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Abstract: We lift the lattice of translations in the extended affine Weyl group to
a braid group action on the quantum affine algebra. This action fixes the Heisen-
berg subalgebra pointwise. Loop-like generators of the algebra are obtained which
satisfy the relations of Drinfel’d’s new realization. Coproduct formulas are given
and a PBW type basis is constructed.

0. Introduction

The purpose of this paper is to establish explicitly the isomorphism between the
quantum enveloping algebra U,(§) of Drinfel'd and Jimbo (§ an untwisted affine
Kac—Moody algebra) and the “new realization” [D2] of Drinfel’d. This is done
using the braid group action defined on U,(g) by Lusztig. In particular, we consider
a group of operators Z arising from the lattice of translations in the extended affine
Weyl group.

Drinfel’d found that the study of finite dimensional representations of U,(g) is
made easier by the use of a “new realization” on a set of loop algebra-like
generators over €[ [h]]. He gives (the proof is unpublished) an isomorphism to the
usual presentation, although from his methods there is no explicit correspondence
between the two sets of generators. Here we find the new Drinfel’d generators in
U,(8) and prove a version of [D2] which sits inside the Lusztig form over
Q[q, g~ *]. We also give formulas for the coproduct of the Drinfel’d generators.

The method is to sh(/)zv that U, () contains n (=rank g) “vertex” subalgebras U,
each isomorphic to U,(sl,). Applying work of Damiani [Da], it follows that U,(g)
contains a Heisenberg subalgebra which is pointwise fixed by the group of transla-
tions £. This subalgebra contains the purely imaginary Drinfel’d generators. We
find the remaining generators as & translations of the usual Drinfel’d-Jimbo
generators.

Having found expressions for imaginary root vectors in the usual presentation
of U,(g), it is a straightforward application to define a basis of Poincaré-
Birkhoff-Witt type (with the method of [L5]).
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1. Notation

1.1 We review the following standard notation (see [K]). Let (a;), i je

I={0,...,n}bethe (n+1)x (n+1) Cartan matrix of § so that (a;;), 1 <i,j<nis the

Cartan matrix of the simple Lic algebra g. Let d; be relatively prime positive

integers such that (d;a;;) is a symmetric matrix. Let P" be a lattice over Z with basis

o), 1<i<n Let of =) azoY, 1<j<n and let Q¥ =) Zy’ = P". Then

PY,QV are called respectively the coweight and coroot lattices of g. Let
1 :ZiZ+oc;/, 1 =Zi Z,w.

Define the root lattice Q=Hom(P", Z) with basis given by «; such that
{aj, 0] y=0;;. For 1=<i<n define the reflection s5; acting on P" by
Si(x}=x—<a;, x>a;" . Additionally, s; acts on Q by s;(y) =y — <y, & de; for yeQ. Let
W, be the subgroup of Aut(P") generated by sy, . .., s, Let I={ay, 005, .., %},
v ={ay,ay,...,0 }. Define the root system (resp. coroot system) R=W,II
(resp. RY =W, IIV), then the correspondence «; <> & extends to R« RY and for
aeR, {a,a¥ >=2.

1.2 Using the W, action on PV define W= W ;<P ", where the product is given
by (s, x)(s", y)=(ss’, s’ 1(x)+y). PV is characterized as the subgroup of W consist-
ing of elements with finitely many conjugates. For se W, write s for (s, 0). Similarly
for xePY write x for (1, x).

Let 0 be the highest root of R. Then writing s, for (sg, 0), the set {so, . .., 5.}
generates a normal Coxeter subgroup W of W with defining relations determmed
by (a;;). 7 =W/W is a finite group in correspondence with a certain subgroup of
dlagram automorphisms of the Dynkin diagram of § (see [B]). 7 acts on W by
8T -—sr(l), forteZ,0<i<n. Forming J < W we have 7 < W ~W. The > length
function of W extends to W by setting Iy (tw)=Ly(w), for €7, weW. The
semigroup PY has the properties:

Is;x)=Ix)+1, 1<Zi<n,
Ixy)=1(x)+1(y), x,yePY.

Extend Q to the affine root lattice 0 =Zo, @ Q and set § =ay+ 6. Then W acts
as an affine transformation group on . In particular, for xePV, 1<j<n,
x(aj)=0;— e, X 8. Introduce the symmetric bilinear form (-|-): § x 0—Z deter-
mined by («; Iac}) d;a;;.

Let q;=q% Introduce the g-integer notation in C€(g) by:

qi—q" i
nli= —, [l!=1] [k]:.
L] q4i—q; ! kl:II

13

1.3 One defines the quantum affine algebra Uy (§) (= U,) of Drinfeld and Jimbo
as an algebra over C(g) on generators E;, F; (icl ) K, (xe Q) C*12, D*1 gubject to
the following relations:

[Ky, Kg]l=[K,y D]=0, K,Kp=Kyip, Ko=1,
C*12 is central, (Cil/z)zng—Ll ,
K,E;K;1=q™"E;, DE, D '=¢%E,,

K,FiK;'=q “%F;, DF,D 1=q %:F,,
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_1 2
i—4qi

[Ei: Fj] =5ij

1—ay 1—ay;
Y (—1EN I EY =0, Y (1 FY 9 TIFFP=0.
s=0 s=0
Here K;=K, and E® =E;/[s];!. We have added the square root of the canonical
central element K for later notational convenience.

Introduce the C-algebra automorphism @, and anti-automorphism £ of U,
defined by:

P(E)=F;, ®(F)=E, ®K,)=K, @(D)=D, Pg)=q ',
QE)=F, QF)=E, QK,)=K_, QD)=D"' Qg=q .

As usual let U; (resp. U ) denote the span of monomials in E; (resp. F;) and
T the span of monomlals in Ka, C*12 and D*1, Then U,=U; ®T® U, [L,Ro].
U, is graded by 0 in the usual way and U, = @, (U; )v, where ved, . An element
xeU; is called homogeneous if xe(U; ), for some v. In this case let [cf. L 1.1.1]
| x| =v. Note that |0|=v for all v. For i€l introduce the twisted derivations r;, ;» of
Ui [ef. L 1213] defined uniquely with the properties: r;(1)=,;r(1)=0,

riEp)=ir(E;) =05, and r(xy) = (0)y+ g1 Dx,r(3), rifey) =g 5r,(x)y + xrl )
for x, y homogeneous.

The Braid group £ associated to W is the group on generators T, (weW ) with
the relation T,,T,, =T, if [(w)+I(w')=I(ww’). A reduced presentation of weW is
an expression w=ts;,. . .s; , where l(w)=n, 1€ 7.

Recall that the brald group associated to W, whose canonical generators one
denotes by T;=T, iel, acts as a group of automorphisms of the algebra U, ([L]):

oy
TE=—FK;, TE=Y (—1y~%g E""EEY ifi+j,

5=0

Ca
TF=—Ki'E, TF=Y ()" %gFOFFY™" ifi%j,

s=0
TKp=Kpg, Bel, T(D)=DK; % .

Then QT,=T;Q, and ®T;=T; ' ®. We extend this action to W by defining 7, by
T.(E;)=E.;), T,(F;) = Fr5), T.(K;) = K,). Write 7 for T,. Denote by 2 the group
generated by the operators 7,y (1<i<n) and their inverses. From now on, for
notational convenience refer to wy by w;.

2. Some Background Material

2.1 We review the following method (cf. [DC-K, L4, L5]) of recovering the usual
affine algebra through specialization at 1. Let .« be the ring C[g, ¢~ ] localized e%t
(g—1). Let U, be the o subalgebra of U, generated by the elements E;, F;, K;-
D+1 C+1/2 and:

K,—K;i! c—ct D—-D1!
——, c=
—q? q—q q—q

H;=
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U, includes the elements: [K;; din]=H;q; "+ K;[n]; and [D;n]=dq "+ D[n].
Note the identities:

EjHi=[Ki; '"diaij]Eja FjHiz[Ki; diaij] F;

Let (g— 1)U,, be the left ideal generated by (q— 1) in U,,. Define the algebra U, the
specialization of U, at 1, by U, =U,,/(q—1)U,,. We obtain the following:

Proposition [cf. DC-K 1.5]. U, is an associative algebra over C on the above
generators with relations:

¢ is central
LE;, F;1=6;H;, [H;, Ej]1=a;K,E;, [H;, F;1=—a;KF;,
[d, E;1=0;0DE;, [d,F;1=06,0DF;, K?=1, D*=1, C*=1,
ad!~%WE(E;})=0, adl~%F(F)=0, i%j.

In particular, U; =U, /(K;—1, D—1, C}>—1) is isomorphic to the universal
enveloping algebra of the affine Kac-Moody Lie algebra.
The following is due to Iwahori, Matsumoto and Tits.

Proposition. Let weW and let s, s;,. . .s;, be a reduced expression of w. Then the
automorphism T,,=T, T,,. . .T; of U, depends only w and not on the reduced expres-
sion chosen. In particular, one reduced expression can be transformed to another by
a finite sequence of braid relations.

We recall the following from [L]. The notation is adapted to this paper.
Lemma [L 1.2.15]. Let veQ ., v+0. Let xe(U,),:

(@) If r{(x)=0 for all i€l then x=0.
(b) If ;r(x)=0 for all il then x=0.

Proposition [L 3.1.6]. Let xeU, , then:
ri(x)K;—K; ' #(x)

[xaFi:l: -1
qi—4q;

Proposition [L 38.1.6].

(2) {xeU]S |r(x)=0}={xeU; | Ti(x)eU; }.
(b) {xeU] |ri(x)=0}={xeU, |T; '(x)eU, }.

Proposition [L 40.1.2]. Let weW, iel be such that l(ws;))=Iw)+ 1. If w=s; ...s;
is a reduced presentation then T, . . . T, (E;)eUy .

Lemma [L2 2.7]. Let xeP",i=1,...,n, s;eS.

(@) If s;x=xs;, then T;T,=T,T,.
(b If ) sixsi_llﬁocf 1x = [0, then T7'TT7'=]], Ty, in  particular
Ti_ 1 Tw-Ti_ = T(; P Tc; ij-
i i j=Fi t)

Remark. OT,-1=T,' .



Braid Group Action and Quantum Affine Algebras 559

3. Subalgebras of U,(g)

In this section we find certain subalgebras of U,(§) which are isomorphic to U,(5L;).
3.1 Lemma. Let w;cP¥, 1<isn.

(a) Any reduced presentation of w; starts with ts; where 1€ and ts;=s,1.
(b) Any reduced presentation of w; ends with s;.

Proof. For j#0, I(s;w;)=1(w;)+ 1 and this implies (a). For (b), if /(c;s;) <I(ew;) then
;(o;) <0 which is only the case when i=j.

Definition. For 1 <i<n let w{=w;s;. Then l(w})=1(w;)—1.

Remark. T,=T, T *.

Definition. For 1<i<n let U;c U,(g) be the subalgebra generated over C(q;) by

Ei, Fi, KE', T (E), T(F), T (K, c*'2 p*é
It is clear T E;€U; , T, FieU, since l(w{s;)=1(w;)=lwi)+1.
The following is proved as in [L5 1.8]:

3.2 Lemma. Let i,jel and let weW be such that w(e;)=a;. Then T,(E;)=E;.

Corollary. Let 1<i+j<n. Then for xeUj, T, (x)=x.

Proof. w;(o;)=0;.

Definition. For 1 Zi=j<n, a;;<0 introduce the elements:
Fjy=—F;F;+q ®“%FEF,;,
E;j=—E,E;+q%“%E;E; .

3.3 Lemma. Let 1<ij<n.

(@) T, (Fy) =T, (Fij),
(b) T, (Ej)=T,,(Ey).

Proof. For (a)if a;;=0 then both sides of the equation equal 0. Otherwise, since the
statement is symmetric in i and j we may assume a;= — 1. Then:

To (Fij) =T, (Tj " F)=T;T, T, (F)
=T, Ti(F))=1,,Fj)
which implies (a). (b) follows by applying Q.
34 Lemma. Let 1<iZ<n, [F;, T,,(E;)]=0.

Proof. By [L 3.1.6, 38.1.6] it suffices to check that both T;T,(E)eU,;
and 17 'T,(E)eU;. Since w,ePY, I(s;wis;)=lw;)+1=I(s;0{)+1 so that
TLT,(E)eU, . Now T; ‘T, (E)=T; 'T, T "(E)=T,"(E). Since ®-Q(U})=
U; and @ (T, ' (E;))=T,1(E;) it is enough to check 7,,-1(E;)eU; . This follows
because w;ePY and l(w; 's;)=1l(w; *)+1.

3.5 Lemma. Let 1<i<n, j+i,0, [F}, Tp(E)]= — CK; T, (Fy).
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Proof. [F;, T,,(E))1=LF; ( K7 'F)]=—T,([F;, Ki ' F.])= —T,(K; )T,
(g (“'“JFF F.F;)= —CK T(F,,) —CK; ITJ(FU))

3.6 Lemma. Let 1<i<n, if =3I, then ro(Tu(E;))=0.
Proof. Since l(w;)>1 and T,,(E,)eU, it follows Tg ' T,,(E;)eU, .
3.7 Proposition. Let 1<i<n.

(@) EPTy(E)— EPTo(E)Ei+ E Ty (E)ES? — Ty (E) EP =0,
(b) Tp(E; NO(E)—T, (ED)® ETo(Ex) + Tol(Ed) Ei T (E)® — Ey Ty (E)® =0.

Proof. (b) follows from (a) by applying 7;,;. Denote the expression in (a) by x;. To
check x;=0 it suffices [L 1.2.15] to check r;(x;)=0 for jel. FFor j=0 this is by the
preceding lemma. Since for xeU, [F;, x]=0 for xeU, implies r;(x)=0, we can
check [F;, x;1=0. This is straightforward using the expressions for [F;, T,;(E;)] in
3.4 and 3.5.

3.8 Proposition. For each 1 Zi<n there is an algebra lsomorphlsm h U (slz)—>U
given by WED=E;, h(E))=T(E), hKi)=K"' hEKi)= T (K,
hF1) = Fo, h(Fo) =T(F), hi(CE'P) = CEV2, (D) =D*, hfg)=g,.

Proof. Consider the defining relations of U,(s,). By the previous proposition and
some simple checks they hold in U;, where q is replaced by g;. Therefore h; is
surjective. For veQ(g) let Ul—v— U U:r , then h; |y~ is homogeneous with respect
to this grading. Therefore if xeKer h;) -, writing x = z b;x;in terms of homogene-
ous components /;y-(x;)=0 for each j. Fix some x;. By [L4 Prop. 2.6] (see also
Remark 4.14) for feQ there is a unique 1rreduelble highest weight module M of
U (slz) with highest weight vector v such that K;v=q®!®v for i=0,1 and
Dv g 44y, Further we can pick f8 so that x; acts non-trivially on M. The root system
of U,(s;) imbeds into that of U,(§) via h; and we can fix a f'eQ(§) so that pulling
back the highest weight module M " with weight f’ through h; we have K, K4, and
D acting as on M. Now as a U,(sl;) module M’ has an irreducible quotient which is
isomorphic to M. In particular, x; must act non-trivially in M’ which is a contradic-
tion. Therefore Ker ;- =0. Smce multlphcanon induces a vector space isomor-
phism U @ T® U™ MU both in U; and U, (1) it follows that h; factors through
this decomposition. Therefore Ker h;=0.

Corollary. For 1 <iZn,
(@) Ty, =hioTyohi ',
(b) Ty ju,=hi° Ty, o b 1

Proof. Let M be an integrable U, module. Decompose M into weight spaces with
respect to the action of K;, M= (—B ; MY Let ueU;, me M" for a particular n. From
the defining properties of the braid group action it follows:

Ty (hi 1 (u)) - Y (=1)Pq D EPFPEOm

a,b,c;—at+b—c=n

— Z ( 1)b —ac+bE(a)F(b)E;C)(hi—lu)m

a,b,c
:h.‘1< z (_,1)bq7ac+bE§a)F§b)Egc)um>
a,b,c

=h;1(Ti(u) Y (—D”qi“”bEE")Ff”’Ei‘”m):hionoh,-1=T,-w,..
a,b,c
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This implies (a). Ty (E)=T; *To(E) =g *E T(E) —qi *ET,(E:) Ei+
Ta,ir(Ei)E,-(Z) and T,, ' T,,(E;)= —K; ' F; so that T, , acts on the generators of U; as
does h;o T, o h *. (b) follows.

3.9 Definition. For 1<i<n, k>0, let u=C "*(q; *E;T&(K; 'F)—
TC{(,i(Ki_lFi)Ei). NOte that lﬁikGUi.

Versions of the next two propositions appear in the work of [Da Sect. 4] for
U,(s15). L

3.10 Proposition 1. Let ¢ = (¢7 CV2), d = (g2 C™), r > 0, me Z then:

r—1
[lpirs TJ;"(F:)] =—C'? [2]1'( Z C(k_l)(ql'—%_1)‘/7i,r—chZ':+k(Fi)+c(rI)Ta';':+r(Fi)> >
k=1

[, To(ED]=C™?[2]; ( ril A% aqi—qi YTo MEWi,-+d"” ”TJII_’(Ei)> :

k=1

Proposition 2. Let r>0, 1 <iZn.

(a) [‘;ill l/7ir:| TO,
(b) T (W) =Y.

Proof. 1t is sufficient to prove the previous two statements for U,(sl;). Here i=1
and w; =1s;, where 7 is the non-trivial Dynkin diagram automorphism. This follows
because [(w1)=1, I(syw,)=1(w{)+ 1 and @, has only finitely many conjugates in W.

For the sake of exposition, we sketch a proof by induction on r which appears
in [Da Sect. 4]. For r=1 the statements are readily checked. A direct calculation
shows [11,¥1,]1=[21((cT1) ™ (Y1, 1) —V1,,+1)- This implies that 2a), is equiva-
lent to 2b),. ;. Here we denote by 2a),. the statement 2a) for all r <.

Proposition 2b), implies 1),. This follows from an inductive calculation using
the identities:

[‘pm F1]=Cl/2(q+2[‘/71,r—1, TTl(F1)]_[2](‘1‘“(1_1)lp1,r71TT1(F1))
[1r E:1=C (@ [W1,r-1, T1 *0(ED) 1+ [21g—q DTT P 0(E)y,-1)

To show 2a) it is sufficient to show r;(C** 2[4, §,,1)=0 for j=0, 1, r>0.
For j=0 this is straightforward. For j=1 this follows from [[{{1, ¥, ], F11=0.
This is shown by induction on r. Assuming 2a),_,, 2b),, and 1),, a direct calculation
gives

(V11 G, ) Fil=—CY2[2] T dO 20, 65,175, F11=0.

This implies 2a),. As noted this now implies 2b), . and 1), ,. This completes the
proof of Propositions 1 and 2.

Remark: Much of the calculation through the end of §3 is inspired bz\the work of
[Da] for U,(s1;). The statements of Proposition 2 also appear for U,(sl;) in [LSS].

3.11 Define ¢y =Q(s). Applying the anti-automorphism Q to the above
propositions gives similar identities with 1, replaced by ¢y and F; (resp. E;)
replaced by E; (resp. F;). Here and in the future we omit writing these identities
down although we implicitly assume them.
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Let H be the subalgebra of U, generated by V/y, @y for 1 <i<n, then we have
shown:

3.12 Proposition. The group of translations P fixes H pointwise.
3.13 Proposition. Let 1<i<n, reZ.
To(F)F,—qi *FT(F)=qi > T ' (F) T, (F) — T, (F) To ' (Fy) .
Proof. This is checked in U,(sl;) directly.
3.14 Lemma. Let a;<0, meZ.
(a) [W:ib T (F;)]= c'? [aij]iTa')",-+ YF),
(b) s, To(E)) 1= —C™ 2 a;;1:Ts " H(E;).

Proof. We check (a) for a;;<0. Note that by previous lemmas [T, (K; 'F,), F;]=
""Ki_l CT(DI(FJL) and Tw,(Fjl)=TZUJ(F’l]) Then:

[V, Fi1= C™Y*([qi ?E;T,,(K; ' F), F1—[T,(K{ ' F)E;, F;])
=—C'2K; ([Ei, To(Fp)])= _C1/2Ki_1ij([Ei, F;;1)
= C'"K; 'T, ([Ei, — F;F;+q ™% FF;])=C"*[a;];T, (F;) .

Now (a) follows by applying T, to the above equality. Using Vi =T, Y=
C~UPg 2T, (E)(Ki *Fy)—(K{ ' F)T,, ' (E;) (b) follows similarly.

3.15 Lemma. Let a=a;<0, r>0, meZ, c=(—qgic'?),d=(—gi C™?),

r—1
[Wir Toy(F))1=C*7? [a]i< Y TG =g Wi T (Fy) A+ 1’Ta'I}+’(F,-)>,

k=1

r—1 _
[lpir’ Ta’Z(Ej)]z—C_llz[a]i< Z d(k_l)(qi_q;I)Tc:)';~k(Ej)lpi,r—k
k=1

+d<f-1)T;;;~'(Ej)> .

Proof. We check the second equation.
Wir, Ej1=C~"2(q7 > T, (E)Th (K ' F)E;— T YK * F) T, (E:)E;
—qi E;T, (E) Ty (K ' F)+E;To (K F)T,  (E)
since: T4 Y(Ki 'F,)E;j=gq; “E;T, “(Ki ' F)
=C7"2 (g 27T, ) E; T, MK ) — T (K F)To, () E;
—q; PE;To, (E)T, YK ' F)+4/ Ty, "(K; *F)E;T, (E;))
=CT(—qi PTG M ED Ty HKT R+ T MK F) T, (Ey)
now use: T, ' (Eij) =T, (E;;) =T, (— E;E;+q{ E;E}),
=C7"2(g; 2T, NENE T, (Ki P F)—qi 2P E T (KT )T, E;
—qi Ty, (ENTS V(K " F)Ei+qi' T YK ' F)ET, Ey)
=C_1/2(_q?[lppi,r—la Ta:jl(Ej)]—[a]i(Qi"q;I)Tc;jl(Ej)'/;i,rﬂ) .
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Now the second statement follows by induction and applying 7. The first
statement follows by a similar calculation.
3.16 Lemma. Let reZ, (x;|a;) <0,
— T4 FiFj+q @9 FTL Fi=q @9, FT, Fi—T, F;T5 F; .
Proof. The left-hand side equals T, (Fj;). The right-hand side equals:
q ST F T, Fi—T, FiTa ' Fi=T T, (F;))=T5,(F) .

4. The Relations in Drinfel’d’s Realization

Let I'" be the Dynkin diagram of g. Orient the vertices of I' by defining o: V—{ + 1}
so that for i and j adjacent in I', o(i)= —o(j). Now define T, =0(i)T,,, and
modify all the definitions by replacing T, with Twi.

4.1 Lemma. Let a=ay;, r>0, meZ, c=(qfc'’?), d=(q/ C~ '),

r—1
W To(Fj)]= —Cllz[a]i< Y < TG — g Wi T8 Fi4c " VI F
k=1

r—1
(o, To(E))]=C 12 [a]i< Y. A" gi—a; VT Eppipatd’ I’TJI}"E;> :
k=1

Proof. This follows directly from Sect. 3.

Now for k>0 introduce generators h;eH by the change of variables (cf.
[D2, G]):

(@—a: ') ). hika=1°g<1+(Qi—Qi1) > ';lkzk)

k>0 k'>0
Differentiating both sides and considering the coefficient of z” gives:

r—1
(*) rhirzrlﬁir_(ql"q;l) Z ki y b -
k=1

Similarly introduce h;, —, = Q(hy) so that:

1
(**) rh o =1@i—(qi ' —q;) Y. khi @i .
k=1
42 Lemma. Let 1=i, j<n, k>0.
- 1 -
@) Lhu T F;]= X [kaij]ick/ZTar,'lj+ij,
N 1 e
(b) [ha, Tar)';Ej]:E[kaij]iC k/ZTa';‘j kEj,
Proof. Part (b) is an induction on k using the following identities:
(Wi, T E;1=C~ V(=g Dii—1, T El—[ay)ilqi—ai T2 Esri—1) ,

1/2 (k’_ 1) [k,aij]i

hae, T E ] =12 — L disls
e T8 B =€ R Tya

[k -1, T YE;], where k' <k ,

and (a) is similar,
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Remark. As before, we omit the identities obtained by applying Q.
For 1<i<n, r>0, introduce the elements y;, =(q;—q; ) Ki¥ir, 0ir=;).
Then:

'//ir=(Qi—‘1i_1)Cr/2 LE;, Ta';,-Fi] >
or=(g;:—q YWC*[F, Tu’;gEz'] .
Set ¥; o =K, ¢; o=KL
4.3 Lemma. Let k, 12 1. Then [hy, Y ;]1=0.

Proof.
1
—1[h1k’ wﬂ] Cl/z[hlka [E Tl F]]
q;—4q;
=C"[[ha, E;1, T4, F;1+ [Ej, Tha T5,Fi11
ka;]; ka; .
=C'? (——[ ‘;J] T, E; Ta F~]+[[E,-, _Lhayl C]’{’] ck/2TJ,j"F,~]]>
[kay;]; .
=k f (C™[T,*E;, ThF~[E, TS F;])=0,
since T;jl [E;, T4 F;1=C[E;, T, F;].
Similarly:
4.4 Lemma. Let k,v>0. Then

_[kal,Jl
[hu, (Pjr] =

(C*~C™M)g;n if r2k,
0 if k>r .

Rewriting (**) in terms of the @;, we have:

r—1

(*¥**) g " —a)hi, - =1K; @i+ (@i—a7 DK Y ki p—ihi .
k=1

4.5 Lemma. Let k, [>0. Then

Ck—C*
[kzks h}l] 5k -7 [kaz]] "—qT .

J

Proof. Induction using (***).
4.6 Definition. For 1 <i<n, keZ define xi =Tk (F,), xa =T (E).

We can now prove:
+1

4.7 Theorem [cf. D2]. U,(§) is generated over C(q) by the elements x” Jhi, K&
CE12, D1 where 1<l<n j€Z, and keZ\{0}. The following are defining relations

Jor Uy (§):
(1) [CH2 hy]=[C*'"2 xF1=[K;, hy1=[K;:, K;1=0,
KixﬁKi_lzqi(ai’aj)x}%: ijl;Dﬂ:qu;TPn Dha D™ =g hy ,
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Ck—C*
2 [ha ,1] Ok, —17 [ka”]l_q_q'—l’

i 4j
tq9_ F(kl2),
(3) [ha, x5 1= i";[kaij]ic X5 h+1

+ t Floyla) T E ;| a + *
4) Xik+1Xj1 —qﬁ( ! ’)le xi,k+1—61*( ! ’)xksz+1 — X 1+1Xik »

1
(5) [xii, xﬁjzéijq.__

—12 I—k/2
_1(Ck /lﬁi,k+l‘C /Q’i,ku),
i
For i=l=j,n=1—aij,
1—ay;

+ 4+ +
(6) Symy ...« Z( 1)[ Jxlkl XK XH XKy, - - Xk, =0

Sym denotes symmetrization with respect to the indices &k, k,, ..., k,. Here yr;; and
@5 are defined by the following functional equations:

Z wlku =K; eXP((‘]z ql ) Z htk”)

k=0 k=

Y, eaut=K; 'exp <(‘1i'1—11i) > *ku‘k> .
k=0 k=1
Proof. Relations (1)-(5) follow from the previous calculations. Relation (6) is
obtained by applying 7,,,i=1,. . . , n to the Chevalley relations and an induction
on max{|k; —k; |}. Let R be the algebra over C(g) on the above generators with
defining relations (1)—-(6). By the previous consideration there exists an algebra
surjection F: R—U,. To check that F is an isomorphism we specialize at 1 as in
Sect. 2. Let R, be the </ subalgebra of R generated by:

K;—K;*
C+1/2 D+1 hlo_____I’
qi—4q;
c—ct D-D’
C=——d-", d= —1 » hik} xi:l% .

q—q q—q

Define R; =R,,/(q—1)R,,. Then R, is an associative algebra over € on the above
generators with the defining relations:

()  [KiK]=[D,K]]=0, C?*=D?*=K/=1,

[d, hal=khy, [d,x;]1=kDxj ,

¢

2 [P, hjl]zék,—laijz(ck_l'i" +CTH),
(3) (A X,z] Ta C+|k|/2x] ki o, X;TL]Z iainiXETL s
4) xi,_k+1xj_l_xﬁxi,_k+1:xi;xjjl+1_xfl+1xiil; s
(5) [Xi;,xﬁ:|=5in'C(k_l)/2h' k+1 s
©) DX ik - - - s Xk Xit - - -111=0, n=1—a,.
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It follows from the Gabber—Kac theorem [G-K] (see [G] for the relations in
R, below) that:

Ri=R,/(K;—1,C*—1,D—-1)2U(g® C[t,t 1@ Cc ® Cd) .
Now specialize U,(g) to U;(g) as in Sect. 2. Then F induces the isomorphism:
F: Rl = Ul(é) )

Since specialization doesn’t change the root multiplicities, F : R—U, is an isomor-
phism.

Remark: Let sqeW, so that sg(o;)=6. By Lemma 32 it follows
Ty, To,(—Ki 'F;)=E,. This gives the inverse to the isomorphism F: R—U,. In
particular, F " (Eq)= —0(i))CKg ' Tp,x; .

5. The Coproduct

Since the Drinfeld generators are now expressed in terms of the braid group,
calculating their coproduct depends on how the coproduct commutes with the
braid group.

Define for 1 Zi<n:

~kk 1)
R=Y (—1fq, 2 (gi—gi WKLIT(F)® ® THENW,
k=0
k—1)
R=(I7'®T )R = Zq (@—g Wk FP @EY .
k=0

The following proposition is due in the finite type case to [K-R], [L-S]. The
Kac—Moody case is due to [L 37.3.2].

5.1 Proposition. Let S;=T;® T;. Let 1Zi<n, xeU,.

(@) A(Ti(x))= R ! SA(X) R;,
(b) AT (x)=R;*- 871 4(x)-R

Let s, . . . s; be a reduced presentation of w. Define
Ry,=1(8;S;,...8,_(R;)...S,(R,)R;),
R,=(S;"...8; ' (R)...8 "(R,_)R, .

5.2 Lemma. Let weW, R,,, R, are well defined.

Proof. If W is the affine Weyl group of s[; any reduced presentation is unique.
Otherwise, since any two reduced presentations differ by a finite sequence of braid
relations it is enough to check the statement for the rank two case. Consider Ry s,
R s, In the simply laced case. They are certainly equal since both (up to a torus
element) are expressions for the rank 2 universal R-matrix (see [K-R], [L-S]).

5.3 Proposition. Let 1<i<n, k=0. Let w=kw;.
(a) A(xi;)=R\;1(xi; ® K—oz,-+k5+1 ® xi; )Rw7
(b) A(xi ) =Ry ' (xi-x ® K} 15+ 1® x; —)R,,.

Proof. This follows inductively from the above formulas.
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To obtain the coproduct on x; note that Q(x;_,)=xi and use
Ao Q=0Q® Qo004 to the above formulas.

6. A PBW basis of U,

For 1 <i<n the elements C¥2 e U . On specialization to g =1 they form a basis
of the root space ko of §. This follows from the previous section since
Yu=hymod(qg—1), which implies their linear independence on specialization.
Note that if w(a;)= f§ («; simple, B positive, we W) then T,,(E;) specializes to a root
vector of § of root B.

For Bed¥(§) choose wﬁeW so that wg(o,)=p for some igel. Define
Eg=T,,(E;,). For x: AT-N, 1 {L,...,n} x AT -N define

Eot—= H E;fc(ﬁ)(ck/zipik)l(i’ ké), F;c’, v Q(E}C', t’) ,

where the product is in a predetermined total order over the positive roots counted
with multiplicity.

6.1 Proposmon The E*' form a basis of U, 7 (8) as a €(q)-vector space. The elements
F UK, CT"+H12DTE (ae(, 1, ' €Z, K, 1 as above) form a basis of Uy(§) as a T(q)-
vector space.

Proof. The proof can be repeated almost word for word as found in [L5 Sect. 1]. In
the proof of linear independence of the E*’, a dominant integral highest weight
should be chosen so that for x, 1e® (in the notation found there) the E*' form
a linearly independent set in M.

Remark. The above basis is called of Poincaré-Birkhoff-Witt type because on
specialization to 1 it degenerates to a PBW basis of the enveloping algebra U(g).

Acknowledgements. 1 would like to thank Ian Grojnowski, Victor Kac and George Lusztig for
helpful conversations.
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