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Abstract: The problem of constructing the central extensions, by the circle group, 
of the group of Galilean transformations in two spatial dimensions; as well as that 
of its universal covering group, is solved. Also solved is the problem of the cen- 
tral extension of the corresponding Lie algebra. We find that the Lie algebra has 
a three parameter family of central extensions, as does the simply-connected group 
corresponding to the Lie algebra. The Galilean group itself has a two parameter 
family of central extensions. A corollary of our result is the impossibility of the 
appearance of non-integer-valued angular momentum for systems possessing Galilean 
invariance. 

Ever since the pioneering work of Wigner [1] it has been appreciated that the rep- 
resentations of a symmetry group that are appropriate to quantum physics are the 
projective unitary (or anti-unitary) representations. That is, representations in a pro- 
jective space P of a separable Hilbert space H that describes the state-space of a 
quantum-mechanical system. This idea also finds a reflection in the domain of clas- 
sical mechanics [2]. Indeed, Wigner showed us how to understand the appearance 
of spin one-half particles in terms of the projective unitary irreducible represen- 
tations of the Poincar6 group. It also meanwhile became clear that the projective 
representations of a group are constructible from a knowledge of the ordinary (lin- 
ear) representations of an associated group, which is the central extension of the 
original group by the circle group. Thus Bargmann [3] carried out his path-breaking 
analysis of the projective representations of continuous groups; in particular, of the 
Galilean group in (3 + 1 ) space-times and showed how the concept of mass, with its 
associated superselection rule, arises via the central extension of the Galilean group. 
Later authors [4] provided further elaboration of the projective representations of 
the Galilean group as well as of the concept of a non-relativistic zero-mass system 
[4, 5]. 

The aim of the present paper is to solve the problem of finding central extensions 
of the proper Galilean group in (2 + 1) space-time dimensions. There are several 
reasons for studying this problem. First, it is intrinsically interesting; the structure 
of the (2 + 1) dimensional Galilean group is significantly different from that of the 
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(3 § 1) dimensional Galilean group. For the latter, the subgroup of homogeneous 
transformations is perfect; not so for the former, where it is, instead, solvable. 
Secondly, it is felt that the problem may throw some light on the structure of non- 
relativistic systems that are effectively confined to two spatial dimensions (planar 
systems). In this context, let us recall that it has been claimed [6] that the angular 
momentum for a planar system need not be integer-valued and can have the spec- 
trum integer +c~, where c~ is any value in the interval [0, 1]. This proposal, made 
by Wilczek [6], has been challenged by Divakaran [7], who notes that the planar 
rotation group SO(2) does not admit a non-integer valued angular momentum since 
the Pontryagin dual of SO(2) is Z - t h e  additive group of integers (failure to appre- 
ciate this fact constitutes a widespread misconception among physicists, arising out 
of the situation that ,  at the level of  the Lie algebra, the planar angular momentum 
is unrestricted. The restriction to integer quantisation follows from the representa- 
tions of the 9roup). So the only question that remains is whether non-integer-valued 
angular momentum could arise via the projective unitary representations. The answer 
is no; the group SO(2) does not possess any central extension by the circle group 
[9], as Divakaran [7] notes. (This conclusion is also implicit in Theorem 7.2 of 
Bargmann's paper [3] which we now quote: "Every continuous ray representation 
of  a compact connected abelian Lie 9roup G is induced by a representation of G." 
Thus although it is true that the universal cover of SO(2) is the group R (additive 
group of reals) this fact is quite irrelevant, there being no connection between the 
universal cover of SO(2) and its possible central extension, since SO(2) is not semi- 
simple. To nail the situation down further, Divakaran [7] next studies the central 
extension of the Poincar6 group in 2 + 1 space-times. The homogeneous part of this 
group-the group S0(2, 1 ) - i s  isomorphic with PSL(2, R) and is semi-simple. Uti- 
lizing, amongst other things, a general theorem due to Raghunathan [8], Divakaran 
[7] next concludes that the universal central extension (for extensions by the circle 
group) of the (2 § 1) dimensional Poincar6 group is a semi-direct product of the 
subgroup of space-time translations with the universal covering group of PSL(2, R). 
Unfortunately, this last object is a nasty beast. For instance, it cannot be realized 
as a sub-group of GL(n, C), regardless of how large the positive integer n might 
be, even its presentation is fairly involved [10], and its representation theory, at the 
moment, unknown. Because of this reason, Divakaran [7] was unable to complete 
his investigation in the manner he had originally set out to do. 

It occurred to the author that questions concerning planar angular momentum 
could also be addressed within the framework of the Galilean group in (2 + 1) 
space-times. After all, this is what Bargmann [3] did to understand non-relativistic 
particle with definite mass and spin in three spatial dimensions. Moreover, the 
whole controversy has arisen in the context of physical systems that are entirely 
non-relativistic. 

This paper is organized as follows. In the next section, the central extension 
problem is studied at the level of the Lie algebra, that is, central extensions of the 
Lie algebra by R - the one-dimensional real vector space. A three parameter 
set of central extensions is found. In Sect. 3, assorted known facts concerning the 
Galilean group (denoted by G hereafter) and its universal covering group (denoted 
G in the sequel) are collected under one roof. In Chapter 4 the problem of central 
extension of G is solved. It is found that of the three (families of) central extensions 
of the Lie algebra (denoted Lie(G)) only two "exponentiate" to the group G. The 
central extension of G is considered next, in Chapter 4A. It is found, as expected 
on general grounds, that all three extensions of Lie(G) get elevated to those of the 
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group G. The mutual relationship between the central extensions of G and G is 
explored further in this chapter. The final conclusions concerning our structure of 
the extended groups are summarized in Sect. 4B. In Chapter 5, we make concluding 
remarks. 

A corollary of our results for the central extension of G is this. The rotation 
subgroup of the extended groups continue to be SO(2). Thus in the linear repre- 
sentation of the extended groups (and hence in the projective representation of the 
original group G), the spectrum of angular momentum must be integral. Anyons 
cannot arise via the projective unitary representations of G. 

2. The Lie Algebra of the 2 + 1 Dimensional Galilean Group 
and its Central Extension 

Let G denote the Galilean group in (2 + 1 ) space-times and Lie(G) its Lie algebra. 
We choose a basis for Lie(G) in which the infinitesimal generators of rotation, the 
boosts along the two spatial directions, that of time translation and those of spatial 
translation are denoted respectively as M, N i , H  and Pz (i = 1,2). The commutation 
relations for these operators are 

[M, Ni] = cij Nj, 

[Pi,H] = O, 

[M, Pi] = ~ij Pj, 

[M,H] = O, 

[Ni,N A = o,  

[ P . P j ]  = 0 ,  

IN.P  j] = o,  

[Ni,H] = Pi . (2.1) 

In the above, eij is the antisymmetric symbol with e12 = - e 2 1  = 1. Summation 
convention for a repeated index is implied. The physical significance of the genera- 
tors are well-known. M corresponds to the angular momentum in the plane, H the 
Hamiltonian and Pi the components of linear momentum. 

To carry out the central extension of Lie(G), we have found it convenient to 
relabel the generators. The six generators of Lie(G) are now denoted Li, with i 
running from 1 to 6, with the following identification: 

L1 = M ,  L2 = H ,  L3 =N1,L4 =N2,L5 = P1,L6 = P2 .  (2.2) 

Equation (1) may now be written in the form 

[Li,Lj] = C~Lk ,  i , j , k  = 1 . . . .  6 ,  (2.3) 

where the non-vanishing structure constants are 

C31 = C43 : C52 ~-- Cg 1 = C65 : C22 = 1 , (2.4) 

and those that follow from the antisymmetry of C~ in the two lower indices. 
Again, the middle Latin indices take up values 1 and 2 in Eq. (2.1), whereas in 

Eq. (2.3) they take up values 1 to 6. This should cause no confusion. 
We proceed to carry out the desired central extension of Lie(G). Let Li together 

with a set dij of central operators, generate the extended Lie algebra. We have 

[L,s = c~}L + a,j, (2.s) 
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where the central generators dij commute with Li and with each other and possess 
the antisymmetry property dij = -d j i .  Further, they satisfy the closure condition 

C~jdmk + C~dmi + C~idmj = 0 (2.6) 

that follows from the Jacobi identity for the extended algebra (2.5). Certain solution 
o f  Eq. (2.6) are, for our purpose, trivial. These correspond to exact forms on the 

Lie algebra, which can be set equal to zero by a suitable redefinition of  the Li 
generators [2]. Thus we are representing each equivalence class of  closed modulo 
exact forms on Lie(G) by means of  a typical representative from that class. To 
solve Eq. (2.6) with the aid of  Eq. (2.4), along the lines indicated, we proceed in 
the following eight steps. 

(1) By suitable redefinitions of  the L~ generators we can set 

d13 = d14 = d15 = dt6 = 0 . (2.7) 

The result just stated becomes intuitively obvious when we recall that the sets 
(L1, L3, L4) and (L1, Ls, L6) of  operators generate two isomorphic copies o f  the Lie 
algebra of  the Euclidean group in a plane. 
(2) Take i = 1, j = 2 and k = 5 to derive from Eq. (2.6) that 

d26 = 0 .  (2.8) 

(3) Take i = 1, j = 2 and k = 6 to conclude from Eq. (2.6) that 

d25 = 0 .  (2.9) 

(4) Take i = 3, j = 6 and k = 2 in Eq. (2.6) to derive 

d56 = 0 .  (2.10) 

(5) Take i = 1, j = 2 and k = 3 in Eq. (2.6) and use Eq. (2.7) to derive 

d24 = 0 . (2.11) 

(6) Take i = 1, j = 3 and k = 4 use Eqs. (2.6) and (2.7) to obtain 

d23 = 0 . (2.12) 

(7) Take the combinations i = 1, j = 3, k = 5 and i = 1, j = 5, k = 3 to derive 
two equations that together lead to 

d45 = d36 = 0 . (2.13) 

(8) Take i = 1, j = 3 and k = 6 to derive 

d35 = d46 �9 (2.14) 

It is now a matter of  straightforward, if somewhat tedious, calculation to verify that 
all the remaining components of  Eq. (2.6) are now identically satisfied. Thus we 
are left with three independent central generators d12, d34 and d35(= d46). We have 
thus proved the 

Theorem. The vector space of central extensions of Lie (G) is three-dimensional. 
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Finally, we may note that in terms of  the notation of  Eq. (2.1) the structure of  
our centrally extended algebra is given by 

[M,N~] = eq Nj, 

[H, Pi] = O, 

[M, Pi] = eq Pj, 

[M,H] = D, 

[Ni,Nj] =ci] d ,  

f i , P A  = O ,  

[Ni,Pj] = (~ij m ,  
[N~,H] = Pt 

where we have set d12 : D, d34 = d and d35 = m. 

(2.15) 

3. The Galilean Group in 2 + 1 Dimensions 

Let x denote the coordinate of  a space with two dimensions and t that o f  time. The 
Galilean transformations are 

x' = wx § tv + u, 

t '  : t + I/. (3.1) 

Here u and v are two-dimensional vectors signifying space translation and boost 
respectively and t/ a real number (time translation), w represents rotation in the 
plane. The set o f  all transformations (3.1) form the Galilean group G, under com- 
position. I f  we write the element r of  G in the fashion (w, r/, v, u), then the multi- 
plication law is 

(W, rl, V,U)o(w',rf,  v ' , u ' ) = ( w w ' , r l + r f ,  v + w v ' , u + w u '  + r f v ) .  (3.2) 

Notice that r --+ M ( r )  is a faithful representation, where M(r )  is the 3 • 3 matrix 

M ( r )  = 1 . (3.3) 
0 

The unit element of  G is (1 ,0 ,0 ,0 )  and the inverse of  r is 

r - l  = ( w - 1 , - t l , - w - l v , - w - l ( u  - rlV)) . (3.4) 

Let us look at the subgroups of  G. The subgroup A of  all translations in 
space-time 

A = {(1,~,0,u)} (3.5) 

is normal and closed in G. The closed subgroup Go 

Go = {(w, 0, v, 0)} (3.6) 

is the homogeneous Galilean group. It is a solvable Lie group with degree of  
solvability equal to 2. Every r E G admits the decomposition 

(w, rl, v,u) = (1,rl, O,u)o(w,O,v,O) 

and further 

(w,O, v,O)(l, t l ,  O,u)(w,O,v,O) -1 = (1,r/ ,0,wu + r/v) , (3.7) 



390 S.K. Bose 

which displays explicitly the fact that G is semi-direct product of A with Go. The 
subgroup Go is a (closed) Lie subgroup of G (under the quotient topology). The 
subgroup A is naturally isomorphic with R 3. We can analyze Go further. Let M and 
H denote the subgroups of Go, 

= {(1,0,v,0)}, 

/ - /=  {(w,O,O,O, )}. (3.8) 

M is closed, normal subgroup of Go and 

(W, 0,0,0, )o(1,0, V, 0)(W, 0,0,0) -1 = (I,0, WV, 0). (3.9) 

Thus Go is a semi-direct product of M with H, with respect to the above action. 
M is naturally isomorphic with R 2 and H with the group SO(2). Finally, note the 
subgroup E(2) of G 

E(2) = {(w, 0, 0, u)} , (3.10) 

which is the Euclidean group on the plane. It is a semi-direct product of 
U = {(1, 0, 0, u )}- the  subgroup of space translations-with H, given explicitly by 

( w , O , O , O ) ( l , O , O , u ) ( w , O , O , O )  -1  = ( 1 , o , o ,  w u )  . (3.11) 

The action wu and wv that appears in the foregoing expressions (3.2)-(3.11) 
can be made explicit by choosing suitable coordinates in G (canonical coordinates). 
We display H - t h e  subgroup of rotations-as the multiplicative group of complex 
numbers of unit magnitude. The element r of G is now written as 

r = ( z , q , v , u ) ,  (3.12) 

where q,v,u are as before and z a complex number with Iz[ -- 1. The action, wu, wv 
are now given explicitly by 

wv = p( O )v , 

where 0 is the argument of z ( z  = exp(i0)) and p(O) i s  the 2 x 2 matrix 

cos0 sin0"~ 
p ( 0 ) =  - s i n 0  cos0J  (3.13) 

that act on the two component vectors u and v by the matrix rule. 

3A. The Universal Coverin9 Group o f  G. For the sake of completeness of dis- 
cussions and also because of the fact that we propose to discuss this concept in 
the next section, we consider G the universal covering group of the Galilean 
group in (2 + 1) dimensional space-times. The group G is the semi-direct product 
of A (subgroup of space-time translations) with Go, which is the universal covering 
group of the homogeneous Galilean group Go. The subgroup Go is the semi-direct 
product of M (subgroup of boosts) with the universal cover H of H; H ( =  SO(2)) 
is naturally isomorphic with R -the additive group of reals. 

An explicit eoordinatisation of G is afforded by 
m 

G = {(z, rl, v , u ) } ,  (3.14) 
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where r/, v, u are as before and z is a real number. The multiplication rule is 

(z,q,V,U)o(Z',tI',V',U') = (z + z' ,q + qI, V + ZV',U + ZU' + qIV) , (3.15) 

and the actions zu -- p(z)u, zv =- p(z)v with 

( cosz s i n ; )  (3.16) 
p ( z ) =  k - s i n z  cos " 

In summary, the description of the two groups G and G run parallel. The only 
difference is that the group parameter z for G in (3.12) is a complex number of 
unit magnitude, whereas z is a real number for G in (3.14). 

4. Central Extensions of the Galilean Group in (2 + 1) Dimensions 

Let G denote the Galilean group in (2 + 1) space-times. We consider central 
extensions of G by T - - - t h e  circle group. Recall that a central extension is 
a triple (G,i, rc),where i and rc are (continuous) homomorphisms such that the 
sequence 

is exact, and i(T) is central in G, which is the centrally extended group. It is clear 
from above that i is injective (exactness at T) and 7z is surjective (exactness at G). 
We recall now the basic result in the theory of group extensions: Central extensions 
of  G are numbered by the elements o f  HZ( G, T) - the second cohomology 9roup of  
G with coefficients in T. In other words, H2(G, T) is the group of group extensions. 
Let Z2(G,T)  denote the group of 2-cocycles, its elements 7(x,y) are T-valued 
(continuous) functions on G • G that satisfy the cocycle identities: 

7(xy, z)7(x, y)  = 7(x, yz)7(y,z)  , (4. la) 

7(1,x) = 7(x, 1) = 1 (4.1b) 

for x, y ,z  C G, that follow from the associativity of multiplication in G. Let B2(G, T) 
denote the subgroup of 2-coboundaries consisting of those functions 7 " G • G ---+ T 
for which there exists //�9 G ~ T such that 

y(x, y)  = f l (xy)f l (y)- l  fl(x) -1 (4.2) 

for all (x, y)  E G • G. The second cohomology group H2(G, T) is the factor group 
ZZ(G,T) modulo B2(G, T). Its elements are equivalence classes in which two 
cocycles that differ by a coboundary 

y' (x, y)  = 7(x, y )fl(xy )fl( y ) - l  ~(x ) -1 (4.3) 

are identified. 
The facts that we have cited above are standard knowledge and can be found in 

books [11,12] or in the article of Raghunathan [8]. It should also perhaps be noted 
that in the theory of projective representations of groups [13] the 2-cocycles are 
called multipliers (and coboundaries the exact multipliers). With these preliminaries 
out of the way, we can now proceed to tackle the problem at hand. 
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We will adopt the following procedure. For each equivalence class of 2-cocycles, 
we shall select a typical representative. Then our task will amount to finding solu- 
tions to the cocycle identities (4.1a) and (4.1b) and making sure that the cocycle 
that we have found is not a coboundary. For the latter purpose, a very simple cri- 
terion has been given by Bargmann [3]. Let 7(x,y) be a T-valued 2-cocycle and 
~(x, y)  the corresponding R-valued cocycle 

7 ( x , y )  = exp{i a ~(x,y)} a E R*, (4.4) 

where a is a non-zero real number. Then y(x, y)  is trivial, ~(x, y) cohomologous to 
zero, provided 

~(x, y) = ~(y,x) (4.5) 

w h e n e v e r  the elements x, y E G commute with each other x y  = yx .  This follows 
easily from Eqs. (4.4) and (4.3). As far as construction of 7(x, y) is concerned, we 
will again follow the procedure of Bargmann [3] which involves the construction 
of suitable homogeneous polynomials in the group elements. 

We present our results. Let r, r '  C G be as follows 

r = (w ,~ l , v ,u ) ,  r '  = ( w ' , t f ,  v ' , u ' )  . (4.6) 

Then there is a T-valued 2 cocycle 7~(r,r') given by 

y l ( r , r ' )  = exp{i a m l ( r , r ' ) }  a E R* (4.7) 

with 
m l ( r , r ' )  = (u, wv ' )  - (v, wu ' )  + t f  (v, wv ' )  , (4.7a) 

where ( , )  denotes the Euclidean inner product on 2-space. 

P r o o f  By explicit verification that (4.7), (4.7a) satisfy the cocyele identities (4.1a), 
(4.1b), which is a matter of elementary calculations. [] 

The next task is to verify that the above yx(r, r ' )  is not trivial. Choose r = (1,0, 0, u) 
and r ' = (1,0, v',0), then rr  ~ = r ' r  = (1,0,v~,u) but 

m l ( r , r ' )  - m l ( r ' , r )  = 2 ( u , v ' )  , (4.8) 

and the right-hand side of (4.8) need not, and in general, does not vanish. [] 

There is a second solution to the cocycle identities. This is 

yz(r,r ' )  = exp{ib m z ( r , r ' ) }  b c R* (4.9) 

with 
m2(r,  r ' )  = v A wv '  , (4.9a) 

where A connotes the determinant of the two vectors. That is, for any pair q and p 
of two-dimensional vectors q A p = ql P2 -- qZPl  in terms of the components of the 
vectors. Proof of the above assertion, again, is by explicit verification (of the cocycle 
identifies) which is elementary. Next select r = (1,0, v,u) and r ' =  (1,0, v',u ~) so 
that rr'  = r ' r  = (1,0, v + v ' , u  + u ' ) .  Now, m 2 ( r , r ' )  = v A v' and m 2 ( r ' , r )  = v' A v 
and thus m2(r,r ')=[=me(rt,  r )  for non-parallel vectors v and v'. Thus our 2-cocycle 
is not trivial. [] 
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There is no other non-trivial 2-cocycle for G. 
The central extension of G that corresponds to the 2-cocycle 71(r , / )  is the 

global version of the central extension of Lie (G) that is heralded by the central 
generator m in Eq. (2.15). It is the analogue, in the present case, of that found in 
the case of the Galilean group of (3 + 1) space times and has the same interpreta- 
tion (the Bargmann superselection rule for mass). The additional central extension 
corresponding to the 2-cocycle 72(r , / )  is specific to the present case, it has no 
counterpart in the (3 + 1) dimensional Galilean group. Furthermore, it is the global 
analogue of the Lie algebra extension that corresponds to the central generator d in 
Eq. (2.15). So far as the central generator D in Eq. (2.15) is concerned, it has no 
global extension from Lie (G) to G. However, it does elevate to a central extension 
of the universal covering group G, as we show next. 

4A. Central Extension o f  the Universal Coverin9 Group. Let G be the universal 
covering group of the Galilean group in (2 + 1) space times, as before. Bearing in 
mind our results in Sect. 2, we know that G possesses exactly three (families of) 
central extensions, in view of a general theorem [14] that we now quote: " For a 
connected and simply-connected Lie 9roup G, the central extensions o f  G (by T) 
are in bijective correspondence with those o f  Lie (G) (by R ) . "  

First of all, it is easy to check that the 2-cocycles 71(r,r t) and 72(r,r r) possess 
lifts from G to G. Let r, r r C G, be as follows: 

r = (z, tl, v,u ) , r' = ( z ' , t / , v ' , u ' ) ,  (4.10) 

then the lifts of 71(r , / )  and 72(r,r t) are obtained by substituting (4.6) by (4.10) 
and (3.13) by (3.16) in the expressions (4.7a) and (4.9a). The remaining 2-cocycle 
is easily found. It is given by 

73(r,r') = exp{ ic f ( r , r ' ) }  c E R* (4.11) 

with 
f (r ,r ' )  = zt l' - z' q . (4.1 la) 

The proof is again by direct verification of the cocycle condition, Eqs. (4.1a), 
(4.1b). It is also easy to check that f ( r , / )  is not equivalent to zero. Just take 
r = (z,q,0,0), r ' = (z~,q',0,0); then r~ = r'r but f ( r , / ) = ~ f ( / , r ) ,  in general. 

We wish to understand_in some detail as to why the cocycle 73(r, /)  does not 
survive the passage from G to G. Let h be the projection h : G ~ G, and let h. 
be the induced homomorphism of cohomology groups, h. : H2(-G, T)  ~ H2(G, T); 
and set h . f  = f . .  The homomorphism h is given explicitly by 

h : (z ,~,v ,u)  --+ (e2~'~,q,v,u) . (4.12) 

The kernel of h consists of elements 

k e r h = { ( n ,  0,0,0)}, n E Z ,  (4.13) 

and thus f . ( r , r ' )  must vanish (see Eq. (4.1b)) whenever r E G is of the form r = 
(n, 0, 0, 0), n E Z and r t arbitrary. From bilinearity of f ( r , / )  it follows immediately 
that f . ( r , / )  vanishes also, for arbitrary r , / E  G. [] 

The result that we have established by explicit construction above may also be 
seen on somewhat more abstract grounds. The subgroup of G, generated by elements 
of the form (w, q, 0, 0), is isomorphic with T x R. The corresponding subgroup of 
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is R x R. The result of the previous paragraph would imply that H2(T x R, T) is 
trivial, whereas H2(R x R, T) is not. Bearing in mind known facts [9] that H2(T, T) 
and H2(R, T) are trivial, an application of the Ktinneth formula to T • R yields the 
isomorphism H2(T x R, T) = HI(T,R). Now, the first cohomology group H 1 is the 
group of "crossed homomorphisms" [11]. In the present case, because T and R 
mutually commute (T action on R trivial), H 1 (T, R) becomes the group of ordinary 
homomorphisms. But there is no non-trivial homomorphism T ~ R. Thus HI(T,R) 
and hence also H2(T x R, T) is trivial. The same argument when applied to the 
subgroup R x R of G leads to the isomorphisms H2(R x R, T) = HI(R,R) = R. 

4B. The Extended Groups. Corresponding to the two cocycies 71 and 72 that we 
have found for G, there are two centrally extended groups. We may assemble these 
into one big group G. The elements of G are of the form (r;tl,t2) where r is as 
in (4.6) and (tbt2) E T • T with the multiplication rule 

(r; tl, t2)(rt; t' 1, t~) = (rr'; 71(r, r')tlffl, 72(r, r')t2t;) (4.14) 

and the inverse 
(r; tb t2 ) - l=  ( r - l ;  t~l,t21), (4.15) 

since 71(r,r -1) = 72(r,r -1) = 1, as follows from Eqs. (3.4), (4.7) and (4.9). Thus 
is the extension of G by the torus T 2. 
As far as the universal covering group G is concerned, it will have three centrally 

extended groups. We can construct an universal central extension U(G) in the sense 
of reference [8] as follows. The elements of U(G) are of the form (r;xl,xz,x3), 
where r is as in (4.10) and (xbx2,x3) E R x R x R. The multiplication law is 

( r ; x l , X z , X 3 )  t .  i t t t t o (r , X l , X 2 , X 3 )  = (rr';xl + Xl + ml(r,r'),x2 +x 2 -k mz(r, rt), 

x3 + x; + f(r,r '))  , (4.16) 

where the real-valued cocycles ml,m2 and f have been described before, in 
Sect. 4A. Note U(G) is simply-connected, and has, as its Lie algebra, the Lie 
algebra central extension of Lie (G), given by Eq. (2.15). 

5. Concluding Remarks 

We have carried out the central extensions of the (2 + 1 ) dimensional Galilean group 
G, of its universal cover G and of their Lie algebra. The questions concerning the 
physical significance of the results is tied up with the problem of representations of 
the group extensions. We shall address this question on a separate occasion. How- 
ever, one corollary of our results is quite obvious. The structure of the centrally 
extended group is such that its rotation subgroup continues to be the group SO(2). 
Consequently, non-integral angular-momenta cannot arise as projective representa- 
tions of G. 

What moral should one draw from the above exercise concerning the question 
of the possible existence of anyons? We did not prove that anyons cannot exist; 
only that they cannot appear via representations of the Galilean group. To accom- 
modate anyons, then, one possibility will be to dispense with group representations 
altogether. This presumably implies that anyons are not conventional structureless 
particles. Indeed, all known, models of anyons show internal structure; e.g., solitons 
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in 2 § 1 dimensional non-linear a model [15], vortices o f  an abelian Higgs model 
with a Chem-Simons term [16], to quote two examples. Actually, the absence of  
group representation i.e., the lack o f  unitary implementability o f  the group opera- 
tions is not, by itself, a new phenomenon. It has appeared before in the context 
o f  (compact) internal symmetry groups in the grab of  "spontaneous breakdown" of  
symmetries. On the other hand, giving up group representations also means giving 
up a framework which provides us, unambiguously, with the concept of  angular 
(and linear) momentum. A second possibility for anyons would be to discard the 
Galilean group and replace it with its universal covering group. Although the justifi- 
cation for such a procedure cannot validly be made from considerations o f  projective 
representations of  the Galilean group, the effect itself could conceivably take place 
in any event; for instance, as a result o f  special dynamical properties o f  a model. 

Our analysis, needless to say, does not throw any light on the question of  exotic 
statistics [17-20], which is the other distinguishing characteristic o f  anyons. 

The author wishes to thank Siddartha Sen and E.C.G. Sudarshan for conversa- 
tions and P.P. Divakaran for communicating his results prior to publication. 
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