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Abstract: We study analogues of the Yangian of the Lie algebra gl N for the other 
classical Lie algebras ~o x and 6pN. We call them twisted Yangians. They are 
coideal subalgebras in the Yangian of glN and admit homomorphisms onto the 
universal enveloping algebras U(~0N) and U(~PN ) respectively. In every twisted 
Yangian we construct a family of maximal commutative subalgebras parametrized 
by the regular semisimple elements of the corresponding classical Lie algebra. The 
images in U(~ox) and U(~PN ) of these subalgebras are also maximal commutative. 

Introduction 

In this article we study the Yangian of the Lie algebra gl N and its analogues for 
the other classical Lie algebras 5ON and 5PN" The Yangian Y(glN) is a deformation 
of the universal enveloping algebra U(glN[t]) in the class of Hopf algebras [D1]. 
Moreover, it contains the universal enveloping algebra U(gIN) as a subalgebra and 
admits a homomorphism ~z : Y(gIN) --+ U(glN) identical on U(glN). 

Let aN be one of the Lie algebras 5ON and ~PN" In [D1] the Yangian Y(aN) 
was defined as a deformation of the Hopf algebra U(aN[t]). It contains U(aN) as 
a subalgebra but does not admit a homomorphism Y(aN)--+ U(aN) identical on 
U(aN). In the present article we consider another analogue of the Yangian Y(glN) 
for the classical Lie algebra aN. It has been introduced in [02] and called the 
twisted Yangian; see also [MNO]. The definition in [02] was motivated by [O1] and 
[C2, S]. Algebras closely related to this analogue of Y(glN) were recently studied 
in [NS]. 

Consider aN as a fixed point subalgebra in the Lie algebra gl N with respect to 
an involutive automorphism a. The twisted Yangian Y(glN, a) is a subalgebra in 
Y(glN). Moreover, it is a left coideal in the Hopf algebra Y(gIN). It also contains 
U(aN) as a subalgebra and does admit a homomorphism p :Y(gIN, a ) ~ U(aN) 
identical on U(ax); see Sect. 3. The algebra Y(glu, o- ) is a deformation of the 
universal enveloping algebra for the twisted current Lie algebra 

{F(t) E g l N [ t ] l c r ( F ( t ) )  = F(-- t)} . 
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There is a remarkable family of maximal commutative subalgebras in Y(gIN). 
They are parametrized by the regular semisimple elements of glN. As well as the 
Yangian Y(gl N) itself, these subalgebras were studied in the works by mathematical 
physicists from St. Petersburg on the Bethe Ansatz; see for instance [KBI] and 
[KR, KS]. These subalgebras were also studied in [C1]. We will call them Bethe 
subalgebras. In Sect. 1 of the present article we recall their definition. Their images 
in U(glN) with respect to the homomorphism ~ are also maximal commutative; see 
Sect. 2. 

The main aim of this article is to construct analogues of the Bethe subalgebras 
in Y(gIN) for the twisted Yangian Y(glN, a ). In Sect. 3 for any element Z E (I N 
we construct a certain commutative subalgebra B(glN, o-, Z) in Y(glN, o'). This con- 
struction is a generalization of one result from [S]. If the element Z E aN is regular 
semisimple then the corresponding commutative subalgebra in Y(gIN, o-) is maximal. 
Moreover, the image of this subalgebra in U(aN) with respect to the homomorphism 
p is also maximal commutative; see Sect. 4. This image in U(aN) is a quantiza- 
tion of a maximal involutive subalgebra in the Poisson algebra S(aN) obtained by 
the so-called shift of argument method; see [K2] and [MF]. For further details on 
the involutive subalgebras in S(aN) obtained by this method see for instance [RS]. 
Some results on the quantization of these subalgebras can be found in IV]. 

We are indebted to M. Rais who explained to us that the methods of [K1] can 
be applied to the current Lie algebras; see [RT]. Together with [M] and [MNO] the 
present article is a part of a project on representation theory of Yangians initiated 
by [O1,02]. It is our joint project with A. Molev, and we are grateful to him for 
collaboration. 

1. Bethe Subalgebras in Yangians 

We will start this section with recalling several known facts from [D1] and [KR, KS] 
about the Yangian of the Lie algebra glN; see also [MNO, Sects. 1-2]. This is a 

complex associative unital algebra Y(glN) with the countable set of generators T~Y ~, 
where r = 1,2 . . . .  and i , j  1, . . . ,N.  The defining relations in the algebra Y(gIN) 
a r e  

[T  (p+I)' T(q) l ` k l  J - [  T(P)ij ' T(q+l)kl ] = T(P) T[ ~kjT(q) Ti~P); p,q = 0, 1 ,2 , . . . ,  (1.1) 

where r (~ = 5ij �9 1. The collection (1.1) is equivalent to the collection of  relations ~i] 

min(p,q) (r 1) T(p+q--r) 
T(P) r(q) ] = [*ij  ,*k, J E (T~j.- i a *kj T}/-')); p , q  = 1,2, . . . .  (1.2) T(p+q--r) 

r= l  

Let Eij c End (112 N) be the standard matrix units. We will also use the following 
matrix form of the relations (1.1). Introduce a formal variable u and consider the 
Yang R - m a t r i x  

R (u )  = u �9 id - ~ Eij @Eft  C End(CN)| , 
i,j 

the indices i and j run through the set {1 . . . .  ,N}. We will employ the equality 

R ( u ) R ( - u )  = ( 1 - u 2) �9 id . (1.3) 
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Introduce the formal power series in u -1, 

r j(u) = u - 1  + u + . ,  

and combine all these series into the single element 

T(u) = ~ Eij |  Tij(u) E End (r | y(giN) [[u-1]]. 
i,j 

We will also regard Eij as generators of the universal enveloping algebra U(gl N). 
The algebra Y(glN) contains U(glN) as a subalgebra: due to (1.1) the assignment 

Eij ~ 7(ij 1) defines the embedding. Moreover, there is a homomorphism 

Tc : Y(gIN) ---+ U(gIN) �9 Tij(u ) ~ Oij -t- Eij u -1 �9 (1.4) 

The homomorphism rc is by definition identical on the subalgebra U(gIN). It is 
called the evaluation homomorph i sm for the algebra Y(glN). There is a natural 
Hopf algebra structure on Y(glu). The comultiplication A : Y(gIN) --+ Y(glN) | is 
defined by the assignment 

Tij(u) H ~ Tik(u) | Tkj(u) . (1.5) 
k 

Here the tensor product is taken over the subalgebra I~[[u-1]] in Y(g[N)[[U-1]] �9 
Throughout this article we will denote by ts the embedding of the algebra 

End (C N) into a finite tensor product End(ll2u) | as the s th tensor factor: 

t ~ ( X ) =  1 |174174 s =  1 , . . . , n .  

For any series Y ( u )  E End(C N) | Y(glN)[[u-1]] we set 

Ys(u) = Zs | id ( Y ( u ) )  e End ( r  | | Y(glN)[[u-1]] . 

Let v be another formal variable. In the above notation the defining relations (1.1) 
N | 1 can be rewritten as the single relation in End(q; ) |  , v - l ) ) ,  

R(u  - v) @ l . T l (u)  T2(v) = T2(v) T l (u )  . R (u  - v) | l . (1.6) 

Let trn be the standard matrix trace on End(If?N) | We will also use various 
embeddings of the algebra End(CU) | into End(ll2N) | for any m <n .  When 

1 = < s l < . . . < S m = < n  a n d X E E n d ( l l 2  u)| we put 

Xs1,..Sm = 1s1 @ . . ,  @ Ism(X)  ~ End (IEN) | . 

For any series Y ( u )  c End(Cu)|  | Y(glN)[[u-1]] we will also put 

Ys1...sm(U) = 1s1 @ . . .  @ lSm @ i d  ( Y ( u )  ) C End (IEN) | | Y ( g l N ) [ [ u - 1 ] ]  . 

For each k = 1,... ,N let Hk C E n d  ((FN) | be the antisymmetrisation map nor- 
malized so that H~ = Hk. We will make use of the decomposition into an ordered 
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product in End ( ~ u )  | 

II  R p q ( q - p )  , (1.7) 
l<p<k p<q<=k 

where the arrows indicate the order in which the factors are arranged when the 
indices p and q increase. Due to this decomposition the relation (1.2) implies that 
in the algebra End(ll;N)| | Y(glN)[[u-a]] we have 

H k |  �9 T l ( u - - 1 ) . . .  T k ( u - k ) = T k ( u - k ) . . . T l ( u - 1 ) . H k |  (1.8) 

Here the series in (u - 1)-1, . . . , (u  - k) -1 should be re-expanded in u -1. 

Denote by Fk(IE x)  the subalgebra in End(ll?u) | formed by all elements X 
such that H k X  = H k X H k .  Then by (1.8) we have 

Tl(u 1 ) . . ' T k ( u - k )  C Fk((EN)Qy(gIN)[[U-1]] .  

We will identify the algebra End(AkC N) with the subalgebra in End (C N)| which 
consists of all the elements of the form HkXH~.  Denote by (0~ the homomorphism 

Fk(~ u)  ~ End(Ak~E N) : X ~-+ Hk X . 

Let an arbitrary element Z E End (~N) be fixed. We will now define a remarkable 
commutative subalgebra B(gtu, Z) in Y(gtN). We will call it the Bethe subalgebra. 
Our definition is only a slight modification of that given in [KR, Sect. 2]. 

Consider the formal power series T~(u) . . . . .  TN(U) with the coefficients in the 

algebra End(CN) | | The subalgebra B(gIN,Z ) in Y(~IN) is generated 
by the coefficients of all the series 

B k ( U ) = t r N | 1 7 4  �9 T I ( u - 1 ) . . . T k ( u - k ) . Z k + I . . . Z N |  (1.9) 

where k = 1,... ,N. Let zij E �9 be the matrix elements of Z; 

z= E z i j  E i :  . 
i,j 

Then in a more conventional notation Bk(u) equals the sum 

Tg(1)hO)(u -- 1) . . .  Tg(k)h(k)(U -- k )  �9 Zo(k+l)h(k+l)" "Zo(N)h(N ) �9 e / N ! ,  (1.10) 
g,h 

where 9 and h run through the set of all permutations of 1,2 . . . . .  N while e stands 
for sgn 9 " sgn h. Note that the projector HN E E n d  ((]~N) | is one-dimensional. So 
by using (1.8) when k = N we obtain for the series BN(U) another expression, 

BN(U ) = ~ Vg(1),l(U - -  1 ) "  --  To(N),N(U - N )  �9 s g n g ,  (1.11) 
g 

where O runs through the set of all permutations of 1,2 . . . .  ,N. The series BN(u) is 
called the quantum determinant for the algebra Y(91N). The following proposition 
is well known; its detailed proof can be found in [MNO, Sect. 2]. 

Proposition 1.1. The coefficients at u -1, u -2 . . . .  o f  the series BN(U) are f ree  9en- 
erators f o r  the centre o f  the algebra Y(91N). 
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The proof of the next proposition is also known. Nevertheless, we will give it 
here. 

Proposition 1.2. All the coefficients of the series B1(u) ..... BN(U) commute. 

Proof By making use of the equality (1.8) when k --- N we obtain that 

HN @ 1 �9 Tl(u -- 1)---  TN(U - N )  = HN | (1.12) 

The element T(u) belongs to 

id | 1 + End (~  N) | Y(glu)[[u-l]]  �9 u -1 

and is therefore invertible in the algebra End(IE N) | Y(glu)[[u-1]]. Let T(u) be 
the inverse series. By (1.12) the series Bk(u) then equals 

BN(U) �9 trN | id(HN | 1 �9 TN(U - N )  . . .  Tk+I(U -- k - 1) �9 Zk+l" "ZN | 1). 

Put 

Bk(u )=~k |174  T k ( u - k ) . . . T , ( u -  

where Tl(u) . . . . .  Tk(U) are regarded as elements of 
Then 

Bk(U ) =BN(U)BN--k(U - k ) .  

1) �9 z l . . . z ~  | 1 ) ,  (1.13) 

| End (~N) @ y(glN)[[u-1]]. 

By Proposition 1.1 all the coefficients of the series BN(U) are central in Y(glN). 
Hence it suffices to prove that [Bk(u),B1(v)] = 0 for all the indices k, l = 1 . . . . .  N. 

Let us consider the ordered product 

P(U)= [I [I Rpq(U- p+q)  ~ End (cX)| (1.15) 
l <=p<=k k<q<k+l 

The product P(u) has an inverse in End(tl;U)| and commutes with the 

element Z | Moreover, due to the Yang Baxter equation in End(ll~N)| 

R12(u)R13(u q- v)R23(v) = R23(v)R13(u q- v)R12(u) , (1.16) 

and to the decomposition (1.7) we have 

H k |  ~ ( ~ k<q<k+l 

In particular, we have 

P(u) E Fk(l~ N) @ F/([~ N) [u]. 

We will denote 
~ok | ~ol (P(u))  = P ( u ) .  

The element/5(u) has an inverse in End(AkC N) | End(Alll;U)(u). 

(1.17) 
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By (1.6) we also have the equality in End (~U)| | y(glN)((u_ 1 v- 1 )), 

P ( u -  v) |  1 �9 T l ( u -  1) . . .  T k ( u - k )  �9 Tk+l(v-  1) . . .  Tk+l(v-- l) = 

Tk+~(v -1 ) . . .  T k + t ( v - - l ) . T l ( u - 1 ) . . .  T k ( u - - k ) . P ( u - v ) |  l .  (1.18) 

Introduce the elements of the algebra End (Aktr N) @ End (AIII~ N) | Y(glN)[[u-l]], 

X(u) = (Pk | OPt | id (Tk(u -- k ) - - .  Tl(U - 1)) , 

L(u) = (Pk | opt | id (Tk+l(u -- l ) . . .  Tk+l(U ~" 1)), 

and W = AkZ | AIZ | 1. Then we have 

Bk(u)Bt(v) = tr | id(K(u)L(v)  �9 W ) ,  

where tr stands for the restriction of trk+t onto End(AkC N) | End(Aq[Iu). But by 
applying the homomorphism ~ok | opt | id to (1.18) we get the equalities 

K(u)r (v )  �9 W �9 f i ( u -  v) |  1 = K(u)L(v)  �9 f i ( u -  v) | 1 �9 W 

= f ' ( u  - v )  | 1 �9 ~ ( v ) K ( u )  �9 w .  

Therefore we obtain that 

tr |  W ) = t r  |  W ) = B t ( v ) B k ( u ) .  [] 

Theorem 1.3. Suppose that the element Z E End(lI? N) has a simple spectrum. Then 
the subalgebra B(glN,Z) in Y(glx) is maximal commutative. The coefficients at 
u -1, u -2 . . . .  of  the series Bl(u) , . . . ,BN(u) are free 9eneratorsfor B(glN, Z ). 

The proof of this theorem will be given in Sect. 2. We will end up this section 
with comparing our definition of the Bethe subalgebra in Y(glN) with that given in 
[KR, Sect. 2]. The defining relations (1.6) show that the assignment T(u) ~ T(u) 
defines an antiautomorphism of the algebra Y(glu). Denote by t/this antiautomor- 
phism. It then follows from (1.12) that 

17 ( B x ( U ) )  = B N ( U )  - 1  . 

Furthermore, we have 

q2 (T(u)) = T(u + N)  �9 Bu(u)/BN(bl @ 1) ; 

the proof of the latter statement can be found for instance in [MNO, Sect. 5]. 
The commutative subalgebra of Y(glN) considered in [KR, Sect. 2] is generated 

by the coefficients of all the series 

q - l ( B k ( u ) ) = t r k | 1 7 4 1 7 4  (1.19) 

where k = 1, . . . ,N.  This commutative subalgebra is not maximal if the element 
Z C End (11; N) is not invertible. In that case we have BN(U) = 0. However, due to 
(1.14) the commutative subalgebra in Y(gIN) generated by the coefficients of all the 
series (1.19) along with BN(U) coincides with t/- 1 (B(gIN, Z)). The latter subalgebra 
is maximal for any element Z with a simple spectrum by Theorem 1.3. 
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We will reduce the proof to several lemmas. Some of them are rather general and 
will be used again in Sect. 4. We will employ methods from [C3] and [K1]. 

Let us equip the algebra Y(glN) with an ascending filtration by setting degrees 
of its generators as deg T{f)= r. The linear subspace in Y(flIN) consisting of all 
the elements with degrees not greater than r will be denoted by Yr(9IN). Consider 
the graded algebra 

X(~IN) ~-- ~ Y r ( g l N ) / Y r - l ( g l N )  
r>0 

corresponding to the filtered algebra Y(glN). The defining relations (1.2) show that 
the algebra X(fllN) is commutative. 

There is a natural Poisson algebra structure on X(glN). For any two elements 
X, Y in Y(gl N) of degrees p, q respectively the Poisson bracket of their images x, y 
in X(glN) is 

{x,y} = [X, Y] modYp+q_2(9IN). 

Let J(9[N,Z) be the image in X(glN) of the Bethe subalgebra B(gIN, Z ) in the 
Yangian Y(glN)" To prove the first statement of Theorem 1.3 it suffices to show 
that the subalgebra J(g[N,Z) in X(gIN) is maximal involutive. 

T (~) of the algebra (~) the image in X(glN) of the generator ~,.j We will denote by t/j 

Y(glN). All the elements t(ij r) are fre~ generators of the commutative algebra X(glN). 
The proof of this assertion can be.~found for instance in [MNO, Sect. 1]. We will 
identify X(gIN) with the symmetric algebra S(gIN[t]) of the polynomial current Lie 

(~) will be identified with the element E~jt ~-~ We algebra glN[ t ]. The generator tij 
will also set t~ ~ = fiij �9 1. Then by (1.11), 

, (p) ,(q) min~ 'q )E , ( r -1  ) , (p+q-r )  _ t (p+q-r  ) t~;-1) ); p,q = 1 ,2 , . . . .  (2.1) 
~ij '~kl ~ Z~  \~kj ~il kj 

Consider the formal power series in u -1 with the coefficients in X(glN) , 

tij(u) = + u-1  + u -2  + . . . .  

Then the image in X(glN)[[u-1]] of the series Tij(u- c)E Y(glN)[[u-1]] equals 
tij(u) for any c E 112. Therefore the image of the series Bk(u) in the algebra 
X(glN)[[u-1]] equals 

tg(i)h(I)(U ) " -  tg(k)h(k)(U ) " z g ( k + i ) h ( k + i ) . . '  Zo(N)hOV) �9 G / N !  , (2.2) 
g,h 

where g,h and e are the same as in (1.10). Note that the coefficients of the latter 
series are homogeneous in X(glN). 

For each M = 1 ,2 . . . ,  let us denote by XM(glN) the ideal in the algebra X(glN) 
generated by all the elements t}f! where r > M. Note that by (2.1) we have 

( t~ p), t (q) ~kl J E XM(glN), M = m a x ( p , q ) .  
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Therefore each XM(glN) is a Poisson ideal in X(gIN). Due to the following general 
lemma it suffices to prove that for each M the image of J(glN,Z ) in the quotient 
Poisson algebra X(gIN)/XM(glN) is maximal involutive. 

Let X be any graded Poisson algebra and X1 D X2 D -..  be a descending chain 
of Poisson ideals in X such that for each M = 1,2,...  the ideal XM contains only 
elements of degrees not less than M. Let bl, b2 . . . .  be a sequence of homogeneous 
elements of X in involution. 

Lemma 2.1. Supose that for  each M = 1,2 . . . .  the images o f  bbb2, . . ,  in the 
Poisson algebra X /XM generate a maximal  involutive subalgebra. Then bl, b2 . . . .  
generate a maximal  involutive subalgebra in X. 

Proof  Fix a homogeneous element x E X in involution with each of bl,b2 . . . .  and 
set M = 1 + degx. By our assumption x = f ( b b  b2, . . . )  4- y for a certain polynomial 
f and some y E XM. Then x is the sum of the terms in f ( b l ,  b2, . . . )  of degrees 
smaller than M. [] 

By definition, we have XI(gIN) = S(gIN). From now we shall keep M > 1 fixed. 

For each r 1 , . . . ,M we will denote ~ (r) = oy xzj. the image of the generator t}j ) in the 
quotient Poisson algebra X(gIN)/XM+I(g[N). By (2.1) in the latter algebra we have 

rain (p,q) 
(P) (q)~ (~ . (r- -1)x(p+q--r)  x (p+q- - r )x ( r - -1 )"  ~ 

xij ,Xkt ~ = ~ '.~kj il --~ k] il j ,  (2.3) 
r=max (1, p+q--M)  

where x~ ) = 5ij �9 1. Consider the vector subspace in the Lie algebra glN[t ] 

gM, N : g i N  -~ " ' "  4- g i N  " t m - I  (2.4) 

As a commutative algebra the quotient X(g[N)/XM+I(gIN) can be identified with 
the symmetric algebra S(gM, N). Further, we will identify X(glN)/XM+I(glN) with 

the algebra P(gM, N) of the polynomial functions on gM, U. The generator x,(.j r) will be 

regarded as the coordinate function corresponding to the vector Eij �9 t r-1. 
Let us now make use of the following observation. The relations (1.6) imply 

that for any invertible element G E End (C N) the assignment 

T ( u ) ~ - ~ G |  �9 T ( u ) .  G - 1 |  

determines an automorphism of the algebra Y(gIN). The image of the subalgebra 
B(glN, Z ) with respect to this automorphism coincides with B(gIN, G -1Z G). Hence 
it suffices to assume that Zzj = zi �9 6zj, where all zi C C are pairwise distinct. From 
now on until the end of this section we shall keep to this assumption. 

Let bN be the Borel subalgebra in gl N spanned by the elements Eij with i < j .  
Fix any principal nilpotent element of the opposite Borel subalgebra of the form 

E = ,~1E21 4- " ' "  At-/3N-1EN, N--1 , 

where Sl,... ,SN-1 :t=0. We will consider the Poisson bracket (2.3) on P(gM, N) in a 
neighbourhood of the point 

E (M) = E �9 t M - 1  C gM, N . 

Introduce the affine subspace in gM,~ 

fM, N = E(M) + gM, N 7) bN[t].  
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For each k = 1 . . . .  ,N  denote by bk(u) the image of Bk(U) C Y(glN)[[u-1]] in 

X(gIN) /XM+I(g lN)[ [U-1]]  = P(gM, N)[[U -1 ] ] .  

This image is in fact a polynomial in u -1 of  the degree kM. We will write 

. .  h (TM) u - - k M  b k ( U )  b~ O) 4- b(1)u-1 4- " 4- ~k 

Here all the coefficients b(k r) are in involution due to Proposition 1.2. Consider them 
as polynomial functions on the vector space gM, N. Of the proof of  Theorem 1.3 the 
next lemma is the main part; cf. [K1, Sect. 4] and [RT, Sect. 4]. Another approach 
to the proof of  this theorem was described in [RS, Sect. 3]. 

Lemma 2.2�9 The restrictions of  the functions b(~ r) onto the affine subspace tM, N 
generate the whole algebra o f  polynomial functions on fM, N. 

Proof  Introduce the polynomial in u of the degree M - 1 

..(1) ..M--1 X(2) ~ / - -2  -I- + X (M) x i A u ) = ~ i j  - -  + . . .  . 

Then 

u TM bl~(u) = ~ (uMSg(1)h(1) 4- X g ( 1 ) h ( 1 ) ( U ) ) "  �9 �9 (~Sg(k)h(k) 4-Xg(k)h(k)(U)) 
g,h 

X Z g ( k + l ) h ( k + l ) ' ' ' Z g ( N ) h ( N  ) �9 e / N ! ,  

where 9,h and e are the same as in (1.10) and (2.2). Denote b y X ( u )  the square 
matrix of  order N formed by all the polynomials xij(u). Then we have the Laplace 
expansion 

det (u M + X(u)  + Z v) = vNdet Z + ~ u TM bk(u) v N-k 
k=l 

(2.5) 

where Z is now regarded as a diagonal matrix of order N with pairwise distinct 
diagonal entries z1 . . . . .  ZN E e .  Denote by F(u,v)  the polynomial in u,v obtained 
by restricting the coefficients of  (2.5) onto tM, N. 

On the subspace tM, N we have xi+l,i(u) = ei and xij(u) = 0 if i - j  > 1. Take 

the functions xl~i)+a with d = 0 , . . . ,  N -  1 and r =  1 . . . . .  M as coordinates on t~N. 
Endow the set' of  the pairs (d,r)  with the lexicographical order. We will prove 

consecutively for each of these pairs that ..(r) .,Li, i+ d are polynomials in the coefficients 
of  F(u, v). 

Assume that deg v = M while deg u = 1. Consider the terms of F(u, v) with the 
total degree M ( N  - d) - r. Their sum has the form 

where 

f ( u , v ) + ( - 1 )  a ~ d-(r) tgM--r 
�9 ~i, i+d �9 gi(bl M , I ) )  ei " ' "  e l+d_  1 , 

i=1 

gi(u,v)= Fi (u+zjv). 
y~:i,...,i+d 

(s) Here the coefficients of  the polynomial f ( u , v )  depend only on z l , . . .  ,ZN and xij 
with the pair ( j - i , s )  preceding (d,r).  It now remains to observe that all the N - d  
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polynomials gi(u, v) are linearly independent. Indeed, for each i =  1 , . . . ,  N -  d, 
we have 

g i ( - z i ,  1) = I ]  (zj - zi)=t=O, 
j ~ i , . . . , i + d  

while for 1 < i < j < N - d  we have the equality g j ( - z i , 1 ) = O .  [] 

Note that here b(k ~ E t12 for any k = 1 . . . . .  N.  The total number of  the remaining 

coefficients b([ ) with r = 1 , . . . , k M  equals 

M + 2 M  + . . .  + N M  = M N ( N  + 1)/2 = dimtM, N. 

Corol lary 2.3. All  the coefficients b([ ) with k = 1 , . . . , N  and r = 1 , . . . , k M  are 
algebraically independent. 

This corollary is valid for any M > 1 and therefore already implies the second 
statement of  Theorem 1.3. Namely, all the coefficients at u -1,  u -2 . . . .  of  the series 
Bl (u ) , . . .  ~N(u )  are free generators for B(gIN,Z ). Denote 

D = dim gM, N -- dim tM, N = M N ( N  - 1)/2. 

L e m m a  2.4. There is an open neighbourhood o f  the point E (M) in gM, N, where the 
rank o f  the Poisson bracket (2.3) equals 2D. 

Proof  The elements x~ ) generate a Poisson subalgebra isomorphic to the algebra 
P(glN) of  the polynomial functions o n  ~l  u with the standard Poisson bracket: 

{x O) 0)~ 6kjx}~) ~ .(1) (2.6) 
i j  ' X k l  ~ = - -  " C~il .Xkj 

By (2.3) for any p ,q  => 1, the value of  the function txijr (p),xkl(q)~ at the point E (M) 
equals 

6p+q,M+l " (Okj 6i, l+l el -- (~il Ok, j+l ej) . 

Therefore the rank of  the bracket (2.3) at this point is M times the rank of  the 
standard Poisson bracket on P(gIN) in the point E. The latter rank is N 2 - N .  So 
there exists an open neighbourhood of  the point E (M) in gM, N, where the rank of  the 
Poisson bracket (2.3) is not smaller than M (N 2 - N )  = 2D. Due to Proposition t. 1 

h( 1 ) A ( M N )  and Corollary 2.3 there are M N  algebraically independent elements ~N , ' ' ' ,~ 'N 
in the centre of  the Poisson algebra P(fiM, N). So the rank of  the Poisson bracket 
cannot exceed M ( N  2 - N )  = 2D at any point. [] 

Let us now fix any x C P(gM, N) in involution with all the elements b (r). To 
complete the proof  o f  Theorem 1.3 we have to demonstrate that the element x is 

then a polynomial in b(k ~). For any collection 

H = (h (~) 1 . . . . .  k M ) ,  k E C  [ k = l , . . . , N ;  r =  

denote by 5~ the subset in gM, N, where the values of  the functions b (r) are h (r) 
respectively. Due to Lemma 2.2 there is an open neighbourhood g o f  the point 
E (M) E gM, N such that every non-empty intersection g fl 5PH is transversal to tM, N. 

Again due to Lemma 2.2 to demonstrate that x is a polynomial in b (r) it now 
suffices to prove the following statement; cf. [C3]. 
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Lemma 2.5. One can choose the open neiohbourhood ~ so that the funct ion x is 
constant on every intersection ~ N 5~r. 

P r o o f  For any polynomial b in b~ ~) consider the respective flow in gM, N, 

= {b, xij } ,  i , j  = 1 . . . .  ,N;  r = 1 . . . .  , M ,  (2.7) 

where t stands for the coordinate on the line IR. Since {b ,x}  = 0 the function 
x is constant along every trajectory of this flow. For any point F E gM, N denote 
by WF the collection of the trajectories of the flows (2.7) passing through F for 
all polynomials b in b(k r). Due to Lemma 2.2 and to Lemma 2.4 by the Liouville 
theorem we can choose the open neighbourhood d ~ of E (~) so that 

F C S N  ~ ~ n g = 6 P ~ n E .  [] 

Now we will consider the commutative subalgebra 7c(B(glN, Z)) in U(gIN). 
There is a canonical filtration on the algebra U(g[N). Consider the involutive 
subalgebra in the graded algebra S(gIN) corresponding to n(B(glN,Z)). We will 
identify the Poisson algebras S(g[X) and P(gIN); the element Eij E gi N will be 
identified with the respective coordinate function. Let X be the square matrix of 
order N formed by these functions. The subalgebra in P(gIN) corresponding to 
n(B(glN, Z)) is generated by the coefficients of the polynomial in u, v, 

d e t ( u + X  + Z v ) .  

It is well known that the coefficients of this polynomial at u k v l with k § l < N are 
algebraically independent for any Z with a simple spectrum; see [H, Sect. 2] and 
[MF, Sect. 4]. Lemma 2.2 at M = 1 provides an elementary proof of this fact. More- 
over, it shows that these coefficients then generate a maximal involutive subalgebra 
in P(glN). Thus we obtain the following statement. 

Proposition 2.6. The subalgebra zr(B(gIN, Z)) in U(gIN) is max imal  commutative. 

The analogues of this proposition for the universal enveloping algebras U(~ON) 
and U(~PN ) of the other classical Lie algebras will be given in Sect. 4. 

3. Bethe Subalgebras in Twisted Yangians 

In the previous section we considered only the Yangian of the Lie algebra gl N. 
We will start this section with describing analogues of this Yangian for the other 
classical Lie algebras ~ON and ~PN; in the latter case N has to be even. These 
analogues have been introduced in [02]; see also [MNO, Sect. 3]. Then we will 
construct the respective analogues of the Bethe subalgebra B(glx, Z ) in Y(glx). 

Let aN be one of the classical Lie algebras 5o N and ~PN" We will regard aN as 
an involutive subalgebra in glN" Let a be the corresponding involutive automorphism 
of the Lie algebra glN. The superscript ~ will denote transposition in End(C N) 
with respect to the symmetric or alternating bilinear form on [~N preserved by the 
subalgebra aN in gi N. As well as above E/j E End (C N) will be the standard matrix 
units. But from now on we will let the indices i and j run through the set { - n , . . . ,  
- 1, 1 . . . . .  n} i f N  = 2n and the set { - n  . . . .  , -  1,0, 1 . . . .  ,n} i f N  = 2n + 1. 
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Put e;] = sgn i- sgnj  if aN = ~PN and eij = 1 if  aN = ~oN. We will choose the 
symmetric or alternating bilinear form on 112 N so that 

E~} = ~U " E - j , - i  . 

If  we regard Eij as generators of the universal enveloping algebra U(glN) then 
a(Ei j )  = -Ei~. so that Fij = Eij - Ei} are generators of the algebra U(aN). 

Let us now introduce the element of the algebra End (112 N) | Y(glN)[[U-1]], 

T ( u )  = .~ E~ | Tu(u ) , 
l,J 

and consider the series with the coefficients in End ((~N)| Y(glg), 

Then 

S(u) = r (u)  ~ ( - u )  = ~ eij | &(u), 
i , j  

S ( u )  = E Er | S i j (u)  . 
i , j  

Si j (u)  = 6 i j "  1 + S (1) U -1 q- S/(j 2) ~/-2 @ . . .  

(3.1) 

for certain elements ,~!!),~!.2) -zj , - , j  , ' "  E Y(gIN). By definition, the tw i s ted  Yangian 
,q(r) Y(91N, ~) is the subalgebra in Y(gIN) generated by all the elements - i j  �9 This def- 

inition along with (1.5) implies that Y(glN, a) is a left coideal in the Hopf algebra 
Y(gIN ) : 

A(Y(gIN, ~r)) C Y(glN) | Y(gIN, 6 ) .  

Introduce also the element of End (11; N)| 
R(u) = u .  id - ~ Ei~. | Eji = u . id - ~ E i j |  Ej'i 

i , j  i , j  

Later on we will employ the equality 

R ( u ) k ( - u  + N )  = (Nu - u 2) �9 id . (3.2) 

En CN | The relation (1.6) implies that in the algebra d(  ) | Y(glN)((u -1, V -1)),  

f~ (u )  �9 R ( ,  - v)  | 1 �9 T2(v) = T2(v) �9 R (u  - v) @ 1 �9 Tl(u) �9 (3.3) 

By making use of  the latter relation and by applying (1.6) again we obtain the 

relation in End (112N)| | Y(gl N, o-) ((u -~ , v -1 )), 

R ( u , v ) |  1 �9 & ( u )  �9 R ( - u -  v) |  1 �9 S2(v) 

= S2(v) �9 R ( - u - v ) |  1 �9 Sl(U) �9 R ( u , v ) |  1 . (3.4) 

The proof of the following proposition is contained in [MNO, Sect. 3]. Whenever 
in the present article the double sign 4- or ~ occurs, the upper one will correspond 
to the case aN = ~ON while the lower sign will correspond to the case aN = ~PN" 

Proposition 3.1. In the algebra End (112 N) | Y(gly, a)[[u-1]] we have the relation 

S(U) - S ( - u )  = :~ ( S ( u )  - S ( - u ) ) /  2u . (3.5) 
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The relations (3.4) and (3.5) yield the defining relations for the 9enerators S~ r) of  
the subalgebra Y(gIN, a) in Y(glN). 

In a more conventional notation (3.4) and (3.5) can be rewritten respectively as 
the collections of relations for all possible indices i, j, k, l, 

(/g2 __ 1)2) �9 [Si j (bl ) ,Skl (V)]  = (12 -}- I)) �9 (Sk j (u )S i l (1 ) )  - Sk j (1) )g i l (b l ) )  

- (u  - v )  �9 (~k , - s  s i , _ k ( u )  S-s ,1(1))  - e ~ - t  &_i(v)S-tj(u)) 

+ el,-j " (Sk, -i(u) S_j, l(v) - Sk,-i(1)) S_j, l(u)),  (3.6) 

and for all i, j, 
Sij(u) - e i j  S_j ,_i(-u)  = qz(Sij(u) - Si j (-u)) /2u . (3.7) 

The algebra Y(glN, a ) contains the universal enveloping algebra U(aN)as a sub- 
algebra; due to (3.6) the assignment Fij ~ S(i) ) defines the embedding. Moreover, 
due to (3.6) and (3.7) we obtain the following corollary to Proposition 3.1. 

Corollary 3.2. There is a homomorphism 

p:  Y(glN, O-)---+ U(au): Sij(u) Hg) i j+Fi j (u: t : l /2 )  -1 . (3.8) 

The homomorphism p is by definition identical on the subalgebra U(au). We 
will regard (3.8) as an analogue of the evaluation homomorphism (1.4). 

The Yang-Baxter equation (1.16) in End (112 u )| [u, 1)] along with (1.3) implies 

Rlz(u)/~13(1))/~23(u -}- v) = /~23(u  -t- 1))R13(v)RI2(U) , (3.9) 

R13(L/)/~12(V)/~23(b/~-/)) = /~23(b/ ~- 1))/~12(1))R13(b/) , (3 .10)  

Rz3(U) R12(v)/~13(u + v) = ,013 (u + v) R12(v) Rz3(u) �9 (3.11 ) 

For each k = 1,... ,N consider the element of End (cN) | | Y(gIN, o-)[[u-1]], 

S(u , k )=co(u ) .  ~ S p ( u - p ) .  I~ R p q ( p + q - 2 u ) |  , 
l < p < k  p < q < k  

where 
co(u) = [I  (P + q - 2u) -I  �9 

l<p<q<_k 

Due to the decomposition (1.7) by applying the relation (3.4) repeatedly along with 
(3.9) to (3.11 ) we obtain the equality in the algebra End (C u)~ | ' a)((u_ 1 )), 

it is an analogue of the equality (1.8) in End (112 u)| | Y(glN)[[u_ 1 ]]. In particular, 

S(u, k) E Fk(C N) | Y(gl N, a)[[u-1]]. (3.12) 

Let us keep fixed an arbitrary element Z E End(If2 N) but now assume that 
Z r = Z or Z ~ = -Z .  We will now construct a certain commutative subalgebra in 
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Y(gI•, a). It will be regarded as an analogue of the Bethe subalgebra in the Yangian 
Y(glN) and denoted by B(gl N, a,Z) .  

For each k = 1 . . . . .  N introduce the element of End (IEN)| 

Z ( u , k ) = c o ( u ) .  H Zp �9 ~[ R p q ( p + q - 2 u )  
l<p<k p<q<k 

(3.13) 

Observe that due to the assumption that Z t =  Z or Z ~ = - Z  a relation similar 

to (3.4) holds in the algebra End (ll2N)| v]. It can be verified directly that 

R(u, v) Z1 R ( - u  - v) Z2 = Z2 R ( - u  - v) Z1 R(u, v) . (3.14) 

By applying the relation (3.14) repeatedly along with the equalities (3.9) to (3.11) 
we obtain that 

Hk �9 Z (u , k  ) = co(u) �9 ~ pq(p § q - 2u) �9 Zp �9 Hk , 
l<p<k p 

In particular, we obtain that Z(u, k)  E Fk(C N )(u). Introduce the formal power series 
in u -I  with the coefficients in Y(g[N, a), 

Ak(u) = tr N | id(HN | 1 �9 S1,...,k(u,k) �9 I (u )  | 1 

Zk+I,...,N(U § N/2 - k , N - k  ) |  l ) ,  

where 

/ (u)  = • Rpq(p + q -- 2u ) / (p  + q -- 2u) . 
l<p<k \k<q<N 

By definition, the subalgebra B(gIN, a ,Z ) in the twisted Yangian Y(glN, a ) is 
generated by all coefficients of the series Aa(u) , . . . ,AN(U).  By using (3.12) when 
k = N we get the analogue of (1.12), 

HN | 1 �9 S ( u , N )  = HN @AN(U).  (3.15) 

The proof of the next proposition is also contained in [MNO, Sect. 3]. Let us put 
O(u) = 1 +N/(1  - 2u) if aN = ~PN" If aN = ~ON we put O(u) = 1. 

Proposition 3.3. We have the equality in the algebra Y(glN)[[u-l]], 

AN(U) O(u) = BN(U)BN(N - u + 1).  

The coefficients at u -2, u -4 . . . .  o f  the series AN(U) are f ree  generators f o r  the 
centre o f  the algebra Y(gt N, a). 

The series AN(u)O(u)  is called the quantum determinant for the algebra 
Y(gl N, a), or Sklyanin determinant [MNO]. There is an analogue of the expression 
(1.11 ) for this series, it has been proposed in [M]. Now we will prove the following 
theorem. 

Theorem 3.4. All  the coefficients o f  the series A l (u )  . . . . .  AN(U) commute. 

Proof. We will employ arguments already used in the proof of Proposition 1.3. 
We shall keep to the notation introduced therein. We will also use a method from 
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[S, Sect. 3]. The element S(u, k) belongs to 

id | 1 + End (II~N) | | Y(glN, ~ " u - 1  , 

and is therefore invertible in the algebra End (I[;N) | | Y(glN, a)[[u-1]]. Let S(u, k) 
be the inverse series. Put 

Ak(u) = trk |  | 1 . S ( u , k ) . Z ( u + X / 2 , k ) |  (3.16) 

Then by (3.15), 
Ak(u)= AN(U)AN-k(U-- k) " (Nk ) . 

By Proposition 3.3 all the coefficients of the series AN(U) are central in Y(glx, o-). 
Hence it suffices to prove that [ Ak(u),Al(v) ] = 0 for all the indices k, l = 1 . . . . .  N, 

Let P(u) denote the same ordered product as in (1.15). Consider also the 
product 

Q ( u ) =  1-[ ~ Rpq(U+p+q) EEnd(eN)| (3.17) 
I<p<~k k<q<k+l 

The product Q(u) has an inverse in End (cN)| Due to the decomposition 
(1.7) and Eq. (3.9) to (3.11) we have 

H~ |  l-I Rpq(~ + p + q)  . ~ | l , 
l<=p<k k<q<=k+l 

l | Hl . Q ( u ) =  

In particular, 

We will denote 

I~ ~I Rpq(U+ p + q )  
l<p<~k k<q<k+l 

Q(u) E Fk(l~ N) @ F/(II2 N) [u]. 

cpk | q~t(Q(u)) = Q(u) . 

. I |  

The element ~)(u) has an inverse in End(Akr N) | End(Alll2N)(u) as well as the 
element/5(u) defined by (1.17). 

Further, let ~c and 2 denote the simultaneous transpositions in End(ll2u) | 
with respect to the first k and the last l tensor factors. Due to the equalities (1.3) 
and (3.2) the definition (3.17) implies that 

~c(Q(u) -1) �9 tc(Q(u - N)) �9 fi(u) = id , 

2(Q(u) -1) �9 2(Q(u - N)) �9 fi(u) = id , 

where fl(u) stands for the rational function 

[I l~ (u+ p + q ) ( u +  p + q - N )  
l<p<k k<q<k+l ( U q - p + q - N )  2 - 1 

Note that the elements Ilk E E n d  ([~N) | and Ill E End(~N) | are invariant with 
respect to the simultaneous transpositions in all the tensor factors. Therefore in 
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End(Aktl2 N) | End(Alll~U)(u) we get 

~ ( Q ( u ) - l ) .  ~ c ( Q ( u - N ) ) - f l ( u ) - - i d ,  (3.18) 

2(~)(u)-1)  �9 2 ( Q ( u -  U ) ) - / 3 ( u ) =  id . (3.19) 

E N | 1 B y ( 3 . 4 )  and (3.9) to (3.11) we obtain in nd( l~ ) |  c r ) ( ( u - , v -  )), 

P(u  - v) | 1 �9 Sl,...,~.(u,k) �9 Q ( - u  - v) | 1 �9 Sk+l,...,k+l(v, l) 

= Sk+l,...,k+l(v,l) �9 Q ( - u  - v ) |  1 �9 S1,...,k(u,k) �9 P (u  - v ) |  1 . (3.20) 

Further, by using (3.14) along with (3.9) to (3.11 ) we obtain in End (IE N)| v) 
the following analogue of  (3.20): 

t ~ ( u -  v)  �9 Zl , . . . ,k(u,k)  �9 Q ( - u -  v)  �9 Z~+l,...,k+t(v, l )  

= Zk+l,...,k+l(v,l) �9 Q ( - u - v )  �9 Z1,...,k(u,k) �9 P ( u - v ) .  (3.21) 

Introduce the elements of  the algebra End(Akt~ N) | E n d ( A q l 2 N ) |  o-)[[u-l]], 

and 

K ( u )  = Ok | ~oz @ id (S1,...,k(u,k)), 

L(u)  = (Pk | q)l | id (Sk+l,...,k+l(U,l) ) , 

U ( u )  = ~ok(Z(u + N / 2 , k ) )  | id | 1 , 

V(u)  = id | ~ol(Z(u + N / 2 ,  l ) )  | 1 . 

The equalities (3.20) and (3.21) then imply that 

K ( u )  . Q ( - u  - v) - 1 |  . L (v )  . f i (u  - v) | l 

= P (u  - v) | 1 �9 L (v )  �9 Q ( - u  - v) -1 | 1 �9 K ( u ) ,  (3.22) 

f i ( u - v ) |  l �9 U(u)  . Q ( - u - v -  N ) |  l �9 V(v)  

= V(v )  �9 Q ( - u  - v - N )  | 1 �9 U(u )  �9  - v) | 1 . (3.23) 

By the definition (3.16) we have 

Ak(u)A1(v) = tr | i d ( K ( u ) L ( v )  �9 V(v )  U(u) ) .  

Let us call two elements of  End(AkC N) | End(AtlE N) | Y(gl N, a ) ( (u  - l ,  v -1 )) 
equivalent and relate them by the symbol ~ if  the values of  tr | id on these two 
elements are the same. Then 

K ( u )  L ( v ) .  V (v )  U(u )  ~ )~ | id ( K ( u ) L ( v )  ) .  2 | id ( V ( v )  U ( u ) )  

= X ( u ) .  ~ | id (L(v))  �9 2 @ id (V(v) )  - U(u)  

= K ( u ) .  2 | id (L(v))  �9 2 ( Q ( - u  - v) -1 ) @ 1 

x )~(O(-u  - v - N ) )  |  | id(V(v))  �9 U ( u ) .  [3( -u  = v ) ,  
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where we made use of  (3.19). The product in the last two lines is equivalent to 

2 | id (K(u)  �9 2 | id (L(v))  �9 2 ( Q ( - u  - v) -1 )  | 1) 

x ). @ id ( 2 ( Q ( - u  - v - N ) )  @ 1 �9 2 | i d (V(v) )  �9 g(u ) )  �9 f i ( -u  - v) 

K(u)  �9 Q ( - u  - v) - I  | 1 �9 L(v) 

• v ( v )  �9 O ( - u  - v - N )  | 1 �9 U ( u )  �9 ~ ( - u  - v )  

= K ( u ) .  Q ( - u - v )  -1@1 . L ( v ) . P ( u - v ) |  

x / 5 ( u - v )  - 1 |  �9 V ( v ) .  Q ( - u - v - N ) |  �9 U ( u ) .  f l ( - u - v )  

= P ( u  - v )  @ 1 �9 L ( v )  �9 Q ( - u  - v)  - 1  | 1 �9 K(u) 

x U ( u ) .  Q ( - u - v - N ) |  �9 V ( v ) . P ( u - v )  - 1 @ 1  �9 f i ( - u - v ) ,  

where we used (3.2) and (3.23). The product in the last two lines is equivalent to 

L(v) �9 0 ( - u -  v) -1 @ 1 �9 K(u) 

• U ( u ) .  Q ( - u - v - N ) |  �9 V ( v ) .  f l ( - u - v )  

~c | id (L(v) �9 Q ( - u  - t~) - 1  | 1 �9 K(u) )  

x ~ c Q i d ( U ( u ) .  Q ( - u - v - N ) |  �9 V(v))"  f l ( - u - v )  

= L(v) �9 ~c | i d (K(u ) )  �9 tc | i d ( g ( u ) )  �9 V(v) N L(v)K(u)  �9 U(u) V(v) ,  

where we made use of  (3.18). It now remains to take into account that 

tr | id (L(v)K(u)  �9 U(u) V(v)) = Al(v)A~(u). [] 

Theorem 3.5. Suppose that the element Z E End C N has a simple spectrum and 
Z I = - Z .  Then the subalgebra B(gIN, o, Z)  in Y(glN, a )  is maximal commutative. 
The coefficients at u - 2 , u - 4 , . . .  of  the series AN(U),AN-2(u),... and the coeffi- 
cients at u - l , u  -3 . . . .  of  the series AN-I(U),AN-3(U),... are free 9enerators for 
B(gIN, a, Z). 

The proof  of  this theorem will be given in Sect. 4. We will end up this 
section with making the following observation. Consider the series A(u) defined 
by (3.t6).  

Proposit ion 3.6. Suppose that Z '  = +Z, where the upper sign corresponds to the 
case o N ~ -  ~D N while the lower one corresponds to iI u = ~3 u. Then 

Ak(u) = t r k  | id (Hk | 1 �9 S(u, k)  �9 Z 1 . "  Zk | 1) .  

Proof  It can be verified directly that for Z / = -t-Z we have in End(lI2u)| the 
equality 

Zl R(u)Zz H2 = Zl Zz H2 . 

By using repeatedly this equality we obtain from (3.13) and (3.16) the required 
statement. [] 
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4. Proof  of  Theorem 3.5 

We will employ arguments already used in the proof of Theorem 1.3. Consider the 
ascending filtration on the algebra Y(gIN) introduced in Sect. 2. Then by (3.1) for 
the generators of the subalgebra Y(gl N, a) in Y(glN) we have degS (r) = r. Denote 
by X(glN, o-) and J(glN, o-, Z) the images in the graded Poisson algebra X(gl N) of the 
subalgebras Y(gl N, o-) and B(g[N, o',Z) in Y(glN) respectively. We shall prove that 
the subalgebra J(glN, o-,Z) in the Poisson algebra X(gIN, o-) is maximal involutive. 

At) We will denote by aij the image in X(gI N, o-) of the generator S~ r) of the algebra 
Y(gIN, a). Due to the relation (3.5) we then have 

s(r) s(r). ij = eij --j,--~ " (--1) r; r = 1,2 . . . .  (4.1) 

in X(gIN, a). Moreover, the relations (4.1) are defining relations for generators sl) r) 
of the commutative algebra X(glN, o-). The proof of the latter statement is contained 
in [MNO, Sect. 3]. We will identify X(glN, 0-) with the symmetric algebra over the 
twisted polynomial current Lie algebra 

{F( t )  E glx[ t] ] a ( F ( t ) )  = F ( - t ) } .  

The generator sls) can be identified with the element 

E i j  �9 t r -1  - -  Eij. �9 ( - t )  r - 1  (4.2) 

of this Lie algebra. We will set s~ ) = 3ij �9 1. 

Lemma 4.1. In the Poisson algebra X(gIN, 0-) for  any p, q > 1 we have 

(p) (q ) l  min~ 'q) f . ( r - -1)~(p+q--r )  .(p+q--r).(r--1),~ 
Sij ,Skl  ~ = Z..a k~kj "~il - - ~ k j  ~il ) 

r=l  

min(p,q) 
~(r- 1 ) . (p+q-r) e(p+q-r) dr-  1) ~ (__ 1 )P+~- 1 . (4.3) 

~- ~ (ek,--j ai,-- k a--j,l  - - e i , _  l Ok,_ i ~  1" 
r= l  

Proo f  By the relations (3.6) and by the definition of the Poisson algebra X(g[N, 0-) 

{~(P) ~(q)l P 
~ '~  J = ~ ('~kj~(p--r)~(q+r--1)'3il - -  s(q+r--1)~(P--r)'~kj ~ ) 

r= l  

P 
e(p--r ) ~(q+r-- 1) s(q+r - 1) s(P--r)  x 

-~- E ( e k , - j  ~  o - j , l  --  8 i , - I  k , - i  - l , j  ) " ( -1 )  ~- (4.4) 
r=l  

Here the first of the two sums coincides with the first sum in (4.3). The second 
sum in (4.4) coincides with the second sum in (4.3) by the relations (4.1). [] 

Consider the formal power series in u -1 

^(1). --1 (2) --2 
Si j (U)  = s(O) + "~'ij u + Sij 12 ~- . . .  

with the coefficients in the algebra X(gl N, o-). The image of the series Ak(u) in the 
algebra X(glN,~r)[[u-1]] equals 

S9(1)h(1)(U) " " " S9(k)h(k)(bl ) �9 Zg(k+l)h(k+l) " " " Zo(N)h(N) �9 e/N! , (4.5) 
g,h 
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where g,h run through the set of all permutations of  - n , . . . ,  - 1 , 1 , . . . ,  n if 
N = 2n and the set of  all permutations - n  . . . .  , - 1 , 0 ,  1, . . . ,  n if N = 2n + 1. Here 
e = sgng �9 sgnh as well as in (1.10) and (2.2). 

For each M = 1,2. . .  denote by XM(glN, a)  the ideal in the algebra X(gIN, a)  

generated by all the elements ~(r) where r _> M. Note that by Lemma 4.1 we have ~/ j  , 

(p) (q)~ 
sij ,Ski ) E XM(g[N,a); M = max(p ,q ) .  

Therefore each X M ( g I N ,  O-) is a Poisson ideal in X(gl N, a). Now let the index M 

be fixed. For each r = 1, . . . ,  M denote by y~r) the image of the generator s}~ ) in 
the quotient Poisson algebra X(g[N, a)/XM+l(glx,~r ), In the latter algebra we have 

min( p, q ) 
(p),  (q ) l  ( , ( r - - 1 ) , ( p + q - - r )  

Yij Ykl -~ = E ~,.~ kj # il 
r=max(1, p+q- M ) 

_ y ( p + q - r ) y ( r - 1 ) )  
kj il 

min(p,q) 
. ( r - l ) .  (p+q-r) 

+ E (Sk,- j  Y i , -k  Y - j , I  -- 
r=max(1, p+q-- M) 

, (p+q-r) ,  ( r - 1 ) ~  . ( _ l ) P + r - 1  (4.6) 
gi,--I Yk,--i .,V--l,j ] 

where "(0) 1 �9 6ij. Moreover, by (4.1) we have the equalities Yij = 

y(r) = ~i'y(r) ij J - j , - i "  ( -1 ) r ;  r =  1 . . . .  , M .  

Let gM, N be the same vector space as in (2.4). Consider the subspace in gM, X, 

fM, N = {F(t)  r gM, N l a ( F ( t ) )  = F ( - t ) } .  

As a commutative algebra the quotient X(gIN, a)/XM+I(gIN, a ) can be identified 
with the symmetric algebra S(~M,N). Further, we will identify this quotient with the 

algebra P(~u,~) of  the polynomial functions on f~N. The generator y/~r) will be 
regarded as the coordinate function corresponding to the vector (4.2) in (M, Ar. 

Let us introduce the polynomials in u of  the degree M - 1, 

. (1)~.M--1 _ ( 2 ) M - - 2  _ (M) 
YiJ(bt) = Yij u Jr Yij  bF -t- "'" t Yij  , 

and denote by Y(u) the square matrix of  order N formed by these polynomials. For 
each k = 1, . . . ,  N denote by a~(u) the image of Ak(u) E Y(g[N, a)[[u-1]] in 

X(gl N, a)/XM+I (gl N, 0-)[[U--1 ]] ~--- P(~M, N)[[U-1 ]] �9 

This image is in fact a polynomial in u -1 of the degree kM, see (4.5). We have 
the Laplace expansion 

det (u M + Y(u) + Zv) = vNdetZ + ~ ukMak(U)I) N k 
k=l  

(4.7) 

where Z is now regarded as a square matrix of  order N. Since Z '  

ak( - -U)  = ak(U) �9 ( - - 1 ) N - - k ;  k = 1 . . . . .  N .  

We will write 
(1) --1 . .  a(kM)u--kM 

ak(u)=a(~ ~  k u + .  + k 

= - Z  we have 
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(0) = 0 unless N - k + r c 2 2g. Here a k E 112 for any k = 1 . . . . .  N. Furthermore a(k r) 

All the remaining coefficients a(k r) are in involution with respect to the Poisson 
bracket (4.6) by Proposition 3.3. 

From now on we will assume that M = 2m + 1 if aN = ~02n+l or aN = ~P2~ 

and that M = 2m if aN = ~02n. We shall prove that all the coefficients a(k r) with 

l < _ r < k M ;  N - k + r E 2 Z  (4.8) 

are algebraically independent and generate a maximal involutive subalgebra in the 
quotient X ( g l x ,  a ) / X M + l ( g [ N , ~ r ) .  Lemma 2.1 will then imply that the subalgebra 
J(glN, o-,Z) in the Poisson algebra X(glN, o-) is also maximal involutive. So we will 
then have Theorem 3.5 proved. 

It can be verified directly that for any element G E End(I/J N) the following 

equality holds in the algebra End(llTN)| 

Clk(u)Gf=GSk(u)al. (4.9) 

Now suppose that G '  = G -1 so that the element G belongs to the orthogonal or 
symplectic group on 112 N corresponding to the subalgebra aN in gl N. By the above 
two equalities the defining relations (3.4) and (3.5) then imply that the assignment 

S ( u )  ~-+ G @ 1 �9 S ( u )  �9 G -1 @ 1 

determines an automorphism of the algebra Y(gIN, o-). The image of the subalgebra 
B(glN, a ,Z)  with respect to this automorphism is B(gI N, o-, G - 1 Z G ) .  Indeed, by 
applying (4.9) repeatedly we obtain that the images of  the series A l ( u )  . . . . .  A N ( U )  

determined by the element Z coincide with the corresponding series determined by 
the element G -  1 Z G. 

Hence it suff• to prove Theorem 3.5 assuming that z i j  = zi  �9 6ij ,  where all 
zi E C are pairwise distinct and z - i  = - z i  for any index i. We shall keep to this 
assumption from now on until the end of this section. 

Let bN be the Borel subalgebra in gl N spanned by the elements Ei j  with i __< j .  
Fix a principal nilpotent element of the Borel subalgebra in gl N opposite to bN 

f En,n-1  -- E l - n , - n  "k" "" �9 H- E21 - E- l , -2  H- El,0 - E0,-1 

E = ~ En ,,-1 - E l - ~ , - n  + + E z l  - E - l , - 2  q- E1,-a 

I k En n- l  + E l - n , - n  + + Ezl  + E - 1 , - z  + E1,-I  

if  aN = fi132n+l ; 

if aN = fiP2n ; 

if aN = ~O2n . 

Let gl N = aN @ XN be the decomposition into the eigenspaces of  the involutive 
automorphism ~r. Then E c ON for a N = ~ 0 2 n + l , f i P 2 n ,  but E E XN for aN = ~O2n. 
Therefore 

E (M) = E �9 t M - 1  E ~M,N 

by our assumption on the parity of  M. We will consider the Poisson bracket (4.6) 
on P({M,N) in a neighbourhood of the point E (M). 

Regard the coefficients a(k r) as polynomial functions on fM, N. Consider the affine 
subspace in [M,N, 

~M,N : E(M) @ (~M,N A bN[t])  �9 
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It will be taken as an analogue of the subspace t u y  in gM, N. For the principal 
nilpotent element E E gIN fixed above we have 

~M,N ~ tM, N = SM, N " 

Therefore by comparing (2.5) and (4.7) we obtain the next statement directly from 
Lemma 2.2. 

Lemma 4.2. The restrictions of  the functions a([ ) onto the affine subspace ~M,N 
generate the whole algebra of polynomial functions on ~M,N. 

Observe that the total number of  the coeficients a([ ) with the indices satisfying 
(4.8) coincides with 

( 2 m n + m + n ) ( n +  1) if a N = ~ 0 2 n + l  ; 

dim~M,U = ( 2 m n + m + n +  l)n if  ON=~P2n ; 

(2n + 1)mn i f  a N = ~O2n �9 

Corollary 4.3. All the coefficients a~ ~) with the indices satisfying (4.8) are alge- 
braically independent. 

To complete the proof of  Theorem 3.5 we have to demonstrate that the invo- 

lutive subalgebra in P(~M,N) generated by the coefficients a~ ~) is maximal. As an 
argument similar to that given in the end of Sect. 2 shows, this assertion follows 
from Lemma 4.2 and from the next lemma. Set 

( 2 m n + m + n ) n  if aN=~O2n+l;  

D = dim~M,N -- dim ~M,N = ~ (2mn -- m + n)n if  aN = ~P2n ; 

l, (2n -- 1)mn i f  a N = ~O2n . 

Lemma 4.4. There is an open neighbourhood of the point E (M) in ~M,N, where the 
rank of  the Poisson bracket (4.6) equals 2D. 

Proof Consider the alternating bilinear form c~ : gl N • gl N --+ C, where ~(Eij,Ekt) 
is the value of (2.6) at the point E. The rank of this bilinear form is N 2 - N. 

Any summand at the right-hand side of  (4.6) vanishes at the point E (m) unless 
p + q = M + l  a n d r = l .  We will assume that p + q = M + l  and that p , q > l .  
Then the value of the bracket r (p) (q)~ E(M) l Y i j  , Ykl ~ at the point is 

a(Eij - ~r(Eij) . (-1)P,Ekt - 6(Ekl) . (--1)q) . 

Suppose that aN = S02, SO that M = 2m. Then E E XN and the restriction of the 
bilinear form ~ onto either of the subspaces aN • tN and tN • aN has the rank 

(N 2 - N ) / 2  = n ( 2 n -  1).  

Hence there exists an open neighbourhood of the point E (M) in fM, U, where the 
rank of the Poisson bracket (4.6) is not smaller than 2m �9 n ( 2 n -  1) = 2D. 

Now suppose that aN = ~02n+a or aN = ~P2n SO that M = 2m + 1. Then E E aN. 
Moreover, E is a principal nilpotent element of  the Borel subalgebra in aN opposite 
to aN fq bN. Therefore the restriction of the bilinear form c~ onto aN • aN has the 
rank 2 n 2. The restriction of ~ onto XN • tN then has the rank 

(N 2 - N ) -  2n 2 = 2n(n i 1).  
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So there exists an open neighbourhood of the point E (:v/) in ~M,N, where the rank 
of the Poisson bracket (4.6) is not smaller than 

( m + l ) -  2n2 + m . 2n(n  + l ) = 2D . 

But for every aN due to Proposition 3.3 and to Corollary 4.3 in the centre of 
the Poisson algebra P(~MoN) there are algebraically independent elements b}~ ) with 
1 < r < MN,  r E 22g. So the rank of the Poisson bracket (4.6) at any point cannot 
exceed 

2ran + n + m if  a N = $02n+l ; 

2 D = d i m f M ,  N - -  2 m n + n  if  aN=tip2 n ; 

2mn  i f  a N = ~O2n . 

The proof of Lemma 4.4 is now complete. [] 

Let us now consider the commutative subalgebra p(B(gIN, o-, Z)) in U(aN). First 
consider the involutive subalgebra in the graded algebra S(aN) corresponding to 
p(B(glN,~r,Z)).  We identify the Poisson algebras S(ctN) and P(aN); the element 
F~j E aN is identified with the respective coordinate function. Denote by Yij this 
function. Let Y be the square matrix of the order N formed by all these func- 
tions. The subalgebra in P(aN) corresponding to 7z(B(glN, o', Z))  is generated by the 
coefficients of the polynomial in u, v, 

det (u + Y + Zv) . (4.10) 

This subalgebra in P(aN) has been considered in [MF, Sect. 4]. It has been 
proved there that the coefficients of (4.10) form a complete set of elements of 
P(aN) in involution: their gradients at a generic point of aN span a space of the 
maximal possible dimension 

(dim a N @ rank aN)/2. 

Lemma 4.2 provides another proof of this fact for aN = ~o2n+i and aN = ~P2n. In 
these two cases it also shows that the coefficients of (4.10) generate a maximal 
involutive subalgebra in P(ax). Indeed, when aN = ~02n+1 or aN = fiP2n we can set 
M = 1. But when aN = fil)Zn by our assumption M has to be even. So we have to 
consider the latter case separately. 

Suppose that N = 2n and aN = 5o2n. Fix in 5o2n the Borel subalgebra b2n A ~o2n 
and choose the principal nilpotent element of the opposite Borel subalgebra, 

E = En, n-1 - E l - n , - n  + " "  + E21 - E - 1 , - 2  + E2,-1 - E 1 , - 2  �9 

Consider the affine subspace 52n = E + ben N 5o2n in ~o2n. To prove that the co- 
efficients of  (4.10) again generate a maximal involutive subalgebra in P(~o2n) it 
suffices to establish the following lemma. 

Lemma 4,5, The restrictions o f  the coefficients o f  the polynomial (4.10) onto the 
affine subspace ~2n 9enerate the whole algebra o f  polynomial functions on ~2n. 

Proo f  We will employ arguments already used in the proof of Lemma 2.2. Denote 
the polynomial in u,v obtained by restricting the coefficients of (4.10) onto ~2n by 
F(u,v) .  Let the indices i , j  ran through the set {1, . . . ,  n}. Take the functions Yij 
with i < j  and Y - i , j  a s  coordinates on ~2n. P u t  f]ij = Yij  --  ( ~ l i Y - l , j .  We will prove 
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consecutively for d = 0, 1 , . . . ,  2n - 2 that here all Yij with j - i = d and all Y-i,j 
with i + j = d + 2 are polynomials in the coefficients o f  F(u, v). 

Consider the terms of  F(u,v) with the total degree 2 n -  d -  1 in u,v. I f  
d = 0 , . . . ,  n - 1 their sum has the form 

n - d  d+l  

f (u ,v)  + ( - 1 )  "+a �9 ~ Yi, i+d g i ( u ' v )  -- ( - 1 )  n+a " ~ Y - i , d - i + 2  hi(l,t,v), 
i=1 

where 

hi(u, v) = 2u �9 

while 9i(u, v) equals 

n 

I1 

i=1 

f i  ( - u §  f i  ( u§  (4.11) 
j = i + l  j=d- i+2 

( -  u + zjv) �9 I I  (u + z:v) + [I (u+z j v ) .  rI ( - u + z j v ) .  
j+i,..., i+d j = l  j+i,..., i+d j = l  

Here the coefficients o f  the polynomial f (u,  v) depend only on Yij with j - i < d 
and o n  Y-i,j  with i + j < d + 2 along with Zl . . . . .  zn. But all the n + 1 polynomials 
9i(u, v) and hi(u, V) are linearly independent. To prove this consider their values at 

(u,v) = (z,, 1) , , . . ,  (zn, 1), (0, 1) .  

Since all the numbers zl,--7.1 . . . .  , z~,-z~ are pairwise distinct we have 

hi(zi, 1)oeO, l _ < i _ < d + l ;  hj(zi, 1)=O, l < = j < i < d + l .  
Moreover, we have 

hj(O, 1 ) = O ,  l < j < d + l ;  hj(z~,l)=O, l < = j < = d + l < i < n .  

Furthermore, we have 9 1 ( 0 , 1 ) + 0  and 

9i(za+i, 1)~=O, 2 < - i < - n - d ;  9j(za+i, 1)=O, l < j < i < n - d .  

I f  d = n . . . . .  2n - 2 then the sum of  the terms of  F(u, v) with the total degree 
2 n -  d -  1 has the form 

f (u ,v)  - ( - 1 )  n+d �9 ~ Y--i,d--i+2 h i ( u , v )  , 
i=d-n+2 

where hi(u,v ) is determined by (4.11) while the coefficients o f  the polynomial 
f (u,v)  depend only on Y-i,j with i + j  < d + 2 and on 35ij along with z t , . . . ,  zn. 
Here all the 2n - d - 1 polynomials hi(u , V) are again linearly independent. Indeed, 

hi(zi, l)=[=O, d - n + 2 < _ i < _ n ;  

hj(zi, 1)=O, d - n + 2 < j < i < n .  [] 

Thus for aN = ~o2n+1, ~P2n, ~o2n we have proved that the involutive subalgebra in 
P(au)  corresponding to the commutative subalgebra p(B(glN,~r,Z)) of  U(aN), is 
maximal. So for each of  the above classical Lie algebras we get the next theorem. 

Theorem 4.6. The subalgebra p(B(glN, ~r,Z)) in U(CtN) is maximal commutative. 

This theorem is the analogue of  Proposition 2.6 for the above classical Lie 
algebras. 
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