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Abstract. An axiomatic approach to the approximation of infinite dimensional 
algebras is presented; examples illustrating the need for a rigorous treatment 
of this subject. Geometric quantization is employed to construct systematically 
su(N) approximations of diffeomorphism algebras which first appeared in the 
theory of relativistic membranes. 

I. Introduction 

Over the past years several authors [1] have studied (and used) the approximation 
of diffeomorphism groups by SU(N). They started from the observation made in 
the context of membrane theories [2, 3], that in a specific basis of su(N) the 
corresponding structure constants converge to those of diff a S 2 (the Lie algebra 
of infinitesimal area preserving diffeomorphisms of the 2-sphere) in the limit N ~ ~ .  
Later it was found I-4-7] that the same holds for the Lie algebra of infinitesimal 
(nonconstant) diffeomorphisms of the 2-torus diff A T 2. 

A naive identification of diff a S 2 and diffa T 2, however, with the well known 
sut+~(oo) I-8] would be false. Although the three algebras (or rather certain 
subalgebras) may all be approximated by su(N) in the above sense, they are pairwise 
non-isomorphic. This we will show in Appendix A. Moreover, in [9] the members 
of an infinite family of algebras (including diffa T 2) have been proven to be pairwise 
non-isomorphic although all of them can be approximated by su(N), N ~ ~ .  

This ambiguity clearly shows the need for an additional concept, and appears 
to be worthwhile studying without reference to membrane theory. Interesting 
questions arising from the subject are its relation to h ~ 0  limits of quantum 
theories on compact phase spaces and its role in the construction and classification 
of infinite dimensional Lie algebras. 



210 M. Bordemann, J. Hoppe, P. Schaller and M. Schlichenmaier 

In Sect. 2 of the present paper we discuss the approximation scheme using 
gl(N) as an example. Starting from a particular basis one obtains (by the standard 
embedding) gl +(~) [-8] for N ~  oo. Allowing for arbitrary base transformations 
C ~N~ non-isomorphic infinite dimensional algebras may be obtained, if C ~N) at 
N = ~ does not exist as a transformation between infinite dimensional vector 
spaces. Several examples are given. 

In an attempt to get this ambiguity under control we introduce in Sect. 3 a 
rigorous concept for the approximation of algebras (L~-approximations), based on 
three axioms, and formulate a weak uniqueness theorem for the limit algebras 
(called quasilimits). The examples of the preceding section are used to illustrate 
this concept. 

In Sect. 4 we systematically construct su(n)-approximations for algebras of 
infinitesimal area preserving diffeomorphisms of compact K~ihler manifolds: 
Regarding the manifold as a classical phase space, a geometric quantization scheme 
is applied in order to approximate the algebra of infinitesimal canonical trans- 
formations by a sequence of (finite dimensional) algebras of quantum operators. 
In an addendum to this section we compare our approach to techniques involving 
F. A. Berezin's coherent states [29-31] that have recently been mentioned in the 
context of symplectic geometry and membranes by A. S. Schwarz [32]. In this 
comparison we use a global formulation due to J. H. Rawnsley et al. [33, 35, 36]. 

The calculus developed in Sect. 4 fits into the framework of L~-approximations 
and is carried out explicitly for the 2n-dimensional torus in Sect. 5. The result 
generalizes the sine-algebra which was used in [4-7] to approximate diff a T 2. 

In Appendix A we present the proofs of some statements contained in Sects. 
1-3 concerning the non-isomorphy of certain infinite dimensional algebras. 
Appendix B contains technical details of the calculations in Sect. 5, involving theta 
functions. 

2. R e m a r k s  on gl(N~ oo) 

Here and in the following sections we will replace the real algebras u(N) and su(N) 
by their complexifications gl(n), respectively sl(n). To fix notation and for further 
reference let us give a definition of the infinite dimensional Lie algebras 

gl(~), gl+ (oo), LA, diff~ T 2, diff~ S 2 

and certain related algebras. 
gl(~) is the Lie algebra of complex oo-dimensional matrices with finite support 

(see [8]), i.e. 

g l (~) := {(aij)i,j~zlaiielE, all but a finite number of the alj = 0}. (2-1) 

The Lie bracket is the usual matrix commutator. A basis is given by the elementary 
matrices Eij. The matrix Eij has 1 as the (i, j)th entry and 0 as all other entries. 
Here (i, j) ranges over 7/• 71. The commutator of the basis elements is 

[Ei~, gkl ] -~ ~i,kEit - t~i,lEkj. (2-2) 

If we replace 71 by mq we obtain the algebra gl+(oo) by the analogous definitions. 
Any bijective map ~1---71 induces an isomorphism of gl+(oo) with gl(oo). 
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(Nevertheless, we will distinguish them, because there exists no canonical iso- 
morphism between them.) Due to the finite support of the matrices the trace is 
well-defined and the subalgebras sl(oo), respectively sl+(oo)can be obtained by 
restricting oneself to matrices A with trace A = 0. 

Let 

be the ~E-vector space generated by the basis T~. This vector space carries different 
Lie algebra structures, e.g. the family of sine-algebras [4], They are defined as 
follows: for A e R  with A ~ 0 we set 

[T~, T~]A= ( ~---~ sin 2nA(m 

for A = 0 we set 

x Y)) T~ +~., (2-3) 

[T~, T~]:= [T~, T~]~ (N x ~')T~+~. (2-4) 

Here we use the notation mxn=m^n=m~nz-m2nl, where N=(ml,m2), 
-if= (nl,n2). We denote these Lie algebras by La-= (I,1, [-.. ,..]A). Obviously, the 
algebras La are direct sums (of Lie algebras) 

LA = (T(o,o)) ~ (T~INeZ2\{(0, 0)} ). 

The first summand consists of multiples of the central element T~o,o r The second 
summand we call L A. The Lie algebra L o is (by some abuse of notation) also called 
diff~ T z, due to its relation with the complexified Lie algebra of the area preserving 
diffeomorphisms of T 2. Of course, diff~ T a is only the subalgebra of nonconstant 
vector fields generated ~ by finite linear combination of the generators T~, (N r 
The element T~o,o ~ in L o does not correspond to a vector field, rather to a constant 
function in the Poisson algebra (see Sect. 4). 

Our last infinite dimensional Lie algebra shall be the algebra generated by the 
elements 

Yz,,, with leN,  m = - l  . . . . .  0 . . . . .  + l  (2-5) 

with the Lie bracket 2 

[Yt,,, Yr,'] = 9,,~,,'.,'r'' Yr'.", (2-6) 

where the structure constants are given by 

r',." = i ( -  1)'" ~ dO (lm~-*l'm')). (2-7) 
g'~176 o Jo 

(Here ~'t,m(0, r are the usual spherical harmonics [10].) This Lie algebra we will 
call diff~S 2. Again, diff~S z is only the (complexified) subalgebra of diffaS 2 
generated by finite linear combinations of the vector fields corresponding to Yt,, 
(see [3]). In the following, it will sometimes be convenient to consider also the 
trivial central extension diff~ S 2 ~ {12. u by an additional element Yoo. Again, this 

a We use the word "generated" in the sense of generated as a vector space 
2 Here and in the following summation convention is assumed 
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element represents the constant function in the Poisson algebra. Note that the 
structure constants (2-7) will be nonvanishing only for 

m " = m + m '  and I I - l ' l < l " < l + l ' - l .  (2-8) 

We will need this later on. 
Let us now study how to obtain the above infinite dimensional Lie algebras 

by some limit process from finite dimensional Lie algebras. In this sense we call 
them just "limits" of these finite dimensional algebras. In this section we do not 
want to give an exact definition of a "limit," rather we want to show some interesting 
observation in connection with this limit process. 

Let us start with gl+(oo). Induced by a numbering of the basis of the vector 
space on which gl+(oo) is operating we get an embedding of the algebra gl(N) into 
01 + (oo) by considering the operations involving only the first N basis elements. This 
embedding we call the standard embedding. By increasing N one obtains a chain 
of subalgebras 

gl(N) c gl(N + 1) c gl(N + 2) c . . . .  

As every element of gl+ (oo) lies in some gl(N) we can call gl+ (oo) a "gl(N), N ~ oe 
limit." In fact, gl+(oo) is the "direct limit" of the standard embedding in the sense 
of the language of categories. 

Let us now consider an arbitrary basis {T~la = 1 . . . . .  N 2} of gl(N) with the 
corresponding structure constants f~i, N. Let C Iv be the N 2 x NZ-matrix describing 
the base change, i.e. 

N N Ta - C,,,i~Ei~, a = 1, 2 . . . . .  N 2, (2-9) 

where the E o are the generators introduced above (of course, now i, j = 1 . . . . .  N). 
By definition, C N is invertible, and the structure constants can be expressed in 
terms of C N as follows: 

c,N __ N N N - 1 
f a b  - C a , i j C b , j k ( (  C ) ) i k , c - - (  a b).  ( 2 - 1 0 )  

We consider the family of #l(N) given by the generators TaN. If we assume that f ~  
has a well defined limit 

c . __  fa,b'-- lim f~',~r (2-11) 
N ~ o o  

for all a, b, c and that for fixed a and b the set 

fa,b 0) {cenqlthere exists a N such that c.N 

is finite then we can define a Lie algebra generated by elements {T, la~Dq} with 
the bracket 

[T., Tb] = f~,b Tc. (2-12) 

Clearly, this Lie algebra might also be viewed as a gl(N), N -o ~ limit. 
Nevertheless the above condition does not imply that the family of base 

transformations C ~N~ (2-9) has to define a base transformation C also in the limit. 
For  this we would have to additionally require that (for fixed i, j) the element E~i 
is only a finite(!) linear combination of the TaN and that the number of elements is 
bounded independent of N, and vice versa! Of course, if this condition is fulfilled, 
the limit (2-12) will be isomorphic to gl+(oo). However, in most of the interesting 
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examples this will not be the case. Hence, we take the convergence of the structure 
constants (2-11) as the starting point. The resulting algebra (2-12) will then in 
general not be isomorphic to g/+ ( ~ )  as we will see. Note however that the existence 
of C as a transformation between vector spaces is a sufficient but not necessary 
condition for the isomorphy of the resulting algebra with the gl+ (oo) given by (2-2). 

Now let us study specific examples of the relations (2-9)-(2-12). 

Example 1. Let N, M~Bq, N odd, 1 < M < N with M and N relatively prime and 
Co:= e 4'~iM/N be a primitive N th root of unity. Define the N 2 • N2-matrix a C with 

N - 1  N - 1  
indices a = ~ = ( m t , m 2 ) , m l , m  2 - T . . . . .  + ~ , i , j =  1 . . . . .  N,  

iN 
C - " =  - -  co "/2) . . . .  +r 1)m~ ,s (2-13) m,,j" 4rcM Vi+ra2"jm~ 

where 6k,ZmodN is equal to 1 if k = l m o d N  and 0 otherwise. 
The inverse matrix can be calculated to be 

- -  4triM 2 - 1  - '  
( C  )ij,~ - -  N 2 (-D ml(m2/2 J+ 1)~j_ imod N (2-14) 

which yields the structure constants 

f,~,u N 2rcM 
- s i n - ~ - -  (~  x n)~+~,~modN- (2-15) 

2~M 

(6m.gmod N is the obvious generalization of 6 . . . . .  dN to tWO dimensions.) 
Let M , N ~  oo in such a way that M / N ~ A e R .  Then we obtain as "limit" the 

infinite dimensional algebra L A. For M = 1 and N ~ ~ we get as a special case 
the "limit" Lo = differ T 2 ~) (I~. This example shows that the "limit" is not unique. 
To see this, let A and A' be two different irrational numbers with 0 < A, A ' <  �88 
We can approximate them by two sequences 

Mk respectively M~, with N k N'k. 
Nk N k 

Hence we have as the k th element of the "sequence" the algebra gl(Nk). But it was 
proven in [9] that i'A is not isomorphic to L A, for A ~ A'. 

Example 2. Again let N be an odd positive integer. Let us define the matrix 
C = (C/re,i j): The range of the first index pair shall be 

l = 0 , 1  . . . . .  N - l ,  m = - l  . . . .  ,0  . . . . .  +l .  (2-16) 

For  the second pair it is i, j = 1 . . . . .  N. The matrix element is defined by 

Cfrn ij = ( - -  1) N-i 2 2 "~i_,~j'RN(I), (2-17) 
' N + I  N + I  

- i + ~ - -  m j - - ~  

3 To avoid cumbersome notation we drop the superscript N in the following 
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where 

/ (N + I)! 
RN(I ) = N / 16~-~ N / ( N ~ l ~ l ) !  (N 2 __ 1)(1-/)/2, (2-18) 

and ( / a  12 /3 ) i s  the 3j_symbol [10]. The structure constants r'm" f lm,rm" with 
ml m2 m3 

respect to the basis T~m have been calculated in [3] (compare also [11]). They are 
nonvanishing only in the range given by (2-8). Taking their limit for N ~ oo yields 
the structure constants (2-7) (with the trivial extension). 

Hence the algebra diff~ S 2 @ ~E is another gl(N), N ~ oo limit. In Appendix A 
we will prove, that g/+(oo), diff~ S 2 and diff~ T 2 (respectively their trivial central 
extensions) are pairwise non-isomorphic. 

Note that what (2-13) and (2-17) have in common (despite their different 
appearance) is the factor 61+.,j (mod N, in the case of (2-13)). This means that all 
matrices Ca, defined by (Ca)ij = Ca,~j with a = ~ or a = (l, m) have non-zero elements 
only at one (mod N)-diagonal. If we rewrite (2-10) as 

f~'o N = Tr ([C a, Cb], Cc) (2-19) 

with C = (C- a)t~ one can easily see that in this case (2-19) is well defined, as N ~ oo. 
One could take (2-19) as a starting point and guess some other structures which 
could leave f]'b N finite, as N ~ ~ .  

The simplest "new" solutions of (2-19) however, can be found by a direct product 
Ansatz for C: 

C . . . . .  ij = Ra , i ' Sa2 j  (2-20) 

yielding 

~" tr f ~ = 6 .... 16c2,b2( RS )bla2 -- (-ff'--'b)" (2-21) 

AS long as X t N ) = X = S R  tr has a well defined limit in 91+(oo) as N ~ o o ,  the 
structure constants (2-21) will lead to a well defined 91(N), N--', oo limit with the 
Lie bracket 

[T i j  , Tkl ] = X j k  Til - -  T k j X l i  i, j, k, l ~ q  (2-22) 

which is in general not isomorphic to the usual gl+(oo). 

3. L~-Approximations 

In the last section we have shown that the concept of "gl(oo)" or "su(oo)" 
becomes troublesome if one simply assumes that there is some sort of "limit" at 
work: First of all, to define a limit of algebras in the strong sense one would need 
a concept of "measuring the distance" between two algebras L,  and L B in a limit 
sequence to know under which conditions this sequence converges. But this could 
be too restrictive, since in practice the interest often lies in the approximation of 
structure constants. Also, a "true limit" should preferably be unique (at least up 
to isomorphism). But, as some of the preceding examples have shown, the 
same sequence (ol(N)) can give nonisomorphic "limits." Finally, the well-known 
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mathematical procedures for the "approximation of algebraic structures" like direct 
or projective limits (see for example [12]) in pure algebra or the approximation 
of C*-algebra by finite dimensional matrix subalgebras [13, Chap. 12] do not 
apply in the preceding examples, because there exist no typical homomorphisms 
(like for instance subalgebra relations) between the approximating gl(N)-algebras 
and the "limit algebra." 

Therefore we are going to develop a mathematical notion of what could be 
meant by an approximation of the structure constants of a given Lie algebra. This 
concept which to the best of our knowledge is new, covers and generalizes the 
results which have been summarized in Sect. 2. We shall first give the definitions 
and theorems and then discuss some examples. 

We start with a given family of real or complex Lie algebras (L~, 0eel) where 
the Lie brackets in each L~ is denoted by [ . . . . .  ]~ and the index set is either N or 
II.  In addition, we require that each L, carries a metric d~. Now let (L, [ . . . . .  ]) be 
another (real or complex) Lie algebra satisfying the following 

Axiom 3.1. (i) There exists a surjective map p~:L--* L~ for every eeI. 
(ii) For each x, yeL the following holds: I f  d~(p~(x),p~(y))~O for ~ oo then 

x = y .  

We call (L~, [ . . , . .]~, d~, cteI) an approximating sequence for (L, [ . . , . . ] )  induced by 
(p~, cteI) and L an L~-quasilimit if the following axiom is also valid 

Axiom 3.2. For each x, yeL, 

. d~,(p~,[x,y], [p~x,p~,y]~,)~O (o~ oo). 

A few remarks are to be made: 

(a) If we set y = 0 in 3.1 (ii) and assume p~x = 0 for all ee l ,  we get d~,(p~,x,p~,y) = 0, 
hence x = y = 0. In particular, for xeL, x # 0 there exists always e e l  with p,x ~ O. 
By this the vector space L can be considered as vector subspace of n L~. 

(b) The above definitions depend on the metrics d~ chosen. However, as can be 
easily checked slight deformations of the sequence of metrics (d~)~ into a new one 
(d'~)~f in such a way that there exist positive a, beP,. such that 

a'd~(x~,y~)<d'~(x~,y~)<b'd~(x~,y~) V~tel, Vx~,y~eL~ 

do not change the validity of Axioms 3.1 and 3.2. In these cases for all x, yeL 
(d'~(p~x, p~y)) is a zero sequence if and only if (d~(p~x, p~y)) is a zero sequence. Hence 
Axiom 3.1(ii) (and analogously Axiom 3.2) will be satisfied for (d~) if and only if 
it is satisfied for (d'~). In most of the cases we are interested in metrics which will 
come from a norm 11 "'" I[~ on L~, i.e. d~,(x~,,y~,)= ][x~-y~][~. 
(c) Of course, the concept of approximating sequences is by no means restricted 
to Lie algebras. The Lie structure can easily be replaced by other algebraic 
structures, like super algebras, associative algebras . . . . .  

It is shown in the Examples 2 and 3 below, that the same sequence of algebras 
L, could approximate non-isomorphic algebras. However, we have the following 

Proposition 3.3 (weak uniqueness). Let (L~,[ . . . . .  ]~,d~,~eI) be an approximating 
sequence for the Lie algebra (L, [ . . , . . ] )  induced by (p~, ~eI). Furthermore, let E be 
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a linear subspace of  L carrying a Lie product [ . . . . .  ]' and projecting onto each L~. 
Then: (12, [ . . . . .  1') is a Lie subalgebra of (L, [ . . . . .  ]), i.e. [ . . . . .  ] '  is the restriction of 
[ . . . . .  ] to 12 if and only if the approximating sequence for L is by restriction also an 
approximating sequence for I~ induced by the restriction of the p~. 

Proof. Clearly, 12 fulfills the Axiom 3.1 as a subspace of L, respectively by 
assumption. If L' is a subalgebra then Axiom 3.2 is trivially valid, hence=~. 
Conversely, we obtain by the triangle inequality for x, y~12, 

d~(p~[x, y], p~[x, y]') < d~(p~[x, y], [p~x, p~y]~) + d~(p~[x, y]', [p~x, p~y]~). 

Because this is a L~-approximation for L and 12, we see that on the right-hand 
side we have two zero sequences for e--+ oo. Hence, we have also a zero sequence 
on the left-hand side. By Axiom 3.2(ii) (applying it for L) it follows [x, y] = [x, y]', 
hence r �9 

In particular, setting 12 = L  we see that the Lie structure [ . . , . . ]  on the 
underlying vector space L of an L~-quasilimit is unique once the linear maps 
(p~, e~l) are specified. 

By a standard Zorn's lemma argument, using the weak uniqueness from above 
the following proposition can now be shown 

Proposition 3.4. Every L~-quasilimit is a subalgebra of a maximal L~-quasilimit 
(L, [ . . . . .  ]). 

We will not need this later on. 
In many examples the approximating sequence fulfills also the following 

Axiom 3.5. There exists a family of linear maps (i~: L~--+ L, ~ I )  and ~o e l  such that 
for o{ ~ 0~0~ 

p, oi~ = id~ and i~(L~) ~ ip(Lp) fl > ct. 

If an approximating sequence L~ fulfills also Axiom 3.5 we call (L~) a splitting 
L~-approximation. 

Example 1. Let L and (L~, ct~I) be different Lie algebras with the same underlying 
vector space V. If we choose as p~ and as i~ the identity map and as d~ a 
fixed metric d on V then Axioms 3.1 and 3.5 are clearly fulfilled. Axiom 3.2 
reads as 

d([x,y],[x,y]~)-+O (e--+oo). (3-1) 

This reflects the approximation of the structure constants. To make the example 
more concrete let L (and hence all L~) be generated by Tn with n e l l  (or eZ). By 
(Tn, T,~ ) = 6n,m we get a scalar product on Iv'. If we choose d(x, y):= x / ( x  - y, x - y)  
then (3-1) implies for the structure constants f~,~, fk.~ defined by 

IT., r . ]  k =f~mT k respectively [T~,T,~]~ k,~ = f~,, rk (3-2) 

convergency 

lim ~'~ fnm = (3-3) f n m  �9 tx~oo 
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Conversely, if for fixed n and m the set 

{ k e n  (respectively Z)lthere exists a ~ such that fk,~ # 0} d n , m  

is finite then (3-3) implies (3-1). [] 

Example 2. diff~ T 2, the torus algebra. We start with the algebras LA introduced 
1 

in Sect. 2. Here we are especially interested in A = 0 (the torus algebra) and A = ~ .  
We use L for L o and L N for L'lm. The subspace 

jN:= ( T ~ -  T~+t~ ~l~,~'eZ2)~ (3-4) 

is an ideal in L N. Hence we can define the factor algebra L~N):= LN/J N with 
cpN:L N --* L ~N) the canonical projection map. This Lie algebra has dimension N ~. A 
basis is given by the N 2 elements 

q0N(T~), ~ = ( p , q )  0 < p , q < N .  

By definition of the factor algebra, the Lie product is given as 

N 2r~ 
[~oN(T,~), q~N(T~)] (m = ~ -  sin ~ - ( ~  x Y)cpN(T ~ +~modN)" (3-5) 

If we compare (3-5) with (2-15) we see that for N odd L (N) is exactly the Lie algebra 
gl(N) written in the basis as introduced in Sect. 2, Example 1. 

Now we define an L~ approximation for our Lie algebra L. As index set I we 
take the natural numbers. We use as L~s the algebras L (~), as p~ the canonical map 
cp N and as metric on L ~m the norm induced by the standard scalar product 

( qbc( T~,), cpN( T-a) ) = ~ . . . . .  " (~m2,n2"  (3-6) 

By setting iN(cgN(T~))):= T~mod N we obtain a linear map L{N)-,L which obeys 
cpNois=id. Axiom 3.5 is obvious. Axioms 3.1 and 3.2 are also fulfilled as will 
be shown in the following. Hence, this defines a splitting L~-approximation. 
By definition cpN is surjective. For  3.1 (ii): Let x, yeL .  We can write them as a finite 
s u m ,  

b d 

x = Z r,~ T,~ = Z E F( . . . .  2) T(ml,m2), 
r~eZ 2 m I = a m2 = c 

y =  ~, sz~T.~. (3-7) 
N e Z  2 

Without restriction, we can assume the same range for the summands in the 
representation of x and y. If N > 2"max(lal, Ibl, [cl, Idl) then the q~N(T~) for the T~ 
involved will be pairwise distinct. Hence they form a subset of the basis in TtN) 
and we obtain 

We calculate 

cPN(x) -- q~N(Y) = ~ (r~ -- s~)q)N(T~). (3-8) 
~e7  2 

d~&0N(x), ~N(Y)) = ~ / ~ z  I r~ -- s~T 2. (3-9) 
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Obviously, this expression is independent of N, hence we get lim ((pN(x), ~oN(y)) = 0 
if and only if x = y. N~ 
Axiom 3.2: We consider first the case x = T~ and y = T~. We calculate 

BN(~,K):= [q~N(T~), q~N(T~)] -- ~oN([T~, T~]) 

[ N  . 2 n _  \ 
= kiln sm~-(m x K ) -  (~ xK)fl ~N(T~+~modN). (3-10) 

For N big enough we obtain 

N . 2rt__ x ~ ' ) ,  IInN(~,n')ll = ~ - s m ~ - ( m  x ~ ) - - ( ~  (3-11) 

and hence lim dN(BN(~,K))= 0. Because arbitrary x and y are finite sums of such 
N---~ oo 

T~ the claim is also valid in these cases. �9 

Example 3. differ S 2. Let L be the algebra diff] S 2 ~) ~" Yoo introduced in Sect. 2. 
Take I = Rq and as L, the algebras L(m introduced in Example 2 of Sect. 2. We have 
again L(m = gl(N) for N odd. Let us denote the generators of this algebra by Tt~. 
We use as linear map PN:L ~L(N) the map induced by the map 

T,~, if I < N  (3-12) 
PN(Yt") = (0, if l > N 

on the basis. As iu:L(m ~ L we take the linear map induced by the inverse of (3-12). 
As metric dN in L(m we take the metric induced by the scalar product 

( Tz~, T~,,., ) = 6,,v'6m,,.,. (3-13) 

Again, Axiom 3.1(i) and Axiom 3.5 are obvious. Axiom 3.1(ii) can be shown in 
exactly the same way as above (replacing ~ by (m, l). To show Axiom 3.2 we have 
to make some minor modifications. We start with x = Y~m and y = Yv,.'. Similar 
to (3-10) we get for 

Blv(lm, I'm'):= [T~,., T~,,,] -pu([Yt, , ,  Yr,,,]) 

by using the result (2-8) on the range of the indices (with m" = m + m') 

l + l ' - i  

ii(BN(lm, l,m,)ll2 ~, [ i c l " m " , N  l"m" ~2 (3-14) = t J l m , l ' m "  - -  g l r a , l ' m ' ]  �9 
e'=lt-rl 

Now the range of the summation is independent of N. Because every summand 
vanishes for N ~ oo [3], the same is true for (3-14). Hence, we can conclude the 
argument as in Example 2. �9 

In Examples 2 and 3 we showed (using as index set only the odd numbers) that 
both diff~T2@d2 "Too and diff] $2~ )~  �9 Yoo have as a L,-quasilimit the same 
sequence of gl(N). Nevertheless, as will be shown in Appendix A they are 
nonisomorphic. 

Example 4. gl+(oo). We take as L the algebra gl+(~) as L, the gl(N), considered 
as subalgebras of g l+(~)  via the standard embedding, and as p, the linear maps 
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induced by 

~Eo, l < i , j < N  
PN(EiJ) = ~0, otherwise. 

The map PN is the projection onto gl(N). As i~ = iN we take the obvious inverse 
linear map. As d~ = d N we take the norm induced by the scalar product 

<Eij, E k l >  = (~i,k'(~j,! = Tr(E~'Eu). 

Axiom 3.1(i) and Axiom 3.5 are valid by definition. Let x and y be 2 elements of 
gl+(oo). If we choose N big enough (depending on the range of the nonvanishing 
coefficients of x and y with respect to the basis Ei~ ) we see that x and y are elements of 

gl(N) c gl(N + 1) c gl(N + 2) c . . . .  (3-15) 

Because we have [ . . , . . ] s = [  . . . . .  ]hgltm Axiom 3.2 is now immediate. The 
embedding (3-15) is an isometric embedding, i.e. dN+klg,~ ~ =dN for k > 0. Hence, 

dN + k(x, Y) = dN(X, Y). 

This shows Axiom 3.1(ii). Hence, the above data defines a L~-approximation. The 
base change (2-9) in gl(N) can be described as an isomorphism ~PN. This gives again 
maps of #/+(m) to gl(N) defined as the composition 

PN 
gl+(oo) ----, gl(N) ~--~N gl(N). 

Now we choose a metric dN on the second copy of gl(N). For example, the metric 
induced by <T a, Tb> = ga,b might be a standard choice with respect to the new 
basis. The above axioms with respect to the maps P~v = tPN~ are also valid with 
the exception of Axioms 3. l(ii). In general, the chain (3-15) will not be an isometric 
embedding anymore. Hence, we cannot conclude as above that the Axiom 3.1(ii) 
is necessarily valid. In fact, if we apply the above to Example 1 of Sect. 2 then 

lira dN(p's(Eoo ), p~(E1 ~)) = 0 
N--* o~ 

if we choose the metric induced by <T~, T~> = 6~,~. 
Of course, if we choose as metric the pullback metric (~p~ 1)*d N on the second 

copy everythings works again. �9 

4. Geometric Quantization and diffv M 

In this section we consider compact Kiihler manifolds which in the context of 
geometric quantization seems to be the natural generalization of compact 
two-dimensional manifolds (like S 2 and T 2) to higher dimensions. Indeed, 
well-known theorems I-I 5, 16] state that every orientable two-dimensional manifold 
carries a complex structure and a Hermitian structure whose real part is a 
Riemannian metric g and whose imaginary part is a nondegenerate closed volume 
form ~ = d ~ d x  I /x d x  2. 

In general, any manifold carrying a nondegenerate closed 2-form o) (a symplectic 
form) is the differential geometric arena for classical mechanics [ 17]. Such manifolds 
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(M, co) are called symplectic manifolds. Necessarily, they are orientable and even 
dimensional, i.e. dim M = 2n and 

" 1 
1)(2)__co" t 2 : = ( -  n! 

defines a volume form. 
For  the following, let (M, ~o) be a symplectic manifold. By diffvM we denote 

the Lie algebra of all divergence-free vector fields on M (with the usual Lie bracket 
of the vector fields). In the case of dim M = 2 we use also the symbol diffaM. 4 The 
elements are characterized by 

X ~ d i f f v M  if and only if L x O = O .  (4-1) 

where Lx  is the Lie derivative with respect to X. (In the case of surfaces s = co.) 
Equivalently, diff v M can be given as the set of vector fields which correspond to 
the volume-preserving diffeomorphisms of M [14]. 

On p-forms we have [17] 

L x  = ix ~ d + d o i x (4-2) 

(here i x is the interior product, i.e. i x a ( . . . ) =  a(X . . . .  )) and thus Lxo9 = dixog. To 
each smooth real valued function H on M one assigns its Hamiltonian vector field 
X n defined by i x , , ~  = dH. In certain local coordinates (qX, q2 . . . . .  q", P 1, P2 . . . .  , P,) 
(which in general have nothing to do with complex coordinates) one has 
co I = ~ dq i ^ dpi. In these coordinates X n can be expressed as 

& 0H O & 0H 
Xn~ 

Obviously, Hamiltonian vector fields are divergence-free, moreover 

Lx,,Co = 0 for all smooth functions H on M. (4-3) 

Any vector field X obeying Lxco = 0 is called locally Hamiltonian. 
The Poisson bracket {f, g} of two smooth real valued functions f and g on 

M is defined as 

{f, g}:= d f (Xo) .  (4-4) 

It  establishes a Lie structure on the space of all smooth real valued functions. This 
Lie algebra is called the Poisson algebra ~(M). One has the important relation 

[ X  l ,  Xo]  = - X~i,o ~. (4-5) 

More generally, for two vector fields X, Y on M obeying Lxo9 = Lr~o -- 0 one has 

[ X ,  Y]  = -- Xo,(x,r). 

(See [17] for proofs.) These relations show that the space of locally Hamiltonian 
vector fields is a subalgebra of diffvM denoted by L H a m M .  The space of 

4 The algebras differ S 2 and diff~ T 2 which were introduced in Sect. 2 are certain subalgebras of 
diff a S 2, respectively diffA T 2 
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Hamiltonian vector fields Ham M, is an ideal of it. If dim M = 2, then diff a M is 
identical to L Ham M and the quotient diff A M/Ham M can be identified with the 
first de-Rham cohomology class HI(M, FR) of M via X~.~.ixog. 

Furthermore, the map 

~(M) ~ Ham M, fw..,,-X: (4-6) 

is a surjective homomorphism of Lie algebras having kernel equal to the constant 
functions, i.e. ~(M)  is a central extension of Ham M. In case M is compact, 
which we will assume in the following, this extension is trivial as can be seen by 
the Lie isomorphism (dim M = 2n) 

~(M)--* R ~ Ham M, fw...~(~ 1"2 f , - X : ) .  (4-7) 

Note, if we use (4-4) and the identity 

df(X).12 = - ~ f divX.g2 (4-8) 
M M 

which is valid for arbitrary vector fields X and functions f [17, p. 153] we see 
that ~ O{f,9} vanishes. For  noncompact M, (4-7) in general is false as is best 

M 
illustrated by M = R2 and {q, p} = 1. But for compact M all these arguments show 
that one can investigate the Poisson algebra ~(M) in order to study an essential 
part of L Ham M (= diff A M for dim M = 2) and simply "omit the constants at the 
end." 

We shall now relate the Lie algebra ~(M) to a geometric quantization scheme. 
We assume M to be a compact K~ihler manifold of arbitrary (real) dimension 2n. 
First we recall some basic facts about this procedure (cf. [18, 19, 20], ... for details). 
We write 9 for the Kiihler metric and I~End(TM) ( i 2 _  _ lrM) for the complex 
structure on M which form together the symplectic form 09 

~o(X; Y) = g(1X, Y). (4-9) 

Here X and Y are vector fields on M. One then needs a complex line bundle L 
over M, a sesquilinear fibre metric h in L and a covariant derivative V in L. These 
data have to be compatible among themselves and with the symplectic form ~0 in 
the following sense. For  two smooth sections sl and s 2 of L and two vector fields 
X and Y on M the following should hold: 

hOTxSl, s2) + h(sl, VxS2) = d(h(sl, s2))(X), (4-10) 

F(X, Y)s 1 := (VxVr - VrVx - Vtx,rl)s, = - i~o(X, Y)s 1 . (4-11) 

F is the curvature 2-form of the covariant derivative and (4-11) is called the 
pre-quantum condition. 

For every smooth real (or complex) valued function f on M the following 
prequantum operator Pf acting on the complex vector space F(M, L) of all smooth 
sections of L is formed 

P::= -Vx:  + i f .  1. (4-12) 

This defines a map 

P:~(M)--,,Op(F(M,L)), fw-,,P:. 
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The prequantum condition (4-11) guarantees that P is an injective Lie algebra 
homomorphism 

P~I,ol = [PI, Po]. (4-3) 

Defining a scalar product { . . ] . . )  in F(M, L) by 

( s l l s2)  := S f2h(sl,s2), (4-14) 
M 

we see by using (4-3), (4-8) and condition (4-10) that Ps becomes an antihermitian 
operator in F(M, L) for real valued f .  Our unphysical convention to. have the PI  
antihermitian rather than hermitian is more advantageous for the formulation of 
(4-13) where else one would have a factor of i. The prequantum Hilbert space 
is then defined to be the completion of F(M, L) with respect to ( . .  [..). Note that 
the prequantum condition (4-11) strongly restricts the possible symplectic forms 
on M: Since for each complex line bundle over any manifold the Chern form 

i 
c : = ~  F is integral [21, p. 99] (i.e. gives integers when integrated over any closed 

2-surface in M) ~o must be a "2re x integral" form. 
A second step in a geometric quantization scheme is the choice of a polarization. 

I.e. one would like to have only those wave functions in the prequantum Hilbert 
space ~ that depend on "only one (certain) half of the phase space variables." For 
K~ihler manifolds there is a canonical concept. L should be a holomorphic line 
bundle. One then has for each fibre metric h in L a unique covariant derivative V 
in L which is compatible with h in the sense of (4-10) and obeys the following 
additional condition: for each holomorphic section s of L and each complex vector 
field X on M of type (0, 1) [21, p. 78] 

VxS = 0. (4-15) 

In other words, holomorphic sections become covariantly constant in antiholo- 
morphic directions. In a local holomorphic chart (z x . . . . .  z") this means the 
following: if the holomorphic section s is represented by  a holomorphic function 
g and the fibre metric h by a positive smooth real function h, then V can be expressed 
in the following way [21, p. 78] 

Vg = O~+ ~ +  O log h.g. (4-16) 

The above log h is often denoted as (local) K~hler potential. Starting with a K~ihler 
form ~o which is a 2n • integral form there exists always a holomorphic line bundle 
with connection V and metric h such that (4-10), (4-11) and (4-15) are fulfilled. 

The quantum Hilbert space is then defined to be the subspace/~ho~(M, L) of all 
holomorphic sections in ~ .  For compact manifolds it is always finite dimensional 
[21, p. 147]. Hence,/'ho~(M, L) is a closed subspace and it follows that the orthogonal 
projection 

p : ~  ~ F'hol(M, L) 

is a bounded Hermitian operator. In order to define quantum observables or 
quantum operators Qs acting on/'ho~(M, L) one simply takes "the holomorphic 
part" of the prequantum operators Py 

QI:= popio p. (4-17) 
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Q: clearly is an antihermitian operator for real valued smooth functions f but in 
general 

Q~y,g~ v~ [Q :, Qg]. (4-18) 

To get an explicit expression for Q: one can choose any orthonormal basis 
Is i ) . . . . .  I sd) (d = dim Fhol(M, L)) of Fhol(M, L) and set 

d 
Q : : =  ~ [Sa) (SaIPy[Sb) (Sb[ .  (4-19) 

a,b= 1 

Hence it suffices to compute the matrix elements (sa I P:I Sb) of Py. p is sometimes 
called "generalized Bergman kernel" [19]. To calculate the matrix elements the 
following result by Tuynman [20] is quite useful. We shall give a coordinate free 
proof. 

Proposition 4.1. ( Tuynman) Let (M, co) be a compact K~thler manifold, L a holomorphic 
prequantum line bundle over M, h a fibre metric in L, V the associated compatible 
connection in L and s 1 and s2 two holomorphic sections of L then the following 
equation holds: 

(s  1 I Pfls  2 ) = i(  sl I f  - �89 A f ls2 ). (4-20) 

Proof. Because PI = i f .  1 -  Vxs it suffices to compute the term containing the 
covariant derivative. Let I be the complex structure of M. For any vector field X 
o n M  1 - ~(X + iIX) is the holomorphic respectively antiholomorphic part of X. Hence 
(with condition (4-15)) 

Vl/2lX +ilx)S2 = O. 

It follows that V~xs 2 =iVxs2. Furthermore, from Eq. (4-9) we get for the 
Hamiltonian vector field X :  = - I  grad f .  It follows that 

h(s 1, Vx/s2) = -- h(s 1, Vl grad fS2)  ~ -- ih(s 1, Vgrad :S2) (4-21) 

and from (4-10) 

d(h(sl, s 2 ) ) ( X f )  -- h(s1, Vx.fS2) ~- h(Vxssl, S2) =dff ih(Vgrad:sx ' s2). (4-22) 

Subtracting (4-22) from (4-21) we get 

1 i 
h(sl, Vx,s2) = ~ d(h(s~, sg)(X :) - ~ d(h(s, s2))(grad f). 

Integrating this identity over M and using (4-8) we see with d ivX:  = 0 and 
div grad f = A f  that 

i 
(sl  IVx:[ S2 ) = ~ (sl  [ A f Is2 ). 

Here the laplacian has to be calculated with respect to g. �9 

As explained in [18] one should add a "half-form correction" to the above 
quantization scheme to obtain the correct physical values. Because this correction 
would not change anything essential in the following we decided to ignore it 
here. 
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In order to achieve an L,-approximation for Ham M we would like to have 
the afore-mentioned geometric quantization scheme dependent on a parameter 0t. 
This can be done by fixing a holomorphic line bundle L, a fibre metric h and a 
covariant derivative V which fulfills the compatibility by Eqs. (4-10), (4-11) and 
(4-15) and then considering arbitrary m-fold tensor powers of L 

L":= L| L |  @L (m factors). (4-23) 

For the holomorphic line bundle L" one can now construct a canonical fibre 
metric hcm) with compatible covariant derivative V t') by 

h("):= h |  m factors. (4-24) 

V('):= s 1 | ... @(V)k| "" | 1, (4-25) 
k = l  

where in the k th summand the V is at the k th position. If L is given by transition 
functions c,~ with respect to a trivializing covering, then L" can be given by the 
transition functions (e,,)" and the same trivialization. In this trivialization one has 

~(~) = (~)~, (4-26) 

V (m) = o --I- ~-I- m (3 log h. (4-27) 

The role of the exponent m becomes clear when we check the prequantum condition 
(4-11) for the bundles L m 

F(m)(x, Y) = mF(X, Y) = -imco(X, Y). (4-28) 

Now, too9 is also a symplectic form on M being clearly 2u • integral, and one can 
compare the formulae for Hamiltonian vector fields and Poisson brackets 

X(")= 1 X f ,  f ~ ( M ) ,  (4-29) 

1 
{f,g}(m)=_~{f,g}, f,  ge~(M). (4-30) 

If we now took the usual prequantum operators 

P("):= -- Vx~m,~(") + i f"  11 

we would have 

[p(m), p(,.)] = o(m) _ 1 p(,.) 
f O a{f,o}(m) - -  m {f,g} (4-31) 

1 
and -- can be interpreted as h. But since we are looking for a representation of 

m 
~(M), i.e. the Poisson algebra w.r.t, co and not w.r.t, moo we have to rescale the 
prequantum operators as follows 

P(")'- "P(") - ira f" 1 (4-32) s . . . . . .  s - - Vtx"~ ) + 

which yields 

[P~")'Ptor")] = --(I,g}'~(') (4-33) 
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If we denote by o'/t ~ (respectively Fhol(M , L~")), respectively pC,,)) the Hilbert space 
generated by all smooth sections of L" (where we choose the volume form on M 
to be equal to 12 and not m"12) (respectively the subspace of the global holomorphic 
sections of L", respectively the orthogonal projection on this subspace) we can 
form the (rescaled)quantum operators in Fhot(M, L ~")) 

{)~m): = p~m) o/3~,,) o pC.,). (4-34) 

Now we set 

Lm:= {antihermitian linear operators in Fho~(M, U'))}, (4-35) 

p,.:~(M)--*L,., f--*O,~ "}, (4-36) 

d.,:L,. • L , ~ I R ,  (A, B)~-*r,,.~/Tr(A -- B) + .(A -- B), (4-37) 

where the r,, are positive real numbers. We formulate the following 

Conjecture. Let (M, ~o) be a compact Kfihler manifold with symplectic form ~o. Then 
there is a ~o-compatible complex structure I in M, with respect to which M is also 
a Ki~hler manifold, a holomorphic prequantum line bundle L compatible with I, a 
fibre metric h with compatible covariant derivative V and a sequence of positive real 
numbers r,., mEDq such that the Poisson algebra ~(M) admits a ( L,,, d,.) approximation 
induced by p,.. Here L,., p,. and d,. are defined as in (4-35)-(4-37). 

If one thinks of m as 1/h this concept can be interpreted as h ~ 0  limit. Note 
that we leave the complex structure to be adjustable because the main interest lies 
in the symplectic structure of M. 

For technical reasons which will become clear in the forthcoming example it 
is more convenient to work with 

PC(M):= ~(M) + ir 

the complexification of' the Poisson algebra. Since for each 

f = f l  + if2e~C(M), fx, f 2 ~ ( M )  

we clearly have Py = PII + iPy~ and thus QI = Qyl + iQ~2 the above conjecture can 
be extended to ~ ( M )  being a (L~,, d~,) approximation (quasilimit) induced by p~,. 
Here L~, is the complexification of L,, which is isomorphic to gl(n, IE) (n depending 
on m) and p,~, is the complexification of p,,. 

The above conjecture can be related to work of F. A. Berezin concerning the 
concept of quantization [29-31] 5. In the following addendum we will therefore 
give an overview of his techniques in the more general formulation due to 
J. H. Rawnsley et al. [33, 35, 36]. 

Addendum on Berezin's Coherent States. An interesting approach to quantization 
where h--* 0 limits can be dealt with is a sort of ,-product quantization based on 
F. A. Berezin's coherent states. This concept was invented and outlined in general 
terms by F. A. Berezin in [29] and applied mainly to symmetric bounded domains 

s Note that refering to Berezin's work A. S. Schwarz [32] also points out a connection between 
the quantization of symplectic manifolds and 'u(n)-limits' 
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in [30]. The basic idea is to relate the classical phase space to a quantum Hilbert 
space by an overcomplete system of states in that Hilbert space (the so-called 

s y s t e m  of coherent states) which is parametrized by the phase space 6. Taking 
expectation values of a bounded operator with respect to the coherent states leads 
to a complex function on phase space and the associative noncommutat ive product 
of operators can thus be transferred to a subspace of classical observables where 
it becomes a ,-product.  In the case of K~ihler manifolds F. A. Berezin was able to 
introduce a parameter  h in order to get a family of Hilbert spaces and coherent 
states parametrized by h such that the , -product  of two functions is the ordinary 
(pointwise) product up to O(h) and the , -commuta tor  times 1/h is the Poisson 
bracket up to O(h) which reflects the correspondence principle of quantum 
theory. 

What makes it a little difficult to compare Berezin's approach to the method 
of geometric quantization is the fact that he always works in one holomorphic 
chart and constructs everything in local terms. For such K~ihler manifolds having 
global holomorphic charts like ~n or bounded (symmetric) domains this is perfectly 
suitable. For more general K/ihler manifolds (like higher genus compact Riemann 
surfaces) he does not give a general recipe how to obtain the correct Hilbert spaces. 
In some examples he uses the following method: He removes a divisor 7 D from 
the manifold M and considers as Hilbert space the space of holomorphic functions 
on the open dense subset M\D which are integrable with respect to some h 
depending metric. In this context he mentions some global features related to 
compact K~ihler manifolds, like the fact that the space of such admissible functions 
is finite dimensional and that h is quantized (i.e. h takes only a discrete set {h, In ~Z} 
of values of R § and lirn hn = 0). From the global viewpoint of geometric quantiza- 

tion the above space of functions can be related to the space of holomorphic 
sections of a suitable (h depending) line bundle. The quantized nature of h can be 
interpreted as the fact that one uses tensor powers of just one fixed line 
bundle. 

Of course, Berezin's procedure of removing a divisor D is not unique. As we 
want to avoid the examination under which conditions the derived objects are 
invariant under different choices of D, we prefer to sketch Berezin's idea in a global 
formulation due to J. H. Rawnsley et al. (cf. [33, 35, 36]). We use the same notation 
as in Sect. 4. Let L be a holomorphic prequantum line bundle (with hermitian 
metric h), which we assume to be very ample s, M the compact K/ihler manifold 
and x : L ~ M  the bundle projection. Let L o be L minus the image of the zero 
section. Now for each qeLo the "evaluation" of a holomorphic section s 

s~-*s(x(q)) = c~(s).q, O(s)~ (4-38) 

defines a linear form s~--~Cl(S) on Fhol(M, L), and hence by Riesz's theorem 9 one and 
only one holomorphic section eq~ff'hol(M, L) such that 

(eq Is) = ~(s). (4-39) 

6 See [34] for group theoretical and physical applications. 
7 For the definition see [22] 
s For the definition see [22], e.g. L has enough sections to separate points of M. 
9 This also works if/'hol(M, L) is infinite-dimensional, i.e. M is non-compact cf. E29, 33] 
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Using a orthonormal base (s~) of Fhoj(M, L) one has an equivalent formula 

eq = ~" O(s,)'s~, (4-40) 
~t 

where the - -  denotes complex conjugation. 
This shows that the map 

LO ~ Fho~(M,L ), q~--~eq (4-41) 

is smooth. Also note the following transformation property of eq under •*, 

ec~ = ~- leq, VcelE*. (4-42) 

The bundle L being very ample, there is no point in M where all holomorphic 
sections simultaneously vanish. Hence all the eo are different from zero. Because 
of (4.42) the following operators in Fho~(M, L) depend on the points z(q)EM only, 

l eq) (eq I l eq ) (eq, I (4-43) 
extq)'- (eqleq) ' ex(q).x(q'):- (eq, leq) '  

where the second operator is defined only on some open neighbourhood of the 
diagonal in M x M. Furthermore, for two holomorphic sections, sl and s 2 one has 

h(z(q))(sl(z(q)), s2(z(q))) = (sl  l eq) ( e~ Is2 )'1 q l 2 

with I ql 2:= h(z(q))(q, q). If one integrates this over M and notes that the function 

e(z(q)):= [ql 2 (eq l eq) (4-44) 

is well-defined on M because of (4-42) one gets the "over completeness property" 

(s~ Is2) = S t2(x)e(x)(sl I Pxls2 ) .  (4-45) 
M 

The sections e~ are called coherent vectors. Note that in contrast to Berezin's local 
theory the coherent vectors are parametrized by L o and not by M. The associated 
elements (eq) in ~(Fhol(M, L)) are called coherent states. They and the coherent 
projectors Px depend on M only. 

In [33] and [36] J. H Rawnsley et al. showed that there are many situations 
where the function e(4-44) is constant. This is for example the case if M is a 
homogeneous K~ihler manifold and L is a homogeneous bundle. It is also true if 
M is embedded into some projective space ~N and the symplectic structure on M 
is equivalent to the pullback of the symplectic structure of pN. In these cases one 
gets by setting s 1 = s, = s 2 in (4-45) and summing over ~ the formula 

= e(x) = dim FhoI(M , L) with vol M : =  S s (4-46) 
vol M M 

Now Berezin's covariant symbol [29] a(B) of a (bounded) linear operator B in the 
Hilbert space Fao~(M, L) is a well-defined smooth complex-valued function on M. 
Let x ~ M  and take any q~g-~(x)c~Lo then it is defined by 

a(B)(x):= T r B P  x (eqlBleq) (4.47) 
(eqleq) " 

It can be shown that in our situation the map B ~ a ( B )  is injective (see [29, p. 1122, 
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Remark 1] for the local case and [36] for the case of compact K~ihler manifolds). 
Hence on the space of covariant symbols a star product can be introduced 

a(B)* tr(C):= a(BC), (4-48) 

where B and C are (bounded) linear operators in FhoI(M,L ). This product is 
associative. If one writes out (4-48) with the help of the projectors Px one will 
need the "two point covariant symbols" (which again are only defined in a 
neighbourhood of the diagonal) 

IBle~) (4-49) 
(<qer l eq ) 

tr(n)(g(q), z(q')):= 

(compare [29, p. 1118, Eq. 2.6]). It is shown in [36] that in case e = const and M 
is compact one has the relation 

a(Qs) = i f  (4-50) 

for the symbols of the quantum operators (4-17) related to the so-called quantizable 
functions f on M, i.e. those functions for which the associated Hamiltonian vector 
fields preserve the K~ihler polarization or equivalently for which the (1, 0)-part of 
the Hamiltonian vector fields are holomorphic. In this way contact is made to 
geometric quantization. 

In order to bring in an h dependence of the concept, Berezin considers the 
Hilbert space F n of those holomorphic functions on a holomorphic chart which 

/ t \  

are square integrable with respect to a fibre metric e x p ( - h t ~ ( z )  ),  where �9 is 
\ - -  / 

some fixed K/ihler potential and h ~E ___ R § with 0~closure of E (see [29]). All the 
concepts discussed above will depend on h. In particular, one gets a space A n of 
covariant symbols for each value of h and a ,-product also depending on h. Under 
some technical assumptions, Berezin is'able to prove a correspondence principle 
in the following form: Let f be a function on E x IE" which is given in the form 

f(hlz) = f(0lz) + h f ~(z) + hZ f 2(hl z) 
with suitable smooth functions f(0, .), f l  and f2 such that the map zv---~f(hlz) is in 
An for every h. Let # be another such function. Then for h ~ 0, 

(f*o)(hlz)--' f(Olz)'g(Olz), 

~(f *g-g* f)(hlz)~ 1 ~- {f, 9} (Olz) (4-51) 

(cf. [29, Eqs. (2.38) and (2.39)]). 
In [36] the situation is analysed for compact K/ihler manifolds: Here for 

each tensor power m of the complex holomorphic line bundle L chosen at the 
begining one has coherent states (eq), q~(L| and a finite-dimensional space All,,, 
of covariant symbols on M. This sequence of spaces (A1/m) is shown to be nested, 
i.e. A1/m ~ AI/,~, for m > m' if e is constant. On the union of all the All,, a star 
product �9 is defined with similar asymptotic properties as above (see [36] for 
details). 

An important relationship to the L, quasilimits described in Sect. 4 is the 
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following: In the next section we shall calculate in detail that 

1 1 Tr (~('J + ^o. f l  
m " ~  : Q~)--+(2~)" r Of+ 9 (m --+ oo ) (4-52) 

for the 2n-torus which will establish the validity of Axiom 3.1(ii). The calculation 
of the above trace can be alternatively be done using coherent states: (/3(,,) is the 
prequantum operator (4-32)) 

1 I 
m" m 2 Tr (~')+ (~")g 

1 1 ^ 
- rn" m 2 ~ (salP~:')ls'> (s'lP(~ 

. lm, h(")(x)(sa(x)' s~(x) )h(")(x')(s~(x')' sa(x') ) )" 

Using the equation preceding (4-44) one has for q~x-a(x)c~(L| and 
q '~z-  a(x')c~(L| 

1 
- - S "  h(m)(x)(s(~m)(x~ s~ q( (")( '~ t.,,)t ,~ m n z..., , , ,  o , , '  �9 " H x X  , ~ S ~  t x l , s o  x x f l  

e(m) ] o ( m )  \ / o ( m )  I o(m) \ = 1 ~  :r o(,) \ /e(" ' ,  o(") ", 
, (e~.Ole~,) 5 (m) (m) (eq, ]e a, ) 

I (m) (m) (m) (m) 
(eq leq, >(eq, leq > (4-53) 

= I ~ ( m ) ( x ) 8 ( m ) ( x t )  (m)  (m) (m) (ra) " 
(eq leq )(eq, le~, ) 

For the 2 n -  torus being homogeneous, e tin) is a constant function and equals 
m"/vol (T2"). The remaining factor in (4-53) (which depends on M only) equals up 

to an m independent rescaling to Berezin's kernel function G,, h = 1 (cf. [29, p. 1119, 
m 

p. 1128]). For Gn he derives G~ ~ 6(x, x') for h --* 0 [29, p. 1131, Theorem 2.4], Hence 
one gets in the limit (4-52). 

The main difference between our approach of L:quasilimits and the Berezin- 
1 

Rawnsley procedure (besides our different goals) is that at each value of h = -- we 
m 

quantize all smooth functions on M and not only the corresponding covariant 
symbols (which form a finite-dimensional vector space). Furthermore, the notion 

of h -~ 0 respectively m = ~ ~ 0o limit in the correspondence principle of Berezin 

is that of pointwise convergence of the symbol functions as h goes to zero (compare 
the proof of Theorem 2.2 in [29, p. 1128]). In contrast to that we use the norm 
convergence for the quantum operators: Let (Bin) be a sequence of operators. 
(An example which occurs in our situation is B,, = ([(~"), (~to") ] -(~{~o})for two 
smooth complex valued functions f and g on M.) Then B,,--+ 0 for m ~ 0o means 
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that 

1 
m,,+ 2 TrB+mBI--.O (m~oe) .  (4-54) 

Using coherent states e~ m) this can be written as 

1 1 
Tr B ~  + Bm - -  ~'~ (So:(m) iBmBmlS~+ tin) 5 m" + 2 m n + 2 ,~ 

_ 1 ~,s(m) le(m)) (m) + (eq IB,,B,,Is~ m>) 
ran+2 E~ M ~ "Q(x)dm'(x)" ~ ' q (etqm'letq " , )  

1 r r +Bmle~m)) (eq IB m ~(x)e t I ) (x )  1 

m ~ +2 J (,e(qm) le~m)) 

1 (m) + e(q~)) (,e(q~.)lBmle(qm)) 
= ~ ~M "Q(X)g(I)(x) I "O(X')g(m)(x')(eq IBm [ (m) (m) (m) u (eq leq ) ( e r  le~, )) 

= I I ~'~(X)~(m)(x)~(Xt)C'(m)(x') 
M M  

1 (m) (m) (m) (m) (eq lee ) ( e r  leq ) a(Bm)(X,X') a(B, . ) (x ,x)  
m n (m) (m) (m) (eq leq )(eq, [etq, m)) m m 

Hence, up to multiplication with Berezin's kernel function (which will give a 3(x, x') 
in the limit m ~ ~ in some important cases anyway) this is a LZ-convergence which 
is in general different from pointwise convergence. 

5. Complex Tori (an Example) 

Every 2n-dimensional real torus T 2n ~- U(1) • ... x U(1) (2n factors) carries symplectic 
forms co which are invariant under T 2n translations. All these forms can be 
expressed by 

2n 

co = ~, XflktdX k ^ dx:, (5-1) 
k,l=l 

where the dx k are (globally defined) constant 1-forms along the U(1) factors and 
fl = (flu) is any skewsymmetric nonsingular real matrix. To introduce a complex 
structure one alternatively describes T 2n as 

T 2n = V/A, re: V - *  T 2n, (5-2) 

where V is a n-dimensional complex vector space, A a lattice 

A = (21,22 . . . . .  22,) z, 2,~V (5-3) 

with the 2 i linearly independent over R and re the quotient map. The map re carries 
the complex structure of V to T 2n. In order to have prequantum holomorphic line 
bundles over T 2n the form co has to be a 2re x integral 2-form. This is equivalent 
to demand that fl is an integral matrix, see 1-22, 16] if we choose as basis 
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x 1, x 2 . . . . .  x2. of V (over PQ the dual basis of the lattice basis given by 

S dx, = 6,,j, i, j = 1 . . . . .  2n. (5-4) 

Furthermore, one can choose the basis 21 . . . . .  22., of the lattice in such a way that 
the matrix fl can be given as 

f l = ( ? D  D),  D=diag(dl,d2 . . . . .  d,), (5-5, 

where the di are integers, such that dl divides di+ 1- If all the d~ are equal to 1 the 
torus T En is said to have principal polarization. By choosing the elements 
ek = (dR)- 11~,k as a complex basis of the vector space V the lattice can be given as 

'~k = dkek,  "~'n+k = ~ Zklet, 1 < k < n. (5-6) 
1 = 1  

The n x n complex matrix Z = (Zkl) is called the period matrix. 
Obviously, all tori are K/ihler manifolds. In the following, we take as symplectic 

forms (5-1) only those forms which are K/ihler forms. Hence, they are positive (1, 1) 
forms with respect to the complex structure of 1/. In this case the period matrix 
Z is a complex, symmetric matrix with positive definite imaginary part [22, p. 305]. 
Conversely, any such matrix Z and integers dl,d 2 . . . . .  d, lead to those complex 
tori we are interested in. These tori can even be embedded into projective space 
(use Kodaira's embedding theorem), hence they are abelian varieties. 

In order to  perform the Lm-approximation scheme introduced in the preceding 
section it is advantageous to pull everything back to the complex vector space V. 
So, if we are given a holomorphic line bundle L o v e r  T 2n we get the pull-back 
bundle L = 7z*L over V, where 

L = {(v, l)e v • LI ~(v)=/~(l)} 

(p denoting the bundle projection L ~  T2"). Because every line bundle over V ~ IIY 
is trivial we have a bundle isomorphism o : L ~  v •  ~. If we define Ov by 
O(v, l) = (v, Or(1)) then r  is an isomorphism of the fibre of L over ~(v) to ~. Since 
~z(v + 2)=  ~z(v) we see that r z is another such isomorphism. It follows that  

e~(v):= ~+~~  ~ -  1 (5-7) 

is an isomorphism II~ ~ ~,  hence a nonzero complex number. The e~ considered 
as functions on V are nowhere vanishing holomorphic functions. The collection 
{e~,2~A} is called a system of multipliers for the bundle L [22, p. 308]. The 
multipliers obey the following conditions: 

e~,(v+2).ez(v)=e~+,v(v)=ez(v+2').e,v(v), 2,2'~A, veV. (5-8) 

Equivalently, such a system of multipliers defines a complex line bundle. 
In the same sense all structures we need can be pulled back to V. They give 

functions with certain transformation properties under the action of A. We have 
the following prescriptions: 

(a) complex valued functions f on T 2" correspond to A-invariant functions f on V 

f (v  + 2) = f(v), 2sA. (5-9) 
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(b) (holomorphic) sections s of L correspond to (holomorphic) functions g on V 
with the transformation property 

g(v + 2) = e~(v)'~(v), 2~A.  (5-10) 

(c) Fibre metrics h in L correspond to positive real functions h on V with 

h ( v + 2 ) = -  1 "h(v), 2~n.  (5-11) 
lea(v)[ 2 

This is necessary for ~*'~2"h to be a A-invariant function. 
(d) m-fold tensor powers of L are constructed with the m 'h powers of the 
multiplicators e~ and the metric is the mth power of the fibre metric h. 
(e) Integration over the torus T 2" corresponds to integration over the full unit cell 
spanned by the lattice vectors 21,22 . . . .  ,22, with respect to the volume 

-Q-----(2,)"(d I "d 2 . . .d , )dx  I ^ dx 2 A ... ^ dx 2n, (5-12) 

where the x k are the real coordinates (5-4). 
In the following we consider only principal polarization. Starting with a 

symplectic form co coming from a K/ihler structure we choose another complex 
structure compatible with co which has as period matrix a diagonal purely imaginary 
one 

Z = i ' d i a g ( z l , z 2 , . . . , z , ) ,  Zk>0, l < _ k < n .  (5-13) 

As a system of multiplier we choose 

e~k(v ) -  1, ex.,k(v) = exp(rcz k -  2-irk), 1 < k < n. (5-14) 

By (5-8), this fixes e~ for all lattice vectors 2. In (5-14) are the Vk the k th coordinate 
of v with respect to the basis el,e2 . . . . .  e,. We set Vk = Xk + iyk. Because we have 
principal polarization this is not in conflict with the above use of xl . . . . .  x.. The 
other x coordinates are related to the imaginary part Yk by Yk = ZkX,+k. 

Let L be the holomorphic line bundle defined by these multipliers. It is known 
[22, p. 320] that the space Fhol(T 2", L) is 1-dimensional and is generated by the 
Riemann O-function 

O(v) = ~ exp ( , i / t r 'z"  l + 2zdU. v). (5-15) 
16Z n 

As a fibre metric h we can take [22, p. 310] 

and obtain the curvature 

(5-16) 

__n 1 
F = -- 2 . i  ~ dx k ^ ~-dy  k. (5-17) 

k = l  Zk 

It fulfills the prequantum condition (4-11) because the symplectic form co is given by 

co = 27r s dxk ^ l dyk. (5-t8) 
k =  1 ~ k  
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From this the Kahler metric and the Laplacian A are easily computed 

9= 2r~ k=l ~ l (dxk| + dyk| (5-19) 

a = ~ Zk + �9 (5-20) 
k = l  

Arbitrary tensor powers L" of L are constructed as mentioned before by the mth 
powers of the multipliers (5-15). They have a fibre metric h tin) equal to the m th 

power of (5-16). The vector space Fho~(T2",L tin}) is now m"-dimensional and can 
be generated by certain theta functions with characteristics [23, p. 124] 1~ 

f a ( v ) t m ) = ~ e x p ( i r c m ' ( l + a \ t r /  ~ ) + 2 n i m ' (  ~ )  "Z'~I+ +m)'a'~tr/))" (5-21) 

with a = (a 1, a2 . . . . .  an )  tr, aieZ with 0 < a~ < m for 1 < i < n. 
The following proposition (which no doubt  is known) shows that the cor- 

responding sections f~a "~ of L m are up to a global factor orthonormal. 

Proposition 5.1. In the above notations we have 

( _,-:--2re ~" 1 Oalb...(~anbn" (5-22) ( f (ra) l f (m))=~Zn, l .  f ~ l . . . ~ n  ' , 

The proof consists mainly of calculations which will be done in Appendix B. 
As a consequence, the following holomorphic sections are orthonormal 

O{a.,):= ( 2r~ ~-n/2 
\ ~ m m /  (z 1 ...z,)'/4y~ "'. (5-23) 

Next, we calculate the matrix elements (4-21) for the rescaled prequantum operators 
/~") of the Fourier modes 

f ,(v) = exp (rkXk + ~ rk +,Yk) , (5-24) 

where r = (r 1 . . . . .  r2, ) is a 2n-tupel of integers. 

Theorem 5.1. In the above notation we have 

=ira n ex 7 r i  (O'ff ' IP 's  ( ,0x P ( m r ' r ' + " ) )  

n " f 2 r~+. " e x p (  n z J  2+r2+.'~']'~ 

�9 (S m-'~ T .. . .  |  | S m-r. Tr2.)ab, (5-25) 

lO See also the use of theta functions in [27] 
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where S and T denote the m x m matrices 

l OOoo !1 S =  : : : "'. T = d i a g ( l , q ,  q2 . . . . .  q,~-l), q - e x p  -:- . (5-26) 

d d d  
1 0 0 ... 

Again the proof of this and a more general formula for the matrix elements of 
arbitrary functions can be found in Appendix B. Using this formula, we can compare 
the Poisson bracket and the matrix commutators. The poisson bracket of Fr and 
F~ is easily calculated to be 

{Fr, F~) = - 2~ ~ (rkS k +, -- r k +.Sk)Fr +~. (5-27) 
k = l  

We define the matrix 

Q~m) = (Q~,,)j, Q~m) b:= (O~m)l/3~) I O~,,)), (5-28) 

and use the abbreviations 

( rc " ( 2 ) ) C O  1 t/ rcr~/ 2 r2+,'~'~ = rk+, . (5-29) 

The proof of the following proposition can be found in Appendix B. 

Proposition 5.2. The rescaled operators 

1 
O ~m) (5-30) T~I) ' -  272~0,,(r) ~" 

obey the commutation relations of  the well-known sine aloebra (2-3) with parameter 
A = (2m)- 1 (more precisely, the tensor product o f  n copies of  it), i.e. 

1 
[ T~ "), T~ m) ] = ~ -  sin (27za(r x s)) T~)~, (5-31) 

where 

r x s:= ~ (rkSk+ . -  rk+.Sk). (5-32) 
k = l  

We are now able to formulate the main result of this section, namely that 
~ ( T  2") is in fact a u(m")-approximation in the sense made clear in Sect. 3. Again, 
the proof can be found in Appendix B. 

As we explained in Sect. 4 L Ham T 2" consists of the noncentral part of ~ ( T  2") 
and a (vector space) complement generated by 2n additional vector fields. Moreover, 
if n = 1 L Horn T 2 equals diff a T 2. 

Theorem 5.2. We assume the above notation. We put the following norm on all 
complex m ~ x m" matrices 

II A I1,, := m-  n/2 - 1  xfTr  (A +" A). (5-3 3) 
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Furthermore let 

p~ :~ (T  2~ ) -_, u(m"), 

Then we have (f, ge~(T2n)) 

(i) p= is surjective. 
(ii) 

In particular, lim 
m ~  ~o 

(iii) 

fF-+p,,f:= (< o~"~1 PT"~I 0~") >). (5-34) 

lim IIp.,fll.,= ~ /f  of*'f .  
"-'~176 K/2, t )"  ~/r~- 

II p,,f  I1,, = 0 implies f = O. 

(5-35) 

IIp~{f,g} - [p=f, pmg]= I 1 ~ 0  ( m ~  oo). (5-36) 

In other words, by setting 

dm:u(m") • u(m")--+ IR, 

the sequence (u(m"),[ . . . . .  ]m,d=,meN) 
(~(TZ"), {.. ,..}) induced by the p,,. 

( a ,  B ) ~  It a - t l  II m 

is an approximating sequence for 

1. Note that assertion (ii) of Theorem 5.2 implies that the sesquilinear form on 
~ ( 7  -:.) 

( f l  gbm: = m - " -  2 Tr 0~ m) +. (~") (5-37) 

converges for m--+ oo to the classical scalar product 

1 
( f i g )  := (2r0, ~ .  ~2f + "9 (5-38) 

on the phase space. 
2. If we had defined the quantum operators (~-") to be equal to 

O.~m):= im ( O(a')lexp (--  ~--~ A ) f]  O~") (5-39) 

(following a proposal of Tuynman [20]) the factors (0,,(r) (5-29) would have been 
equal to 1 thus giving us the "pure" sine algebra in (5-31) up to a factor 
of ( -  2r 0. 

3. Note that for those functions f ~ 0 on the torus for which 

r~. f O  = 0 (5-40) 

holds it is in general not true that Tr (2~") = 0. For instance the Fourier modes F, 
with r e Z  2" have a (~m) proportional to the identity matrix giving nonzero trace, 
see (5-25). On the other hand SF,12 = 0 because F, is for r ~ 0 orthogonal to the 
constant functions. In order to achieve a su(m")-approximation of H a m T  2" 
(< diff v T 2") one has to make all quantum operators traceless 

•(m,.__ (~,,.) __ 1 Xr (~"). 
f .-- f m n (5-41) 
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Since for m large enough ~r,r~t~ is equal to O~m) (for fixed r) the reasoning of the 
above theorem can be carried through (see Appendix B for some more details). 

Appendix A 

In this appendix we prove that the algebras gl+(~) (2-2), diff~ S 2 (2-6) and diff~ T 2 
(2-4) are pairwise nonisomorphic. In the proofs below we can always replace gl + (~)  
by its subalgebra sl+(~) without changing the argument. The same is true if we 
replace diff~ T 2, respectively differ S 2 by its trivial central extension diff~ T 2 ~) ~ ,  
respectively diff~ S 2 G ~. 

Proposition A.1. 0l+(oo) is not isomorphic to diff~ S 2. 

Proof. Assume the existence of a Lie algebra isomorphism 

q~:{ Ylm} ~ {Eij}. (A-l) 

Let ~m denote ~(Y~m). To reach a contradiction it suffices to look at the relation 
(coming from diff~ S 2) 

[~1o, ~t . ]  = ~tm, (A-2) 

[~11, ~l,-1 ] = -- ~ ~ ~ t o .  (A-3) 

Because all ~tm are finite linear combinations of the E~; ~ o  and ~ 1  will be zero 
outside some upper left block of size J x J. Now (a/j):= [~lo, Eu] will have 
vanishing entries if both indices i and j are bigger than J. Hence, this will also 
be true for ~tm (for m # 0 use (A-2), for m = 0 use (A-3)). Hence �9 cannot be 
surjective. �9 

Proposition A.2. #l+(~) is not isomorphic to diff~ T 2. 

Proof. Assume the existence of a Lie algebra isomorphism 

For 

�9 :{Eij } -~ {T~}. (A-4) 

c~ T~ (A-5) 

we define tfi~j as the highest double index occurring in this finite sum using 
lexicographical order, i.e. 

~ > n " c ~ m l > n l  or (m l = n ~  andm2>n2) .  

Due to the relations in diff~ T 2, the highest index of a Lie bracket is the sum of 
the highest indices of the factors if the indices are not proportional to each other. 
Proportionality we denote by ~ oct'. It is equivalent to ml n2 - m2 n i = 0. Obviously, 
it is an equivalence relation. Using 

[E12,Eu]=O , if i ~ 2  and j ~ l ,  (A-6) 
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it follows that 
l~'lI20C, l'hij , if i :~2 and jvSl .  (A-7) 

In just the same way it follows from 

[ E 3 4  , EU] = 0,  [-E56 , Eij ] = 0,  ( m - 8 )  

which holds for i # 4 and j # 3, (respectively i ~ 6 and j # 5) that 

l~lij OC /~34, I~ij OC Fn56 (A-9) 

with the same restriction for i and j. 
Every index pair fulfills at least one of this 3 conditions. Because ml 2 oc m34 oc ms6 

all fit~r are therefore proportional to each other. 
Choose ~ ~z fitlr and consider 

T~ = ~.. clj~ij. (A-IO) 
tJ 

Let c~z be a nonvanishing coefficient in this finite sum. We choose indices r and p 
in such a way that r # l, p # k and r # p and cpk = O. Using the commutator  relations 
of the E~r we calculate 

[ [T in ,  ~ ,p ] ,  ~ ,k ]  = -- Ckl~p," (A-11) 
We get 

((m + fitlp) + fit,k)~ fitv,- (A-12) 

This implies ~ oc fit~r, which is in contradiction with the assumption. �9 

Proposition A.3. diff~ S 2 is not isomorphic to diff~ T 2. 

Proof. Assume the existence of a Lie algebra isomorphism 

~ :  { Y , I }  ~ {T~} .  (A-13) 

Using that for the structure constants of diff~ S 2 (2-6) 
r'm" ' ' < " l' glm,l ,m,~O only i f  m " = m + m ,  I I - l l - I  < l +  - 1  (A-14) 

we see that the adjoint action of Yll given by ad YII:= [Y~ ~,..] is locally nilpotent 
(i.e. for each finite linear combination A of Ytm'S there exists an integer n such that 
(ad YI~)'(A) = 0). Clearly, ~11 = ~(II11) has to share this property. Now (using the 
notation introduced above) choose ~#zfit11. Using the additivity of the highest 
index (if not proportional) we see that 

( a d ~ l l ) " ( T ~ ) # 0  for all n~nq. (A-15) 

This contradiction completes the proof. �9 

Note however, that the above does not show that there is no embedding of 
diff~ S 2 or diff~ T z in the following algebras: 

gl (~)  = {(au)i,j~zlthere is an r such that alj ---- 0 if l i -  Jl > r}, 

gl+ (~)  = {(aij)~,j~[there is an r such that air = 0 if li - Jl > r}. 

In this context it is interesting to note that Floratos [24] ~ x was able to show that 

'~ Please note also several other contribution to the subject by this author 125-28] 
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La for A r 0 can be embedded into gI(~). The question whether this is true also 
for L o = diff] T 2 remains still open. 

A p p e n d i x  B 

In this appendix we Supply the proofs of some claims in Sect. 5. We start with 

Proof of Proposition S.1. (Orthogonality of the theta functions with characteristics.) 
Since the volume co", the fibre metric h(") and each section f~ ) factoriz6s in n terms 
each depending on the coordinates of a 2-torus only one gets 

?1 

i ~C(m) I f(m) \ -- l-r It '(m) i t2(rn) \ 
\ J a  [db / --  I I \ J a i  IJbi / 

i 

(the f~ )  denote the obvious factors in (5-20)). We calculate a 2-torus integral: 
(using a = a~, b = b k, z = Zk, X = XR, y = Yk) 

i ~ 2~ 27~rn 2 (ft~'),ftb')) =, dx ! ~--dyexp(-~-- y ) 

"t,~zexp(-Tzmz((l+a)2+(k+b)2)) 

�9 exp(-2~my(l+k+~-~))exp(2r f imx(k- l+~-)) .  (B-l) 

The x integral gives a factor 60,,,(k_0+b_ a which is equal to C~l,k~a, b because b-a 
is divisible by m if and only if b = a. It follows that (B-I) is equal to 

6 2 n ~  a,b'~-~.~idyexp( -2nml/ z ( l + a ) ) 2 ) 6  2~z _~o dt exp ( I" ,~" 0 ~ - - ~ y . ~ t -  : a , b T  - - ~ - t  2 ) 

_ 2re 
- -  a,b" 

The multidimensional result is the product of n such terms. �9 

In order to prove Theorem 5.1 we shall first give a general formula to calculate 
�9 quantum operators for an arbitrary function f on the torus. 

Lemma B.1. In the notation of Sect. 5 we have 

(O(~')]/3("'[O(b')) = i m p : = (  2m)"/2 ~ idxa'"idx, S dYl"'" S dYn 

" k O l e x p ( - - ~ m ( l ( y k + Z k ( l k + ~ ) )  2 

+l(yk+Zk~)2+2i(lk+akmbk)xk))(1--~--~A)f(v). 
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Proof. 
1 ' ~1 ~n 

(Oy)[t6}m'[ O(b"' ) = I dx~... I dx, I dya... I dy. (2n)" 
0 0 0 0 T 1  " " " T n  

.exp - 2 n m  + + z . J J  \ x / r~ j  V/~l""r E I-I 
I,l'~Z k = 1 

2 , bk 2 ak , bk 

+ 2i(lk+ak--rk--~)Xk))'im( - 2 ~ A )  f(v) 

(2m)./2 1 1 ~, 
= i m ~  l,~z! dxl""! dx" ! dYx"" v dy. 

" 1 a k  2 1 , bk  2 

"(k=~exp(--2nim(lk--l'k+ak:bU)xk))(1--~---mA)f(V) �9 

Making the substitution yk:= Yk + Zkl'k and k =  Ik- l'k and using the A-invariance 
of f and A we get 

1 r l ( ( l  + 1) ~,(l'n+ 1) 

im(Zm)"/2 ~, idx~...~dx, ~, ~ dye... ~ dy, 
~ T  1 . . .  "r. k T~z n 0 0 I 'E7 n .Cll~l .rnl' n 

" 1 a 2 _ 

"(k=~exp(--2nim(~+akmbk)xk))(1--~---mA)f(v). 

Now the sum over l' plus the y-integration give y-integrals from - o o  to oo 
and the lemma is proved. �9 

Proof of Theorem 5.1. If we use as f in the preceding lemma the Fourier mode 

( (_  , )) exp 2nik~ t r k X k + - - r k + n Y k  , 
= T k 

then the operator 1 - ~ , 4  produces the factor 

n " ( +r2+.'~z 2 ] 1+ k__2 
(see (5-20)). The x-integration can be performed yielding factors of 

~ l t m , b t  - a t  + r i  " ' "  r  +r~ ~ 
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Hence there remain terms in the l summation (i.e. just one term) if and only if 

ml(bk -- ak + rk) for all k. In this case we can replace l k + ak by bk + rk and substitute 
the l summation by the factors m m 

fiat -b l  ,rt mod rn""" (~a.- b . . . . .  odin" (B-2) 

These are precisely the matrix elements of 

S m - "  |  | S" - ' . .  (B-3) 

After substituting 

(2bk  + rk)T k - -  irn+ k 
~Tk:= YR q- 

2m 

we can perform the Gaussian y-integrations and get the factors 

x / ~ l " " z k  " ~__{  nZkl/ 2 r 2 + . ~ . e x p ( _ ~ t r k + . b k  
+ z, ,,,, \ 

Here the factors 

2hi \ 
k=l  

constitute the (diagonal) matrix elements of 

T,. +, |  | T '~", 

and the theorem is proved. �9 

Proof  of  Proposition 5.2. We calculate 

Q~")Q~") = - m2q)m(r)q)m(S) ]-~ exp - - - ( r l r l  + sls~+.) 
m 

�9 S " - "  T . . . .  Sm- ' '  T ~"+~ |  S m - " T ' 2 " S " - ~ " T  ~2". 

Because of 

T S  = q -  1ST, q -  1 f2ni '~  
= exp t ~ - -  ) , 

this is equal to 

- m  q~,.(r)q~m(S)ex p - m - t =  2 q-~(,,-~l) . . . .  + ..- +(.,-,.),2.) 

.s2ra-(rl +~,)Tr.+, +~.+, | ... | s 2 m - ( r " + s " ) T  r2"+s2". 

Since qm= 1 and Sin= 1 this equals 

�9 - -  rlSn+ l "~. gl(m) i m ~ m ( S ) e x p ( _ 2 ~ f i  s szr.+, ,] ~'+~" 
qJ,.tr + s) \ m 1= 1 

Hence 

I-O tin) o(-)1 2n ~,,(r)q~m~)4om(r + s) m.n ( n  1----1 ~ ) = -  Q,+s. �9 . . . .  ~ j Sm\m (r t s .+l-r ,+ts l )  �9 (m) 

(B-4) 

(B-5) 
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Proof  of  Theorem 5.2. (i) Since pmFr = Q~m) and by using Eq. (5-25), it suffices to 
show that the m 2 matrices SkT z generate all complex m x m-matrices. Indeed, take 

m - 1  m - 1  
an arbitrary polynomial ~ % T  a. It is a diagonal matrix with ~ ~aq ba as the b th 

a=O a = 0  
diagonal element. Now the matrix (qba)a,b = 0 . . . . . .  - x  is non-singular (its determinant 

rl--1 
is a Vandermonde determinant). Hence the linear equation ~ %qba= 6b.bo is 

a = 0  
solvable for all 0 < b 0 < m and we get all diagonal matrices Ebobo. But since 
SkEbobo = Ebo_k,bo (where the indices should always be reduced mod m) we can 
thereby generate all m • m-matrices. Now, taking antihermitian or hermitian part 
of Pmf is equivalent to taking real or imaginary part of f .  Hence, for real f ,  Pm is 
surjective on u(mn). 

(ii) We need the following little lemma 

Lemma B.2. 

T r  I ")(m)*l')(m) = ~ 0 ,  r ~ s mod mTZ 2n 

. . . .  [ m"+ 2tpm(r)~Om(S)em(r,s), r = s m o d m Z  2n' 

where am(r, s) takes values + 1 or - 1  and is equal to 1 for r = s. 

Proof  of  the Lemma. Since 

Tr(A 1 | ... | = TrA 1 . . .Tr  A,, 

it suffices to calculate T r S k T  ~. Now sm= 1 = T m and clearly TrSkTZ= 0 for mXk 
because then SkT ~ has zeros on the diagonal. If mlk then s k =  1 and 

~ml,_qlm if ml/ 
Tr S k T z = Tr T t = 

( . 1 - q ~  =0' if mXl. 

Hence 

NoSy 

TrSkTl={~,, ,  if ( k , l ) - ( O , O ) m o d m Z  2 
if ( k , l ) ~ ( O , O ) m o d m Z  2. 

�9 [-I Tr((T*)r~*"(s*)m-'kSm-SkT'~+") . 
k = l  

Since S and T are unitary matrices we get the result using the cyclic property of 
the trace. �9 

In particular, we get the formula 

I[ Q~') II m = q~z(r). (n-6) 

Now we take an arbitrary f ~ : ( T  z") and expand it in a Fourier series 

f = E ,~,e,. (S-7) 
rE~g 2n 
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Because qJm(r) goes very fast to zero for increasing rE7Z, 2n w e  have 

I lPmf  II 2 = = m -" -2  ~ 2*2~Tr(Q(~)*Q~ m)) 
rEZ 2n r,s~Z 2n 

= ~, 2*2,+mkq~m(r)qg,,(r + rnk)em(r,r + mk) 
r,k~TU 2n 

= ~ 12~12~Om(r) z + ~ 2*2~+mkqg..(r)tpm(r+mk)er.(r ,r + mk). 
r~ 712n r, kqZ2n,k # 0 

(B-8) 

In the limit m ~  oo we may take the limit inside the sum because it converges 
uniformly. Since 

lim q~,.(r)= 1, lim 2,+,,k=0, (k4:0), lim ~om(r+mk)=O 

by Eq. (5.29),zespectively the pointwise convergency of the Fourier series (B-7) we 
get 

lim [lp,~fltr,= /r~2 12r[ 2. 
r t l  - ~  o o  n 

On the other hand, since the Fourier modes are orthogonal 

r~ OF*Fs = (27r)"6 r,s~TZ z", 

we get the result (5-35). In particular, since f * f  is a nonnegative function, the zero 
sequence criterion is an obvious consequence. 

(iii) Taking f = F,, 9 = F~ we get the equation 

IlPm{F,,F~} - [pmFr I1,, = IIp.{F,,F~} - [Q~'), Q~")] I[~. 

By (5-27) and Prop. 5.2 this is equal to 

(n~  rk+nSk)-- r  (l'kSk+n--l'k+nSk) ) )  2~ k=l (rksk+n- r -4-S) ~ Sm\mk=l  Q~"~)s m 

2rc (r x s) tp,.(r)tp,,(s) m_ s in (~( r  x s)~ ~o.(r + s) 
tp,.(r + s) n \ m  ] 

(see (B-6)). Now, because 

lim sin (eft x s)) _ r x s and lim r = 1, 
E ~ o t ~  ~ m ~ o D  

the result follows for the Fourier modes and extends to all functions in ~ (T  2") 
by linearity and Fourier expansion. �9 

Sketch of the proof of the su(m")-approximation for Ham T2": The commutator 
relations (the analog of Prop. 5.2) are valid because the multiples of the identity 
vanishes on the left-hand side of (5-31) whereas the sin-factor on the right-hand 
side equals zero for (r + s)Em.7Z 2n. In the analog of Lemma B.2 the factor e,.(r,s) 
is to be replaced by 

era(r, s) -- 6 o . . . .  din'60 . . . .  din" 



Geometric Quantization 243 

Here 6,,bmod,~ denotes the obvious general izat ion of the Kronecker  6 for a, b ~  2n 

On the r ight-hand side of Eq. (B-6) an  addi t ional  factor of x/1 - 6o . . . .  dm appears. 
Final ly  Eq. (B-8) is modified by the factor 1-6 o . . . .  dm in the first sum and  by replacing 
8m(Y , r -~- ink) by 

~m(r, r + mk) - ~O,,modm 

in the second sum. Hence, in the limit m -~ ~ the second sum vanishes by the same 
argument  as used above. The first sum may be broken up into a sum up to 
r = (m . . . . .  m) and a remaining summand.  This shows that in the limit ra ~ oo this 
will also converge to ~1;~,12. �9 

r 
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