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Abstract: Yang Mills models with compact gauge group coupled to matter fields 
are considered. The general tools developed in a companion paper are applied to 
compute the local cohomology of  the BRST differential s modulo the exterior space- 
time derivative d for all values of  the ghost number, in the space of  polynomials 
in the fields, the ghosts, the antifields (=sources for the BRST variations) and 
their derivatives. New solutions to the consistency conditions sa + db - 0 depend- 
ing non-trivially on the antifields are exhibited. For a semi-simple gauge group, 
however, these new solutions arise only at ghost number two or higher. Thus at 
ghost number zero or one, the inclusion of  the antifields does not bring in new solu- 
tions to the consistency condition sa + db - 0 besides the already known ones. The 
analysis does not use power counting and is purely cohomological. It can be easily 
extended to more general actions containing higher derivatives of  the curvature or 
Chern Simons terms. 

1. Introduction 

In a previous paper [1], referred to as I, we have derived general theorems on 
the local cohomology of  the BRST differential s for a generic gauge theory. 
We have discussed in particular how it is related to the local cohomology of  the 
Koszul Tate differential 6 and have demonstrated vanishing theorems for the co- 
homology Hk(31d ) under various conditions. In the present paper, we apply the 
general results of  I to Yang-Mills models with compact gauge group and provide 
the explicit list of  all the non-vanishing BRST groups Hk(sld)  for those models. 

It has been established on general grounds that the groups Hk(s)  and Hk(sld)  
are respectively given by 

{Hk(7 ,Ho(6 ) )  k > 0 H (s) = (1.1) 
k < 0  
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and 
Hk(Tld, Ho(5)) k > 0 

Hk(sld) ~-- (H-k(3ld) k < 0 (1.2) 

(see [2] and I where this is recalled). Here, 7 is the longitudinal exterior derivative 
along the gauge orbits, denoted by d in [2]. The isomorphisms (1.1) and (1.2) 
are valid for arbitrary gauge theories and hold when the "cochains" (local q-forms) 
upon which s acts are allowed to contain terms of arbitrarily high antighost number. 

Now, in the case of Yang-Mills models, the BRST differential is just the sum 
of (5 and 7, 

s = ~ + 7 (1.3) 

and so, is not an infinite formal series of derivations with arbitrarily high antighost 
number (as can a priori occur for an arbitrary gauge system). It is thus natural to 
consider local q-forms that have bounded antighost number, and to wonder whether 
the equalities (1.1)-(1.2) still hold under this restriction. Our first result, derived in 
Sect. 3, establishes precisely the validity of (1.1)-(1.2) in the space of local q-forms 
with bounded antighost number. 

The isomorphisms (1.1)-(1.2) are useful in that they indicate how BRST in- 
variance is equivalent t o - and  can be used as a substitute for-gauge invariance. 
However, they are not very explicit and a more precise computation of Hk(s) or 
Hk(s[d) is desired. 

It has been shown in [3] that in each cohomological class of s, one can find a 
representative that does not involve the antifields and which is thus annihiliated by 
;~. It then easily follows that 

Hk(s) ~--Hk(?,G)/Ar (k > 0),  (1.4) 

where (i) N is the algebra generated by the vector potential A~, the ghosts C a, the 
matter fields yi and their derivatives (no antifields); and (ii) A r is the ideal of ele- 
ments of ~ that vanish on-shell. Since the cohomology of 7 in g is well understood 
in terms of Lie algebra cohomology, Eq. (1.4) provides a more precise character, 
ization of Hk(s) than (1.1) does. The representatives of (1.4) are polynomials in 
the "primitive forms" on the Lie algebra with coefficients that are invariant polyno- 
mials in the field strengths, the matter fields and their covariant derivatives [4-9]. 
Furthermore, two such objects are in the same class if they coincide on-shell. To 
get a non-redundant list, one may split the field strengths, the matter fields and their 
covariant derivatives into "independent" components, which are not constrained by 
the equations of motion, and "dependent components," which may be expressed 
on-shell in terms of the independent components. The cocyles may then be chosen 
to depend only on the independent components. The isomorphism (1.4) is a coho- 
mological reformulation of a theorem proved long ago by Joglekar and Lee [ 10]. It 
plays a crucial role in renormalization theory [11, 12]. 

We derive in this paper an analogous, more precise characterization of the 
local cohomology H~(s]d) of s modulo d. For each value of the ghost degree, and 
in arbitrary spacetime dimension, we provide a constructive procedure for building 
representatives of each cohomological class. We then list all the solutions, some of 
which are expressed in terms of non-trivial conserved currents which we assume 
to have been determined. We find that contrary to what happens for the cohomol- 
ogy of s, there exists cocycles in the cohomology of s modulo d from which the 
anti fields cannot be eliminated by redefinitions. Thus, there are new solutions to 
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the consistency conditions sa + db  = 0 besides the antifield independent ones, as 
pointed out in [13] for a Yang-Mills group with two abelian factors. 

However, if the gauge group is semi-simple, these additional solutions do not 
ai'ise at ghost number zero or one but only at higher ghost number. Accordingly, the 
conjecture of Kluberg-Stem and Zuber on the renormalization of (local and inte- 
grated) gauge invariant operators [14, 15] is valid in that case (in even dimension). 
Differently put, there is no consistent perturbation of the Yang Mills Lagrangian 
of ghost number zero, besides the perturbations by gauge invariant operators (or 
Chem Simons terms in odd dimensions). Also, in four dimensions, there is no new 
candidate gauge anomaly besides the well known Adler-Bardeen one. Our results 
were partly announced in [16] and do not use power counting. They are purely 
cohomological. 

The BRST differential contains information about the dynamics of the theory 
through the Koszul-Tate differential (}. Therefore, if one replaces the Yang-Mills 
Lagrangian -1 /8 tr (F~Fs~, , )  by a different Lagrangian containing higher order 
derivatives of the curvature, or Chern-Simons terms in odd dimensions, the lo- 
cal BRST cohomology generically changes even though the gauge transformations 
remain the same. We show, however, that the procedure for dealing with the Yang- 
Mills action works also for these more general actions. 

2. BRST Differential 

We assume throughout that the gauge group G is compact and is thus the direct 
product ok" a semi-simple compact group by abelian U(1 ) factors. As in I, we take all 
differentials to act from the right. Furthermore we assume the underlying spacetime 
manifold to be flat and homeomorphic to Rn(n > 2) and use the n-dimensional 
Minkowski metric to raise and lower Lorentz indices #, v,. . . .  

The BRST differential [17, 18] for Yang-Mills models is a sum of two pieces, 

s = c ~ + 7  with antigh ( } = - 1  and antigh y = 0 ,  (2.1) 

where (} is explicitly given by 

6Aa~ = O, (5C a = O, (}yi  = O ,  

8 L S ~  6C~ . ,  d �9 ~ r 
6Aa v -- 8Aa , = -D~A~  + gT~iy j y ,  6y[  -- 8y  i (2.2) 

a i d Here, S 0  = 5~Y(y i ,DYy  i ) -  ~ tr(FUVF~v), where DYy  i = 8~y i 9AsT'~jy .  We 
assume for simplicity that the matter fields do not carry a gauge invariance of 
their own and belong to a linear representation of G. The differential y is given by 

a 1 " i ' a 
~A~ = D~,C a, yC a = -  gC~cCbC c, yy~ = g T a j J C  , 

= OZtc L a b "  , 7Ca  = O•e •ab u , YY i  = - g T ~ i Y j  C . (2.3) 

There is no term of higher antighost number in s because the gauge algebra closes 
off-shell. One has 

(}2 = 0 ,  ]j2 = 0, yC5 + 6 7 -- 0. (2.4) 
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As explained in [, Sect. 4, we shall consider x-independent local q-forms that are 
polynomials in all the variables (Yang-Mills potential A~, matter fields yi, ghosts 

*p 
C ~, antifields A~ , y[ and C~) and their derivatives. This is natural from the point of 
view of quantum field theory and implies in particular that the local q-forms under 
consideration have bounded antighost number, x-dependent solutions are discussed 
in Sect. 13 below. 

Now, the general isomorphism theorems (1.1) (1.2) have been established under 
the assumption that the local q-forms may contain terms of arbitrarily high antighost 
number. Our first task is to refine the theorems to the case where the allowed q- 
forms are constrained to have bounded antighost number. This is done in the next 
section. 

3. Homologieal Perturbation Theory and Bounded Antighost Number 

Theorem 3.1. For Yang-Mills models, the isomorphisms 

and 

He(s) ~- { He(;''H~ k<0k > 0 (3.1) 

He(sld ) ~_ { He(yld, Ho(fi)) k >= 0 (3.2) 
H_e(6ld ) k < 0 

also hold in the space of q-forms that are polynomials' in all the variables and 
their derivatives. 

Proof We extend the action of the even derivation K of Sect. 10 of I on the ghosts 
as follows: 

K = No + A ,  (3.3) 

where No is the operator counting the derivatives of all the variables, 

N = ~[kl [ o(3~I~)Aa~) 
0 R O R *,u 

+ O(3(k)C a) O(k)ca + ~(O(k)Aa~)O(e)Aa 

3R O R *] 
OR 0 * + 0(@oyi)0(e)Yi + 0(e)yi , (3.4) Jr- O(O(k)C~) (k)Ca O(O(k)y ~) 

and where A is defined by 

A = ~  E 2 0(0(]RA~ ~) 0(e)A a*~+ 3 0(0~IC ~ )@oCt* (e) 

0R i 3(0(e))5*)0R 0 ( 0 ~  ] 2 ~* 0 -~ 0(k)C a (3.5) § 0(0(e))5,)0(e)yi + (k)y, 

The antifields )5[ are associated with second order differential equations, while 
the antifields y* i are associated with first order differential equations. We give A- 
weight -1  to the ghosts so that y has only components of non-positive K-degree, 

~ = y 0 + 7 - 1 ,  (3.6) 
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just as 6, 

6 = 6 0 ~- 6 - 1  n t- 6 - 2  . (3.7) 

Evidently one has [K, 0F, ] = ~, so that the exterior derivative d increases the eigen- 
value of N(~ and K by one unit. 

The undifferentiated ghosts are the only variables with negative K-degree (c~i,C a 
has degree 0, c~u,,C a has degree 1, etc .... ). Furthermore, because the antifields all 
carry a strictly positive degree, a form with bounded K-degree k cannot contain 
terms of antighost number greater than k + g, where g is the dimension of the Lie 
algebra (=number of  ghosts). It is thus polynomial in the antifields. 

We have indicated in Sect. 10 of I that if a is 6-closed, has positive antighost 
number and has K-degree bounded by k, then a = cSb, where b has also K-degree 
bounded by k. Similarly, if a is 6-closed modulo d, has both positive antighost and 
pure ghost numbers, and has K-degree bounded by k, then a = 6b + dc,  where b 
has K-degree bounded by k and c has K-degree bounded by k - 1 (a = 6b + de  
follows from [19]; the bounds on the k-degrees of b and c are then easily derived 
by expanding the equality according to the K-degree, and using the acyclicity of 
60, of 60 rood d and of d). These properties are crucial in the proof of the theorem. 

Let a be an s-cocycle which is polynomial in all the variables and their deriva- 
tives. Let us expand a according to the antighost number, 

One has 

and 

a = ao + a1 + " "  + a m  �9 (3.8) 

c~ai+i + ?ai = 0, i = 0, 1 ,2 , . . . ,m - 1 (3.9) 

?am O. (3.10) 

The isomorphism between H~(s )  and H~(7 ,Ho(6 ) )  is defined by [a] ~ [a0]. To 
prove the theorem, one must verify that this map is injective and surjective. This is 
done as in [2], by controlling further polynomiality through the K-degree in a man- 
ner analogous to what is done in I, Sect. 10. For instance, let us prove surjectivity. 
Let a0 be a representative of  Hk(7,H0(6)), i.e., be an antifield independent solution 
of 6al + 7ao = 0. Since a0 and al are polynomials, they have bounded K-degree. 
We denote this bound by k. To show that a0 is the image of a polynomial cocycle a 
of  s, one constructs recursively a2, a3, etc. by means of (3.9). Because both 6 and 
7 have components of non-negative K-degree, the higher order terms a2, a3, etc .... 
may be chosen to have also K-degree bounded by k. Thus, the recursive construc- 
tion stops at antighost number k + g (at the latest) and a = a0 + al + -. .  + ak+g is 
polynomial. Injectivity, as well as (3.2) are proved along the same lines. [] 

To conclude, we note that Theorem 3.1 holds for all "normal" theories in the 
sense of Sect. 10 of I, and, in particular, for Einstein gravity. Moreover, the reader 
may check that there is some flexibility in the proof of the theorem, in that one may 
assign different weights to the variables and nevertheless reach the same conclusion. 

4. Cohomology of ? 

In order to characterize completely H*(s ld ) ,  one needs a few preliminary results. 
Some of them have been developed already in the literature, while some of them 
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are new. These results are: the cohomology H*(7), the invariant cohomology of d 
and the invariant cohomology of c~ modulo d. They are considered in this section 
and the next two. 

The cohomology H*(7) of 7 has been computed completely in [4-9,3]. The 
easiest way to describe it is to redefine the generators of the algebra. The new 
generators adapted to 7 are on the one hand A a its symmetrized derivatives 

1 L'  

00,1...~A~+1 ), (k = 1,2 . . . .  ) and their 7-variations; and on the other hand )~ and 

the undifferentiated ghosts C a, where the ;g~ stand for the field strengths, the matter 
fields, the antifields and all their covariant derivatives. (u stands for representation 
indices; while A stands for spacetime or spinorial indices unrelated to the gauge 
group.) The 7~ belong to a representation of the Lie algebra N of the gauge group. 
Indeed, the field strengths belong to the adjoint representation, the antifields A~ u 
and C* belong to the co-adjoint representation, while the antifields y* belong to 
the representation dual to that of the yi. As a result, the polynomials in the )~'s 
also form a representation of the Lie algebra N of the gauge group: to any x E N, 
there is a linear operator p(x) acting in the space of polynomials in the Z's as 
an even derivation and such that p([xl,x2])= [p(xl),p(x2)]. The representation p 
is completely reducible. The polynomials belonging to the trivial representation are 
the invariant polynomials. 

The crucial feature in the calculation of H*(7 ) is that A~, its symmetrized 
derivatives and their 7-variations disappear from H*(y) since they belong to the 
"contractile" part of the algebra. More precisely, one has 

Theorem 4.1. (i) The general solution of 7 a = 0 reads 

a = d +  yb, (4.1) 

where ~ is of the form 
= ~ c~j(Z~)coJ(C~). (4.2) 

Here, the cO are invariant polynomials in the )~'s, while the coJ(c ~) belong to a 
basis of  the Lie algebra cohomology of the Lie algebra of the gauge group. 

(ii) d is y-exact if and only if c~j()~)= O for all J. 

Proof The proof may be found in [4 9, 3] and will not be repeated here. [] 

Note that the ej involve also the spacetime forms dx ~. This will always be 
assumed in the sequel, where the word "polynomial" will systematically mean 
"spacetime form with coefficients that are polynomial in the variables and their 
derivatives." 

5. Invariant Cohomology of d 

Let e(Z~) be an invariant polynomial in the )(s. Assume that c~ is d-closed, 
dc~ = 0. Then one knows from the theorem on the cohomology of d that ~ = dfi 
for some /3. Can one assume that fi is also an invariant polynomial? If ~ does not 
contain the antifields, this may not be the case: invariant polynomials in the 2-form 
F a= (1/2)F~vdxUdx" are counterexamples (and the only ones) [7,9]. However, if 
antigh c~ > 0, one has: 

Theorem 5.1. The cohomology of d in form degree < n is trivial in the space of 
invariant polynomials in the Z's with strictly positive antighost number. That is, 
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the conditions 

e u 7 e = 0 ,  d e - - 0 ,  antigh e > 0, deg e < n, e =  (7~A) (5.1) 

imply 
e = d/~ (5.2) 

for  some invariant fi(Z), 
~/~ = 0 .  (5 .3)  

Proof  The proof  proceeds as the proof  of  the proposition on p. 363 in [9]. We 
shall thus only sketch the salient points. 

(i) First, one verifies the theorem in the abelian case with uncharged matter 
fields. In that case, any polynomial in the 7~ is invariant since the X's themselves 
are invariant. To prove the theorem in the abelian case, one splits the differential d 
as d = d o  -}- d l ,  where dl acts on the antifields only and do on the other fields. Let 
e be a polynomial in the field strengths, the antifields, the matter fields and their 
ordinary ( =  covariant) derivatives. I f  de  = 0, then dl a N = 0, where e N is the piece 
in c~ containing the maximum number of  derivatives of  the antifields. But then, 
a N = d l f l  N - l ,  where flN--I is a polynomial in the X~. This implies that e - dfl  N-1 
ends at order N -  1 rather than N. Going on in the same fashion, one removes 
successively ~N-~,eN 2 . . . .  until one reaches the desired result. 

(ii) Second, one observes that if  e is invariant under a global compact symmetry 
group, then /~ can be chosen to be also invariant since the action of  the group 
commutes with d. 

(iii) Finally, one extends the result to the non-abelian case with coloured matter 
fields by expanding e according to the number of  derivatives of  all the fields (see 
[9], p. 364 for the details). [] 

What replaces Theorem 5.1 in form degree n is: let e = pdx ~  dx n-1 be exact, 
e = d/~, where p is an invariant polynomial of  antighost number > 0. [Equivalently, 
p has vanishing variational derivatives with respect to all the fields and antifields.] 
Then, one may take the coefficients o f  the ( n -  1)-form /~ to be also invariant 
polynomials. 

Theorem 5.1 can be generalized as follows. Let e be a representative of  H*(?) ,  
i .e.,  

e = ~j (X~)o . )J (ca) ,  (5.4) 

where the e()0 are invariant polynomials. Because d7 + 7d - 0, d induces a well 
defined differential on H*(y) .  This may be seen directly as follows. The deriva- 
tive dej  = Dej  is an invariant polynomial in the )~'s since D commutes with 
the representation, while dco J = 7(5J(A, C) for some o5 J. Thus de  = •  J + 

7(Zejcb J) defines an element of  H*(7)  (Tej = 0), namely the class of  X(Dej)co J -- 
X(dej)co J. What is the cohomology of  d on H*(?)?  Again, we shall only need the 
cohomology in form degree < n and antighost number > 0. 

Theorem 5.2. H S ( d , H * ( ? ) )  = O for  k > 1 and l < n. Here 9 is the ghost number, 
l is the form degree and k is the antighost number. 

Proof  Let e - - N ~ j c o  J be such that d~ vanishes in H*(?) ,  i.e., de  = 7/~. From 
the above calculation, it follows that X(Dej )coJ= 7#'. But s J is of  the 
form (4.2). This implies that Dej  = de j  = 0 by (ii) of  Theorem 4.1. Thus, by 
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Theorem 5.1, ~a = dfid, where rid are invariant polynomials in the ;~'s. It follows 
that ~ = V~(dflj)toJ = •162 J) T Y(zv-'fiJ dIJ) is indeed d-trivial in H*(y). [] 

Theorem 5.2 is one of  the main tools needed for the calculation of  H*(sld ) 
in Yang-Mills theory. It implies that there is no non-trivial descent [20-22] for 
H(7]d ) in positive antighost number. Namely, if 7a + db = 0, antigh a > 0, one 
may redefine a ---+ a + 7# + dv = a ~ so that 7a ~ = 0. Indeed, the descent ?a + db = 
0, 7b + dc = 0 . . . .  ends with e so that 7 e = 0 and de + 7(something) = 0. Thus the 
class of  e is trivial and bs/ the redefinition e --+ e + ? f  + d m ,  we may take e to 
vanish, etc. 

6. Invariant Cohomology of  b Modulo d 

The final tool needed in the calculation of  H*(sld)  is the invariant cohomology 
k b e a  of  6 modulo d. We have seen that Hk(bld) vanishes for k > 2. Now, let ap 

b-boundary modulo d with form degree k and antighost number p, 

k k k - 1  ap = bflp+l q-d#p , p > 1 . (6.1) 

Assume that kp is an invariant polynomial in the / ' s  (no ghosts). Can one also 
k k - 1  assume that both #p+j and #p are invariant polynomials? The answer is affirmative 

as we show in this section. 
To that end, we associate with Equation (6.1) a tower o f  equations that starts 

at form degree n and ends at form degree k -  p + 1 if k > p or 0 if k < p, 

" d "- T (6.2) ap+n-k  = b # p + n - k + l  -]- #p+n k 

a~ = b#pk+l + d # 5 - '  (6.3) 

: -p+l  + d # f  
o r  

_ k o = b # p _ k +  I , 

where the a ' s  are all invariant polynomials. One goes up the ladder by acting with 
d and using the fact that if an invariant polynomial is g-exact in the space o f  all 
polynomials, then it is also g-exact in the space o f  invariant polynomials (Theorem 
2 of  [3]). So, for instance, acting with d on (6.1) yields d@ = - b d # ~ +  I. Since 

d@ = D@ is an invariant polynomial, there exists by Theorem 2 of  [3] an invariant 

polynomial up+ 1-k+l such that vUp+l~-~+l = - d @ .  The acyclicity of  b implies then that 

ak+l I~ ~ .k+l for some #~+1 One goes down the ladder along the same p+l = d#p+i + V/Zp+ 2 p+2" 
lines, but by applying 6 and using Theorem 5.1. 

Using again Theorem 2 of  [3] and Theorem 5.1, it is easy to see that if any 
of  the #J is equal to an invariant polynomial modulo ~ or d exact terms, then all 

of  them fulfill that property. That is, if #Ji = M / +  bpj+~ + dp j-1 for one pair (i,j) 
(j  - i = k - p - 1 ), then #~' = M;" + bp'~+, + dpT-i  for all (I, m). Here, the M; n 
are invariant polynomials. Thus, to prove that the # ' s  are invariant, it suffices to 
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establish the property for the top of  the ladder, i.e., for the n-forms. It is also clear 
that one has 

L e m m a  6.1. I f  @ in (6.1) is an n-Jorm of  antighost number p > n, then the #'s 
in (6.3) may be taken to be invariant polynomials. 

l l  Proof The proof  is direct. I f  ap = a#p+l 4- d#~) -1 with p > n, one gets at the 

bottom of  the ladder 0 0 ap_ n = a#p_n+ 1. But then, by Theorem 2 of  [3], one finds 

#o_,,+j 0 0 0 is an invariant polynomial. This im- = Mp_n+ 1 4- app_n+2, where mp_n+ 1 
n n - -  1 plies that all the # ' s  are of  the required form, and in particular that #p+l and #'p 

may be taken to be invariant polynomials. [] 

We are now in a position to establish the following crucial result about the 
invariant cohomology of  3. 

Theorem 6.1. I f  the invariant polynomial kp is a g-boundary modulo d and has 
k k-1 0), then one as- non-vanishing antighost number, kp = O#p+l 4- d#p (p > may 

k-1 sume that #kp+ l and #p are also invariant polynomials. In particular, Hk(a]d) = 0 
for k > 3 in the space of  invariant polynomials. 

Proof The proof  proceeds as the proof  of  Theorem 5.1. Namely, one verifies first 
the theorem in the abelian case with a single gauge field and uncharged free matter 
fields. One then extends it to the case of  many abelian fields with a global symmetry. 
One finally considers the full non-Abelian case. 

Since the last two steps are very similar to those of  Theorem 5.1, we shall 
verify explicitly here only that Theorem 6.1 holds for a single abelian gauge field 
with uncharged free matter fields. So, let us start with an n-form ap solution of  
(6.1) and turn to dual notation, 

! 
ap = abp+] + Ouj~p (p > 1).  (6.4) 

We shall first prove that if the theorem holds for antighost number p + 2, then 
it also holds for antighost number p. To that end, we take the Euler-Lagrange 
derivative of  (6.4). This yields 

aR ap i 

ac* - aZ~p 11, (6.5) 

aR ap / t 

aA*~ - aX(p~ + O~ZIp_I~ , (6.6) 

aeaP - - Ov(O X(p> (p>, , 
aA~ aY[P~+') ~ '~' - ~?"X"~ ~ (6.7) 

aR ap . 

ay i - DijX(qp) + aY(p+,)i , (6.8) 

aRap 
ay; -- aX(%), (6.9) 



102 G. Barnich, F. Brandt, M. Henneaux 

where Z(;_II, X(p)l ~, Y[~+I), x(ie) and Y(p+l), are obtained by differentiating @+I[Z'= 
0 if p - 1]. The explicit expression of these polynomials will not be needed in 
the sequel. In (6.8), Dji is the differential operator appearing in the linearized 
matter equations of motion (6L~5('freefiSyi= DijyJ). Because 6Rap/&C*, &eap/6A*~, 
6Rap/&A,,, 6Rap/eSy i and {SRap/6y * are invariant polynomials, i.e., involve only the 

X'S, one may replace in (6.5)-(6.9) the polynomials Z[p_ll, X(p)u, Y[~+,I' X(p) and 
Y(p+l)i which may a priori involve symmetrized derivatives of A~, by invariant 

polynomials Z(p_l), X(p)i,, Y{~p+~), X('p) and Y(p+l)i depending only on the Z's, 

ORap (6.10) 
&C* 

c~aP (6.11 ) 
{SA*u 

- ~ Z ( p _ ~ ) ,  

- 5 y ( p ) r  - a ~ Z ( p _ l ) ,  

~SRap 
&A~ - 6Y(*~P+I) - c~v( c3~X(P) - r3vYtL ~ . . ( p ) j  , 

~SRap -- DijX(Jp) + ~SY(p+1)i , &y~ 

3Rap 

(6.12) 

(6.13) 

(6.14) 

This is obvious for Z(p_~) and X{'p) (simply set A~ and its symmetrized derivatives 
equal to zero in Z[p_l) and X(p); this commutes with the action of 6). The assertion 

is then verified easily for X(p), g(p+l)i and YU (p+l)" 
Now, the invariant polynomial Y(p+l) is &-closed modulo d by (6.12) since 

6ap/aA~, is of the form 8vW zv for some W ~v = - W  TM (this follows from the fact 
that ap depends on A~, only through its field strength). Thus, it is fi-exact modulo 

d because Hp+l(&[d)~-Hp+2(a[d)is zero ( p + 2  > 3). This means that Yu = ( p + l )  

can be written as 15r~p+2 ) § ~vS~;+l), where T~p+2 ) and ~ Sip+l ) are both invariant 
polynomials since we assume that the theorem holds for antighost number p + 2 in 
form degree n, or, what is the same, by our general discussion above, for antighost 
number p + 1 in form degree n - 1. 

If one injects relations (6.10)-(6.14) in the identity 

F (~R ap �9 6Ca" * ~ (SR ap A (~R ap i 6R ap , ]  
ap = fd t  [ ~ 2 C  + &A,~A ' + 5A u ~ + ~fiT-yi Y + 7~y,. Yi] + 3uP '~ (6.15) 

one gets, using E~(p+l) = 6T[p+2) + ~O(p+~)~ ~"  and making integrations by parts, that 

ap = 6bp+l + Oup~ , (6.16) 

where bp+l is manifestly invariant. This proves that the theorem holds in antighost 
number p if it holds in antighost number p + 2 ( y  may also be chosen to be 
invariant by Theorem 5.1). But we know by Lemma 6.1 that the theorem is true 
for antighost number > n. Accordingly, the theorem is tree for all (strictly) positive 
values of the antighost number. [] 
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7. Calculation of H*(s I d)-General Method 

103 

We can now turn to the calculation of  H*(s  I d)  itself. The strategy for computing 
H*(s  l d)  adopted here [16] is to relate as mush as possible elements o f  H*(s  f d)  to 
the known elements o f  H*(7 ]d  ) [23, 4-9,  3]. To that end, one controls the antifield 
dependence through Theorems 5.2 and 6.1. This is done by expanding the cocycle 
condition sa + db = 0 according to the antighost number. At maximum antighost 
number k, one gets ?ak + dbk = 0. Theorem 5.2 and its consequences for the descent 
equations for 7 in the presence o f  antifields then implies, for k > 1, that one can 
choose bk equal to zero. Thus ?ak = 0, and by Theorem 4.1, ak = S~j(Z"A)o/(C)  
up to 7-exact terms. [The redefinition at ~ ak + 7mk + dnk can be implemented 
through a --~ a + smk + dnk, which does not change the class of  a in H ( s l d ) .  ] The 
equation at antighost number k - 1 reads 6ak + 7ak-1 + dbk-1 = 0. Acting with 7, 
we get d7bk I = 0, which implies 7bk_l + dc~_l = O. 

I f  k - 1 > 1, Theorem 5.2 implies again that one can choose 7bk-~ = 0 with 
bk_ 1 ~-~J()~uA)(DJ(c ). Inserting the forms of  ak and bk-~ into the equation at 
antighost number k -  1 gives S((~o~j + d f l j ) c o J ( C ) =  7(something) which implies 
(~O:j + dfl j  = 0 by part (ii) o f  Theorem 4.1, i.e. c~j is a cS-cycle modulo d. Sup- 
pose that ~zj is trivial, ~j = (~#j + dv j .  Theorem 6.1 then implies that #j  and vj 
can be chosen to be invariant polynomials. The redefinition a---* a + S(~#J(D J -  
~VJ(~)J)- d(Zvj(.o J ) allows one to absorb ak. [Recall that 7o5 J = d(D J. The corre- 
sponding redefinition of  b is b ~ b - s ( S v j o J ) ,  which leaves bk equal to zero since 
7vj = 0 . ]  Consequently, we have learned (i) that for k > 1, the last term ak in any 
s-cocycle modulo d may be chosen to be of  the form ~O~J(DJ(c), where the ~j are 
invariant polynomials; and (ii) that for k > 2, ~j define cS-cycles modulo d which 
must be non-trivial since otherwise, ak can be removed from a by adding to a an 
s-coboundary modulo d. 

We can classify the elements of  H * ( s l d  ) according to their last non-trivial term 
in the antighost number expansion. The results on the cohomology of  H. (61d  ) show 
that only three cases are possible. 

Class L a stops at antighost number 2, 

a = a o + a l + a 2  (7.1) 

(with a0 = 0 if gh a = - 1 ,  or a0 = al = 0 if gh a = - 2 ) .  The last term a2 is 
invariant, 

a2 ---- ~0~j(Z~)coJ(c) (7.2) 

and the ~J(Z,~) define non-trivial elements of  H2(6[d).  

Class II. a stops at antighost number one, 

a = ao + al (7.3) 

(with a0 = 0 if gh a = - 1 ) .  The last term al is invariant, 

a I = ~ O~J()~UA)(,oJ(C) �9 (7.4) 

We shall see in Sect. 9 below that the 0~J()~) must also be non-trivial 6-cycles 
modulo d. 
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Class Ill. a does not contain the antifields, 

a = a o .  
Then, o f  course, gh a > 0, 

G. Barnich, F. Brandt, M. Henneaux 

(7.5) 

8. Solutions of Class I 

The solutions of  Class I arise only when Hz(6ld) is non-trivial, i.e., when there 
are free abelian gauge fields. This is a rather academic context from the point of  
view of  realistic Lagrangians, but the question turns out to be of  interest in the 
construction of  consistent couplings among free, massless vector particles [24]. 

One can divide the solutions of  Class I into three different types, according to 
whether they have total ghost number equal to - 2  (type I~), - 1  (type Ib) or > 0 
(type Ic). 

Type I~. I f  gh a = - 2 ,  then a reduces to a2 and cannot involve the ghosts. The 
solutions of  Type I~ have form degree n and are exhausted by Theorem 13.1 o f / ,  
in agreement with the isomorphism H-2(s ld)  ~- H2(3ld) .  They read explicitly 

a = a2 = f c ~ C * ,  f ~  = constant,  (8.1) 

where C2 are the antifields conjugate to the ghosts o f  the free abelian gauge fields. 
We switch back and forth between the form notation and the dual notation. The C~ 
should thus be viewed alternatively as n-forms or as densities. 

Type Ib. I f  gh a = - 1 ,  then a2 must involve one ghost C A. This ghost must be 
abelian since one must have ,/C A = 0. Thus, 

a2 = fA~C*~C A, fA~ = const., (8.2) 

where the sum over A runs a priori over all abelian ghosts. The equation in antighost 
number one yields for al,  

r ~/A ~/*0:# (8.3) a l  = j ,4~- l# - i  

up to a solution rnl of  ?ml + dnl = 0 which however is not relevant for al ,  cf. 
discussion of  Class /c-solutions given below (ml turns our to be a solution of  
Class IIa up to a trivial contribution). The next equation <~al + dbo = 0 is then 
equivalent to 

f A c,A ~,~#v ~ ' ~ v r  = Opk  p (8.4) 
for some k p. This equality can hold only if the variational derivatives of  the left- 
hand side vanish identically, which implies 2')~ = 0 for A 4 =/~ and f~g = -f[s~. Thus, 
one gets finally 

a = f~(A~A *~ + C~C*~), L ~  = - J } ~ -  (8.5) 

Type I~. I f  gh a _> 0, then all three terms a0, al ,  and a2 are in principle present. 
The term a2 reads 

a2 = f ~ j C * C ~ o J ( c ) ,  ( 8 . 6 )  

where ~oJ(c) belongs to a basis of  the Lie algebra cohomology. The coJ(c) can 
be written as polynomials in the so-called "primitive forms." The primitive forms 
are of  degree one (C A) for the abelian factors and of  degree > 3 ( trC3,trC s . . . .  ) 
for each simple factor [25]. 



Local BRST Cohomology in Antifield Formalism: 11 105 

It will be useful in the sequel to isolate explicitly the abelian ghosts in (8.6). 
Thus, we write 

a2 = ~-]~ I~ f:~FAI...Ak O)F ( C )C  AI "'" cAk c *~ , (8.7) 
k n,. 

where cot (c)  involve only the ghosts of  the simple factors. The pure ghost numbers 
of  the terms appearing in (8.7) must of  course add up to 2 + q, where q is the total 
ghost number of  a. The factors cot(C) have the useful property of  belonging to a 
chain of  descent equations [20-22] involving at least two steps 

~or(C) = ) ,~ r ,  (8.8) 

^F ~F 
(~[~,cov] = 7~%,,,] �9 (8.9) 

For instance, 
~R gDF 

^r a (8.10) 

(see [23, 7]). By contrast, the abelian ghosts belong to a chain that stops after 
the first step. One has ~?~C A = 7 AA, but there is clearly no f~,, such that 0[~A,,] = 

7fu,,. Since it will be necessary below to "lift" twice the elements coJ(C) of  the 
basis through equations of  the form (8.8) and (8.9), the abelian factors play a 
distinguished role. 

A direct calculation shows that 

I (  1 r . . .  cAk_I AA/~ 
~a2 = -- 7 ~ ( k  1)[ o) f~FAI"'AkCAI 

~_V-" 1 ," :k c)F x" r,A 1 . . . cAk ) AV V# 2 _ J ~ . ( - )  #J~FAI...Ak t-" A *~] 0~ (8.11) 

for some V u. This fixes al to be 

1 )! 'c;)rCAI "'" cAk-IAAk 

up to a solution ml of  7ml + dnl = 0. Using again the absence of  a non-trivial 
descent in positive antighost number, we may assume nl = 0 and ml = Z j p j ( ) ~ ) o f  
(C)  by a redefinition mi ~ ml + d~ + 7fi that would only affect a0 as a0 ---+ a0 + 
5fi (if  it exists). That is, a1 takes the form (8.12) modulo an invariant object of  
antighost number one. 

Compute now 5al. One finds 

1 1 ~ r �9 CAk-IFA~k,F ~m' + 5ml 6a~ = -  ~ ( k 2 1 ) !  ArA' AkCA''" 

+ 7(M~,~F ~v) + ~ 2  ~ (8.13) 
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for some V". Here, M~,,~ is explicitly given by 

1 t~& 2 A A k _ I A A k  
Muv~ = ~  2 ( k -  2)! f~c&'' '&corcAl " " ~  ~ '  ~ '  

1 k ^F A 1 c A k  IAA~ 
(k - 1)! ( - )  ~  ~rA~~4~ C . . .  

1 ~c _. C& 1 ~.. COI.~If ~rAj...Ak C A~ " (8.14) 

At antighost number zero, sa + db = 0 requires ~(al ml ) to be y-exact modulo 
d. Hence, a0 exists if and only if the first term on the right-hand side of  (8.13) is 
weakly ?-exact modulo d, i.e., 

l 1 c . . .  ~&_~,&~,~pv  cgung - 2 ~ ( k  -1)! 09 f~ 'FAI '"AkCAI ~ ~ l ~ v ~  +(5ml = 7 m 0 +  (8.15) 

for some m0 and n~ of  antighost number zero. This forces this first term to vanish, 
as we now show. 

By acting with ? on (8.15), one gets dyno = 0 and thus ?no + d #  o = 0. Accord- 
ingly, no is an antifield independent solution of  the ?-cocycle condition modulo d. 
This equation has been completely solved in the literature [4, 7-9] and the solutions 
fall into two classes: those that are annihilated by ? and are therefore invariant 
objects (up to redefinitions); and those that lead to a non-trivial descent, i.e. those 

' equal to zero. This second class involves for which no redefinition can make n o 
only the forms A ~ = A~dx ~, F ~ = (1/2)Fi~,,dxUdx", their exterior products, and the 

ghosts. Thus, no = ~0 + no, where t/0 belongs to the first class and no belongs to 
the second class. 

The solutions of  the second class are obtained by considering the descent 7n0 + 

d~0 = 0, 7n' 0 + d n  o = 0, etc .... One successively lifts the last term of  the descent, 
which is annihilated by y all the way to no. The term dn0 itself can be written 
as a y-exact term, unless there is an "obstruction." This obstruction is an invariant 
polynomial which involves coJ(c)  and the components F~v but only through the 
forms F ~ and their exterior products, but no other combination [23]. In particular, 
the dual of  F ~ cannot occur. Accordingly, the obstruction cannot be written as a 
term involving F~.F ~"  ptus a term involving the equations of  motion, plus a term 
of  the form d~o, with r~ o invariant. This means that the obstruction must be zero if 
ao is to exist, so that dn0 = 7#0 by itself, By adding to a0 a solution of  Type III 
if  necessary, we may assume no to be absent. 

I f  no reduces to the invariant piece 170, Eq, (8.15) and Theorem 4.1 imply that 

1 1 F 
- 09 f~FAI . . .AkC AI t~Ak--lg'AklZ ~c~#v = 2 E ( k  1)! . . ~  ~ ~ _  + 6m~ - E(D~,n~)co s 0 (8.16) 

with n0 = ~n~l coJ. I f  we set in this equality the covariant derivatives of/;fi+ equal 

to zero, one gets the desired result that f~r& Ak CA~ " ' "  cAk-IFA~ F~#v should vanish. 
This implies that f ~ r ~ . . ~  (i) has as non-vanishing components only f~r~t.-.~t~ and 
(ii) is completely antisymmetric in (c~,c~l . . . .  ,c~k). The solutions of  Class ic are 
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consequently exhausted by 

1 g.~C~k 2AO:k_lAC~k 
2 ( k -  2)!c~ " " ' ~  - "~ ,-v 

1 ~ ~kr,., F p a  1 . . (.~c~k_lA~ k ] ~F ~ ) 
+ ( k -  1 ) ~  t - ~  ~ '[~ '~ ~ ~'v] + ~.vc~ C ~ " "  C~k F~V 

/ 

+ 1)! Jc ' + . . . .  

1 r = .C~f~C*~ l + ~ o J  C ~.. (8.17) 

(modulo solutions of  Class H). This ends our discussion of  the solutions o f  Class I ,  
corresponding to elements of  H2(bId). 

[The analysis has been performed explicitly for spacetime dimensions greater 
than or equal to three. In two spacetime dimensions, there are further solutions. The 
solutions of  ghost number - 2  read (Of/c~F~l)C[, + (1/2)(c~2f/OFbol~?F~l A*~*~ ) 

~ # v Z a a  z a  b 

where f is an invariant polynomial in those field strengths Fj~,,, that obey D#Fgl = 0 
on-shell. The solutions o f  ghost number - 1  and higher are constructed as above, 
by multiplying the solutions o f  ghost number - 2  with the 7-invariant polynomials 
o)J(C), and then solving successively for al and a0. There are possible obstructions 
in the presence o f  abelian factors which restrict the coefficients of  co J. We leave 
the details to the reader.] 

9. Solutions of Class H 

The next case to consider is given by a cocycle a whose expansion stops at antighost 
number 1. Again, we may consider two subcases: Type II,, with g h a  = - 1 ;  and 
Type IIb, with gh a > 0. 

Type IIa. If  g h a  = - 1 ,  then a reduces to al and does not involve the ghosts. It is 
clearly an invariant element of  Hi(6]d),  by the equations 7al = 0 and g)al + dbo = 
0. The groups H~(6ld) are non-zero in form degree n (conserved currents) and 
n - 1 (if  there are uncoupled abelian fields). Thus, given a complete set of  invariant 
non-trivial conserved currents, one may construct H - l ( s l d )  explicitly. I 

Let j3 be such a complete set and let a i XI~ ~, X~ be the corresponding global 

symmetries o f  the fields, 63A~ = X~5, 6 ~ y i =  X~. One has 

a * #  i * + X3y  ) = 6(X;dA a O~,j~ . (9.1) 

In order for al to be invariant, we impose v o  A*~ ~ * X~y i to "~A'*a + be invariant i.e., 
to be annihilated by 7. Because the equations of  motion involve derivatives of  
the field strengths and are not invariant polynomials in the forms F a, there is no 
obstruction to taking j~ annihilated by 7 as well. [It turns out that the condition 

Since we are working in the space of local forms which do not depend explicitly on the x F', 
it is understood that we have in mind here x-independent conserved currents which are non-trivial 
in this space, cf. remarks in Sect. 13. 
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a * #  i * + Xj  Yi ) 0 always be fulfilled, in the absence of  free abelian fields, 7(Xf, dA~ = can 
by a suitable redefinition of  the global symmetry within its equivalence class. This 
actually follows from the relationship between H(s]d)  and H(6ld)  and will be 
spelled out in detail elsewhere [26].] 

One gets for the BRST cohomology H-l ( s ]d ) :  
In form degree n -  1: 

a = f~A*fl, f~  = constant.  (9.2) 

In form degree n: 

, c A [ y a  A*I~ i * 
a = j \At~dza a IF X ~ y i  ), 

Turn now to the solutions of  Type IIb. 

fA  = constant.  (9.3) 

Type lib. We must solve 7a0 + 6al + dbo = 0 with al = ~c~ je f .  The derivation 
above does not imply that b0 is annihilated by 7 and thus, it is not clear at this stage 
that the ~j belong to H(6]d).  However, by acting with 7 on c~al + 7a0 4- dbo = O, 
one gets again that 7bo 4- dco = 0. The analysis proceeds then in a manner similar 
to that of  Type IIc. As mentioned above, the general solution to '/bo + dco = 0 is 

= 

known [4, 7-9] and takes the form b0 =/~0 + b0, where (i) /~0 is annihilated by 7 
and thus given by /~0 = E~oJ(Z)coJ(c) (up to irrelevant 7-exact terms) with /~0J 

invariant polynomials in the Z's; and (ii) b0 is 7 closed only modulo a non-trivial d 
exact term and involves the forms A a = A~dx ~, F ~ = (1/2)F~,,dx~dx ~', and C ~. The 

obstruction [23] to writing d~)0 as a 7 exact term involves the forms F a and coJ(c). 
It cannot be written as the sum of  a term proportional to the equations of  motion 
and a term of the form d/~0 and/~0 invariant since such terms involve unavoidably 
the covariant derivatives of  the field strengths. Thus, the obstruction must be absent 

and db0 = -Th0, for some ao. The equation cSal 4- 7a0 4- dbo = 0 splits therefore 

into two separate equations 7a0 + dbo = 0 and 7~70 + d/~0 q2 6al = 0. 
The first equation defines a solution of Class III. We need only consider in this 

section the second equation. Because /~o is annihilated by 7, we may follow the 
procedure of  Sect. 7 to find again that the invariant polynomials ~j in al define 
elements of  Hl(c~]d). One gets explicitly: 

In form degree n -  1: 

a = f f (d)~F~ v 4- coJ(C)A*fl), f f  = constant.  

In form degree n: 

(9.4) 

,cA r ,~,J ;~ o o J ( c ) ( X ; A A J  i �9 A a = j j  LUJ[~jz J ~- ~-X~y i )], f j  = constant.  (9.5) 

(with 7e5 J = c~co J).  
[In two dimensions, there are further solutions obtained by taking f j  = Ofj/OFgl, 

where f j  are arbitrary invariant polynomials in the Fgl. We leave the details to the 
reader.] 

The solutions of  Class I exist only if there are free, abelian gauge fields. For a 
semi-simple gauge group, Class I is empty. By constrast, the solutions of  C l a s s / / i n  
fo rm degree n exist whenever ther are non-trivial gauge invariant (x-independent) 
conserved currents, or, equivalently, corresponding non-trivial global symmetries. 
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They occur at ghost number - l, or - 1 + l j ,  where l j  is the ghost number of  the 
element o) J of  the chosen basis of  the Lie algebra cohomology. For a semi-simple 
gauge group, l j  is greater than or equal to three. Thus, the solutions of  Class / /  
occur at ghost number - 1 , 2 ,  and higher, but not at ghost number 0 or 1. The 

^ J  solutions at ghost number 2 are given by (9.5) with co J = trC 3 and o)~, = 3trC2A~, 
We close this section by pointing out that one may regroup the conserved cur- 

rents j~ (viewed as (n - 1)-forms) and the coefficients XJ into a single object 

GA . , t n . , - [ Y  a A *~t i * (9.6) 

which has the remarkable property of  being annihilated by the sum ~ = s § d, 

5G~ = 0.  (9.7) 

This equation is the analog of  a similar equation holding for c~*, 

q~ = C  a + A ~ + . F ~  , (9.8) 

where the C~ are viewed as n-forms, the A~ are viewed as (n - l)-forms and the 
dual ,F~. to the uncoupled free abelian field strength are ( n -  2)-forms. One has 
also 

sq~ = 0 . (9.9) 

In verifying these relations, one must use explicitly the fact that the spacetime 
dimension is n through d ( n - f o r m ) =  0. 

10. Non-Triviality of Solutions of Classes I and H 

We verify in this section that the solutions of  Types I and H are all non-trivial. 

Theorem 10.1. A n y  B R S T  cocycle a modulo d belonging to Class I or to Class 
II  is necessarily non-trivial, a + sc + de. 

P r o o f  The idea of  the proof  is to show that if a sc + de, then, the c~j(X~) all 
define trivial elements of  H2(61d) or Hl(6td  ). So, assume that a = sc + de. Expand 
this equation according to the antighost number. One gets 

ao = y c o  +(Scl +de0 ,  al = y c l  +(~c2 + d e l  (10.1) 

and 

0 = yci + 13ci+l + dei (i > 2) (10.2) 

(we assume a to belong to C l a s s / /  for definiteness; the argument proceeds in the 
same way for Class I) .  Let c stop at antighost number M, c = co + c~ + -- �9 + cM. 
Then, one may assume that e stops also at antighost number M. Indeed, the higher 
order terms can be removed from e by adding a d-exact term since H k ( d ) =  0 
for k < n. Now Eq. (10.2) for i - M reads 7CM + deM = 0 and is precisely of  the 
form analysed above. Since M __> 2, one may assume eM = 0 and then, by adding 
to CM an s-exact modulo d-term (which does not modify a), that cM is of  the form 
CM = ~ y j ( ) ~ ) c J ( C ) .  Next, the equation at order M - 1 shows that cM can actually 
be removed, unless M = 2. Thus, we may assume without loss of  generality that 
c = co + cL + c2, c2 = ~7j()~A)coJ(C) and e = e0 + el. It follows that the equation 
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for al reads 
~ J ( Z ~ ) J ( c )  = ~/c~ + ~ g ~ J ( z ~ ) J ( c )  : del . (10.3) 

By acting with ? on this equation, we obtain as above that el may also be chosen 
to be invariant, el = ~_~ej()~))ogJ(c). Accordingly, (10B)reads  

c~ u _ = ' (10.4) ~-~( J(XA) -- g)~J(X~) d'sJ(XUA))~ ~c1, 

from which one infers, using Theorem 4.1, that 

~J(z~) - g~J(z~) - d ~ j ( ~ ; )  = 0 .  (10.5) 

This shows that all the c~j are g-exact modulo d, in contradiction to the fact that 
they define non-trivial elements of H.(g[d).  Therefore, the cocycle a cannot be 
s-exact modulo d. [] 

11. Solutions of Class III 

The solutions of Class III do not depend on the antifields and fulfill 7ao + dbo = O. 
As we have recalled, these equations have been extensively studied previously and 
their general solution is known [4, 23, 7-9]. For this reason, we refer the reader to 
the existing literature for their explicit construction. 

The solutions are classified according to whether b0 can be removed by redefi- 
nitions or not. 

Type Ilia. 7a0 = 0. 

Type IIIb. 7a0 + dbo = 0, with b0 non-trivial. In that case, a0 and b0 may be as- 
sumed to depend only on the forms Y , F  a, C a and their exterior products. 

The elements of H(?ld ) not involving the antifields are non-trivial as elements 
of H(sld ) if and only if they do not vanish on-shell modulo d. Thus, the non-trivial 
elements of H(?td ) of Type IIIb remain non-trivial as elements of  H(sld ) since the 
forms A a and F a are unrestricted by the equations of  motion. However, the solutions 
of Type Ilia may become trivial even if they are non-trivial as elements of H(?ld ). 

The solutions of direct interest are those of ghost number zero and one. At ghost 
number zero, Class Ilia contains the invariant polynomials in the field strengths, the 
matter fields and their covariant derivatives. The Yang-Mills Lagrangian belongs to 
Class IIio. Class IIIb contains non-trivial solutions at ghost number zero only in odd 
spacetime dimensions 2k + 1 if we require these solutions to be Lorentz invariant 
(see also Sect. 13 for remarks on this point). These non-trivial solutions are the 
Chem-Simons terms, given by 

~c's = tr(AF ~ + ' " ) ,  (11.1) 

where the dots denote polynomials in A a and F a whose degree in F is smaller than 
k and whose form degree equals 2k § 1. 

At ghost number one, Type Ilia contains solutions of the form "abelian ghost 
times invariant polynomial." The abelian anomaly CFl,,,dx~dx ~' in two dimensions 
belongs to this class. Type IIIa contains no solution with ghost number one if the 
group is semi-simple. Type IIIb contains the famous Adler-Bardeen anomaly. 
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12. More General Lagrangians 

In the previous discussion, we have assumed that the Lagrangian was the standard 
Yang-Mills Lagrangian. This assumption was explicitly used in the calculation since 
the dynamics enters the BRST differential through the Koszul-Tate differential. 

It turns out, however, that for a large class of Lagrangians, one can repeat the 
analysis and get similar conclusions. These Lagrangians are gauge invariant up to 
a total derivative and thus read 

5r = 5~o(y,F~v,D~y, DpF,a, . . . .  ) + ~ ' c s ,  (12.1) 

where f 0  is an invariant polynomial in the matter fields, the fields strengths and 
their covariant derivatives, and where the Chem-Simons term 2 ' c s  is available 
only in odd dimensions if we insist on Lorentz invariance. We shall assume that 
the Yang-Mills gauge symmetry exhausts all the gauge symmetries. We shall also 
impose that the Lagrangian 2,~ defines a normal theory in the sense of Sect. 10 of 
I. The calculation of H(s]d) can then be performed along the lines of  this paper. 

(i) First, one verifies that the 7-invariant cohomology Hk(e~ld) is described as 
before: Hk(~Sld) is zero for k strictly greater than 2; for k -  2, it is non-zero only if 
there are uncoupled abelian gauge fields, in which case it is spanned by C;*; and for 
k = 1, it is isomorphic to the set of non-trivial global symmetries with invariant al. 
Thus, the dynamics enters explicitly Hk(eSId ) only at k = 1, through the conserved 
currents. 

(ii) The solutions of Class I make a further use of the dynamics through the 
study of the obstructions of the existence of a0. A case by case analysis, which 
proceeds as in Sect. 8, is in principle required. Recall, however, that Class I exists 
only in the academic situation where there are uncoupled abelian gauge fields. 

(iii) Class H also uses the equations of motion in the proof that al should 
define elements of Hl(6f l ) .  It must be verified whether the equations of motion 
can or cannot remove obstructions given by polynomials in the forms F a. Again, 
the analysis proceeds straightforwardly as in Sect. 9. 

(iv) Class III is obviously unchanged since it does not involve the antifields 
(only the coboundary condition is modified, since the concept of "on-shell trivial" 
is changed). 

The analysis is particularly simple for the pure Chern-Simons theory in three 
dimensions, without the Yang-Mills part. We take a semi-simple gauge group. Class 
I is then empty. Class H is empty as well since there is no non-trivial al annihilated 
by ~. Only Class 11I is present. Among the solutions of Class Ill, those that are of  
the Subtype III, turn out to be trivial since the field strengths and their covariant 
derivatives vanish on-shell. Thus, we are left with Class IIIb. These solutions are 
obtained from the standard descent, with bottom given by the elements co J of the 
basis of the Lie algebra cohomology (trC3,trC 5 etc). with constant coefficients (no 
F since F = 0 on-shell). This agrees with the analysis of [27]. 

13. Discussion of x-Dependent Solutions 

We point out again that the analysis has been carried out in the case of local forms 
which do not depend explicitly on the spacetime coordinates x ~. This is natural in 
the quantum field theoretical context. Nevertheless one may ask how the results 
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change if performed in the larger space of local forms which can also depend on 
the x u. Of particular interest are the cohomology classes of H - l ( s t d )  in that larger 
space since they provide all non-trivial global symmetries. 

Our analysis goes through step by step even in the larger space of x-dependent 
local forms 2 until one arrives at Eq. (8.3) resp. (8.12) in the cases Ib resp. Ic. The 
discussion of these equations however yields now a different result since additional 
(x-dependent) contributions ml to al are available (recall that al was determined 
by (8.3) resp. (8.12) only up to 7-invariant contributions ml which turn out to 
be irrelevant in the space of x-independent forms). One finds e.g. that in n4:4 
dimensions not only the antisymmetric part of  the constants f~fs occurring in (8.2) 
provides solutions of Type Ib but the symmetric part too. The latter are given by 

A~ C*~C~+A*~U VFv~+ 2 u j j ,  f~- - - -h~ (13.1) 

and are clearly of Type Ib for n + 4 (in the case n = 4 they reduce to solutions 
A.~# vrTfi x- of Type IIa). The piece ~ x rv~j~[~ occurring in (13.1) is the contribution ml 

mentioned above. In Class Ic one finds analogous x-dependent solutions which we 
do not spell out. 

The solutions of Class IIo correspond as before to non-trivial global symmetries 
6~A/~ = X ~ ,  (~Ay i = X'~ such that v a  ~*u i * a ~pA~a - - Y ~ y  i is  ?-invariant. However, now A 
labels global symmetries which are non-trivial in the space of x-dependent local 
forms (both X~~ and X~ can involve the x~). Class H contains therefore solutions 
which were not present before (as, e.g., those involving the Lorentz transformations 
if ~ 0  is Lorentz invariant). Furthermore, it can (and does) happen that some sym- 
metries which are non-trivial in the space of x-independent forms become trivial 
in the space of x-dependent forms. An example is provided by the global symme- 
try g)AA~ = ~,~ = const, which becomes trivial since it can be written as a gauge 
transformation cS~A~ = 3~e" with x-dependent parameter ~ = x ~ ~,. ~ 

There is another subtlety arising in the analysis of solutions of Class / /  in 
the space of x-dependent forms. We shall discuss it in more detail now since it 
concerns in particular the structure of x-dependent conserved Noether currents and 
thus has a direct physical relevance. Namely, recall that the j~ occurring in (9.1) 
are conserved Noether currents corresponding to x-independent solutions of  Type 
II~. As we have pointed out in Sect. 9, these currents can be always taken to be 
gauge invariant, i.e. to satisfy 7JA ~ = 0. This property of the currents is however less 
obvious for x-dependent solutions of Type II~. Nevertheless it still holds, at least 
if we restrict the investigation to local forms depending polynomially on the x ~, as 
we shall prove in the following. For simplicity we consider only one free abelian 
gauge field, i.e. the very simple case 5P0 = - ( 1 / 4 ) F u , , F  ~ (the reasoning can be 
adopted in the general case straightforwardly). In that case the solutions of Type 
lI~ are (non-trivial) solutions of 

6a = dj, a = dnxX~(x, [F])A *" , (13.2) 

where Xu(x, [F] is a polynomial in the x ~ and the ~u~...ukFp~, and where j ,  the 
conserved current, is a local ( n -  1)-form which generally depends polynomially 
on the x u as well. According to (13.2), dj  is a gauge invariant n-form. Hence, j 

One has of  course to add the x ' s  as arguments of functions where necessary in the preceding 
steps; in particular, invariant polynomials eJ(X) have to be replaced by c~j(x, X) where they occur. 



where ~c is 
x ~ and the 

To this 
form reads 
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n itself is gauge invariant up to a monomial o f  degree g in the field strength 2-form 
[7, 9]. Since such a monomial cannot occur in odd dimensions, we can reduce the 
investigation to even dimensions and conclude in this case: 

n = 2r : d j  = db + ~ F  r, F = dx~dxVFm,, (13.3) 

a constant and b, the gauge invariant part o f  j ,  is a polynomial in the 
0~t...~kF;,. We have to show tr = 0. 
end we use SL(2r, R)-transformations in spacetime, whose infinitesimal 

3AX ~ = - A ~ x  v, 3AdX ~' = - A ~ d x " ,  6AAv = A~Av, [3A,8~] = A~8~. 

with A C s l (2r ,  R )  (i.e. the A are real traceless 2r • 2r-matrices). The conclusion 
lc = 0 can be reached from the fact that F r is SL(2r, R)-invariant whereas 6a is 
not (as a consequence of  the fact that the Lagrangian S 0  is not SL(2r, R)-but 
only Lorentz-invariant). To make the argument precise we note that (13.2) can be 
decomposed into parts transforming according to irreducible representations under 
SL(2r, R) 3. Hence, each of  these parts has to satisfy (13.2) separately. F r occurs 
only in the SL(2r, R)-invariant part which reads 

[6a]o = d[b]o + ~cF", (13.4) 

where [6a]o and [b]o denote the SL(2r, R)-invariant parts of  (6a) and b respectively. 
In (13.4) we have used already that d, unlike 6, commutes with the SL(2r, R)- 
transformations which implies [db]0 = d[b]0. We can assume [6a]0 and [b]0 to 
have total degree r in the F~,~, and their derivatives since this holds also for F r (all 
other parts of  [6a]0 and [b]0 must cancel separately). Furthermore a simple scaling 
argument (x ~ ~ 2-1xu,~?~ -+ 2~u,A u --~ 2A~) shows that we can assume [6a]o and 
d[b]o to contain only monomials whose total degree in the x~ equals the total 
number of  derivatives acting on the Fu~. 

Assume now that we can show [6a]0 - 0 .  Then we can conclude ~c = 0 from 
d[b]0 = - ~ c F  ~ since otherwise we would obtain a contradiction to the results of  
[7, 9] stating that the F p with p < n/2 are just those forms which are closed but 
not exact in the space of  local gauge invariant forms. 

Therefore, to complete the argument, we need to show that (13.4) implies 
[halo = 0 or n = 2. Note that [6a]0 is an n-form which is (i) SL(2r, R)-invariant and 
(ii) weakly zero. We show in the following that (i) and (ii) contradict each other 
unless [6a]0 = 0 or n = 2. To this end we determine first all n-forms satisfying (i) 
and the above mentioned restrictions on the total degrees in the x ~, Fu,, and the 
derivatives acting on them. Note that the volume element d~x is SL(2r, R)-invariant 
and that e ~~2 , ,  %J...~2,- and 6~ are the only SL(2r, R)-invariant tensors which are 
available to contract the indices o f  the x ~r and O~l...l~kFpo in a SL(2r, R)-invariant 
way. Hence, (i) requires that all indices of  the x ~' are contracted with indices of  the 
O~...~kFp~. The number of  remaining "free" indices of  the latter (i.e. those indices 
which are not contracted with x ' s )  equals then 2r = n by the counting and scaling 
arguments given above. Hence, these free indices have to be contracted with e~z-.-~2~ 
and thus are totally antisymmetrized. Taking into account the Bianchi identities, it 
is then straightforward to verify that the 2r free indices stem soley from monomials 

3 This is possible since sl(2r) is semisimple and since the space on which it acts (polynomials in 
dx ~, x ~ and the Fl,. and their derivatives up to some arbitrary but finite order) is finite dimensional. 
Notice that here we use the locality of the fonns, as well as their polynomiality in the x ~'. 
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G~ m = x  pj . . . .  P '0  F H m+l v m 
~ P l ' " P m  ~ • V ,  - - / /  z X G / ~  v , 

where m = 0, 1 . . . . .  The SL(2r, R)-invariants constructable from the G's  and H ' s  
and one s m"2 ,  are linear combinations of  functions o f  the form 

m l  . G ~ q v  I . , G~ak,kH~2+ 1 . ..Llnr-kLlnr~llr "~Vk+lk+l . . L/n2(r-k)e~q V l . . . # r V r . ~ l , r  ~ . (13.5) 

Recall now that we are only interested in functions which have total degree r in 
the F~,,, and their derivatives. The only functions (13.5) satisfying this constraint 
are those with k = r, i.e. those which do not depend on the H ' s  at all. They also 
satisfy the constraint imposed by the scaling argument. Hence, the functions we are 
looking for are linear combinations o f  

m l  . * , P ( m l  . . . . .  m,.) = Gray 1 -- G~v,.sm~l""~"v" (13.6) 

As indicated by the notation, the P ( m i )  are characterized and distinguished com- 
pletely by their arguments mi = (ml . . . .  , m~). Notice that (a) P ( m i )  is totally sym- 
metric in all its arguments, (b) the sum of  these arguments is the total degree of  
P ( m i )  in the x t~ and (c) the arguments mi indicate the order of  the derivatives of  
the F ~  occurring in the P(mi) .  We conclude that there is only one P(m~) for fixed 
total degree in the x ~ and fixed orders of  derivatives of  the Fj,,,. 

Since the equations are homogeneous in the derivatives of  F ,  different P ( m i )  can 
never combine to weakly vanishing terms unless each P ( m i )  itself vanishes weakly. 
For r > 1 (i.e., for n=t=2) one readily checks that no P ( m i )  vanishes weakly since 
the equations of  motion constrain only those derivatives c?m...u~Fp~ for which at least 
one of  the /~i equals p or a. One easily makes sure however that P ( m i )  contains 
monomials which do not involve these derivatives at all if n =t= 2. In contrast, in two 
dimensions all P ( m i ) = - P ( m )  vanish weakly apart from P ( 0 ) =  F#~s l~' since the 
equations of  motion set to zero all derivatives o f  the field strength. Therefore the 
case n = 2, which we have anyhow, excluded, provides the only counterexample to 
the result ~c = 0. This counterexample is obtained for 6a = d2xP(1)  since P ( 1 ) =  
xP O p F ~  ~' = 2xP Spv~3 ~F #v implies 

n = 2 : 6(2epvxPA *v) = c~p(xPF~,,,c uv) - 2 F ~  ~ , 

which is the dual version of  (13.4). 
Hence, assuming polynomiality in the x ~ (and n > 2), one still can take the 

conserved currents corresponding to solutions of  Type II~ to be gauge invariant and 
the classification of  all solutions of  Type H in the space of  local forms depending 
polynomially on the x ~ ean be performed as in Sect. 9. 

For the sake of  completeness we finally note that, in the space of  x-dependent 
forms, Class IIIa consists of  solutions of  the form "invariant polynomial in the Z~" 
times "function of  the xU. ' '  Among the solutions of  Type IIIb, present in the space 
of  x-independent forms, only those "survive" in the space o f  x-dependent forms 
which are Lorentz invariant. The others become either trivial or can be "shifted" to 
Class III~. This follows immediately from an inspection of  the descent equations 

sa p q- da  p+I -- O, sap-1 + da p 2 = 0 . . . . .  sa p -k  = 0 

associated with these solutions (the superscript of  the a ' s  denotes their form "degree; 
one has k > 0 since solutions of  Type IIIb have by definition a non-trivial descent). 
Namely the BRST invariant form a p - k  occurring at the last equation is a linear 
combination of  forms 

d,p--k = o:P-k-i(F)f ,  oJ ( C)rl i(dx ) , 
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where the rli(dx) are /-forms involving only the differentials, coJ(c) denote the 
polynomials in the ghosts introduced in Sect. 4 and otP-l~-i(F) are invariant ho- 
mogeneous polynomials o f  degree ( p -  k -  i)/2 in the curvature 2-forms F a =  
1/2dx~'dx"F~,.. Now, in the space of  x-dependent forms, dp -k  is trivial unless tli(dx) 
is a 0-form. Namely for i > 0 one has tf(dx) = dtl i l(x, dx) which implies, using 
(8.8), 

i +O �9 ~--k  = s[~p--k + dDp--k--1, 
where 

~)p--k--1 : o~P--lc--i(DJtli 1 ~fl,--k = o~p-k-i(f)J t l i - l  dx#  " 

By standard arguments one verifies that trivial contributions can be removed from 
a p-k .  Hence, we can assume i = 0 and a p-k to be Lorentz invariant (but note that 
this reasoning is not possible in the space of  x-independent forms since there the 
forms tli-l(x, dx) are not available). As mentioned above, this implies eventually 
that the parts of  a p which are not Lorentz invariant become trivial or equivalent 
to solutions of  Class Ilia in the space of  x-dependent forms. A simple example for 
the latter case is provided by the 4-form a 4 = fMBdx#AAF B, where f~4B = f#BA are 
constants and A A and F B denote abelian connection 1-forms and curvature 2-forms 
respectively. Namely one has a4(f~ABx#AAF B) --~4, where ~4 : f~4Bx~FAF 8 is an 
x-dependent solution of  Type Ilia. 

14. Conclusion 

In this paper, we have explicitly computed the cohomology groups Hk(sl d) for 
Yang-Mills theory. Our work goes beyond previous analyses on the subject [17,20, 
4 ,28 -31 ,23 ,22 ,5 ,7 ,9 ] ,  in that (i) we do not use power counting, and (ii) we ex- 
plicitly include the antifields (=sources for the BRST variations). We have shown 
that new cohomological classes depending on the antifields appear whenever there 
are conserved currents, but for a semi-simple gauge group they occur only at ghost 
numbers 9 = - 1  and g > 2. Our results confirm previous conjectures in the field. 
[The existence of  antifield-dependent solutions of  the consistency equation at ghost 
number one for a theory with abelian factors was anticipated in [28]. The structure 
of  these solutions was partly elucidated and an argument was given that they cannot 
occur as anomalies.] 

The central feature behind our analysis is a key property o f  the antifield for- 
malism, namely, that the antifields provide a resolution of  the stationary surface 
through the Koszul-Tate differential [2]. It is by attacking the problem from that 
angle that we have been able to carry out the calculation to completion, while pre- 
vious attempts following different approaches turned out to be unsuccessful. Thus, 
even in the familiar Yang-Mills context, the formal ideas of  the antifield formalism 
prove to be extremely fruitful. 

Our results can be extended in various directions. First, one can repeat the 
Yang-Mills calculation for Einstein gravity with or without matter. This will be 
done explicitly in [32]. Second, at a more theoretical level, one can analyze further 
the connection between the local BRST cohomology, the characteristic cohomology 
and the variational bicomplex [33]. This will be pursued elsewhere. 
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