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Abstract: We lift the lattice of translations in the extended affine Weyl group to 
a braid group action on the quantum affine algebra. This action fixes the Heisen- 
berg subalgebra pointwise. Loop-like generators of the algebra are obtained which 
satisfy the relations of Drinfel'd's new realization. Coproduct formulas are given 
and a PBW type basis is constructed. 

0. Introduction 

The purpose of this paper is to establish explicitly the isomorphism between the 
quantum enveloping algebra Uq(~) of Drinfel'd and Jimbo (8 an untwisted aNne 
Kac-Moody algebra) and the "new realization" [D2] of Drinfel'd. This is done 
using the braid group action defined on Uq(~) by Lusztig. In particular, we consider 
a group of operators N arising from the lattice of translations in the extended affine 
Weyl group. 

Drinfel'd found that the study of finite dimensional representations of Uq(fi) is 
made easier by the use of a "new realization" on a set of loop algebra-like 
generators over 112 [ [-hi ]. He gives (the proof is unpublished) an isomorphism to the 
usual presentation, although from his methods there is no explicit correspondence 
between the two sets of generators. Here we find the new Drinfel'd generators in 
Uq(fi) and prove a version of [D2] which sits inside the Lusztig form over 
Q [q, q- 1 ]. We also give formulas for the coproduct of the Drinfel'd generators. 

The method is to show that Uq(fi) contains n (= rank g) "vertex" subalgebras Ui, 
each isomorphic to Uq(~2). Applying work of Damiani IDa], it follows that Uq(~) 
contains a Heisenberg subalgebra which is pointwise fixed by the group of transla- 
tions ~.  This subalgebra contains the purely imaginary Drinfel'd generators. We 
find the remaining generators as N translations of the usual Drinferd-Jimbo 
generators. 

Having found expressions for imaginary root vectors in the usual presentation 
of Uq(~), it is a straightforward application to define a basis of Poincar6- 
Birkhoff-Witt type (with the method of [L5]). 



556 J. Beck 

1. Notation 

1.1 We review the following standard notation (see I-K]). Let (aij), i,j~ 
I = { 0 , . . . ,  n} be the (n + 1) x (n + 1) Cartan matrix of ~ so that (%), 1 < i, j < n is the 
Caftan matrix of the simple Lie algebra g. Let di be relatively prime positive 
integers such that (diaij) is a symmetric matrix. Let pv be a lattice over 2g with basis 

n ooy, l<_i<-n. Let ey=~i=la j icov ,  l<=j<n and let Q ` ` = ~ e v  cP` ` .  Then 
P``, Q`` are called respectively the coweight and coroot lattices of g. Let 
Q~+ = ~ i  7z + c~v , PV+ = ~'i 2g+ cov . 

Define the root lattice Q=Hom(P` ` ,Z)  with basis given by ei such that 
(el, co)')=6~j. For  l<_i<_n define the reflection s~ acting on P`` by 
s~(x) = x -  (ei, x)o~y. Additionally, si acts on Q by s~(y) = y -  (y,  c~)' > ei for ye  Q. Let 
Wo be the subgroup of Aut(P``) generated by s j,..., . ,  s,. Let H =  {el, e2 . . . . .  c~,}, 
/ 7 " =  {~' ,  e~ . . . . .  e,~ }. Define the root system (resp. coroot system) R=WoI1 
(resp. R v =WoHV), then the correspondence e~--~e~/ extends to R~--,R`` and for 
eeR, (e, e`` > =2. 

1.2 Using the Wo action on P v define W= Wo ~'< P``, where the product is given 
by (s, x) (s', y) = (ss', s' - a (x) + y). P `  ̀ is characterized as the subgroup of W consist- 
ing of elements with finitely many conjugates. For seWo write s for (s, 0). Similarly 
for xeP`` write x for (1, x). 

Let 0 be the highest root of R. Then writing so for (So, 0'1), the set {So . . . . .  s,} 
generates a normal Coxeter subgroup 1~ of W with defining relations determined 
by (aij). J - =  W/I(  is a finite group in correspondence with a certain subgroup of 
diagram automorphisms of the Dynkin diagram of ~ (see [B]) .~-  acts on W by 
zsiz- 1 = s~(o ' for ze3-,  0 < i < n. Forming J-  ~,< W we have ~-- ~,< W ~ W. The length 
function of W extends to W by setting lw(zw)=lff~(w), for "ce~-, weVP. The 
semigroup P~ has the properties: 

l(s~x)=l(x)+ l, l <_i<_n, 

l(xy) = l(x) + l(y), x, y eP~ .  

Extend Q to the affine root lattice (~ = 2ge o @ Q and set 6 = % + 0. Then W acts 
as an affine transformation group on Q. In particular, for xeP``,  l < j < n ,  
x(~j) = e j -  (ej, x)6. Introduce the symmetric bilinear form (. [. ): Q x (~--.2g deter- 
mined by (cq] c~) = diaij. 

Let q~ = qa,. Introduce the q-integer notation in ~2(q) by: 

[n]i -q '~ -q~"  In]i!= I~ [k]i.  
q i -q [  1' k=t 

1.3 One defines the quantum affine algebra Uq(~) (= U~ of Drinfeld and Jimbo 
as an algebra over IE(q) on generators E~, Fz (ieI), K~ (c~eQ), C +-1/2, D +-~ subject to 
the following relations: 

[K~,K~]=[K~,D]=O,  K~K~=K~+~, K o = l ,  

C -+ ~/~ is central, (C -+ ~/~)~ = K + 1 , 

K~EjKgZ=q(~I~)Ej, DEjD-~=@o~Ej, 

K ~ F j K g t = q  (~I~)Fj, DFjD-~=q-~o~Fj, 
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Ki -- Ki- 1 
[g,, Fj] = ~ 

qi__q~l ' 

1 --aij  1 --aij  
Y~ (-1)SE} l-ai~ S)EjE}St=o, Y', (-1)~F}l-aiTs)FjF} ~)=0 �9 

s = O  S = 0  

Here Ki = K~ i and E[S)= E~/[s]i!. We have added the square root of the canonical 
central element K~ for later notational convenience. 

Introduce the IE-algebra automorphism 45, and anti-automorphism ~2 of Uq, 
defined by: 

�9 (Ei)=Fi, q~(F~)=Ei, 05(K~)=K~, ~b(D)=D, ~b(q)=q -1 , 

fI(E~)=F~, O(F~)=E~, f2(K~)=K_~, f2(D)=D -1, g2(q)=q a. 

As usual let U~ (resp. Ug ) denote the span of monomials in Ei (resp. Fi) and 
r the span of monomials in K~, C -+ 1/2 and D • 1. Then Uq = Uq | T | U~ [L, Ro]. 

+ 
Uq + is graded by (~+ in the usual way and U~ = Ov (Uq)v, where v~0+.  An element 
xeU~ is called homogeneous if x~(U~)v for some v. In this case let [cf. L 1.1.1] 
I xl = v. Note that 101 = v for all v. For ieI  introduce the twisted derivations r~, ir of 
Uq + [cf. L 1.2.13] defined uniquely with the properties: r~(1)=~r(1)=0, 
ri(Ej) = ir(Ej) = 6ij, and ir(xy) = ir(x)y + q(IXl, ~3xir(y), ri(xy) = q(ly[, ~,)ri(x)y + xri(y) 
for x, y homogeneous. 

The Braid group ~ associated to W is the group on generators Tw (weW) with 
the relation T~T~, = Tww, if l(w) + l(w') = l(ww'). A reduced presentation of w e W  is 
an expression w =zsi~. . .  si,, where l(w)= n, ~e3-. 

Recall that the braid group associated to gT, whose canonical generators one 
denotes by T~ = Ts,, ieI, acts as a group of automorphisms of the algebra Uq ([L]): 

-- air 
TiEi=--FiKi,  TiEj= 2 (--1)s-ai~q[SE}-aij-S)EjE[ s) if i , j ,  

s = 0  

- -  a U 
"l]s--aijctS lT{S) i7, IZ,(--aij - s )  TiFi=--Ki- lEi ,  TiFj= ~ (---~ ~li-i , j - i  ifi=t=j, 

s = O  

T~K~=Kxi~, fleO., T,(D)=DK, -~~ �9 

Then t2T~= Tf2, and cbTi=Ti-lq~. We extend this action to W by defining T~ by 
T~(E,)=E~(i), T~(F~)=F~(i), T~(K~)=K~(i). Write z for T~. Denote by ~ the group 
generated by the operators To# (1 < i<n) and their inverses. From now on, for 
notational convenience refer to o)~ by COl. 

2. Some Background Material 

2.1 We review the following method (cf. [DC-K,  L4, L5]) of recovering the usual 
affine algebra through specialization at 1. Let d be the ring I13 [q, q-  1 ] localized at 
( q -  1). Let U~4 be the sr subalgebra of Uq generated by the elements El, F/, K +1, 
D +-~, C +-1/2, and: 

H i _ K i _ K [ - 1  C _ C - 1  d = D _  D 1 
qi__q(l , C= q-* ' q__ q__q-1 
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U~ includes the elements: [ K i ; d i n ] = H i q ? " + K i [ n ] i  and [D; n ] = d q - " + D [ n l .  
Note the identities: 

EjHi = [Ki; - dlaijl Ej,  FjHi = [Ki; dialjl Fj 

E o d = [ D ; - 1 ] E o ,  Fod=[D;  l lFo .  

Let (q-- 1) U e be the left ideal generated by (q - 1) in U e. Define the algebra/~1, the 
specialization of Uq at 1, by 0~ = U d / ( q - 1 ) U d .  We obtain the following: 

Proposition [cf. DC-K 1.51. /~1 is an associative algebra over t12 on the above 
generators with relations: 

[Ei, Fj] = 61jHi, 

[d, E j l  = 3joDEj, 

c is central 

[Hi, Ej] =ai iKiEj ,  [Hi, Fj l  = - a i j K i F j ,  

[d, F j ]=bjoDFj ,  K 2=1 ,  D 2=1,  C 2 = 1 ,  

ad(1-a~JIEi(Ej)=0, ad(1-a'J)Fi(b~)=0, i# : j .  

In particular, U1 = ( I 1 / ( K i -  1, D -  1, C t / E -  1) is isomorphic to the universal 
enveloping algebra of the affine Kac -Moody  Lie algebra. 

The following is due to Iwahori, Matsumoto and Tits. 

Proposition. Let w ~ W  and let zsilsi2. . . sin be a reduced expression of  w. Then the 
automorphism Tw = zTil Ti2 . . . Tin of  Uq depends only w and not on the reduced expres- 
sion chosen. In particular, one reduced expression can be transformed to another by 
a finite sequence of  braid relations. 

We recall the following from [L]. The notation is adapted to this paper. 

Lemma [L 1.2.151. Let veO~+, v:#O. Let xe(Uq)~: 

(a) I f  ri(x)=O for all i e I  then x=0 .  
(b) I f  ir(x)=O for all i~I  then x=0 .  

Proposition [L 3.1.6]. Let x e U  +, then: 

r i ( x ) K i -  K i  t~r(x) 
Ix, Fi ] = - 1 

q i - q i  

Proposition [L 38.1.61. 

(a) {xeU~ I,r(x)=0} = {xeU + I T,(x)eU J }. 
(b) {xeU + I r~ (x )=0}  = {xeU; I T~ l(x)eU+ }. 

Proposition [L 40.1.2]. Let weW,  i e I  be such that l(ws~)=l(w)+ 1. I f  w- - s i~ . . . s i ,  
is a reduced presentation then Til. �9 �9 Tir(Ei)eU~. 

Lemma [L2 2.73. Let x e P " ,  i= 1 . . . . .  n, s~eS. 

(a) I f  s i x=xs i ,  then TiTx=TxTi. 
(b) I f  s~xs f~=a[- l x=I~ ico~ ' ,  then Ti-~TxT~ I = I - [ j T ~ ,  in particular 

Ti- I To Ti -1 - T-1  - %  , - o~ 1-[j.iTo)j �9 

Remark. ~bTo~c, = Tg~ i q~ 
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3. Subalgebras of  Uq(g) 

In this section we find certain subalgebras of Uq(~) which are isomorphic to Uq(~-T2). 

3.1 Lemma. Let Cog~P v, l <_i<_n. 

(a) Any reduced presentation o f  co i starts with "csj where z ~ Y  and zs j=soz .  
(b) Any reduced presentation of  cog ends with Sg. 

Proof  F o r j  4= 0, l(sjcog) = l(coi) + 1 and this implies (a). For (b), if l(coisfl < l(cog) then 
(91(c~i) < 0 which is only the case when i=j .  

Definition. For 1 <_i<n let co[=o3isg. Then l(co[)=l(coi)- l. 

Remark. Too;= Tcoi Ti- 1. 

Definition. For 1 < i N  n let Ug c Uq(~) be the subalgebra generated over II?(qi) by 

, i Z tK +1" C +1/2, D +-d' El, Fi, g +1, To~:(Ei), Tco,(Fi), co [` i- ), - 

I t  is clear ToyEi~U~, To~,Fi~Uq since l(co;si)=/(COg)=/(co/)+ 1. 

The following is proved as in [L5 1.8]: 

3.2 Lemma. Let i , j~I  and let w ~ W  be such that W(eg)=ej. Then Tw(Ei)=Ej.  

Corollary. Let 1Ni4=jNn.  Then for  x~Uj ,  T~o,(x)=x. 

Proof  COi(O~j) = ~ j .  

Definition. For 1 <_ i + j  < n, aij <= 0 introduce the elements: 

Fgj= -- FjF, + q-(~'I~J) FgFj , 

Eij = -- EgEj + q(~' I~J)EjEg . 

3.3 Lemma. Let 1 <= i ~ j  <__ n. 

(a) T~o~(Fji)= T~oi(Fifl, 
(b) Toe, (ejg)= T~j(e~j). 

Proof  For (a) if aij = 0 then both sides of the equation equal O. Otherwise, since the 
statement is symmetric in i and j we may assume aj~ = - 1. Then: 

To,,(F~j) = To,,(TT * Vi) = TjTg, ~ To,,(Vg) 

= T o ) , T j ( F i ) =  T~,(Fj,) 

which implies (a). (b) follows by applying g2. 

3.4 Lemma. Let l <_i<_n, [Fg, To);(Ei)]=O. 

Proo f  By [L 3.1.6, 38.1.6] it suffices to check that both T~To),(E~)eU~ 
and Ti-IT~,(EI)eU +. Since coiGpv-,  l(sico[si)=l(coi)-t-l=l(sgCO[)+l so that 
T~ T~)I(Ei)s U + . Now Ti- ~ T~I(E~)= T~- a To~, Ti- ~ (E~)= Tg a (Eg). Since ~of2(U+)= 
Uo + and ~ o f2(T,~ ~ (El)) = T~o: 1 (Eg) it is enough to check T~:I(Eg)s U + . This follows 
because r + and l(COi ~ s'i) = l(CO(~) + 1. 

3.5 Lemma. Let 1 <_i<_n,j#i, O, [Fj, T~oi,(E~)] = --CKi~To~(Fgfl. 



560 J. Beck 

Proof. [Fj, T~o~(EI)] = [Fj, T~, ( -KFIFi ) ]  = -To)([Fj,  K~- ~Fi]) = - T , ~ ( K ~ ) T ~ ,  
(q (~ I~J)F~Fi--JTiFj)= - CK? r -- CK~- 1T~j(Fi2)) 

3.6 Lemma. Let 1 <_i<_n, if ~#~'~2 then ro(To~;(Ei))-=O. 

Proof. Since/(COl)> 1 and To~;(Ei)~U~ it follows TolT~;(Ei)cU;. 

3.7 Proposition. Let 1 <_ i <_ n. 
(3) (2) (2) T, E (3) (a) Ei Vco;(Ei)--Ei To~;(Ei)Ei+ EIT~,(Ei)Ei - ,o~( i)Ei =0, 

(b) To~(Ei)(3)(E,) - To;(Ei)(2) E~Tcof(Ei)'+ Tof(Ei)EiTo;(Ei) (z) - EiTo;(Ei) ~3~ =0. 

Proof. (b) follows from (a) by applying To~. Denote the expression in (a) by xi. To 
check xi=O it suffices [L 1.2.15] to check r)(xi)=O for j~I .  For j = 0  this is by the 
preceding lemma. Since for x~U + [Fj, x] = 0  for x~U~ implies r)(x)=0, we can 
check [-Fj, xi] = 0. This is straightforward using the expressions for [F~, Tof(E/)] in 
3.4 and 3.5. 

3.8 Proposition. For each 1 <_ i <_ n there is an algebra isomorphism hi: Uq(~-2)~ Ui 
�9 - -  - -  + 1  + 1  + 1  + 1  

gwen by hi(E~)=Ei, hi(Eo)=To,(Ei), hi(KF ) = K v ,  hi(Kff )=To;(Ki-), 
h~(F1)=Fi, hdFo)= To);(Fi), hi(C++- V2)=C ++-1/2, hdD+-l)=o ++-d', hdq)=qi. 

Proof. Consider the defining relations of Uq(~'2). By the previous proposition and 
some simple checks they hold in Ui, where q is replaced by qi. Therefore hi is 

�9 . ~ ^  4 -  4 -  . . 

surjectwe. For v~Q(g), let UiSv = Uin U~-, then hil u: 1s homogeneous with respect 
to this grading. Therefore if x~ Ker hi u~, writing x ~ ~ .  bjxj in terms of homogene- i L . j 

ous components hiluc(Xj)=O for each j. Fix some xj. By [L4 Prop. 2.6] (see also 
Remark 4.14) for fi~Q there is a unique irreducible highest weight module M of 
U q ( ~ )  with highest weight vector v such that Kiv=q(~'lB)v for i=0 ,  1 and 
Dv -- qd~v. Further we can pick fl so that x; acts non-trivially on M. The root system 
of U o ( ~ )  imbeds into that of Uq(~) via hl and we can fix a fl'~(~(~) so that pulling 
back the highest weight module M'  with weight fl' through hi we have Ko, K~, and 
D acting as on M. Now as a Uq(~ )  module M'  has an irreducible quotient which is 
isomorphic to M. In particular, x~ must act non-trivially in M'  which is a contradic- 
tion. Therefore Ker hi I u? =0. Since multiplication induces a vector space isomor- 
phism U- | T |  U+-'-'-SU both in Ui and U q ( ~ )  it follows that hi factors through 
this decomposition. Therefore Ker hi = 0. 

Corollary. For 1 <- i < n, 

(a) Tilu~=hioT~oh:~ ~ , 
(b) Todu~=hio To~ ~ h[ - ~ . 

Proof. Let M be an integrable Uq module. Decompose M into weight spaces with 
respect to the action of Ki, M = (@~ M ~. Let u~Ui, m~M" for a particular n. From 
the defining properties of the braid group action it follows: 

T~ (hV ~(u)). ~ ( _ . , b  - a c + b  r~(a)~(b)r:,(c) ~) q L~ r t  LI m 
a,b,c;-a+b-c=n 

= E ~-- / x)l"~b~-ac+blg(a)17(b)12(c)tt'-lU) m r 1  J~'l ~t 1 X~l ~"i 
a,b,c 

/\a~,b,c [ lxb-ac+bE(a)ff(b)E (c) um) =hi-~[ 2.. t-- ) qi i i i } 

t r t,,b ac+br-,(a)~(b)~(c) ~ r =h~ t Ti(u) ~ t - -U qi r~i ri  Li m ] ~ n i ~ 1 7 6  
a,b,c / 
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This implies (a). To, 1 (Ei) = T[- 1To,(Ei) = q[  2E~2)To~;(E~) - q[  1Ei T~;(E~)Ei + 
To~,(Ei)E} 2) and T21T~o:(Ei) = - - K 7 1 F i  so that T~),I u, acts on the generators of Ui as 
does hi ~ To~, ~ h71 .'(b) follows. 

3.9 Definition. For l < i < n ,  k>0 ,  let ~ i k = C  k/2(":-2E.Tk(K71Fi)-- 
- -  - -  \ ~ J t  Z O ) i \  

T~,(K[ 1 Fi ) Er Note  that ~ik~ Ui. 

Versions of the next two propositions appear in the work of [Da Sect. 4] for 
- . . . . . . . . . .  

3.10 Proposition 1. Let c = (q2 CV2), d = (q2 C u2), r > O, me ~ then: 

r - 1  C ( k -  1)/'~ . -  l ' l , b  T m + k ( F h  1)Tm+r/F ]~ [ r  k~=~ ,~ i -~ ,  J~'i,,-k o~, ~ i~+c (~ (D i \ i l ;  ~ 

r - 1  lhTm-k[~g ~f, ~A(r-1)Tm-rr  "~ [6i,,ToT(Ei)]=C-1/z[2],Qk~=ld(k-X)(q,--q[,o~, , ,~UV'i, ,-k T "  ~0, t U } "  

Propos i t ion  2. Let r > 0, 1 _< i_< n. 

(a) [ r162  - 0 ,  
(b) T~o,(r = r 

Proof  It is sufficient to prove the previous two statements for Uq(~-(-2). Here i=  1 
and ~Ol = zsl, where z is the non-trivial Dynkin diagram automorphism. This follows 
because/(ml) = 1, l(sl ~Ol )= l(col)+ 1 and COl has only finitely many conjugates in W. 

For the sake of exposition, we sketch a proof by induction on r which appears 
in [Da Sect. 4]. For r = 1 the statements are readily checked. A direct calculation 
shows [ r r ] = [2] ((zT1)- ~(~1,, +1 ) - r +1 ). This implies that 2a), is equiva- 
lent to 2b)~+ 1. Here we denote by 2a)~, the statement 2a) for all r <  r'. 

Proposition 2b)~ implies 1)~. This follows from an inductive calculation using 
the identities: 

[ ~ l v ,  F1] 1/2 +2 - = C  (q [ff/1,r-1, z T l ( F 1 ) ] - - [ 2 ] ( q - - q - 1 ) ~ , , ~  1TTI(F1)) 

[~lr, E1] -1/2 2 -  - = C  (q [ r  1)T;lz(E1)~l.~-l) 
To show 2a) it is sufficient to show rj(C(r+l)/2[t~ll, ~fflr])=0 for j = 0 ,  1, r>0 .  

For j = 0  this is straightforward. For j =  1 this follows from [[~11, r F 1 ] = 0 .  
This is shown by induction on r. Assuming 2a),_ 1, 2b),  and 1), a direct calculation 
gives 

r - - i  

[[~11, ~Ir], F I ]  = - C I / 2 [ 2 ]  ~ d ( 1 - k ) [ 6 , , ,  - k ~tls]To~,F1] = 0 .  
S = I  

This implies 2a)~. As noted this now implies 2b)~+ 1 and 1),+ 1. This completes the 
proof of Propositions 1 and 2. 

Remark: Much of the calculation through the end of w is inspired by the work of 
[Da] for Uq(~-T2). The statements of Proposition 2 also appear for Uq(~-'~2) in [LSS]. 

3.11 Define ~k=Y2(~,k). Applying the anti-automorphism ~2 to the above 
propositions gives similar identities with ~k replaced by ~ik and F~ (resp. E~) 
replaced by E~ (resp. F~). Here and in the future we omit writing these identities 
down although we implicitly assume them. 
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Let H be the subalgebra of Uq generated by ~ffik, ~Pik for 1 < i < n, then we have 
shown: 

3.12 Proposition. The group of  translations P fixes H pointwise. 

3.13 Proposition. Let  1 < i < n, r~2g. 

T~o,(Fi)Fi - qF 2 FiT~,(Fi) = q[ 2 T[o? l(Fi)To~,(Fi) - T~o,(Fi)T~- l(Fi) . 

Proof. This is checked in Uq(~2) directly. 

3.14 Lemma. Let a~i<0 , meZ. 

(a) [1#11 , T~(Fj)l  = C 1/2 [aijliTo~+ 1(/7/) ' 
(b) [fill, T~(Ej)] = -- C-  ,/2 [ai~JiT~- I(Ej). 

Proof. We check (a) for ai~-_0. Note that by previous lemmas [Tog,(Ki-1Fi), Fj] = 
- KE 1CT~,(Fji) and T~o,(F~i) = T~o~(Fij). Then: 

[6il ,  Fj] = C-  1/2([q? 2 E, To~,(K F 1F,), Fj] -- [To~,(K~- 1Fi)E,, Fj]) 

= - C 1 / 2 K F I ( [ E i ,  r~,(Fji)])= --CI/2KFIT~oj([Ei, Fit]) 

= - C 1/2 K ,  1 Toni( [Ei, -- FjFi + q -(~' I~)FiF~] ) = C 1/2 [au] ' To),(Fi) " 

Now (a) follows by applying To~ to the above equality. Using t ~ i l = T ~ l ~ i l =  
C-(1/2)q7 2 Tg, 1 (Ei) (KF 1Fi) - (K71Fi) T2,, ~ (Ei) (b) follows similarly. 

3.15 Lemma. Let a=au<=O, r>0 ,  meTZ, c=(-q~cl /2) ,  d=(-q.~'C-1/2),  

m _ _  ( r - 1  c (k-1)I~ .-I~,T, Tm+kIF~.~(r-1)Tm+r~F~'~ [s ~ , - -~ ,  ,~' i , ,-k ~, t j , - ~  ~ t j , j ,  

m d(k-1)l~ ~-l"~Tm-k( E ~Z [6i,, T~(EA]= - C - 1 / 2 [ a ] i  , ~ i -~ i  , ~: ~ i,~,i.,-k 
k=l 

L)Tm-,{E.~" ~ +d  ~r- coj ~ j 1 j .  

Proof. We check the second equation. 

[1#,,, Ej] = C -'/2 (q? 2 r ~ l  (El) T;~ - I (K? ' F,)Ej - T[o? 1 (K? ~ Fi) Tg~ 1 (E,)Ey 

--qF 2 E f g  l (EdT;#  ~(K? 1F 3 + EiT;  2 l(Ki- ~ F3T~ I(E3) 

since: Tg 7 I(KF 1Fi)E i = qF"EyT;# I(KF 1Fi) 

= C - ,/2 (qF 2 - ~ Tg, i (Ei) E i 7;21 (Ki -I Fi) - r;~ -1 ( K ?  1 Fi) rg, I (El) E1 

-qi- 2 EiT~ I(E~)T~- I(KF t F,) + q'~T~,T I(K;- I F~)E2Tg I(EI)) 

= C-'/2 (--q:~2-~T~(Ei~)T[s ~(KF 'Fi) + T[s I (K F ~Fi)r~l(Eij)) 

now use: Tg,1(Eii) = Tgs ~ (Eli) = TgI( - E~Ei + q'~ EiEI), 

= C-'/2(qF2-aTg, I(Ej)EiT;~ I(KF ~F,)--q1-2 +~EITf~- I(K[- tFI)Tg, 'Ej  

-- q F ~Tg~I(Ei)T[~F I(KF 1 F,)E, + q~ T~ F I(KF ~ F~)EiT~ 1 E~) 

= C-  1/2(_ q~ [~i,,-  1, ToS~ 1 (E3)] - [a]i(qi-qF 1)T~ol(E~)~.r 
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Now the second statement follows by induction and applying To~. The first 
statement follows by a similar calculation. 

3.16 Lemma. Let r~TZ, (ailc~j)<0, 

-- T[o, Fi Fj + q-  (~' I~) F~T;,Fi = q -(~ I ~J)Tr~- 1 Fi T~o~F3 - Tco~FiTf)? 1 Fi . 

Proof. The left-hand side equals T[~,(_b)i). The right-hand side equals: 

1Fi ro f ro f r ; 2 1 F i  = r ; ?  1 ro  (F,v) = . 

4. The Relations in Drinfel'd's Realization 

Let F be the Dynkin diagram of g. Orient the vertices of F by defining 0: V ~  { _+ 1 } 
so that for i and j adjacent in F, o ( i )=-o( j ) .  Now define T~--o(i)T~, and 
modify all the definitions by replacing T~ with T~o~. 

4.1 Lemma. Let a=aij, r>0 ,  m~2~, c=(qacl/2), d=(qac-x/2), 

- ^m F _ C 1 / 2 [ a ] i (  r -1  . ( k - 1 ) t ~  ~ - 1 ~ , ~  ,~m+k~ . . ( r - - 1 ) ' ~ m + r r ' ~  

_ 

\ k = 1 , ogj j ;  

Proof. This follows directly from Sect. 3. 

Now for k > 0  introduce generators hikeH by the change of variables (cf. 
[D2, G]): 

(qi-q[ t) ~ hikzk=log(l+(qi--qC 1) ~ ~i,k'Zk'). 
k>O k'>O / 

Differentiating both sides and considering the coefficient of z r gives: 
r - - 1  

( * ) rhlr = r~ i r - (q i -  q[ 1) ~, k(bi, r-khik. 
k = l  

Similarly introduce hi, -k = f2(h~k) SO that: 
r - - 1  

(**) rhi,-r=r(~ l--qi) 2 khi,-k(~ r-k" 
k-1  

4.2 Lemma. Let 1 < i, j < n, k > O. 

(a) [hik, T~Fj] = 1 k/2 ̂ m+k -~[kad] iC T~j F~, 

(b) [hik, T~Ej] 1 k/e^m k = ~ [ k a J i C -  T~oj- Ej, 

Proof. Part (b) is an induction on k using the following identities: 

[ ~ffik, T~Ej] = C -1/2( _ q~ [~ffi, k -1 ,  T ~ - I  E j] -- [aij]i (qi-  qF 1)To~-I Ej ~i,k -1 ) ,  

' 1 ' 
[hlk,, ^m C 1 /2 (k  - -  )[k aij]i[hi, k, Tm-IEj] ,  w h e r e  k ' < k  

T~E~]= k ' [ ( k ' -  1)aij]i 1, o)j 

and (a) is similar. 
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Remark. As before, we omit the identities obtained by applying f2. 
For l<_i<_n, r>0 ,  introduce the elements O~=(qi-qF1)Ki~bir,  ~0ir=~2(0ir). 

Then: 

~bi, = (ql-- qF a) Crl2 [Ei, ~'~,Fi] , 

q~i,=(ql--q[ - 1)C-'S2[Fi, T[o, Ei] . 

Set Oi. o = Ki, rPi, o = KZ t. 

4.3 Lemma. Let k, l> 1. Then [hik, Ojl] =0. 

Proof 

1 
q j _  q?l  [hik, Oil] = C Z/2 [hik, [Ej, TZ%Fj] ] 

= C'/2[[h,k, Ey], T~,Fj] + [Ej, [h,k, f~F j ] ]  

= C ' / 2 ( ~ C  k/2^-k T' [ [kaij]iCk/2~s IT[o, Ej, o~fj] + [Ej, k o~, j J j ]  

= C k +,/2 [kkJ]i(c-k [fzk Ej, f~,5]  -- [Ej, T'+ kF.1 ~ = 0 
- (Dj Jd  ; 

since Tgjl EEs, T : f s ] = C [ E s ,  T : f j ] ,  

Similarly: 

4.4 Lemma. Let k, r > O. Then 

i f  r > k  
[ h i k ,  O j r ]  = - -  ' 

0 i f k > r  . 

Rewriting (**) in terms of the q~ir we have: 
e - - I  

(***) r ( q F l - q i ) h i , - , = r K i q h , + ( q i - - q f l ) K i  ~, kqoi, r -kh i , -k .  
k = l  

4.5 Lemma. Let k, l> O. Then 

1 C k - C  -k 
[hik, hjl]= ~k - 17 [kaij]i ~ . 

' K q j -  qj 

Proof Induction using (***). 

4.6 Definition. For l <_i <_n, k e Z  define x~k =ir~,(Fi), x~ =T~k(Ef). 

We can now prove: 

4.7 Theorem [cf. D2]. Uq(~) is generated over C(q) by the elements x~ + , h +, K ?  ~, 
C +- 1/2, D +- 1, where 1 <_ i < n, j e;g, and k ~ Z \ {0}. The following are defining relations 
for Uq (.~): 

(l) [C+ 1/2, hik] = [C_+ 1/2, X/-+k ] = [Ks, hik] = [Ki, KS] = O, 

+ - 1  K~x)~K~ =q--+(~"~)Xffk, + ~ k -+ DX)~ D = q Xjk, DhikD- 1 = qkhi k , 
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1 C k - c  - k  

(2) [ h i k ,  h j l ]  = ( ~ k  - 1 7  [ k a u ] i  ~ T  , 
' ~c q j - -  qj 

l 
(3) [hik, + +_-Fka q rv(Ikl/2)v + x / i ]  = 

k t_ i j _ l i ~  A j ,  k + l  

+ j X / i X i _ k + l = q + - ( a ' l ~  + + (4) XiTk+lx~- -q  ++(~'1~) + + + + , xTl+l  - - x f l + l X g  , 

1 
(5) [Xi+k XjT]=bij  q i_qFl (Ck- t /2~bl ,  k+t C~l-k/2" - -  ",~ tp, i ,k + l) 

For i=~j, n = 1 -  aij , 

(6) Symkl,k . . . . . .  k, Y, (--1)' + +- + +- . . .X i+k ,=O X i . k l  �9 �9 �9 Xi, k r X / i  Xi, k ,+l  
r = O  i 

Sym denotes symmetrization with respect to the indices kl, k2, . . . ,  kn. Here I/Ilk and 
(Pig are defined by the following functional equations: 

~, ~ i k u k = K i e x p ( ( q i - - q i  -1) ~ h ikuk ) ,  
k__>O k = 1  

Proof. Relations (1)-(5) follow from the previous calculations. Relation (6) is 
obtained by applying To,, i = 1 , . . . ,  n to the Chevalley relations and an induction 
on max {Iki~-kil l} .  Let R be the algebra over ~(q) on the above generators with 
defining relations (1)-(6). By the previous consideration there exists an algebra 
surjection F: R--*Uq. To check that F is an isomorphism we specialize at 1 as in 
Sect. 2. Let Rd  be the d subalgebra of R generated by: 

K i - -  K ~  1 
K +1, C+~/2, D+-I hi, o = q i _ q T ~ ,  

C - C  -1 d = D - - D  -1 
C = - -  h ik  , X + q _ q - 1 ,  q _ q - ~  , �9 

Define/~1 = R d / ( q -  1)R~. Then/~1 is an associative algebra over C on the above 
generators with the defining relations: 

(1) [Ki,  K j ] = [ o ,  g i ~ = O ,  C Z = D E = K 2 = I ,  
+ + 

[d, h~k] =kh~k, [d, x)~ ] =kDx)~ , 

- C t , , ' . k -  1 (2) [hik, h i t ] = 6 k , _ l u i j ~ t t ~  § 2 4 7  1 k ) ,  

(3) [hik , + "~ r~-Y-lkl/2~-+ + + X/i ] = + [hio, ] = + aijKix)7 - -  u i j  ~ "~"j, k + l ,  X / i  __ , 

+ + + + + + + + 
(4) Xi.k+lX)7 - -XdTXi%+t=Xi iXfz+I  - - x f l + l X g  , 

(5) [Xi+k, X~]  =6i jKiC(k- l ) /2hi ,k+l ,  
+ + + + 

(6) [Xi~-k,, [Xi~-k~,. �9 �9 , [Xi.k., Xf i .  �9 . -[ ] ] = O, n = 1 -- aij . 
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It follows from the Gabber-Kac theorem [G-K] (see [G] for the relations in 
R1 below) that: 

R 1 = R 1 / ( K i - -  1, C 1 / 2  1, D-- 1)--- g(g | tE It, t -  1] @ tEc @ ted).  

Now specialize Uq(~) to U1 (~) as in Sect. 2. Then F induces the isomorphism: 

F: R I - ~ U I ( ~ ) ,  

Since specialization doesn't change the root multiplicities, F:  R ~  Uq is an isomor- 
phism. 

Remark: Let So,tWo so that So,(~)=O. By Lemma 3.2 it follows 
To, To, ,(--KFXF~)=Eo. This gives the inverse to the isomorphism F: R ~ U q .  In 
particular, F -  1 (Eo) = - o( i )CK~ ~ To, x S .  

5. The Coproduct 

Since the Drinfeld generators are now expressed in terms of the braid group, 
calculating their coproduct depends on how the coproduct commutes with the 
braid group. 

Define for 1 _< i _< n: 
- k ( k -  1) 

R~= y'  ( - - 1 ) k q ~ - - ( q i - - q [  - x )k[k ]~! Ti(Fi) (k) | T~(E~) (k) , 
k>O 

k(k- 1) 
= ) k [ k ] i [ F  i @ E,i . i ~ i = ( r / -  1 @ T F 1 ) R ? I  ~, q ~ - T - ( q i _ q i - 1  (kt -(k) 

k>O 

The following proposition is due in the finite type case to [K-R], [L-S]. The 
Kac-Moody case is due to [L 37.3.2]. 

5.1 Proposition. Let Si=Ti | Ti. Let 1 <_iNn, x~Uq. 

(a) A ( T i ( x ) ) =  R ?  1. SiA(x  ). Rz, 
(b) A (T~ -1 (x)) = AF ~ �9 S/- 1 A (x). i~ i . 

Let zsil �9 �9 si, be a reduced presentation of w. Define 

Rw= z( Sil Si2 . . . Si,_l (Ri,) . . . Si~ (Ri2)Rix) , 

AW = (Sir 1.  �9 �9 S ~  2 1 ( A i l ) .  �9 �9 S/r- 1 (A i r_ l )  Air" 

5.2 Lemma. Let w~W, Rw, Rw are well defined. 

Proof. If W is the affine Weyl group of ~ any reduced presentation is unique. 
Otherwise, since any two reduced presentations differ by a finite sequence of braid 
relations it is enough to check the statement for the rank two case. Consider Rs,s~s,, 
Rsjssj in the simply laced case. They are certainly equal since both (up to a torus 
element) are expressions for the rank 2 universal R-matrix (see [K-R], [L-S]). 

5.3 Proposition. Let  1 <_ i <_ n, k >= O. Let  w = kcoi. 

(a) A(x~)=R,~l(XTk | K-~,+k6+ 1 | XTk)Rw, 

(b) A(Xg_k)=A~I(XF,_k | KZ~,_k6+ 1 | X[-k)Rw.  

Proof. This follows inductively from the above formulas. 
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To ob ta in  the c o p r o d u c t  on Xi+k note  tha t  ~'~(Xi~-k):X~k and  use 
A o f2 = f2 | ~2 o a o A to the above  formulas .  

6. A PBW basis of Uq 

For  1 _< i _< n the elements C k/2 ~ike U~. On specialization to q :  1 they form a basis 
of the root space k~ of ~. This follows from the previous section since 
~ik=h~kmOd(q - 1), which implies their linear independence on specialization. 
Note  that if w(~i)-- f l  (~i simple, fl positive, w e W  ) then Tw(Ei) specializes to a root 
vector of ~ of root ft. 

For  fleA~+e(~) choose w~eVr so that w/~(%)=fl for some i~eI. Define 
E~=Tw~(Ei~). For re: A ~_~N, z: {1 . . . .  , n} x A + ~ N  define 

E~' ' = I ]  E~(e)(Ck/Z~Plk)'(i'ka), F~'' " = Q (  E~'' " ) ,  

where the product is in a predetermined total order over the positive roots counted 
with multiplicity. 

6.1 Proposition. The E ~' * form a basis o f  U + (~ ) as a r  q)-vector space. The elements 
F ~' 'K~Cr'+I/ZDrE ~'' (aeO., r, r ' eZ ,  tr t as above)form a basis of  Uq(~) as a II?(q)- 
vector space. 

Proof  The proof  can be repeated almost word for word as found in [L5 Sect. 1]. In 
the proof  of linear independence of the E ~'', a dominant  integral highest weight 
should be chosen so that for ~c, re(5 (in the notation found there) t h e / ~ "  form 
a linearly independent set in ~t. 

Remark. The above basis is called of Poincar6-Birkhoff-Witt  type because on 
specialization to 1 it degenerates to a PBW basis of the enveloping algebra U(~). 

Acknowledgements. I would like to thank Ian Grojnowski, Victor Kac and George Lusztig for 
helpful conversations. 
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