ~  is an invariant function, i.e. [VI(A),A]=O, then the 

gradient flow of qS(A)= -~c(VI(A), M), where M = - i N ,  is 

~t = [ A, [VI(A), - M] ]. (2.21) 

This follows from (2.20) together with the observation that taking the derivative 
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on f#, at A in the direction of M ~ i d  

[ d ( V I ) ( A ) ' M ,  A]  + [VI(A) ,  M ]  = O. 
of the 
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relation [VI(A), A] = 0 gives 

3. Representat ions  for the T o d a  F l o w s  

In this section we consider representations for the Toda flow in the double bracket 
form for the classical Lie algebras�9 The key new ingredient here is of course the 
determination of the matrix N. For convenient bases for the classical Lie algebras, 
see, for example, Sattinger and Weaver [28], or Humphries [24]. 

A t. We take here hi = diag (1, - 1, 0, 0 . . . .  ), h2 = diag (0, 1, - 1, 0 . . . .  ). If Eij is the 
matrix with 1 in the ij th entry and zeros elsewhere, the positive simple roots are 
e~l : E 1 2  , e,2 = E 2 3  . . . .  

From N = ~ ix~hs, Table 1, and (2.3), we find; 
J 

( / 
N = idiag 2' 2 

bl al 

al b 2 - b l  

L = i  

- I + 2  I - 2  1~ 
"' - ' l '  (3.1) 

"" 2 2 

at 

a I -- b l 

(3.2) 

C~. Here we take ha = diag(1, - 1 ,  - 1 , 1 , 0  . . . . .  0), h 2 = ( 0 , 0 , 1 , - 1 , - 1 , 1  . . . .  ) . . . . .  
ht = (0, 0 . . . . .  0, 0, 1, -1) .  Now, define the functionals al on the Cartan subalgebra 
by ai(H)= 21, where H = diag(21ao . . . . .  2~ao), ao as in (3.4) below. (Note that a~ 
here is not the same as that used in the definition of Chevalley basis.) 

Calculating as before, we find 

U = idiag(�89 -�89189 -�89 . . . .  , 3 3 1 2 '2 '  1,~.) (3.3) 

We now calculate L explicitly�9 Following [28], define 

a + = ( ~  ; ) a _ : ( ~  ~ ) a o = ( ;  O1) .  (3.4) 

The simple positive roots are al - az . . . . .  a t_ 1 -- a t, 2a~ with corresponding root 
vectors 

aj ~ - + a ~  - -  , i < j  
a t -  . : ( ~ ) i s - (  ' - a ~  t, 2 

2al:(a+)u and 

/ ~  - a o \  ~ + ao 
- - (a i - -aJ ) : tT ) i j - - (T ) j  i 

--2at:(a_)u 
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with the double  subscr ipt  indica t ing  the pos i t ion  of  the (i , j)  2 x 2 block. I is the 
2 x 2 ident i ty  matrix.  

Then for C 3 w e  have 

bt 

0 

- a  1 
L = i  

0 

0 

0 

0 a 1 0 0 0 

- b  1 0 a t  0 0 

0 b 2 - b  I 0 a 2 0 

- a t  0 b l - b  2 0 a 2 

0 - a  2 0 b 2 - b  3 a 3 

0 0 - a  2 a3 b 2 - b 2  

(3.5) 

Dv Here  the hi are  as for  Ct 
F r o m  Table  1 

N = i d iag  ( - 1 +  1 , 1 -  1, - l + 2 ,  2 - I ,  . . . ,  - 1, 1,0). (3.6) 

We again  calculate  L. 
Defining th e ai as for Ct, the s imple posi t ive roots  are ax - a2, a2 - %,  al_ 1 - at, 

and  a t -  1 + az with co r respond ing  roo t  vectors 

_ [ ~ + a o ' ~  + a o - ~  

at -  1 + az:(a +)zz- 1 - (a +)t-  1, 

- (~ , -  t + @ : ( a _ ) , _  1, - ( a _ ) . _  t- 

Then  for D3 we have 

- b  I 0 a l  0 0 0 

0 - b l  0 - a l  0 0 

a l  0 b2 - bt 0 a2 - a 3  
L = i (3.7) 

0 - a  I 0 - b a + b 2  a3 - a z  

0 0 a z a 3 b a - b  2 0 

0 0 - - a  3 - - a  2 0 b z - b  3 

By Here  we take  h 1 = d i a g ( 0 ,  t , - 1 , 0  . . . .  ), h2 = d iag  (0, 0, 0, 1 , - 1  . . . .  ), etc. Then 

N = i d iag  (0, - l, l, - l + 1, 1 - l . . . . .  - 1, 1). (3.8) 

We now calculate  L. 
Defining ai here by a i (H)=2~ ,  where H = d i a g ( 0 , 2 1 a o  . . . . .  2zao), the s imple 

posit ive roots  are 
0~1 - -  0~2, " �9 � 9  ( Z I -  1 - -  a t ,  0~l 

with roo t  vectors:  (,ao) 
a i - a j : / - !  -- i # j  

\ 2 / ~  ~ ji 

a f t  E o , 2 t  - -  E 2 t -  1 ,o  

- -  ~ O - -  E o , 2 I -  t" 
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Thus for B 3 

0 

0 

0 

L = i  0 

0 

- - a  3 

a 3 

0 0 0 0 --a 3 a 3 

b I 0 a 1 0 0 0 

0 - b l  0 - a l  0 0 

al 0 - b l  +b2 0 a 2 0 

0 - a  1 0 b 1 - b  2 0 --a 2 

0 0 a 2 0 - b 2 + 2 b  3 0 

0 0 0 - a  2 0 b E-2 b  3 

(3.9) 

4. The Double Bracket Equation, Momentum Maps, and Toda Flows 

In this section we discuss how the theory of convexity of the image of the momentum 
maps, as developed by Schur-Horn  [19], Kostant [21], Atiyah [3] and Guillemin 
and Sternberg [17], may be used to deduce properties of the double bracket 
equation and hence the Toda lattice flows. We also discuss Lie-algebraic sortin]g. 

As observed by Brockett in [10], one can in fact view the equation L(t)= 
[L(t), [L(t), N]  ] in the Hermitian case as solving a linear programming problem 
on the convex set defined by the Schur-Horn  theorem. This also makes contact 
with the problem of minimizing the Total Least Squares function (see [4 and 11]). 

Theorem 4.1. (i) Let (9 be a (co)adjoint orbit of Gu in ~ and consider the gradient 
vector fieId L(t) -- [-L(t), [-L(t), N]  ], L(0)~(9, with flow Ftfor S a fixed regular element 
in ~ .  The set of equilibria of this vector field coincides with (9 c~ ~r where d is the 
Cartan subalgebra of ~ containing N. This set (9 c~ d consists of a single Weyl 
group orbit. By Konstant's convexity theorem ([21]), the convex hull of these 
equilibria is a compact polytope ~ which is the image of (9 under the momentum 
m a p g : ( 9 ~ d  defined by the adjoint T-action on (9, where T is the maximal torus 
in f~u obtained by exponentiating ~r and the momentum map ~z is the orthogonal 
projection of (_9 onto d .  n(Ft((9)) lies entirely in ~ .  The number of equilibria of F t 
equals the order of the Weyl group for L(O) regular. 

(ii) I f  S and L are chosen as in Theorem I (ii), L(t) = [L(t), [L(t),N]] becomes the 
Toda lattice equations defined on the level set of all constants of the motion and the 
projection of the Toda flow on d lies in the interior of the polytope given in (i). 

Proof. T acts on (9 by the (co)adjoint action, defining the momentum 
map n: (9 ~ d - - ~  which is the orthogonal projection of (9 onto ~r (relative to 
the metric - ~(,) on fq~). The image of n is a convex compact polytope which is 
the convex hull of the critical values of ~z. These critical values coincide with the 
Weyl group orbit ( 9 • d  (see [21]). 

To prove the theorem we will show that the equilibria of the vector field 
L(t) = [L(t), [L(t) ,N]]  on ~ necessarily lie in d .  (See [10] for the unitary case.) 
Note firstly that the solutions of the equation L(t)= [L(t), [L(t), N I l  exists for all 
time since the flow is the projection of a flow from a compact group. We will now 
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show that lim L(t) must be in d .  Observe that 
t---~ o~  

d 
~t(~(L,U)) = ~(N, [L, I-L, U] ]) = -- ~([L, U], [L, N])  > 0. 

Hence K(L, N) is monotonic increasing along the flow and is bounded above since 
L(t) lies in the coadjoint orbit of a compact group. Thus K(L, N) has a limit and 
its derivative goes to zero. But we can see that its derivative vanishes only if L 
and N commute and, since N is regular, L must lie in ~r []  

We remark that the Toda lattice equations on the level set of all constants of the 
motion have no equilibria, but if one considers these equations defined on the 
closure of the Toda phase space, then the equilibria are given by the Weyl group 
orbit as stated in Theorem 4.1. 

We remark that in [14 and 33], it was shown that an isospectral manifold of 
Jacobi (symmetric, tridiagonal) matrices with the off diagonal elements taken to 
be nonzero - i.e. a Toda orbit - is homeomorphic to a convex polytope. In a related 
paper [6] we show, by studying the K~ihler geometry of the Toda flows, that this 
polytope is in fact the image of a momentum map. 

In this paper we restrict ourselves to observing that while the image of the 
momentum map discussed in Theorem 4.1(i) is indeed convex, when one restricts 
the domain to the Toda orbit, one obtains an image that lies in the interior of a 
convex polytope, with equilibria at its vertices, but the image is far from convex. 
This is illustrated for A2 below, where the projection onto the Cartan subalgebra 
of the integral curves of the system with conserved eigenvalues 21 = 1, 22 = 2, and 
23 = 3, are shown. (This image has also been constructed by H. Flaschka and 
M. Zou.) 

It is well known (see Symes [31] Deift, Nanda and Tomei [14]) that for the 
Toda lattice equations on sl(n) the only stable equilibrium is that where the 
eigenvalues of L are sorted into increasing order along the diagonal of L. We can 
prove the Lie algebraic generalization of this result using our double bracket 

3 

2 

1 
! I 

i 2 3 

Fig. 1. ]'he projection of the Toda trajectories under the image of the momentum map for A 2 
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formulation, but also a more general result on sorting which applies to the 
(non-Toda) double bracket flow on a compact Lie algebra. This result states 
essentially that the only stable equilibrium of the double bracket flow is that 
where L is diagonal and the diagonal entries are the eigenvalues of L sorted 
commensurately with N. More precisely, our result (which is a Lie algebraic 
generalization of the Hermitian result in [10-1) is 

Theorem 4.2. Consider, as in Theorem 4.1, the (co)adjoint orbit (9 of G u in f#~ and 
the vector field L(t) = [L(t), [L(t), N] ] on (9. Assume N is regular. The only stable 
equilibrium, Lo, of  this vector field, lying necessarily in (9 r i d ,  where d is the Cartan 
subalgebra of f#u containing N, is the (unique) equilibrium which lies in the same 
Weft  chamber as - N .  

Proof. We prove the result by examining the linearization of the vector field 
L(t) = [L(t), [L(t), N] ] at L o. 

Taking the differential of the vector field at L = L o gives 

6( [L, [L, N] ] ) = [6L, [L o, N] ] + [Lo, [6L, N]]  

= [Lo, [bL, N]] ,  (4.1) 

since Lo and N commute, L o being an equilibrium point. 
Hence the linearized vector field is given by 

SL = [Lo, [6L, N]].  (4.2) 

As in Sect. 2, let {hj, e, l j= 1 . . . . .  l, a~A} be a Chevalley basis of f#, the 
complexification of the Lie algebra ft,. d is a maximal abelian subalgebra of flu, 
W = d G  i d  is the Cartan subalgebra of f# and hje~r for j = 1 . . . . .  I. a 1 . . . . .  at 
denote the simple roots. Then a basis for ft, is {ihj, x~ :=e~-e_ , ,  
y, := i(e,+ e_ , ) l j=  1 . . . . .  l, a a positive root}. Let (,) denote the inner product 
induced by the Killing form on roots and let (cq fl) = 2(a, fl)/(fl, fl)eZ. We have 

[ih~,x~] = (a, ai)y  ~ and [ihj, y~] = - ( a ,  aj)x~. (4.3) 

Therefore, if 
l l 

N =  ~ xflhj, Lo-=- ~ Ykihk 
j = l  k = l  

! 

= + Z + d,y ) 
p = l  ~>0  

for xj, Yk, bp, ca, d~lR,  we get 

[JL, N] = - [N, JL] = - ~ (x~c~[ihj, x~] + xfl~[ih~,y~]) 
~ > 0 , j  

= -  ~ (xjc~(~t,~j)y~--xfl~(~,o~j)x~), (4.4) 
a > O , j  

and hence 

[L o, [6L, N I l  = - -  ykihk, (XjC~(~, ~ti)y ~ -- x jda(~,  ~j )x~)  
k a j =  

= _  ~ YkXjC~(~,aj)[ihk, Y,] + ~ Ygxjd,(~,aj)[ihk, x~] 
�9 > 0  a~>0  
j , k  j , k  
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= ~ (ykXjC~(~, ~j~ (~, ~k~X~ + ykXjd~(a, ~J~ (~, ~R)Y~) 
~t>0 
j,k 

= XjO~j e, ~ ykek e~X~§ d~y~). 
ct k = l  

Therefore, the linearized system (4.2) decouples into 

' bp=0 ,  p =  1 . . . . .  l 

cl~ = d~ ~, xj~j ykO~k , ~ > O. 
\ j = l  / 1 

(4.5) 

(4.6) 

Now, since the Weyl group acts simply transitively on the Weyl chambers, we 

may assume that N lies in the positive Weyl chamber, i.e., ~, ~ xjej > 0. 
\ j = l  

Therefore, the origin will be a stable equilibrium for the decoupled linear system 

(4.6) iff a, ~ Ykak _--< 0, i.e. iff Lo lies in the reflection through the origin of the 
k = l  

positive Weyl chamber, that is, the Weyl chamber of - N .  [] 

Remarks. 1) If N is not regular, the conclusion of the theorem does not hold any 

more. Indeed, if for some c( > 0, ~, ~ xjc~ j = 0; i.e., N lies on a wall, then in 

(4.6) the sign of a'k 1 Ykak cannot be controlled. 

2) If ~,  = su(l + 1), the off-diagonal part of (4.6) reduces to 

~LiJ = ()~u) - 2~(o) (nj - ni) 6Lq, 

where N = diag (in 1,.. . ,  int + 1), Lo = diag (i),~o) . . . . .  i2~(~ + ~)) are traceless diagonal 
matrices with purely imaginary entries,, and ~ is a permutation of {1, 2 . . . . .  l +  1}. 
In other words, in the limit the flow of L(t) = [L(t), [L(t), N I l  sorts the eigenvalues 
of L such that they appear on the imaginary axis in opposite order to the eigenvalues 
of N. This result in the Hermitian context was obtained by Brockett [10]; there 
the real eigenvalues of N and the limit of L appear in the same order on the real 
axis. 

Requiring all the coefficients in (4.6) to be positive characterizes the unique 
equilibrium which is a source. We get: 

Corollary4.3. In the hypotheses of Theorem 4.2, the unique equilibrium of 
L(t) = [L(t), [L(t), N I l  which is a source lies in the same Weft  chamber as N. 

Both Theorem 4.2 and Corollary 4.3 generalize to the following. 

Theorem 4.4. In the hypotheses and notations of Theorem 4.2, let Ls be the unique 
equilibrium which is a source and let a(Ls) be another equilibrium, where a is an 
element in the Weyl group. Then the dimension of the stable manifold ofa(L~) equals 
twice the length of o. 
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Proof. From the system (4.6), we see that the dimension of the stable subspace of 
I 

the linearized system at the equilibrium a(Ls) = ~ ykihk, equals twice the number 
k = l  

o f ~ > 0  such that (~, ~" ykCtk)<O. However, (~, ~ ykO~k)~-(O'O~,(~( i YkO~k)) 
[" l \ \ k = !  / \ k = l  / \ \ k = l  / /  

and O-(k~ 1 " -  yg~t k.)is in the positive Veyl  chamber by construction and choice of 

ordering. Since the only roots which have positive inner product with an element 
in the positive Weyl chamber are the positive roots, we need to determine all 
positive roots ~ for which a~ < 0. This number, however, is the length of a (see 
Humphreys [24] p. 52). []  

We remark that Theorem 4.4 can also be proved by examining the gradient 
flow x(L, N) with respect to the K~ihler metric on (9. This is done in Atiyah [3], 
where the dimension of the stable manifold is shown to coincide with the dimension 
of Bruhat cell association with the equilibrium. This result is equivalent to ours, 
since the dimensions of the stable and unstable manifolds at the equilibria of a 
gradient vector field are independent of the metric used. This may be seen as 
follows. The linearization of the vector field Vf  at a given equilibrium is g -1H 
where H is the Hessian of f at the equilibrium and g is the local matrix 
representation of the metric. The eigenvalues of g-lH are equal to those of 
g-1/EHg-1/2 = (g-1/2)THg-1/2, which is a quadratic form having the same rank 
and signature as H. 

We can thus see that the gradient flow (1.3) has a number of remarkable 
asymptotic properties. When restricted to Jacobi elements, we have seen these 
equations are actually Hamiltonian. Although there are other invariant subspaces 
for these equations, as we have shown, we know of no other cases where they are 
Hamiltonian. We note however that a key point which allowed us to show the 
nonperiodic Toda lattice equations are gradient on their isospectral set is the 
noncompactness of the level sets. We suspect that other integrable systems with 
noncompact level sets may exhibit gradient-like behavior or indeed be gradient 
flow on their level sets. We are currently investigating this idea. 
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