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Abstract: We develop an approach towards construction of conformal field theory 
starting from the basic axioms of vertex operator algebras. 

1. Introduction 

The notion of vertex algebras was introduced in [Bol l ;  the variant of this that 
we call "vertex operator algebras" defined in [FLM2J and [FHL]  can be 
regarded as a mathematical reformulation of "chiral algebras" or "conformal 
algebras" in conformal field theory. The basic ingredients in the definition of 
vertex operator algebras are a space of states and the vertex operators associated 
with the states. One of the two main axioms, the Jacobi identity, involves the 
properties of vertex operators on a complex disc; the other main axiom is about 
the Virasoro algebra which is supposed to encode the information of infinitesimal 
deformations of Riemann surfaces with local coordinates. It is expected that 
these axioms and certain finiteness conditions are sufficient to formulate and 
verify the theorems on all Riemann surfaces. The present work discusses this 
problem. We introduce the notions of the global vertex operators and the space 
of vacua on a Riemann surface with punctures, and prove some initial results. 
And we will discuss the relation of our approach with the modular functors defined 
in [SeJ. 

For  a given vertex operator algebra V and a given data 

(2:; Q1 . . . . .  QN; z l , . . . ,  zN), 

where E is a compact Riemann surface, Q1 . . . . .  QN are N distinct points on E and 
zl is a local coordinate at Qi satisfying z i (Qi )= 0, a global vertex operator on such 
data is defined to be the sum of the residues of an operator valued differential form 
associated to a primary vertex operator Y (a, z) and a meromorphic differential 
f with the dual degree on Z. In this language, the operators of Virasoro type and 
K ac - Moody  type on a two-punctured Riemann surface defined in [KN]  are 
essentially the global vertex operators associated to the Virasoro algebra and 
primary fields of degree one on a two-pointed Riemann surface, respectively. 
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Suppose further we assign at each point Qi a representation w~ of v, so we have 
the data 

Z = ( z ;  Q1 . . . . .  Q.; z l  . . . . .  z~; w l  . . . . .  w ~ ) ,  

the space of vacua on Z is defined to be the subspace of (W1 |  �9 �9 | WN)* whose 
elements are annihilated by all the global vertex operators. This definition is 
motivated by physical literatures (e.g., [DVV, GGMV, W]). 

In the case that the vertex operator algebra under consideration is generated by 
a K a c - Moody  affine Lie algebra, the notion of the space of vacua is defined in 
[TUY] ,  which appears to differ with our definition, but one can prove that the two 
definitions are essentially equivalent (see remarks in Sect. 7). After we introduce the 
notions of the global vertex operators and the space of vacua, we prove some 
results similar to the results in [TUY] .  One of these results (Theorem 6.1) is that if 
the data 

Z ' = ( S ;  Q1 . . . . .  QN, QN+I; zl . . . .  , zN, zN+l; W1,. �9 �9 WN, V) 

is obtained by adding (QN+ 1, zN+ 1) to the data Z and assigning the adjoint module 
V (or 0 sector) at QN + 1, then the space of vacua on Z' and the space of vacua on 
Z are canonically isomorphic. This result is used to define the correlation functions 
associated to every vector in the space of the vacua on the Riemann surface (see 
Theorem 6.2). Some of the arguments used in proving these results is similar to the 
argument used in [TUY] .  However, since there is no affine Lie algebra structure in 
a general vertex operator algebra, we cannot appeal to the representation theory of 
the affine Lie algebras as in [-TUY]. To overcome this difficulty we are forced to 
define the quasi-global vertex operators on a Riemann surface with projective 
structure, and we prove that the space of quasi-global vertex operators forms a Lie 
algebra (Proposition 4.2) and that the space of vacua is annihilated by quasi-global 
vertex operators (Theorem 5.1). These results are used as technical tools in the 
proof of our main theorems (Theorem 6.1 and Theorem 6.2). In the end we discuss 
a conjectured procedure to construct the space of vacua on higher genus Riemann 
surfaces by gluing lower genus Riemann surfaces. This gluing construction relates 
to the modular functor defined in [Se]. 

The paper is organized as follows. Sect. 2 gives a brief review of definitions of 
vertex operator algebras and the results needed later in order to make this paper 
self-contained. Section 3 sets up the notations and gives the definition of global 
vertex operators and the space of vacua on a n-pointed Riemann surface. In Sect. 4 
we define the space of quasi-global vertex operators on a n-pointed Riemann 
surface with a projective structure and prove that it is closed under the Lie bracket. 
In Sect. 5, we prove that the space of vacua on a Riemann surface with a projective 
structure is annihilated by the quasi-global vertex operators. In Sect. 6, we prove 
that there is a system of correlation functions corresponding to the each vector of 
the space of vacua. In Sect. 7, we discuss the examples of the space of vacua for 
various situations. In particular, we give the relations of the space of vacua on 
2-pointed and 3-pointed spheres with the notion of dual representations and 
interwining operators defined in [FHL] .  In Sect. 8, we give a conjecture on 
constructing the space of vacua on higher genus Riemann surfaces by gluing lower 
genus Riemann surfaces and discuss its relation with the modular functors. 

We will denote by C and Z the set of complex numbers and the set of rational 
integers respectively. And we denote by }cf(z)dz the contour integral so nor- 
malized that }c } dz = 1 for a contour C surrounding 0. 
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2. Definitions of Vertex Operator Algebras and Representations 

We recall the basic definitions of vertex operator algebras and representations, and 
give a summary of the results used later and sketch their proofs. For more details, 
see [FLM2]  and [FHL].  And see [FLM2, FK, FZ, Li] for various examples. 

Definition 2.1. A vertex operator algebra is a graded vector space V=@~=o  V, 
equipped with a linear map 

V ~ (End V)[[z,  z - l ] ]  , 

a ~ Y (a, z) = ~' a(n)z-"- 1 (a(n)~End V ) 
n~Z  

(we call Y (a, z) the vertex operator of a) and with two distinguished vectors l~Vo, 
09 ~ V2 satisfying the following conditions for a, b ~ V: 

a(n)b=O for n sufficiently large ; (2.1) 

Y (1, z) = 1 ; (2.2) 

Y(a, z ) leV [[z-]] and lim Y(a, z)l = a  ; (2.3) 
z--+O 

the vertex operator Y(oa, z)=~n~zLn z-n-2 generates a copy of the Virasoro 
algebra: 

m 3 - m  
[Lm, L , ]  =(m--n)Lm+, + 6m+,,o ~ c ,  (2.4) 

where c is a constant which is called the rank of V; and 

Loa=na=degaa for a~V,, (2.5) 

Y (L _ 1 a, z ) = d  Y (a, z) ; (2.6) 

and the following Jacobi identity holds for every m, n, l~Z: 

Resz_w(Y (Y (a, z -w)b ,  w)tw,~_wF(z, w)) 

= Resz(Y (a, z)Y(b, w)Zz, wF(z, w))-Resz(Y(b, w)Y(a, z)zw, zF(z, w)), (2.7) 

where F(z, w)= z"w"(z-  w) t. This completes the definition. 

Identity (2.7) needs some explanation. Expressions zw,~-wF(z, w), z~,wF(z, w) 
and t~,~F(z, w) mean the power series expansions of the rational function F(z, w) on 
the domains I wl > I z -  w I, I zl > I w I, I wl > I zl respectively, i.e., 

Zw~_~(zmw"(z--W)~)= W~+"-'(Z W)'+' 
, = 0  
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And Res=_ w(. �9 �9 ) in (2.7) means the coefficient of the (z - w)- 1 of the formal power 
series in ( . . . ) .  Res=(. . .  ) and Resw(. . .  ) have the similar meanings. And we will use 
the similar notations later. So (2.7) is equivalent to 

i = 0  i = 0  

And taking coefficient of w-  t in both sides of (2.8), we have 

i = 0  i = 0  

By (2.1), for a fixed v e V, there are finitely many vectors among a(l + i)b, b (n +i)v 
and a(m + i)v (i> 0) are non-zero, so all the three terms in (2.9) are well-defined 
linear operators on V. The Jacobi identity (2.7) are equivalent to (2.9) for every 
m, n, l~Z. 

We give some immediate consequences of the definition. We have relations: 

Y(a,z)=O iffa=0, (2.10) 

[L _ i, Y (a, z)] __d  Y (a, z),  (2.12) 

[Lo, Y (a, z)] = d  Y (a, z)z + Y (Loa, z) , (2.13) 

a(n)V,,c V,,+deg,-,-1 for a homogeneous,  (2.14) 

a ( n ) l = 0  f o r n > 0 ,  (2.15) 

Y (a, z) 1 = exp(zL _ 1)a,  (2.16) 

a ( - k - 1 ) l = ~ . ( L _ i ) k a  for k > 0 .  (2.17) 

We sketch the proofs of the above relations. Equation (2.10) follows directly from 
(2.3). Equation (2.11) is obtained by specifying l=  0, n = 0 in (2.8). Equations (2.12) 
and (2.13) is proved by using (2.11), (2.5) and (2.6). Equation (2.14) follows from 
(2.13) directly. Equation (2.15) follows from (2.3). Equations (2.16) and (2.17) are 

equivalent. To prove (2.17), using (2.12), we have (adL_ t)kY (a, z)= dzz Y (a, z), 

apply this identity to 1 and take lim=~o, using L _~ l=~o(0 ) l=0 ,  we obtain 
(L_ i )ka=k!a( -k  - 1). 
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From (2.10) we see that the operators a(n) (a~V, neZ) are dosed under the Lie 
bracket. And from (2.14), we see that for a homogeneous element a, the operator 
a(n) (n~Z) maps a homogeneous subspace into a homogeneous subspace, and a(n) 
has degree deg a - 1 -  n, we write deg(a(n))= deg a - 1 - n .  

Definition 2.2. A representation of V or a V-module is a graded vector space 
M o~ = ( ~ . = o  M,,  such that there is a linear map 

V ~ (End M)[[z ,  z -1 ] ]  , 

a ~ Yu(a, Z) = ~ a (n ) z - " - i  
n~7l 

and the following properties are satisfied: 

a(n)M,, c Mm+acg,-,-1 for every homogeneous a 

and (2.2) (2.4) and (2.6) and the following Jacobi identity holds: 

Resz-w(Yu(Y (a, z - w ) b ,  w)z~,~_~F(z, w)) 

(2.18) 

= Resz(YM(a, z)YM(b, w)lz, wF(z, w))--Resz(YM(b, w)YM(a, z)~w, zF(z, w)) (2.19) 

for every rational function F(z, w )=z"w " ( z -w )Zm,  n, l~Z. 

Equation (2.19) has the same interpretation as (2.7). And relations (2.11)-(2.13) 
hold also for representations of V. We will write Y (a, z) for YM(a, z). Note that by 
(2.18), for fixed a e V  and v~M, a(n)v =0  for n sufficiently large. Thus, for a Laurent 
power series f (z) = ~ i ~ n  lizi, the operator 

Resz(Y (a, z) f (z))  = ~ lia(i) 
i > N  

is a well-defined operator on M. 
It is clear that V itself is a representation of V; we call it the adjoint module or 

0-sector. 
Subrepresentations, direct sums of representations, irreducible representations, 

etc., are defined as expected. 
An important class of vertex operator algebras are rational vertex o p e r a t o r  

algebras, which is defined as follows: 

Definition 2.3. A vertex operator algebra is rational if it has only finitely many 
irreducible representations, and each irreducible representation M = (~n~N M,  satis- 
fies dim(M,) < 0% and moreover every representation is a direct sum of the irreducible 
ones. 

We quote a result of [FLH] on correlation functions on the Riemann sphere 
which is not used later but will be compared with our results on correlation 
functions on general Riemann surfaces. 

oO oo Theorem 2.1. Let M = ~ i = o  Mi be a representation of V, let M '  = ~ i = o  M~" (M~ is 
the dual space of Mi). Then for every v' eM' ,  w M  and ai (i= 1 . . . . .  n), the formal 
power series 

(v', Y (al, zl ). �9 �9 Y (a,, z , )v )  
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converges on the domain ]z a [ > �9 �9 �9 [z,[ > 0 to a rational function (v', Y (al, za). �9 
Y (a,, z,,)v) with only possible poles at zi =zj  ( i . j )  and zi= O. For every permutation 
i l , . . . ,  i,, of 1 . . . . .  n, we have the identity of the rational functions 

(V', Y (ail, zil) . . . Y (ai,, zi.)v)=(v', Y (aa, za) . . . Y (a,, z,)v) . 

And if C is a contour of zl which surrounds Zz and O, Za, . �9 �9 z, are outside of C, then 

(v', Y (aa, za )r  (a2, z 2 ) . . ,  r (a,, z.)v)(za - z 2 )  k dza 
C 

=(v', Y (aa (k )a2, z2) Y (a3, z 3 ) . . .  Y (a., z,)v) . (2.20) 

Proof. We first derive a formula which expresses the (n+ 1)-point function 

<v', Y(aa, z a ) . . .  Y(ak, Zk)Y(b, w)Y(ak+l, Zk+a). �9 �9 Y(a,,  z.)v> (2.21) 

in terms of the n-point function. Write Y(b ,w)=y '~  
~ ~  and move the term Z2=ob(m)w -m-a across the terms 
Y(ak+a, Zk+a) . . . . .  Y(a.,  z,) to the right, and move ~m~=a b ( - m ) w  " -1  across the 
terms Y(ak, Zk) . . . . .  Y(al ,  zl)  to the left, and using (2.11) to compute the Lie 
bracket, we obtain 

(2.21)=<v', Y ( a a , z a ) . . . Y ( a , , z , )  ~ b(m)w-m-av)  
m=O 

+ <V', ,n=a ~ b(--rn)wm-ly ( a l '  Za)'''Y(an' Zn)V> 

+ Z ~ Zw, z~((w-zj ) - i -a)<v ', Y ( a a , z x ) . . . Y ( b ( i ) a j ,  z j ) . . . Y ( a , , z , ) v >  
j>k+l i = o  

+ ~ ~ %,w((W-Zj) -i-1)<v',  Y(aa, z a ) . . . Y ( b ( i ) a  l , z f l . . . Y ( a . , z . ) v > .  (2.22) 
j<k i=O 

Note that all the four terms of the right-hand side of (2.22) are actually finite sums 
since b(i)v =0,  b(i)aj=O and <v', b ( - i ) x >  = 0  (x~V is arbitrary) for i sufficiently 
large. From (2.22), we see by induction that 

<v', Y (al, 21). �9 �9 Y(a,, z,)v> 

converges on the domain ] z a ] > ' ' '  > [z,[ to some rational functions with poles at 
zz = z~ ( i . j )  and z~ = 0, and the fact that the limit rational function is independent of 
the ordering of the product of Y (ai, zi) also follows from (2.21). To prove (2.20), let 
C1 be a contour of zl which contains 0 while zi ( i=2  . . . .  , z,) are outside Ca, and 
C2 be a contour ofza which contains 0 and z2 while z~ (i = 3 . . . . .  n) are outside C2. 
By the Cauchy Theorem for contour integrals, we have 

(v', Y (a~, z~)Y (a~, z2). �9 Y (a,, z,)v)(za - z ~ )  k dzl 

= ~ (v', Y (a , ,  z l )Y(a~,  zz).  �9 �9 r (a,, z,)v)(za -z~)~dz~ 
Cz 

- -  ~ (V', r(al ,  z l ) r (a2 ,  z 2 ) . . ,  r(an, Zn)0(Zl--Z2)kdza. 
C~ 
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The both integrals over C~ and C2 are meromorphic functions of variables 
z2, z3 . . . . .  z, with singularities at z~ = zj and zi = 0. The integral on C2 has a power 
series expansion on the domain [z3[ >" �9 �9 > [z, [ > [zl [ as 

<v', Y (a3, z3) . .  �9 Y (a,, z,) Resz~(tz,,~2(zl-z2)kY (at, z l ) Y  (a2, Zz))V> . 

The integral on C1 has a power series expansion on the domain [z3[>" �9 "> [z,[ >[ 
zl] as 

<v', Y (a3, z a ) . . .  Y (a,, z , )Resz l0z2,z l (z l -  z2)kY (az, z2)Y (al, zl))v> . 

By the Jacobi identity, we have 

Reszl(tz,,z2(zl --z2)gY (al, z l ) Y  (az, zz))--  Reszl0z2, zl(Z1 --Z2) kr (/]2, Z2) Y (al, Zl)) 

= r ( a l ( k ) a z , z l ) .  

Thus we have proved that both sides of (2.20) have the same power series expansion 
on the domain [z3[>" �9 �9 >[z , [>[z2 [, so they are the same meromorphic function. 
This concludes the proof. []  

The rational functions (v', Y (al, z l ) .  . . Y (a,, z,)v) are called correlation func- 
tions on the sphere. It can be proved that a certain converse of Theorem 2.1 is true: 
the convergence of the products of vertex operators and the properties of the limit 
as in the theorem implies the Jacobi identity. 

To describe a generalization of this theorem to an arbitrary Riemann surface, we 
write (v', Y ( a l , z l ) . . . Y ( a , , z , ) v )  in a different way. Assume d i m ( M i ) < ~  for 
every i, let {ei, i=  1, 2 . . . .  } be a basis of M, and {el, i=  1, 2 . . . .  } be its dual basis 

oO ! (i.e., (e[, e j )=f i . j ) .  Then x = ~ i = l  ei | el, viewed as a vector in ( M ' |  m)*,  has 
the property: 

So 

<x, v' | v> = <v', v>. 

<v', Y (al, z l ) .  . . Y (a,, z,)v> = <x, v' | Y (al, z l ) .  . . Y (a,, z,)v> . 

As we will see later x is a vector in the space of  vacua of the two-punctured Riemann 
sphere with punctures oe and 0. Our  generalization of Theorem 2.1 to a compact 
Riemann X surface with N punctures can be roughly described as follows (see 
Theorem 6.2 for detail): if x is in the space of vacua on I ,  then 

(x, vl |  |  �9 " |  vN-1 | Y ( a l , z l ) . . . Y ( a , , z , ) v N >  

converges on the domain [zl[>" �9 ">[z , ]>  0 in a coordinate neighborhood of the 
N-th point, and the limit can be extended to a global meromorphic section of 
a certain line bundle over I" ,  and this meromorphic section is independent of the 
ordering of the product of the vertex operators. 

By the definition, every representation of V is in particular a representation of 
the Virasoro algebra. We will frequently assume that V is a sum of highest weight 
representations of its Virasoro algebra. And we assume all the representations of 
V in this paper satisfy the condition that Lo acts semi-simply. 
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3. Global Vertex Operators and Space of Vacua on Riemann Surfaces 

We will give the definitions of global vertex operators and the space of vacua for 
a labeled Riemann surface. And associated to each vector in the space of vacua we 
define 1-point correlation functions on the underlying Riemann surface. 

We first fix some notations. Let ~ be a compact Riemann surface, Q1,. �9 �9 QN 
be N distinct points on Z, z~ be the local coordinate near Qi satisfying z~(Q~) = 0. We 
will denote this data by 

(Z; Q1 .. . . .  QN; zl . . . . .  zN) (3.1) 

and call it an N-pointed Riemann surface. Let tr be the canonical line bundle over Z; 
we denote by 

F(Z; Qt . . . . .  QN; K") (3.2) 

the space of global meromorphic sections of the line bundle ~c" holomorphic away 
from points Q ~ , . . . ,  QN, or equivalently, (3.2) is the space of n-meromorphic 
differentials on Z with possible poles at Q~ (i = 1 . . . . .  N). ~c" has a local section 
(dzi)" near the point Qi, for a f i n  (3.2). Write f=fi(zl)(dzi)". We denote Iz,f the 
Laurent series expansion offi(zi) in z~; we call it the expansion of f a t  (Q,, z~). So we 
have a linear map z~, from (3.2) to C((z,)). The following standard 1emma will be 
used later. 

Lemma 3.1. For each n6Z, the linear map 

N N 

r(z; C((zi)), 
i = l  i= l  

f~--'(zz, f, . . . .  'zNf) 

is injective. And if ( ,  ) is the bilinear form 

N N 

@ C((Zi)) X @ C((Zi))'-'>C 
i=1 i=1 

given by 

N 
((fl(Z1) . . . . .  fN(ZN)), (gl(z l )  . . . . .  gN(ZN))) = ~ Resz,(f(zi)g(zi)),  

i=1 

then (gl(zl) , .  . . , gN(ZN)) is in the image z(F(Z; Q1 . . . . .  QN; ~")) if and only if 

((92 (za), �9 �9 �9 , gN(ZN) ), ( f l  (Zl) . . . . .  fN(ZN) ) ) = 0 

for every ( f l ( z l )  . . . . .  fN(zN))~t(F(Z; Q1 . . . . .  Q•; K-,+ 1)). 

The following consequence of the Riemann-Roch theorem is used in the proofs 
of Theorem 5.1, Theorem 6.1 and Theorem 6.2 without mentioning it. For  every 
integer k, m, there exist a f~F(Z ;  Q1,. �9 �9 Qu; to") such that 

tzNf -=z~ M o d z ~ ,  

and tz, f - O  M o d z  m for 2<=i<N. 
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Recall that a projective structure on S is a covering of coordinates chart 
{ Us, z~ } such that every coordinate transition function is a Mobius transformation. 
Given a projective structure {Us, z~} and points Q1,. �9 �9 QN on S, for each Qi, we 
choose a local chart (Us,, z~) such that U~, contains Qi and take zi =z~,-z~,(Qi) as 
the local coordinate at Qi. So the obtained N-pointed Riemann surface is said to be 
projective. 

By assigning a representation Wi of V at each point Qi of (3.1), we have the data 

S = ( S ;  Q1 . . . . .  QN; zl . . . . .  ZN; W1 . . . . .  WN) �9 (3.3) 

This is the main object in our investigation, and we call it a N-labeled Riemann 
surface with labels as representations of V as simply the N-labeled Riemann surface. 
If (3.1) is projective, we call (3.3) a projective N-labeled Riemann surface. 

Recall that the space N,(V) of primary fields of degree n is defined as 

~,(V) = {a~V[Lia = 0 for i >0, L oa = na} . 

For a ~ , ( V ) ,  using (2.11) and (2.6), we have the commutation relation: 

/ m ,n+l d \  [L, , ,Y(a,z)]=~n(m+l)z  +z ~z )Y(a , z ) .  (3.4) 

The commutation relation of Lm and Y (~o, z) is close to (3.4) with n = 2 except for 
a central term: 

[L" 'Y(c~ l)zm+zm+l d ) (o9, z)~ (m3--m)C z (3.5) 

Note that (3.4) is similar to the formula of the Lie derivative of a local 
n-differential f(z)(dz)" on a Riemann surface with respect to the holomorphic 

vector field z,,+ 1 _d. 
dz" 

Vz~+l~f(z)(dz)n=((m+a)nzmwzm+ld)f(z)(dz)". 

So Y (a, z) has the similar covariance property as a n-differential which is for- 
mulated in the first part of Lemma 3.2 below. 

Let z and w be local coordinates near Q ~ S such that z(Q ) = w(Q ) = O, w = dp(z) = 
S '~ ,  ciz i be the transition function. Write ~b(z)=exp(S'~ lizi+lL)z; such an 
~x]gression is unique by requiring 0 < Im lo < 2rc. Follow'~ag ~ [H and ~ TUY], the 
operator T(~) associated to the transition function ~b(z) is defined as 

T(~b) = exp ( i~o  liLi). (3.6) 

The following lemma is easy to prove. 

Lemma 3.2. For (9(z) and T(c~) as above, we have relations 

T(49)Y(a, z)T(c~)-l=Y(a, q~(z))(qS'(z))" for a ~ , ( V ) ,  (3.7) 

r(4))Y(co, z)r(4))-~--Y(co, c~(z))(4)'(z))Z+~{c~(z), z}c,  (3.8) 

where {49(z),z} -~' ' ' (z) 3 { ~  - is the Schwarzian derivative of (a(z). 
49' (z) 2 \ 49 (z) J 
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�9 The additional term ~{4(z) ,  z}c in (3.8) is caused by the central term in (3.5). 
F rom (3.7) we may view heuristically Y(a, z)(aeC~,(V)) as an operator valued 
n-differential on a Riemann surface X; and from (3.8), we view Y(~0, z) as an 
operator Valued quadratic differential on a Riemann surface ~ with z as a local 
coordinate in a projective structure since the Schwarzian derivative { q~ (z), z} = 0 for 
r a Mobius transformation. Thus we may view g(a,z ) f (z ) (dz)  -"+1 
(Y (co, z)f(z)(dz) 2 resp.) for f being a global ( - n +  1)-meromorphic differential on 

(meromorphic vector field, resp.) as a global operator valued 1-differential. 
Motivated by this point of view, we will define global vertex operator on a N- 
labeled:Riemann surface (3.3) by taking the "sum of residues." 

We ifirlst: set some notation which is used for the rest of the paper. For a tensor 
:prOduct W1 |  �9 �9 | WN of vector spaces Wi and an operator A on Wi, we write 

A~ = 1 |  �9 �9 | 1 | A(i-th place) |  - ' | 1,  (3.9) 

SO AiiS!:anoperator on W1 | �9 "|  WN. And for an operator A on a vector space 
W, A acts on the dual space W * from the right by the rule (v 'A,  v} -- (v', Av} for 
every v' e W  * and yeW. 

Definition 3.1. For a N-labeled Riemann surface 2 as (3.3), aeN,(V)  a n d r e  
F(Z; Q1 . . . . .  QN; to-"+ 1), the global vertex operator associated to a and f on Y, is 
defined as the operator 

N 

a(f, 2 ) =  ~ (Resz,(Y(a, zi)t~f))i 
i = 1  

which acts on W1 |  "|  WN. The dependence of a(f, 2 )  on the local coordinates zi's 
can be easily derived using (3.7). I f  

Z,,,=(S; Q1,- �9 -, QN; wl . . . .  , w~; W1 . . . . .  WN) (3.10) 

is the N-labeled Riemann surface obtained from (3.3) by changing zi to wi. Let 
wi=q~i(zi) be the local coordinates transition function, T((9~) be the associated 
operator. Write fi(zi) = tz, f and 9i(wl)= zw, f then gi(~b~(zi)) q~[(z~) -"+ 1 =J~(zi). This fact 
together with (3.7) implies that 

Res~,(Y (a, wi)tw,f)= T(4~i) Re%(Y (a, zi)z~ff)T(qbi)- 1 

Therefore we have 

aft, 2 )=(uL 1 (3.11) 

The following lemma makes it possible to define global vertex operators 
associated to o~. 

Lemma 3.3. Let Y. as (3.3) and Y.w as (3.10) be projective N-labeled Riemann surfaces. 
Let wi= qSi(zi) be the coordinate transition function at Qi, T( ~i) be the associated 
operator. Let f~F(Z;  Q1,. �9 �9 Qu; K-!). Then 

N 

Z (Resw,(g (co, wl)lw~f)), 
i = i  

N 

E (Resdr( , -1 zl)t~,f))i(ni=tr(4),)~ ) .  (3.12) 
i = 1  
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Proof Put f i (z i )=tz , f  and gi(wi)=Zw, f Then gi((ai(zi))(o[(zi) -1 =fi(zi). This fact 
together with (3.8) implies that 

C 
Resw,(Y (co, wl)tw~f)= T( c~i)Resz,(Y (co, z~) , z , f )T(  4),) - ~ + ; 5  Resz~(l~,f { ~i(zi), zi } ) . 

So it is sufficient to prove that 

N 

Resz,(tz,f { dpi(zl), zi} )=0  . (3.13) 
. �9 i=l 

Let {U~, ~}  and{V~, w~} be the projective structure which gives the local coordi- 
nates of Z and Zw respectively, let w B = q~/~(z~) be the local coordinate transition 
function. Considering {~#~(z~), z~} (dz~) 2, which defines a holomorphic quadratic 
differential on V~ c~ U~, recall the pseudogroup property of the Schwarzian deriva- 
tive (e.g. [G] p. 164): for qS(w), ~(z) and h(z)= ~b(~(z)), 

{h(z), z} = { q~(w), w}. 0'(z) 2 + { O(z), z}. (3.14) 

Using this property, it is easy to prove that {~(z~) ,  z~} (dz~) z, as ~ and fl run over 
the index sets, defines a global holomorphic quadratic differential g on Z. Then 
(3.13) is the sum of residues of the meromorphic differentialf9, so it is 0. [] 

Definition 3.2. For ,~ as in (3.3), f6F(s Q1,. �9 �9 , QN; tr �9 Choose a projective 
N-labeled Riemann surface ~,w as (3.10), let zi=(oi(wi) be the local coordinates 
transition function at point Q~, T( c~) be the associated operator. The global vertex 
operator associated to co and f on S is the operator 

N 
co(f, Z ) =  ~ T((a,)~ l(Resw,(r (co, wi)tw, f))iT(~pi)i, 

i = 1  

which acts on W1 | �9 " | WN. 

The independence of the choice of a projective N-labeled Riemann surface 
(3.10) follows from Lemma 3.3. And it is clear from Definition 3.2 that the 
dependence of the global vertex operator associated to co on the local coordinates is 
similar to (3.11): 

N 
co(f,  Z w ) =  (Hi= 1 T(  ~i)  ) c o ( f  ~)(H/N=1T( dt~i)-1) . ( 3 . 1 5 )  

We denote the spacespanned by the global operators associated to ae~ , (V)  
(n~Z) and co on S by if(Z). Operators in if(S) act on ~)~=1 Wi, so they act on the 
dual space from the right. The space of vacua is defined by the principle that "sum 
of the residues of a 1-differential is 0": 

Definition 3.3. For a n-labeled Riemann surface ~, as in (3.2), we associated Z, a linear 
space N(T,) by 

N(Z,)={xe(W~ |  �9 �9 | WN)*IxA=O for every A ~ ( Z ) }  . 

We call N(~,) the space of vacua associated to ~,. 

The dependence of the space of vacua on local coordinates is as follows. Let 
! . Z ' = ( Z ;  Q1 . . . . .  QN; zl , .  �9 �9 zN, W1 . . . .  , WN) be another N-labeled Riemann sur- 

face, let zl = ~b~(zi) be the transition function and T(~bi) be its associated operator, 
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T(q~i) |  | T(~bN) acts from the right on space (W1 |  | WN)*, then by 
(3.11) and (3.15), we have T(~bl) |  �9 �9 | T(qSN) map isomorphically from N(,~') to 
N(Z). 

For  each x~N(Z) ,  we can define a system of correlation functions associated to 
x, we first define 1-point correlation functions, the general n-pointed functions will 
be defined in Theorem 6.2. 

Proposition 3.4. For x~N(Z),  vl |  �9 �9 | VNeWl | " " | WN and ae~,(V),  let 

g(zi)=(x,  vi |  "| Y(a, zi)vi| �9 "| vN) , 

then there exist a unique geF(Z;  Qi . . . . .  QN; to") such that g(zi)(dzi)" is the Laurent 
series expansion of 9 at (Qi, zi) for each i. 

Proof. For  eve ry feF(Z ;  Q1 . . . . .  QN; (x)-"+i),  we have 

N 

Res( (tz,f)g(zi))= ( x a ( f  Z, ), vl |  | vN) = 0 .  
i = 1  

Using Lemma 3.1 proves the lemma. []  

The global meromorphic n-differential in Proposition 3.4 is called a 1-point 
correlation function for xeN(Z) ,  vl | �9 �9 | v, and ae~,(V).  In Sect. 6, we define 
for each xeN(Z) ,  vi | �9 "| vN of W1 |  �9 �9 | WN and ai~ t , (V)  (i= 1 , . . .  , n), 
a merornorphic section of the bundle 

rci- 1 xll |  �9 . | re,- 1 ~: I. 

over S", where rcl is the projection of Z" into the i-th component, 7t~- 1 x 1' is the pull 
back of the line bundle x t̀  under ~i. This meromorphic section is called a n-pointed 
correlation function. 

4. Quasi-Global Vertex Operators 

In this section, we define quasi-global vertex operators on a projective labeled 
Riemann surface which will serve as a necessary technical tool in the proof of 
Theorem 6.1. 

We assume in this section that V is a sum of highest weight representations of 
the Virasoro algebra and dim(Vo) = 1, i.e., every element of Vo is a multiple of 1. 
Recall that the space of  quasi-primary fields ~ (V ) = ~ i  = o ~,(V ) is defined as 

~ . , (V )={aeVlL ia=O and Loa=na} .  (4.1) 

It is clear that ~ , ( V ) ~  .~,(V) and co~.2(V). For  a~.~,(V), Y(a, z) transforms as 
a n-differential under the Mobius transformation. To be more precise, for 

klz  ( d 2 d )  
q~(Z)-kzzq_k3, we write it as ~b(z)=exp loz~z+l l z  dz z. The associated 

transition operator is T(~b) =exp(loLo + IlL i). Using the relation 

[L1, Y(a,z)]= 2nz+z dz Y(a ,z ) ,  
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which is a corollary of the conditions in (4.1), we have 

T((a)Y (a, z)r(dp)- 1 = y (a, q~(z))(~b'(z))". (4.2) 

Let 
Z = ( S ;  Q, . . . . .  ON; zl . . . . .  ZN; W , , . . .  , WN) (4.3) 

be a projective labeled Riemann surface. For a quasi-primary state ae~,(V), and 
a global meromorphic differential fsF(Z, Q1 . . . . .  QN, x-"+I) ,  we define the 
quasi-global vertex operator associated to such a and f on Z as 

N 

a( f  S ) =  ~ (Resz;(Y (a, zi)t~,f))i, (4.4) 
i = i  

which acts on @iN_- ~ W~. We denote the linear span of the quasi-global operators by 
~fg(Z). It follows from the definitions that ~(2~) ~ ~N(Z). The main result of this 
section is the following proposition. 

Proposition 4.1. I f  V is a sum of highest weight representations of the Virasoro 
algebra and dim(V0)= 1, I~ as in (4.3) is a projective labeled Riemann surface, then 
~N(Z) is a Lie algebra. 

From the formula 

1 
[Resz(Y (a, z)f(z)), Resz(r (b, z)g(z))] = Z ~ Res~(Y (a(1)b, z)f(')(z)g(z)), (4.5) 

l = O  �9 
t '  

which is a direct corollary of (2.11), we see that in order to prove ~f#(Z) is closed 
under the Lie bracket, we first need to represent each a(l)b (l>=O) as a sum 
~.~, (L_ 1)~vt for vt quasi-primary. 

'Let a, b be a homogeneous quasi-primary state with degree [a[>0, ]b 1>0 
respectively. A simple degree argument shows that a(l)b =0  for l>  [a[ + Ib[ -  1, the 
first possible non-zero a(1)b is a([a] + Ib[-1)b, which has degree 0 by (2.14), it is 
a multiple of 1, in particular it is quasi-primary. For 0 < n__< l a] + [ b ] -  2, we will 
define quasi-primary fields xa, b; n and represent a(l)b in terms of xa, b; n. For this 
purpose, we set for integers l, n satisfying 0 _< l _  n_< [a[ + ]b[ - 2 the constants 

1 ( -2 la l+n+l ) ! ( -2]a l -2 lb l+n+l+2) !  
C'b;;'~=(n--t)! ( -2da l+t+l ) ! ( -2 ta l -2 lb l+n+2)!  " (4.6) 

where x!=F(x+l) ,  F(x) is the usual Gamma function. (Note that since 

F(x + 1)= xF(x), the expression F(x + k_____~) for k a non-negative integer makes sense.) 
r(x) 

With the above notation, Xa, b; ~ (0 < n < l a] + l b l -  2) are defined by the following 
linear equations: 

l a l + l b l - 2  

a(l)b= ~ C~,b;I,n(L-1)"-lXa, b;n, O<l<[al+lb[--2. (4.7) 
n=l  

Since a(1)b (O<l<lal+lbl-2) and X~,v;t (O<=l<=[al+lbl-2) are related by a tri- 
angular matrix with diagonals Ca, b; ;,; + 0, so xa, b; t (0 < l < ]al + ] b r - 2) are uniquely 
fixed. 

Lemma 4.2. Under the assumption in Proposition 4.1, Xa, b; I E ~ [ a l + [ b l - I  - I ( V )  �9 
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Proof It is clear that x., b;/has degree (lal-4-lbl-l-1). The assumption that V is 
a sum of highest weight representations of the Virasoro algebra implies that every 
element in V with degree 1 is primary, in particular, xa, b; la[+lbl-2 is quasi-primary. 
Assume xa, b; n~lal+lbl-n-l(V) for n >  l, we want to prove based on this assumption 
Xa, b; l -  l ~,,~lal + lb l - l -  2(W ), 

L1Ca, b ; l - l , l - lXa ,  b; l - I  
lal+lbl-2 ) 

=L1 a ( l - 1 ) b -  ~ Ca, b;l-l,n(L ~n-l+l. -1 )  ~a,b;n 
n=l 

lal+lbl-2 
=(21a l - l -1 )a (1 )b -  ~. ( n - / + l )  

n=l 

x (2lal +2lbl - -n-- l - -2)Ca,  b;I-l,n(L -1)"-tXa, b;n 
]al+lbl-2 

= ~ ((2[a[--1--1)Ca, b;i , ,--(n--l+l) 
n=l 

X (2[al+2lbl--n--l--2)Ca, b;l_l,n)(L_t)"-ZXa, b;n . 
It is easy to see from (4.6) that 

(2[a[--t--1)Ca, b;1, n--(n--l + l)(2lal + 2[bl--n--l--2)Ca, b;t-l,n=O , 
so L lxa, b; Z- 1 = 0, as was to be shown. [] 

Now we are ready to prove Proposition 4.1. 

Proof of Proposition 4.1. If one of a and b has degree 0, then by our assumption it is 
a multiple of 1, then the Lie bracket of quasi-global operators a(f, Z) and b(g, Z) 
are 0. For homogeneous quasi-primary fields a, b with degrees ] a[ > 1, I b I > 1 and 
Laurent series f(z), g(z), write L =  [a] + Ib ] -  1, we have 

[Res(Y (a, z) f (z) ), Res(Y (b, z)g(z) ) ] 
lal+lb]- 1 ] 1 

= Z ~. Res(Y(a(1)b, z ) f  ~ )(z)g(z)) 
/=0 

l a l+ lb ] -2  1 a) 1 
- t~=o ~.Res(Y(a(1)b,z)f (z)g(z))+~.Res(Y(a(L)b,z)f~L~(z)g(z)) 

laJ+lbl-2 Jal+lb]-2 Ca, b;l,n n- t  
= ~ ~ lV. Res(Y(L-~Xa'b;n'z)f(O(z)g(z)) 

/=0 n=l " 

1 
+L.V Res(Y (a(L )b, z) f(L)(z)g(z) ) 

lal+lb]-2 ]al+lb]-2 l~n-Ic 
= Z Z ( - - )  a,b'tn . . . . .  l=o ,=l It " KestX tXa'b;nz)(fCZ)(z)g(z))"-I) 

1 
+~.~ Res(Y (a(L )b, z) f(L)(z)g(z) ) 

lal+tbl-2 
= ~ Res(Y(xa, o;n,z)Ga, b;f,o;n(Z)) 

n=O 

1 
+ ~ .  Res(r  (a(L)b, z)f(L)(z)g(Z)), (4.8) 
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where we have set for 0 < n < l a I + r b I - 2, 

G~,b;I,g;.(z) = 
( -  1).- t  

t=o l ~  Ca, b; 1,,(f~t)(z)g(z))"-l . (4.9) 

For f~F(Z;  Qx,. . �9 , Qu; ~c-lal+l) and g6F(S; Q1 . . . .  , Qu; tc-lbl+l), we need to 
prove that  

Ea(f Z), b(g, s 1 6 2  

Write  tz, f=f (z i )  and Zz, g = g~(zi). By (4.8), we have 

[Resz,(Y (a, zl) fi(zi) ), Res~,(Y (b, zi)gi(zi) ) ] 
l a l + l b l - 2  

= ~ ReSz,(Y(Xa, b;n, zi)Ga, b;f.o,,n(zi)) 
n = 0  

+ 1  Res(Y (a(L)b, zi)fi(L)(zi)g~(Zi)). (4.10) 
L !  

It suffices to prove the following two claims. 

Claim 1. For  each O<n<la l+ lb] -2 ,  Ga, b;f.g~,n(Z 0 (i=1,_ . . . .  N)  are Laurent  
series expansions of F . ( f  g)eF(Z; Q1 . . . . .  QN; ~Cn-lal-lbl+~) at points Q~ under  
z~ respectively. 

Claim 2. 
N 

~" Res(Y (a(L )b, zi)fi(L)(zi)gi(zl))i = O . 
i = 1  

To prove Claim 1, let {U~, z~} be the projective structure of Z, f o r f a n d  g as 
above, writef=f~(z~)(dz~)-Ial + 1, g = g~(z~)(dz~)-Ibl + 1 on U~. We define a meromor-  
phic differential on U~ by 

Fn, v, = Ga, b;f,, g., n(Za)(dze) n-lal-lbl+ 2 . (4.11) 

Using Lem ma  4.3 below (kl = - 2] a[ + 2, k 2  = - 2 [  b [ + 2), one can check tat  F,, v~, = 
F,, v~ on U~I c~ U~2. So (4.11) defines a global meromorph ic  differential F . ( f  g) in 
F(Z; Q1 . . . . .  Qu; tcn-lal-lb]+2) �9 This proves Claim 1. 

To  prove Claim 2, we first note  that  a(L)b (recall that  L = l a [  + [ b [ - 1 )  is 
a multiple of 1, and it can be proved that  a(L)b=O unless [a[ = [b[. So it suffices to 
prove that  when [a[ = [b[, 

N 

ReSz,(fi(L)(zi)gi(zi)) = 0 .  (4.12) 
i = 1  

Again we will use Lemma  4.3 below. We define a meromorph ic  differential on U~: 

( l ' ]  ( -4]a '  + 2 L - l  + 2) ' 
0)=,=o (-1)' / , 

Using Lem ma  4.3 (ka = kz = - 2 [ a [ +  2), one checks that  FL, u~,(f, g )=  FL, V,~(f g) on 
U~I c~ U~2, so we have a global differential FL(f, g)~F(S; Q1 . . . . .  Qu; to). It is easy 
to see that  (4.12) reduces to the fact that  the sum of residues of FL(f, g) is 0. [ ]  
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Lemma 4.3 used above is a modified version of Theorem 7.1 in [Co], which is 
used in [Co] to prove that certain bilinear forms in the derivatives of modular 
forms are modular forms. 

Lemma 4.3 [Co]. Let f l  ( z ) , f 2 ( z )  be two meromorphic functions on an open set of C. 
For given real numbers kl, k2, set: 

l~t(n~ (k l+n-1) ! (k2+n-1)  ! ~.-z c 
F"(fl'f2)=~=o ( -  " \ l ] ( k i + n - l - 1 ) ! ( k 2 + l - 1 ) !  ~ J l x a z t f 2  ' 

d 
where x! = F ( x +  1) and ~z=-~z. Then 

(a) F~ all T=(  ac bd)eSL2(C) we have 

F.(f l  [ki ?,f2lk~y)= F.(fl,f2)lk,+k2+ 2n7 , 

where (flky)(z)=(cz + d ) - k f (  az-~+ b,~. 
\ c z + a /  

(b) One has the identity: 

F . ( f l , f 2 , = ~  ( - l , t ( 7 ) ( k t + n - l " ( k l + k 2 + 2 n - l - 2 ) [ ~ t ( f 2 x ~ 2 - t f l  , 
t=o (kl + n - l -  1)t (kl + k2 q - n - 2 ) !  " 

Though the statement of Lemma 4.3 is not the same as Theorem 7.1 in [Co-], the 
proofs are essentially the same. 

5. Space of Vacua on Projective Labeled Riemann Surfaces 

The purpose of this section is to prove that the space of vacua on a projective 
labeled Riemann surface is annihilated by quasi-global vertex operators. Only the 
statement of the following theorem is used later. 

Theorem 5.1. I f  Z=(Z;  Q1,. "z , QN; zl . . . . .  zN; W1 . . . . .  WN) is a projective 
labeled Riemann surface, xeN(Z), b is a highest weight vector for the Virasoro 
algebra with degree Ib[, L(b) is the highest weight representation of the Virasoro 
algebra generated by b, ae~,(V)nL(b)  and feF(S; Q1 . . . . .  QN;~c-"+l), then 
xa(f, Z)=0. 

The essential reason for xa(f, S )=0 is that a(f, S) is generated by the global 
vertex operators associated to b and co in a certain way. However we did not 
succeed in proving there exists an expression for a(f, S) in terms of the global 
vertex operators associated to b and e). A part of the following indirect proof is in 
the same spirit as the proof of the Proposition 2.2.3 of [TUY]. 

We need to fix some notations used in the proof. Let {U,,z~} be the projective 
structure of I; which gives the local coordinates in Z. Let [bl be the degree of b. Let 
q/(b) be the Verma module of the Virasoro algebra with a highest weight vector 
6 such that L o 6=  I bib, and og (1) be the Verma module of the Virasoro algebra with 
a highest weight vector 1 such that L o i = 0 .  There are obvious morphisms of 
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modules  of the Virasoro algebra: 

p: qi(b ) ~ V: L-ia �9 �9 �9 L _i, bl--~ L_i l  . . . L_imb , 

p: ~//(1) -* V: L_i~.  . . L _ i  l l - -~L_ q . . .L_im 1 . 

We write (5 = L  _ 21; it is clear that  p(e3) = co. For  each positive integer k and k points 
QN+I . . . . .  QN+k on S such that  Q i + Q j  when i+-j ( i , j = l , . . .  , N + k ) ,  and we 
choose a open set U~,~Qi for each i =  N + 1 . . . . .  N + k and take zi = z~,-z~,(Qi) as 
a local coordinate  at point  Q~. So we have a projective (M + N ) - p o i n t e d  Riemann 
surface 

(S; Q1,.  �9 �9 , QM+N; z l , .  �9 �9 , ZN+k) �9 (5.1) 

We assign the Verma module  q/(b) or ~ at the point  QN+I, and assign the 
Verma module  q/(1) at points QN+2 . . . . .  QN+k. So we have the data  

(z~; Q 1 , . . . ,  Qu+k; Zl, .  � 9  ZN+k, W1 . . . . .  W N ,  ql(b), q/(1) . . . .  , q/(1)) ,  (5.2) 

(X; Qa . . . .  , QN+k; za . . . . .  ZN+k; W~ . . . . .  WN, q/(1), q / ( 1 ) , . . . ,  q/(1)) .  (5.3) 

Set 

B k =  W 1 @ "  �9 . @ W N  @ ~ | ~//(1) @ ( k - l )  , 

A k =  W1 |  "" | WN@ d/I(1) @k �9 

It is clear that  the operators  associated to coordinate  t ransformations T(q~) as 
defined in (3.6) and opera tors  Resz(Y (co, z ) f ( z ) )  for Y (co, z )=  ~,i~=-o0 L i z - i - 2  and 
f ( z )  a Laurent  series act on ~ and q/(1). Fo r  f e F ( X ;  Q 1 , . . . ,  QN+k; to-l),  
we write co(f  z i )=Resz , (Y  (co, Zi)lzJ ). For  f,  g e F ( Z ;  Q1 . . . . .  QN+k; ls write 
fi(zi) = l~,f and gi(zl)= z~,g, we have the commuta t ion  relation 

N + k  N + k  

[co(f  zi)i, co(g, z,),] = ~' Resz,(r(co, z , ) ( f i ' (z i )gi(z i ) - f i (z i )gi(z i ) )) i .  (5.4) 
i=1 i=1 

Note  that  fi'(z~)gi(z~)-J~(zi)g[(zi) (i = 1 . . . . .  N + k)) is the Lauren t  series expansion 
of - [ f g ] e F ( X ; Q 1 , . . . , Q k ; ~  -1)  at point  (Qi, zi). For  f e F ( X ; Q 1  . . . .  , 
QN+k; tr and g e r ( x ;  Q1 . . . . .  QN+k; K-IbI-1), write fi(zl)=tz, f and gi(zi)-=lzig, 
we have the commuta t ion  relation 

N + k  N + k  

[co( f  z,),, b(g, z~),] = ~ Resz,(Y (b, z3((lbl- 1)f i ' (z i)gi(zi)- f i (z i)g;(zi))) i ,  (5.5) 
i=l i=l 

where b(g, zi) denotes Resz,(Y (b, z~)zz, g). No te  that  ( I b l -  1)f/(zOg~(z~)-f~(z~)g;(z~) 
(i = 1 . . . .  , N + k)) is the Lauren t  series expansion of the Lie derivative of - g with 
respect to a meromorph ic  vector  field f at points (Q~, z~). 

Proof  o f  Theorem 5.1. We divide the proof  into several steps. 

Step 1. We will first construct  vectors 

Y(QN+ I, . . . , QN+k;ZN+I . . . . .  Zu+k)eB* 

=(W1 @" " " @ WN @ ~ @ ~//(1)| * , 

x ( Q N +  1 . . . .  , Q N + k ;  ZN+ 1 . . . .  , Z N + k ) e A ~  : ( g l  @ . . .  ~) W N  @ o~((1)| k), , 
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based on x such that  the following propert ies  are satisfied for the sequence {Yk} 
( k =  1, 2 . . . .  ): 

(1) Fo r  

f e E ( S ;  Q i , .  �9 . ,  QN+k; x - i ) ,  

N+k 

2 Y(QN+I . . . .  , QN+k; ZN+I . . . . .  ZN+k)fD(f, Zi)i = 0 .  
i = l  

(2) F o r  v ' e W 1  |  �9 �9 | WN | ql(b)  | q/(1) j -2 ,  v"eq/(1)  k - j  (so v'  | i | v " e B k  and 
v' | v" e B k - 1 ) ,  we have 

( Y ( Q N + i  . . . .  , QN+k; ZN+I . . . . .  ZN+k) , l)' | i | V" )  

= ( Y ( Q N + I , .  �9 �9 , QN+j . . . . .  QN+k;ZN+ I," �9 . ,ZN+j . . . . .  ZN+k),V' |  V"> , 

where A indicates the missing terms. 
(3) Fo r  v' and  v" as in (2), we have 

( Y(QN+ 1, . �9 �9 , QN+k; zN+ i . . . .  , ZN+k) , I.)'| u L _  i i | v"> = 0 ,  

where u is in the universal  enveloping a lgebra  of  the Virasoro  algebra.  
(4) F o r  y e W 1  |  �9 �9 | WN, f e F ( S ;  Q1 . . . .  , QN+I; K -Ibl+l) such tha t  

f IzN+l = zN + 1 + higher t e r m s ,  

we have 

N 

<Y(QN+I,ZN+I), V |  b > =  -- y~ <x, b ( f ,  zi) iv > . 
i = l  

Similarly, the sequence {Xk} { k =  1, 2 . . . .  } satisfies the properties:  

(1') F o r  

f e E ( Z ;  Qi  . . . . .  QN+k; ~c- i )  , 

N+k 

Z X(QN+I . . . . .  QN+k;ZN+I,"  . �9  ZN+k)O)(f, zi)i = 0  �9 
i = 1  

(2') For  v ' e W 1 N . . . | 1 7 4  j - i ,  v"eq i (1 )  k - j  (so v ' N i |  and 
v' | v" e A k - 1 ) ,  we have 

<X(QN+l . . . . .  QN+k; z N + l , . . . ,  ZN+k), V' |  i | V"> 
A 

= <x(QN+i . . . .  , QN+j . . . . .  0N+k; ZN+I . . . .  , ZN+j . . . . .  zN+~), V ' |  V"> ,  

where A indicates the missing terms as before. 
(3') Fo r  v'  and  v" as in (2'), we have 

( x ( Q u +  1 . . . . .  QN+k; zN+ i . . . . .  Zu+k), V' | L _ i l  �9 �9 �9 L _imL _ t ' l  | v" ) = 0  . 

(4') 

<x(QN+ 1, zN+ 1), v | i>  = (x, v>.  

Y(QN+I . . . . .  QN+k;ZN+i . . . . .  ZN+k) and x ( Q u + l  . . . . .  QN+k;ZN+I . . . . .  ZU+k) 
will depend on the da ta  (QN+i . . . . .  QN+k; zu+i  . . . .  , ZN+k), when no confusion 
will arise, we write them as Yk and Xk respectively. 
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Let @(b) be the vector space with basis of formal symbols E- i l . . . / -S- imb 
( - i j  < 0), q2(b) has two gradations given by 

degl(E_ h . . . f f , _ i m b )  = ~ i j ,  
j = l  

deg2(L_ h . . . f f , _ i b ) = m  . 

There is an obvious surjective map from ql(b) to q/(b). 
We will construct  { Y k }  by induction on k. To construct Yl, we first construct 

371e(W1@" "@WN| then prove that 371 reduces to y l E ( W I |  
| WN | ~#(b))*. Constructing 371 is equivalent to defining the numbers 

(371, V | ff,-il . . . L- ik  b ) , 

we do it inductively on deg2. C h o o s e f ~ F ( Z ;  Q~ . . . . .  QN+I; x-lbl+l) such that 

zN + 1 + higher terms,  tzN+,f = - 1 

we define 

N 

(371, v | 6 )  = - ~, (x ,  b ( f  zi)iv) . (5.6) 
i = 1  

(Note that this definition is forced by Property (4).) It follows from the conditions 
satisfied by x that (5.6) is independent of the choice off.  And using (5.5), we can 
prove that 

N 

~, (371, o3(g, zi)iv | /~) = 0  (5.7) 
i = 1  

for every g ~ F ( Z ,  Q1, .  . �9 Qu; ~c-1) satisfying 

t . . . .  g = sum of terms higher than z~ + 1 �9 

Assume we have defined (371,v |  for every v and every b'~~ with 
deg2 b' < k, and the property 

N 

~, <371, co(g, zi)iv | b ' )  = 0  (5.8) 
i = 1  

for every g e F ( X ;  QI . . . .  , QN, K-1)  satisfying 
1 + degl b' 

ZzN+,g=sum of terms higher than z2v+ 1 

holds. Based on this induction assumption, we define (371, v | L - ib '> as follows. 
C h o o s e f e F ( S ;  Q1 . . . . .  QN+I; ~c-1) such that 

r - i + 1  1 + d e g l  b' 
tzN+IJ=ZN+I +terms higher than zN+l , 

we define 

N 

(y l ,v |  Y, (yl,o3(f, zl)~vQb'), 
i = 1  

it follows from (5.8) that it is independent of the choice off.  And it can be proved 
that property (5.8) is again satisfied. So we have completed the construction of 371. 
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By a direct computation using (5.4), we can prove that 

(371, v | [ - , , f - . - , b ' > - < y l ,  v | L _ , L  -rob')  = ( n -  m) <371, v | [_(m+~)b'> . 

So 371 reduces to a vector yl E(W1 |  �9 �9 | WN | ~ and with some effort we 
can prove that yl satisfies the condition (1) for k =  1. By the same method as 
constructing Yl based on x, we can construct Yk+ 1 based on Yk. For  example, 
(Yk+ 1, V @ i )  for yeW1 |  �9 �9 | WN | ql(b) | (~ 1 is defined to be (Yk, V). 
Then it can be proved that yk=y(QN+~ . . . .  , QN+k; zN+~,. �9 �9  ZN+k) satisfies 
the properties (1), (2), (3), (4). It is not hard to see that {Yk} satisfying (1)-(4) are 
unique. Taking b = l ,  we then get the sequence {xk} ( k = l , . . . )  Xk= 
Y(QN+I . . . . .  QN+k; ZN+ 1,. �9 �9 , ZN+k) satisfies (1')-(4') above, and they are charac- 
terized by (1')-(4'). 

Step 2. We prove the following claim in Step 2. 

Claim A. If(U, z) is a coordinate chart in {U~, z~}, and QN+I . . . . .  QS+M are in the 
domain {[z I <e} c g while Q ~ , . . . ,  QN are outside {Izl <~}, let IN+i= z(Qs+i) the 
z-coordinates of the points QN + i, take zu +i = z -  IN +z as the local coordinates at the 
point QN+i, then for yeW1 |  �9 �9 | WN and 6eq/(b), the function 

Y(IN+I . . . . .  IZ+M) 

= (y (Q1  . . . . .  QN+M; zN+a . . . . .  ZN+M), V | d | (C5) |  (5.9) 

and 

X(IN+ 1 . . . . .  IN+M) = <Y(Q1 . . . . .  QN+M'~ ZN+ I . . . . .  ZN+M) , V | ((f))| 

are meromorphic functions on { [ IN+i[ < ~; (i = 1 . . . . .  M)} with singularities at 
I N + i : i N + i  ( i 4 j ) .  And for fixed IN+l . . . . .  I N + M - l ,  Y (IN+ I , .  . . , IN+M) has the 
Laurent series expansion 

( YM- 1, Y (0), IN+M-- iN+ 1)N+ 1 v | a | ((/~)| (M-2)) (5.10) 

for the variable IN+M at the IN+ 1. (When we want to emphasize v and d in (5.9), we 
write the left-hand side of (5.9) as Y (v, a; IN+ 1 . . . . .  IN+M).) 

Proo f  o f  Claim A. By Hartog's Theorem, to prove Y(IN+I . . . . .  IN+M) is 
meromorphic, it is sufficient to prove that for each k, Y(IN+I . . . .  , IN+M) is 
meromorphic for ik when the rest of r are fixed. To prove that Y (IN + 1 . . . .  , IN + M) 
is meromorphic with respect to IN+M, we consider the Laurent series 

gi(Zi) = ( Y M -  1, Y (co, zl)iv | d | o5 | (M-2)) 

( i= 1 . . . . .  N + M -  1), by the condition (1), g~'s satisfy the condition of the second 
part of Lemma 3.1, so there exists a meromorphic 2-differential ge 
F(Z ,  Q1 . . . . .  QN+M-1; ~:2), such that gi(zi)=z~g ( i = 1 , . . . ,  N + M - 1 ) .  Write 
g = g(z) (dz)-  1 on {]z[ < e} c U, so g(z) is a meromorphic function on z with poles at 
IN+l . . . . .  IN+M-l, we want to prove that 

g ( I N + M ) = Y ( ~ l  . . . . .  IN+M-1, IN+M) �9 (5.11) 

For  this purpose, we c h o o s e f e F ( Z ,  Q~ . . . . .  QN+M; ~C-1) such that 

fl~+,~ = ZNI+ M + higher terms.  
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Then we have 

N + M - 1  N + M - 1  

g(~N+M)=ReSQ,+~(gf)=-- ~, ReSQ,(gf)=-- 
i = 1  i = 1  

N + M - 1  

=--  ~ ( Y M - I , c o ( f Z l ) i V | 1 7 4  |  
i = 1  

= (yM, v | a | (~) |  

= Y ( { N + , , ' ' ' ,  {N+M) �9 

505 

Res~,(gi(zi)tz, f )  

co(fZN+I) = ~ liLi-1 �9 
i = 0  

Thus the second term of the right-hand side of (5.12) is 

(Y(QN+ 1, ZN+I), lov | L_ l b + l l v  | Log)  �9 

then 

This proves (5.11). So Y (IN+ 1,. �9 �9 IN+M) is meromorphic for ~N+M with poles at 
points ~n+i (i + M) and has Laurent series expansion (5.10). The same argument 
proves the same statement for the variables ~N+2 . . . . .  ~N+M. It remains to prove 
that Y(~N+I . . . . .  in+M) is meromorphic with respect to ~N+l. For  d = b  and 
M = 1, considering Laurent series 

gi(z i )=(x ,Y(b,  zi)~v) i=1  . . . .  , N ,  

then by Proposition 3.4, there exists a g~F(X, Q1 . . . . .  QN;~ Ibl) such that 
tz, g = gi(zi). Write g as g = g (z)(dz) Ibl on {]z]< e} c U. By the similar argument as in 
the proof of (5.11), one can prove that g(~u + l )=  Y (in + 1)- This sets down the case 
5=b and M = I .  For  the case d = g  and M = 2 ,  for fixed QN+2, choose a f e  
F(S; Q1 . . . .  , QN, QN+2; K -1) such that 

lz~+2f = zu+ 2 + higher terms,  

then we have 

Y(~N+I, IN+Z) = (Y(QN+ 1, QN+2; ZN+i, ZN+2), V| 6@ (3) 

N + I  

= -- Z <Y(QN+I, ZN+I), CO(f Zi)iV @ b> 
i = 1  

N 

= - ~ (y (Qn+l ,  Zn+l), co(f, zi)iv | b> 
i = 1  

- < y ( Q s + l , z N + l ) , c o ( f z N + l ) u + l V |  �9 (5.12) 

The first term of the right-hand side of (5.12) is meromorphic for IN + 1 by the case 
M =  1. For  the second term of the right-hand side of (5.12), if f has the expansion 

liZN+ 1 , ~ZN + 1 f= i 

i = o  
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Using Property (1), it is easy to prove that it can be written as 

1 
li(  y(QN+ l, zN+ l), vi | b > , (5.13) 

i=0 

for some vi's in W1 |  | WN. By the case M = I  and since li depends on 
~u+l meromorphically, so (5.13) is meromorphic for ~N+ 1. This proves that for 
d = 6 and M = 2, Y (~N+ 1, ~N+ 2) is meromorphic for ~N+ 1. The argument general- 
izes to the cases d = b  and M > 3 .  Thus we have proved that Claim A for 
d = b. Assume that Claim A is true for d = dl, based on this assumption, we want to 
prove that Claim A is true for d = L  -gall. By (5.10) in the induction assumption, we 
have 

Y(v,  d; r . . . . .  ~N+M) 

=~  Y(v,  al; ~N+I . . . . .  ~N+M+I)(~N+M+I--~N+I)-i+ld~N+M+I , (5.14) 
C 

where C is a contour of IN + M surrounding ~N + 1. Since Y (al; ~N + 1 . . . .  , ~N + M + 1) 
is a meromorphic function for the variables CN+~ ( i=1 . . . .  , N + M + I ) ,  (5.14) 
implies that Y(d; ~N+ 1 . . . .  , ~N+M) is a meromorphic function for the variable 
~N+ 1. So we have proved the assertions about Y (~N+ 1 . . . . .  r in Claim A. The 
assertions about X(~N+ 1,. �9 �9 ~N+M) is proved by setting b-= 1. This completes the 
proof of Claim A. 

Step 3. We prove Claim B in this step. 

Claim B. Let (U, z) be a coordinate chart in {U~, z~} such that the domain 
{Izl < ~} = u contains the points Qg, QN + 1 . . . . .  QN + M while Qi (1 < i < N,  i # k) are 
outside { [z[ < e}, and the local coordinate of Qk is given by Zk = Z--Z(Qk)= Z--Ck. 
Write ~M+i=z(QM+i), take ZN+i=Z--~N+i as the local coordinates at the point 
QN+i. For  yeW1 |  �9 �9 | WN and deql(b),  let Y(~N+I . . . . .  ~N+M) be the function 
defined as 

Y(~N+I,. � 9  ~N+M)-----(YM, v | 1 7 4 1 7 4  . 

=(Y(Q1 . . . . .  QN+M, ZN+I . . . . .  Z N + M ) , V | 1 7 4 1 7 4  �9 (5.15) 

(When we want to emphasize of v and d in (5.15), we write it as 
Y(v,  ~i; CN+ 1 . . . . .  ~N+M).) Then we have the following 

(B1) Y(r . . . . .  ~N+M) is a meromorphic function on {I~N+~I<~; 
(i= 1 . . . . .  N)} with singularities at CN+i= CN+j :(:!~j) and CN+~= Ck. 

(B2) For  fixed ~u+l . . . . .  ~ u + ~ - l ,  Y(r . . . . . .  ~ M )  has the Laurent series 
expansion ~ "~:' 

<YM-1,  Y(O, ~ + M - - ~ +  I)N+ lV | a |  a3| 

for the variable ~ +M at ~ +  1. " i::!" i~ :-. . . ' : ~  

(B3) For  fixed ~u+2 . . . . .  ~U+M, Y ( ~ u + I , - . . ,  ~N+~)' has the Laurent series ex- 
pansion 

( X ( Q N +  2 . . . .  , Q N + M ;  ZN+ 2,  " " �9 , Z N + M ) ,  Y (p(a), CN+ ~ - - ~ k ) k  v | O)| 

for the variable ~s§ at ~k. 
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Proof of Claim B. The statements (B1) and (B2) can be proved using exactly the 
same method used in the proof of Claim A. We only need to prove (B3). We may 
assume k =  N. We prove the statement (B3) for the case ~=  b first. We use the 
induction on M. If M = 1, considering for i=  1 , . . . ,  N the Laurent series 

o~(z,) = ( x ,  Y (b, z , ) , v )  , 

by Proposition 3.1, there exists a geF(S;  Q~ . . . .  , QN; ~lbl) such that tz, g=gi(zi). 
Let g = g(z)(dz) Ibl on the domain {[zl< 5} ~ U, then by the same argument as used 
in the proof of (5.11), we can prove that g(~N + 1) = Y (~N+ 1). This proves (B3) in the 
case ~i = 6 and M = 1. 

Now assume that (B3) is true for ~i= b-and M = S -  1, we wan t to prove (B3) for 
the case d = b  and M = S .  For  fixed QN+2,.. :,QJ#=s; w e  choose a f e  
F(S; Q1 . . . . .  QN, QN+s; ~-1) such that .:i. .. � 9  i 

- 1  - tz~+~ f =  zN + s + higher teritls ", " 

m 4.  tzN+j=OModzN+i for 2 < i < S .  

Write X(QN + 2 . . . . .  QN + s)  for X(QN + 2 . . . . .  QN+S; ZN + 2 . . . . .  ZN + S) for simplicity. 
Then we have 

( X ( Q N + 2  . . . .  , QN+s), Y (b, ZN)NV | aN(S-I)> 
N + S - 1  

= -  
i = 1  

(x(Q~+ z . . . .  , QN+s-1), o~(f, zi)iY (b, ZN)NV | (/~| 

N 

= - Z (x(QN+2 . . . . .  QN+s-1), ~o(f, z,),Y(b, ZN)NV | ~| 
i = l  . !  

N 

: - ~ ( x ( Q u + 2 , . . . ,  On+s-l), Y(b, zu)N(co,f zi)iv | 03| 
i : 1  

-- (x(Qu+2 . . . . .  QN+s-1), [e)(f, zN)N, Y (b, ZN)N]V | O3 | �9 (5.16) 

The first term of the right side of (5.16) converges on a domain {0 < I zNI <e l  }, 
since it is a Laurent series expansion of some meromorphic function on { I zN] < e} 
by the induction assumption. For  the second term, a direct computation shows 
that 

[co(fzN)N,Y (b, ZN)N]=f(ZN)d-~NY (b, zN)N+lb,d@Nf(zN)Y (b, zN)N, 

where f(zN)=tzNf, SO the second term of (5.16) also converges on the domain 
{0 <lzNI < 51 } by the induction assumption. This proves that the Laurent series 

(x(Qu+2 . . . .  , QN+s), Y (b, ZN)NV | (5 | �9 

converges on {0< [zN[ <e l  }. 
To complete the induction step, it remains to prove that 

(x(QN+ z,. . �9 , QN+s), Y (b, ZN)NV | 05|162162 Y (~N+ 1 . . . .  , ~N+s) 
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when [~N+s-~N[ <~1. To achieve this, we choose a f e F ( S ;  Q1 . . . . .  QN, QN+s; ~-1) 
such that 

t . . . .  f =  Z~+s + higher terms,  

1 - -  4- ~ + f f = 0 M o d z u + i  f o r 2 < i < S ,  

z~+~ f -= 0 M o d  z~ + 1 �9 (5.17) 

Using (5.16), we have 

(x(Qu+ 2,. �9 �9 , Qu+s), Y (b, zt~)Nv | (5| 
N 

= - -  2 < X ( Q N +  2 ,"  �9 �9 , Q N + S -  1), Y (b ,  Z N ) N t o ( f  Zi) iV | ( 5 *  ( s -2 )>  
i=1 

- -  ( X ( Q N + 2  . . . .  , Qu+s-1), [ to( f  zN)u, Y(b, ZN)N]V | (5| . (5.18) 

Denote by T~(zu) and T2(zN) the first term and the second term of the right-hand 
side of (5.18) respectively. Using the induction assumption, we have 

r ~ ( z ~ ) l ~ = ~ + ~ _ ~  
N 

= E Y (to(f, zi)iv, b-; ~u+l . . . . .  ~N+S- 1) 
i=1 

N 

= F, (y (Q~+~ . . . . .  Q~+~-~; zu+~ . . . .  , z~+s-~) ,  to(f, z~)~v | 6 |  (5| 
i = l  

N + S - 1  

= ~. (Y(QN+I . . . .  ,QN+s-1;ZN+I,. . . ,ZN+s-1),to(fZi)iV|174 | 
i = l  

= (Y(QN+ 1 . . . . .  QN+S; Z N + I  . . . .  , Z N + S )  , V | b |  ( 5 |  

= Y (v, b; ~N+ 1 . . . . .  ~N+S). 

It remains to prove that 

T2(ZN)lzN=~+~-{~=0 �9 

Using the identity 

(b, zN)~, 

(wheref(zN)=~zJ) we have 

Tz= -- (  f (zN) d~N+ ]bJ d-~Nf (zu) ) 

x (x(QN+2 . . . . .  Qu+s-2), Y(b, zN)uv | (5 *(s-z)} . 

Using the induction assumption and the fact 

d 

(this follows by the third property of f i n  (5.17)), we have T2(zN)]z~=~N+,_~ =0. This 
completes the proof of (B3) for ~= 6. 



Global Vertex Operators on Riemann Surfaces 509 

Assume (B3) is true for 5t and every v. Based on this assumption, we are going 
to prove that (B3) is true for L - k ~ l .  Since for fixed IN+i ( i = 2 , . . . , M ) ,  
Y ( v , L - k S 1 ;  IN+~ . . . . .  ~N+M) is a merornorphic function of IN+le{l(N+il<e} 
with poles at IN, IN+2 . . . . .  ~N+M- The Laurent series expansion of 
Y (v, L-kS1; IN+ 1 . . . . .  IN+M) for variable IN+ 1 at the point ~N is 

=~_ ( ~C1 Y(l)'L-kal;IN+l," "" 'iN+M)(IN+l--fN)ndiN+l) (IN+l-iN)-n-1 " 
i 

where Ca is a small contour of IN+ a surrounding the IN. It suffices to prove that 

Y (v, L -kal;  ~N+ 1,. �9 �9 , IN+M)(IN+ a - IN)" diN+ 1 
Ci 

= (X(QN+2 . . . . .  QN+M),(p(Lkal)(n))NV | oS| . (5.19) 

contour of IN+M+ a surrounding CN+a, we have 

r - ~ a a ;  IN+ ~ . . . . .  IN+M)(IN+~-- i~)"d iN+~ 

If Cz is a 

r ( v ,  
C1 

C~ 

• 

c~ 

Y(v, a l ;  ~ N + l  . . . . .  ~ N + ~ + I ) ( ~ N + M + ~ - - ~ N + I )  - k + l  
C2 

( ~  + ~ - ~N)" d~N + ~ d ~  + ~ + 1 

Y (V, d,;  CN+ l . . . . .  ~U+M+ l)(IU+M+ i - - iN+ *) -k+ a 
C~ 

• (~N + 1 -- IN)" d in  + M +, d in  + i 

- -  ~ ~ Y(v, al; I N + , , . . . ,  IN+~+i)(IN+M+i--~N+l)  -k+l  
Ci C~ 

x (IN+ a -- IN)" dr a diN+M+ a 

= I - - I I ,  

where Ca' is a contour of IN+M+a which is outside Cx, and C~ is a contour of 
IN+M+I which is inside Ca. The first equality follows from (B2) and the second 
equality follows from the Cauchy theorem for contour integrals. By (B2) and the 
induction assumption, we have 

I =  <x(QN+2 . . . . .  QN+M), (I)Nv | (O5)| , 

and 

where 

and 

I I =  (X(QN+ 2 . . . . .  QN+M), (II)Nv (~) (0)) |  , 

(I) = Resw2 Resw~ (Y (co, wz )Y  (p([q), wl)tw2, w~((w2 - wi)  -k+ 1 w~')) 

( I I )=Reswl  Resw2(Y (p(dl), w i ) Y  (co, WZ)Zw,,w2((WE--Wi)-k+ lw'~)) . 

Using the Jacobi identity, we have 

(/)  + ( u )  = p (L _ k , h  ) ( n ) .  

This proves (B3). 
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Step 4. We are now ready to give the final touch. For  ae~,(V)c~L(b), it is easy to 
prove that a has a preimage deql(b) such that L 1 d = 0 and deg ~i = n. Let tc~ be the 
fiber of the line bundle s:" at the point Q; it has a basis (dz)" for z a local coordinates 
at Q. We will first prove Claim C. 

Claim C. For every veWa | �9 �9 | WN, the vector 

( Y (QN + 1; zu + a), v | d ) (dZN + a )" e rc~ (5.20) 

is independent of the local coordinates chosen from the projective structure 

Proof of Claim C. If z;~+ a is another local coordinate obtained from the projective 
structure {U~, z~}, let z;~+a = r  be the transition function, (note that it is 
a Mobius transformation), and T(r  be the associated operator, so T(r  has the 
form T(r We define Y(QN+a; zu+~)e(Ba)* by 

()~(QN+i; zr~+ 1), va | 5a > = <y(Qu+ a; z~+ a), Va | T(~b)da > �9 

It can be proved that y(QN+ a; zN+ a) satisfies the property (1) and (4) satisfied by 
y(QN+a;zu+t). Since (1) and (4) uniquely determine y(QN+a;zN+a), so 
)3(QN + 1; zN + a ) = Y(QN + a ; zN + a)- Therefore 

-', . r 

<y(Qu+a;zN+a),vl | | T(dp)ai>. (5.21) 

Using the fact that L ~ ti = 0 and L oci = nd, we have 

r ( r  =( r  

Substitute this in (5.21). We have 

(Y(QN+ a; zN+ a)v | 5 )  = (Y(QN+ a; z}+ ~)v | 5 )  (~b~+u(0))" �9 

This means that (5.20) is independent of the local coordinate chosen at Qs+ a. This 
completes the proof of Claim C. 

So (5.20) defines a section g=g(QN+~) of the line bundle x" on the domain 
QN+a 4=Qi ( i= 1 . . . . .  N). By Claim A and Claim B above, we know that g is 
meromorphic with possible poles at Qi . . . . .  Qs, and by Claim B, g has the 
Laurent series expansion at the point Qi (i= 1 . . . . .  N) as (x, Y (a, zi)iv). For  
f e F ( Z ;  Qi . . . . .  Qu; to-"+ l), we have 

N 

<x, a(f, Z)v> = ~ <x, Resz,(Y (a, z~)~tz,f),v> 
i = a  

N 

= ~ Resa,(gf)=O. (5.22) 
i = l  

Since (5.22) is true for every v eW~ |  " |  we conclude that 
Z,~ xa(f,Z)=O. [] l 

Theorem 5.2. I f  V is a sum of highest weight representations of the Virasoro algebra 
and dim(Vo) = 1 and S = ( S ;  Qa , . .  �9 , QN; zl . . . . .  zN; Wa . . . . .  WN) is a projective 
labeled Riemann surface, xeN(Z), ae~,(V) and f e F ( Z ;  Qa . . . . .  Qs; ~c-'+ 1), then 
 a(f, Z)=o. 
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Proof To apply Theorem 5.1, we need to prove that a ~ , ( V )  can be written as 
n 

a ~,~=1 ai such that a~e~..(V)nL(b~) ( i=1 . . . . .  n) for L(bi) a highest weight 
representation of the Virasoro algebra generated by the highest weight vector b~. 
This is the following lemma. []  

Lemma 5.3. I f  V is a sum of highest weight representations of the Virasoro algebra 
n and dim(Vo)= 1, then every ae~ , (V)  can be written as a = ~ i = l  ai such that ale 

,,~n(V)nL(bi) ( i = 1 , . . .  ,n) for L(bl) a highest weight representation of the 
Virasoro algebra generated by the highest weight vector bi. 

Proof We first prove that every element x in a highest weight representation L (b) 
of the Virasoro algebra generated by the highest weight vector b can be written as 
a linear combination of elements L"- ly  for n > 0  and yeL(b)  homogeneous and 
quasi-primary. We prove the statement using induction on deg x. If deg x = 0 or 
1 or x has the lowest degree in L(b), then x is primary, in particular it is 
quasi-primary. We assume that the statement is true for every x with deg x < S 
(S > 1). If deg x = S + 1, since deg L ix  = S, applying the induction assumption, we 
h k , . . . .  ave L ~ x = ~',i 1 L 2 ~ xi for some non-negatwe integer ni and homogeneous quasi- 
primary field x~.in L (b). Set y = x -  ~ = 1  (1/(n, + 1)(n~ + 2 deg x,))L ~+ ix,. It is easy 
to check that Lly=O,  so x can be written by a linear combination of L"_~x for 
x homogeneous quasi-primary in L (b). This completes the induction. 

m If ae~,(V),  by our assumption on V, a = ~ j = l  xj for xjeL(bj), L(bj) is the 
highest weight representation of the Virasoro algebra generated by the highest 
weight vector bi. And by what we just proved, we can write each xj as ~J= 1 L ~2"i xj, i 
for x j, i homogeneous quasi-primary fields in L (b j). We choose these xjs and xj, is so 
that the number ~m t k j  is minimal. Applying operator L1 to the equality 

�9 "~m x ~ k j  rY i j i  J =  
x = 2.,j = ~_2.,~= ~ L _'~ xj,~, we can prove that each n j, i = 0 and kj = 1. This completes 
the prooI. [] 

6. Correlation Functions 

In this section we prove that the space of vacua on a N-labeled Riemann surface is 
unchanged when adding a new point and assigning the 0-sector V at the point. To 
be more precise, let 

Z=(X;  Q1 . . . . .  QN; zl . . . . .  ZN; Wl , .  . �9 , BIN) 

be a N-labeled Riemann surface. Adding (QN+I,ZN+I, V) to S, we have the 
(N + 1)-labeled Riemann surface 

S ' = ( Z ; Q 1  . . . .  , QN+ I; zl ,  . . . , zN+ ~; Wl . . . . .  W~, V) . 

We will prove N ( S ' ) ~  N(S). This result leads to a definition of n-pointed correla- 
tion functions associated to a vector of N(Z). 

Theorem 6.1. Assume V is a sum of highest weight representations of its Virasoro 
algebra and dim(Vo)= 1. Let i be the linear map: 

N N 

i: ~ W k ~ ( ~  Wk|  v~--~v|  
k = l  k = l  
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i*: (| Wk| V)*--,(| Wk)* is the dual map. Then the restriction of i* on 
N~ ('~')e(@kV= 1 Wk | V ) * is an isomorphism from N (~') to N (Z, ). Moreover if Zw and 
2" are the labeled Riemann surfaces obtainedby changing coordinates zi to w~, let 
T1, 1"2 be the associated isomorphisms from N ( Sw) to N (22 ) and from N ( ~  ) to N (~') 
respectively, then the diagram of maps 

N(~,~) ~*-+ N(~w) 

N(2~') i*, N(,[) 

is commutative. 

Proof. For~ae~ , (V) ,  feF(22;Q1 . . . . .  QN;K-"+I), we need to check that 
(i 'x).  a(f, 22)=0. Since f i s  regular at QN+ i, we have 

Resz~+~(Y (a, zN+l)~z~+lf)l = 0 .  

So for ve@~= 1 Wi, 
N 

(i'x, a(f, Z)v)= ~ (i'x, Res~,(r (a, z3<f),v) 
i = 1  

N 

= ~ (x, Resz,(Y(a, Zi)tzif)iv | 1) 
i = 1  

N + I  

= ~ (x, Resz,(Y(a, zi)t~,f)iv@ 1) 
i = 1  

= ( x , a ( f , Z ' ) v |  1 ) = 0 .  

Similarly, we can prove that i* is annihilated by the global vertex operators 
associated to the Virasoro element. This proves i*xeN(~).  So we have a map 
i*: N(~') ~ N(Z). Tracing the definitions, we can prove that the above diagram is 
commutative. 

Next we prove that i*: N ( ~ ' ) ~  N(Z) is injective. By the above commutative 
diagram, we may assume that 22 is projective. For x such that i*x=O, we need to 
prove x=0 .  It suffices to prove that (x, v | a ) = 0  for all ve@~= 1 W i and aeV. By 
our assumption on V, we know from Theorem 5.2 that x is annihilated by the 
quasi-global vertex operators and from Lemma 5.3 that every aeV is a linear 
combination of the elements of form L ~_ 1 b for b homogeneous quasi-primary. So it 
suffices to prove ( x , v |  For this purpose, choose f e  
F ( X ,  Q I , .  �9 �9 , Q N + I ; / ~ - d e g b +  1) such that 

�9 , I z - m - 1  lz~+aJ =m.  n+l  + r e g u l a r  terms 

Then we have 

( x , v |  Resz~+~(Y(b, zn+l)Zz~+if)N+lv| 1) 
N 

= -- ~, (x, Resz,(Y(b, Zi)lzif)iv @ 1) 
i = 1  

N 

= -- ~ ( i ' x ,  Resz,(Y(b, zi)l~,f)iv) = 0 .  
i = 1  

Thus x=0 .  This proves the injectivity of i*. 
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To prove the surjectivity of i*, we may also assume Z is projective. Let {U~, z~} 
be the projective structure of ~. We choose a local coordinate chart (U, z) among 
{U~, z~} such that {Izl <e} for some e contains QN, while Qi, i=  1 . . . . .  N - 1  are 
outside { I zl < e}. We only need to prove the surjectivity for the case QN + ~ e { I zl < e}. 
Because if we prove the isomorphism of N(Z) and N(S')  at the above situation, 
then for QN + ~ at arbitrary position, we may choose points QN + 2, QN + 3 . . . . .  QN + k 
such that any two successive points P,Q in the sequence QN, QN+2 , . . . ,  
QN+k, QN+ a fit the above situation. Let Zk be the labeled Riemann surface obtained 
by adding points QN+2 . . . .  , QN+k, QN+ t to S and assigning V at these points. By 
deleting points QN+i ( i=2  . . . . .  k) in the order QN+2, . . .  Q/zN+k, we have an 
isomorphism of the spaces of vacua each time, thus we have N(S~)~-N(Z'). On the 
other hand, by deleting points QN+~ ( i = l  . . . . .  k) in the order 
QN+I, QN+2 . . . .  , QN+k, we have the isomorphism N(S~)'-~N(~). Thus N(S) is 
isomorphic to N(U)  and it is easy to see that this isomorphism is just i*. 

Thus we can assume that Qu and Qs+I are in {[z[ <e}. For every xeN(S) ,  we 
need to find x'eN(,~') such that i*x '=x.  Our method to construct such x' is 
similar to the proof of Theorem 5.1 with the Lie algebra of the quasi-global vertex 
operators playing the role of the Viraroso algebra and the "Verma module" 

define below playing the role of q/(1) and ~ 
For a positive integer M, pick M points Q~+l . . . . .  QN+M in {Izl<e}, set 

~+i=z(Qu+i) (i=0, 1 . . . . .  M), take z ~ + i = z - ~ + i  as the local coordinate at 
Qu+i. In this way, we obtain a projective (N+M)-pointed Riemann surface 

(2:; Q1 . . . . .  QN+M; zl  . . . . .  ZN+M) �9 

By assigning the "Verma module" ~ (which is defined below) at each point QN+i 
(i= 1 , . . . ,  M), we have the data 

~ ( r  . . . . .  r 

=(2;; Q1,. �9 �9 QN+M; Zl . . . .  , ZN+M; Wl . . . . .  WN, "r . . . . .  ~ ) .  (6.1) 

To construct x ' e N ( Z ' ) c  (@~=1 Wi | V)* such that i*x '=x,  we first construct 
x(r 1)e(@~=1 Wi @ ~ ) * ,  then we prove that x(r reduces to the needed x'. 
For this purpose we will construct for each M, x(~N+l . . . .  ,~s+M)e 

N ~ |  
(@i=1 Wi | associated to the data (6.1). 

The "Verma module" ~ is defined as follows. Let ~ be the free associative 
algebra with identity i generated by the symbols a(n),  where ae~(V) and neZ,  

oo and a(n)  is linear in a. Set Y (a, z)=~i=__oo a(n)z  -"-1, so Resz(Y (a, z ) z" )=  
a(m). Let d be the quotient algebra of d modulo the relations 

lal+Ibl-2 
[ a ( m ) , b ( n ) ] =  ~ Res~(Y(x,,b;i,z)Ga, b;~.,z,;i(z)) 

i = 0  

1 
+L.1 Resz(Y (a(L )b, z) (Zm)(L)(z)z") , (6.2) 

and 1 ( - 1 ) = i ,  1 ( i ) = 0  for i+  - 1 ,  where a, b are homogeneous quasi-primary 
fields with degrees [a [ and I b [, L = [ a I + [ b l - 1, xa, b; i are quasi-primary fields as 
defined by (4.7), Ga, b; z ~, z"; i(z) is defined in (4.9). The relation (6.2) is motivated by 
the formula (4.8). We continue to write elements of ~r as a ( m ) b ( n ) i .  
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Let ~/2 be the left regular representation of s~7. So a typical element of ~ is 
a ~ ( i a ) . . ,  an ( in ) l .  Let ~ be the left regular representation of sr modulo the 
relations 

a l ( i l ) . . . a . ( i . ) l = O  w h e n i n > 0 .  (6.3) 

We continue to write elements in ~ as a l ( i l ) . . ,  an ( in ) i .  And we write g for 
a ( -  1 ) i e ~ .  We have the obvious surjective linear maps 

p: ~Y" --* ~K': a~ ( i l  ) . . . a,, ( i n ) l  v-~a~ (i~ ) . . . an( i n ) i  , 

p: $/" --* V: a~ ( i l )  . �9 �9 a , ( i , )  i ~---~al (i~ ) . . . a , ( i , )  l . (6.4) 

Both ~ and ~ have a gradation defined by 

n 

deg(al ( i l ) . .  �9 a n ( i n ) l ) =  ~ (dega i - i l  - 1). 
i = i  

It is clear that both maps in (6.4) preserve the gradation. And it is easy to prove 
using (6.2) and (6.3) that 3v doesn't have a non-zero element with negative degree. 
Thus for fixed a e ~ ( V )  and v e ~ ,  a ( n ) v = O  for n sufficiently large. Therefore for 
a Laurent seriesf(z)= ~i__>k lizi, the operator Resz(Y (a,  z ) f ( z ) ) =  Y'.i>=k l ia( i  ) acts 
on U. We will write Resz(Y(a, z ) f ( z ) )  for Resz(Y (a,  z ) f ( z ) ) ,  and for a homo- 
geneous quasi-primary, f e F ( Z ; Q 1  . . . . .  QN+k;/r we write a ( f  z~)= 
Resz~(Y (a, zi)zz, f )  as before. 

x(~N+ 1 . . . . .  ~N+k)~(@~= t Wi | r | k). (k= 1, 2 . . . .  ) to be constructed will 
satisfy the following properties: 

(1) For every homogeneous a e ~ ( V )  with degree lal, and every 

f e F ( S ;  Qt . . . . .  QN+k; /~-Ial+l) , 

N+k  

Z x(~N+~ . . . . .  ~N+~)Res~,(Y(a, z 3 z j ) ~ = 0 .  
i = 1  

(2) For ~e| W~, 

(x(G+ 1), v | i ) =  (x, v ) .  

(3) For ve@~= 1 W i |  | 

<x(~N+l, �9 � 9  ~+~+~), v | i> = <x(~N+l . . . . .  ~N+k), v>. 
N (4) For v i e @ i =  1 Wi|162174 l)2e"[/'| , (SO Vl|174 WiN3 V'N(i+j+l) 

and va | v2e @~=~ W i N  3V'| 

( X ( ~ N +  1 . . . . .  ~N+i+ j+ l), I)1 | i | 192) 

= <X(~N+I . . . . .  ~+~+1 . . . . .  ~N+i+j+ 0, v~ | v2>,  

where~indica te  the missing terms. 
To construct x (~N + 1 ), we construct 2 (~N + 1 )e (W1 | �9 �9 | WN | r 7~ )* first, then 

prove that 2({N+1) reduces to x l ( ~ N + I ) ) e ( W I |  " | 1 7 4 1 6 2  *. Defining 
2(~N+ 1) is equivalent to defining 

(X(~N+ I, v |  al ( i l  ) . . . ak ( ik )  l ) , 
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we do it inductively on k. For  k = 0, we define 

<)C(~N+I), V |  V> . 

For k =  1, choosefeF(E; Q1,. �9 -,  QN+ ~; ~c-la~l+l) such that 

tz~+, f =  z} +, + positive terms,  

we define 

515 

for b=al ( i , ) i  or 1, 
satisfying 

- [ a [+  1 +deg6 
zz~+~g = sum of terms higher than zN+ ~ 

Assume we have defined (2(~N+l),V| for every v 
=a, ( i l ) . . .  ak(ik)Y and the property that 

N 

Z <)~(~N+ 1), a(9, zi)iV | b> - -0  
i=1 

and every /7 

we define 

(6.6) 

for every a ~ ( V )  with degree la[ and g~F(S; Q1,. �9 �9 QN; ~-Ial+l) satisfying 
- l a ] + l  +degb- 

tz~+~g=sum of terms higher than zN+ ~ 

Based on this induction assumption, we define (~(~N+ ~), v | a { i ) b )  as follows. 
Cho ose f~ F ( 2 ;  Q1,. �9 �9 QN+I; ~-Ial+l), such that 

- la l  + 1 + deg b- 
Zz~+, f =  z~ +, + terms higher than zN + 1 

N 

(-~(~u+l), v | a ( i ) b ) =  - ~ (s162 a ( f  zi)iv | b) , 
i=1 

it follows from (6.6) that it is independent of the choice o f f  And with some effort, it 
can be proved that the property (6.6) is again satisfied. So we have completed the 
construction of x(~N+ 1)- By a direct computation, we can prove that 

(2(~N+1), v |  bl<il)  . . �9 bk(ik) i )=O 

when ik > 0, and 

(2(~N+1), V | [ a (m) ,  b ( n ) ] e >  
l a l+ lb l -2  

= ~ <~((~r v | Resz(Y <X,,,b;i, g) Ga, b;zm, z~ 
i=O 

+ ( ~(~N + l )' v | ~ Resz(Y (a(L )b' z) (zm)(L) zn)g; ! / 

N 

(2(~N+t), v | al ( i l ) i  ) = - ~ (if(IN+ 1), al ( f  zi)iv @ T ) .  
i=1 

Using (4.10) in Sect. 4, we can prove that 

N 

(X(~N+ I), a(g, zi)iv | b ) = O  (6.5) 
i=1 

ash(V)  with degree lal and 9eF(S, Q1,. �9 �9 QN; •-Ial+l) 
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So X(is+l)  reduces to a vector X ( i s + l ) e ( W l | 1 7 4  W N |  And we can 
prove that X(IN+I) satisfies the condition (1) for k =  1 and condition (3). By the 
same method, we can construct X(IN+I, IS+Z) based on X({s+l) (constructing 
2({s+1, {N+2)e(W1 |  " " | Ws | ~ | ~ ) *  first as constructing x({N+l), then 
proving it reduces X(is+ 1, {s+2)e(W1 | " " |  Ws | ~ | ~ ) * ) .  For  example, 
(2(~s+1, IN+2), V | i )  for yeW1 |  �9 �9 | WN | ~ is (X(is+l) ,  v). And we con- 
tinue this way; we can construct X(fN+ 1 . . . . .  IN+~) (k = l, 2 . . . .  ). It can be proved 
that X(r 1 , . .  �9 iS+k) satisfies the properties (1), (2), (3), (4) above. It is not hard 
to see that {X(is+l . . . .  , is+k)} satisfying (1), (2), (3), (4) are unique. 

Next we prove the following claim. 

Claim A. For every v~Wl  | 1 7 4  Ws, 6~t/~, a2 . . . . .  a M e S ( V )  homogeneous. 
Then the function 

(X(is+ 1 . . . . .  IS+M), V | 1 7 4  d2 |  " " | riM) (6.7) 

is a M-variable meromorphic function on the domain {[is+i[ <e, i=  1 , . . . ,  M} 
with singularities at i s+~=r  (i4:j) and i s + i = r  A n d  for fixed 
is+ x . . . . .  IS+M-1, (6.7) has the Laurent series expansion 

(x  ( is  + 1,. �9 �9 , i s  + M- 1), Y (aM, i s  + U -- i S  + 1)S + 1 V | 6 | a2 |  �9 | aM- 1 ) (6.8) 

for the variable fS+M at r 

Proof  o f  Claim A. Consider the Laurent series given by 

gi(Zi)=(X(IN+ l . . . . .  ~N+M-1),  Y (aN+M, Zi)iV | al (~" " �9 @ a s + M - l )  

(i = 1 . . . . .  N + M -  1). The condition (1) implies that gi's satisfy the condition of the 
second part of Lemma 3.1. Apply Lemma 3.1; there exists a meromorphic (l as + M[ 
)-differential g e F ( S ,  Q1 . . . . .  QS+M; Kla'l), such that gi(zO=zz, g 
( i = I , . . . , N + M - 1 ) .  Write g=g(z)(dz)laN+~'l on { I z l < e } c U ,  so g(z) is 
a meromorphic function on { [zl <e} with poles at i s  . . . . .  iS+M-1. We want to 
prove that 

g(~N+M) = ( X ( I s +  1 . . . . .  IN+M); V | b-| a2 |  �9 �9 | aM ) .  (6.9) 

For  this purpose, we c h o o s e f e F ( S ,  Q1 . . . .  , QS+M; ~:--IaM+NI+I) such that 
- 1  

f l  . . . .  =Zs+ M + higher terms,  

Then we have 

N+M-1 N+M-1 
g(r = -  E ReSQ, (g f )=- -  E Resz,(gi(zi)t~,f) 

i=1 i=1 

N + M - 1  

= - -  Z (X(~N+ 1 . . . . .  iS+M-1)'aM+s(f~zi)i v | 1 7 4 1 7 4 1 7 4  
i=1 

= ( X ( r  iS+M), V | 6 |  a~ |  �9 | aM) .  

This proves (6.9), so (6.7) is meromorphic for i s  + M on { [ IN + M[ < e} with poles at 
points ~N+i (i = 0, 1 . . . .  , N + M--1)  and has Laurent series expansion at {s+ 1 as 
(6.8). The same argument proves that (6.7) is meromorphic for IN+~ (J = 2 , . . . ,  M) 
on {[{N+jl<e} with poles at points ~N+~ (i=O, 1 . . . . .  N + M ,  i=~j,). 
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If/7= at for a~ quasi-primary and homogeneous, the above argument applies to 
the variable IN+t, so we have in this case (6.7) is meromorphic for IN+t on 
{liN+al <~} and has poles at CN+i (i=0, 2 , . . . ,  M). Thus, i f /7=a l  for at quasi- 
primary and homogeneous, by the Hartog's Theorem, Claim A is true. 

Suppose Claim A is true for/7, based on this assumption, we want to prove it is 
true for b ' =  a( i  >/7, where a is quasi-primary and homogeneous. Set aM+ 1 = a. By 
induction assumption, we know that 

<x(IN+ t . . . . .  IN+M+t), v | 1 7 4  at |  " " | aM+~> 

is a meromorphic function of IN+t . . . . .  ~N+M+t with poles at IN+i=~N+j ( i# j )  
and ~N+~=IN, and it has Laurent series expansion for the variable IN+M+t at 
IN+ t as  

(X(IN+t . . . . .  fN+M),V| Y(a, IN+M+t--~N+I)N+t/7| |  " ' |  �9 

So 

(x(IN+l . . . . .  IN+M);V | 1 7 4  a2 | " "|  

= ~  (x( IN+l  . . . . .  IN+M+ ~), v | 1 7 4  at |  "" | aM+l> 
c 

x (IN+M+ 1-- IN+ 1) i diN+M+ t (6.10) 

for C a contour surrounding iN+ 1. Since the right side of (6.10) a meromorphic 
function of variables IN+t . . . . .  IN+M with poles at i~+i=iN+j  (i#:j) and 
IN +i = IN, so is the left side of (6.10). The proof of the fact that the left side of (6.10) 
has a Laurent series expansion for IN+M at IN+ t as 

(X(~N+ a . . . . .  IN+M+1), V | Y (a, ~N+M--~N+ t)N+ t /7' | a2 |  "" | aM-l> 

is already given before. This completes the proof of Claim A. 

Claim B. (B1) Equation (6.7) has the Laurent series expansion for the variable 
IN+M at IN as 

(x(IN+ 1 , . . - ,  IN+M- 1), Y (aM, IN+M-- ~N)NV | /7| 62 |  " " | aM- t > �9 

(B2) Equation (6.7) has the Laurent series expansion for the variable IN+ t at IN as 

(x(IN+2 . . . . .  IN+M), Y (b, IN+ t--IN)NV | 82 |  | aM>, 

where b=p(b).  

Proof of  Claim B. (B1) is already proven in the proof of Claim A. To prove (B2), it 
suffices to prove the case when/7=bl  ( i t  > . . .  bk(ik>T for b i e r (V )  and homogene- 
ous. We use induction on k. 

If k =0, then b= 1, then we have 

(6.7) = (X(IN+2 . . . . .  ~N+M), V | a2 |  " |  aM> 

=(x(IN+2, .  �9 - , iv+M), Y(1, ~N+~--~N)NV| |  " "|  aM> �9 

This proves (B2) for the case k = 0. 
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Assume (B2) is true for b = bl, based on this assumption, we are going to prove 
that (B2) is true for 6=  a ( i )  61, where a is in ~(V) with degree [a [. Set aM + 1 = a, and 
set 

F(iu+ 1 . . . . .  IN+M)= <X(Iu+ 1, �9 � 9  ire+ ~t), V |  d2 |  "" | aM> , 

and set 

G(iu+ l, . . . , ~U+M+ I )=(X( IN+ a . . . . .  IN+M+ I), V | | d2 |  " " |  �9 

By Claim A, 

F(IN+ 1 . . . . .  IN+M) 

is a M-variable meromorphic function on {LIN+~I <~} with singularities at 
IN+i=iN+j ( i+ j )  and IN+i={N. The Laurent series expansion of 
F(IN+,,  �9 . . ,  IN+M) for the variable IN+l at the point IN is 

i = --oo 

where C1 is a contour of {N+ 1 surrounding the IN- It suffices to prove that 

F( {N + I . . . . .  {N + M)( in  + l - - i n ) "  diN + l 
CI 

= (x ( iu+2  . . . . .  IN+M), p (a ( i  )/71)(n)NV | d2 |  " | aM} �9 (6.11) 

By the statement on the Laurent series expansion in Claim A, we have, for 
C2 a contour of IN+M + * surrounding IN + ~, 

G(~N+I . . . .  , i~+M+ 1)(~N+~+ 1 - - IN+ , ) i d iN+M+l  = F ( i ~ +  1 . . . . .  IN+M) �9 
Ca 

So we have 

F(fN+~ . . . . .  i~+M)( IN+*- - iN)"d iN+l  
C~ 

= ~ ~ G(IN+I . . . . .  IN+M+l)( in+M+l-- iN+,) ' ( In+l-- in)"d~n+M+a d~n+l 
C1 C2 

= ~ ~ G(~N+I . . . . .  {N+M+l) ( in+M+l - - iN+l ) ' ( i u+a- - in ) "d iN+M+ld iu+l  
C~ C1 

-- ~ ~ G(In+l . . . . .  IN+M+*)(IN+M+I--IN+I)'(IN+I --IN)"diN+l diN+U+* 
C~ C~ 

= I - - I I ,  

where C~' is a contour of I N + M + I  which is outside C1, and C~_ is a contour of 
IN+M+ * which is inside C~, the second equality follows from the Cauchy theorem 
for the contour integrals. By (B1) and the induction assumption, we have 

I =  (X(iu+2 . . . . .  IN+M), (I )Nv | d2 |  " " | aM) 

and 

I I =  ( X ( I N +  2 . . . . .  IN  W M), (II)Nv | a 2 (~  " "" (~  a M )  , 
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where 

and 

(I) = Resw~ Resw~ (Y (a, w2 ) Y (p (bl), w i )lw2 ' wl((W2__Wl)i Wl))n 

( I I ) = R e s w l  Resw2(Y (p(b) ,  w i ) Y  (a, WE)twl, w 2 ( ( w 2 - w l ) i w ' ~ ) )  . 

Using the Jacobi identity, we have 

( I ) - ( I I ) = ( a ( i ) p ( b l )  ) ( n ) = p ( a  ( i  >6i )(n) . 

This proves (6.11) therefore (B2). 
Now we are ready to give the final touch. By Claim A, for N v e @ i = x  Wi and 

b e ~ ,  

(x(IN+ 1), v | b )  (6.12) 

is a meromorphic function of IN+ x o n  { ] z [ <  ~} with poles at IN. By Claim B, (6.12) 
has Laurent series expansion at IN as 

(x,  r (p(6), IN+ ~--i~)Nv) . 

This means that if p(b)=0, then (x(IN+x) ,v |  So x(IN+x)e 
(Wx |  �9 �9 | WN | ~ ) *  reduces an element x ' e ( W 1  |  �9 �9 | WN | V )* .  By condi- 
tion (1), it is clear that x ' e N ( Z ' )  and i* x ' =  x. This proves the surjectivity of i*. [] 

If V is a sum of highest weight representations of the Virasoro algebra and 
dim(Vo)= 1, X is a N-labeled Riemann surface as above. Let P =(Px . . . . .  P,) be 
n-different points on S such that Pi4:Qj ,  wi be a local coordinate at Pi; write 
w = (wl . . . .  , w,). Let Ze, w be the (N + n)-labeled Riemann surface given by adding 
points P on Z and a~igning w~, V at Pi. For xeN(X), let Xe, w be the image of x in 
the isomorphism N ( S ) "~ N ( X e, w ). Then for V e W l |  �9 �9 | WN , a ie  ~z, (i= 1 . . . . .  n), 

F(v,  ai  . . . . .  a,,; P1, . . . , P, )=  ( x e , , , ,  v | ax |  �9 �9 | a , , ) ( d w i )  I~ . . .  (dw,)  1" (6.13) 

(the local coordinate w~ at P~ defines a basis (dw~) l' of the fiber K), we continue to use 
(dwi) l' to denote the corresponding basis in n/-~x~) defines a vector on 
(~z~- 1 xl, |  | n~- i xl.)e" We have the following theorem. 

Theorem 6.2. F(v,  a i  . . . . .  a,; P1 . . . . .  P , ) e ( n l  1 ~t~ |  n2  i ~t,)e defined in (6.13) 
is independent  o f  the local coordinates  w. A n d  as P varying on X ~, it defines a global  
meromorphic  sect ion o f  the line bundle n ;  l tcq |  nff  l let" over X n, and the only  
possible s ingulari t ies  o f  this sect ion are those P ' s  sat is fy ing P i = P j  f o r  some 
i , j = l , . .  . , n  or P i = Q j f o r  some i=1  . . . . .  n , j = l  . . . .  ,N. 

The meromorphic  sect ion F(v,  a i ,  �9 �9 �9  a,;  Px . . . . .  P, )  relates  to the ver t ex  oper- 
ators  Y ( a l , z l ) , . . . , Y ( a l , z , )  as fo l lows .  F o r  each Qk ( k = l  . . . . .  N ) ,  let U =  
{[ Zk [ < e} be a neighborhood Of Qk which contains  no other  Qg" s, let (z~ . . . . .  z ; )  be the 
coordinates  on U ~ ~ X ~ induced f r o m  zk, wr i te  

F(v,  ax . . . . .  a,;  P x  . . . .  , P . ) = f  (z tk 1) . . . . .  z(k"))(dz~l)) l' . . . .  ( d z ~ n ) )  l" 

on U". Then fo  r every  permuta t ion  (ix . . . .  i ,) o f ( l ,  . n), the meromorph ic func t ion  
(n)  ' " " ' 

r  (x) �9 �9 �9  zk ) has the expans ion  JI. k , 

(X ,  r (ail  , z~il))k . . . r (ain , z~in))kV > 
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on the domain e > [z~h)l > ." :>[Z~ i") ] > 0. (Recall as in Sect. 3, r ( ai~, z~iS))k denotes the 
operator 1 Q . �9 �9 | Y (ai~, z~ ~)) (k-th place) |  �9 �9 | 1.) 

Proof  To prove the right-hand side of (6.13) is independent of the local coordinates 
w, let w' = ( w ~ , . . . ,  w') be another choice of the local coordinates, let w; = cbi(wi) = 

exp j= o ci.J w{+ 1 wi be the transition functions, T~ = exp(~j~= o c~,jLj) be the 

associated operators, then we have xp,~=Xe,  w,IIi"=l(T~)N+i. In other words, we 
have 

( x e . ~ , v | 1 7 4 1 7 4 1 7 4 1 7 4  . |  . (6.14) 

A direct computation using the facts Lkai=O for k > 0  and Loaz= lzai shows that 
Tiai=exp(lici,  o)ai=(cb'(wi))l'lw,=O, ai. Substituting this to (6.14) and using the facts 
(dwi)l'(db'(wi))l'lw,=o=(dwl)l', one proves that 

( x p ,  w, v | a l  |  " " |  a . ) ( d w l )  11 �9 . .  ( d w . ) l " = ( X p ,  w ,, v | a l  |  "" | a . )  

x (dw ' l ) l l . . .  (dw') l" . 

This proves (6.13) is independent of w. 
As P varying on S,", F(v, al . . . . .  a.;P~ . . . . .  P,) is a section of 

~ l t c h  |  r c ; l x  l" defined on Pi4:P2 (i4:j) and Pi4:Q2. We next prove that 
F(v, al . . . . .  a,; P1 . . . . .  P,) is meromorphic. By Hartog's Theorem, it suffices to 
prove that F is meromor~hic for each variable Pi. To prove that F is meromorphic 
with respect to P., let S ,  z ~ be the ( N +  n-1)- labeled Riemann surface given by 
deleting (P,, w,, V) from Ze. ~. Let x ._  t 6 N ( S , _  1) correspond to x as in Theorem 
6.1. Considering the Laurent power series g~(z~) (i= 1 , . . . ,  N +  n - 1 )  (zN+i=wi) 
given by 

gi(zi) = ( x , _  1, Y (a,, zi)iv | al |  �9 " | an- 1 > �9 

By Proposition 3.4, there exists a g e F ( S ;  Q1, . �9 �9 Qu+,-1;  x/") (where QN+i= Pi) 
such that gi(zi) (dzi) I, is the Laurent series expansion of g. Write g = gu +,(w.) (dw,)l" 
near P,; we claim that 

g N + , ( O ) = ( x e , ~ , v |  @" �9 " @ a , )  . 

Indeed, choose a f ~ F  (S; Q 1 . . . .  , Qu +,; ~c-t.+ x) such that 

lw, f =  w2 1 + higher terms.  

So we have 

N + n - 1  

g , ( O ) = R e s p . ( g f ) = -  ~ Reso , (g f )  
i = 1  

N + n - 1  

= -- ~ (Xn- 1, Res~(Y (a,, z i )z~f) iv  | al |  �9 | a,_ 1)  
i = l  

= ( x e ,  w, v |  aa |  �9 " |  a , )  . 

This proves our claim. So F is meromorphic for P, with poles at Q1 . . . . .  QN, 
P1,. �9 �9 P, - 1. Similarly we can prove that F is meromorphic for other variables. 
Thus F is a meromorphic section. 
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It remains to prove that F has the Laurent series expansions as in the theorem. 
We may assume k=  1 and that the permutation ( i l , . . . ,  i,) is (1, 2 . . . . .  n). Write 

F(v, al  . . . . .  a,; P1 . . . .  , P , ) = f  (z~1), . . . , z~n)) (dz~l ) )  11. . . , (dz~n)) l" 

on U". Let Zi ( i - - 1 , . . . ,  n) be the (N + /)-labeled Riemann surface obtained by 
adding ( P I , z - z ( P 1 ) , V ) , . . .  ,(Pi,  z - z ( P i ) ,  V )  to 2~, let xieN(~- i )  correspond 
x ~ N ( S , ) .  We have the expansion on the domain {e >[z~)[ > [z~2)] > .- .> ]z~")[ > 0}: 

f ( Z ~ I )  . . . . .  z~n))~- Z r . . . . .  i ,(Z~l)) - i ~ - l .  . . (z~n)) - i " - I  , 

( i l , -  �9 . , i , ) E Z "  

where 

ci~ . . . .  i , = ~ ' " ~  (i) , f ( z~  . . . .  ,z~"))(z~)) il . . ( z~" ) ) i "dz~ l ) . . . d z~  ") , (6.15) 
C1 C. 

where the contour Ci is for z~ ~ and Ci contains Ci+ ~. 
By the proof above, we know thatf(z~ 1) . . . . .  z~ )) have expansion for z~ ") at ~ ,  

( X n - 1 ,  Y ( a n ,  z~n)) lV  ( ~  a l  Q "  " �9 Q a n - l )  �9 

Thus we have 

(")'" (")'i"" (") " a,( i , )v  (~ a I ) ~f(z~ 1) . . . . .  zi I~Z1 ) a z 1  =r  (~" " ' ( ~ a n _  1 . 
C ,  

Similarly, 

( X , _ l , a , ( i , ) v |  |  " |  t ) ( z [ " - l ) ) i " - l d z , _ l  
Cn - I 

= ( x , - 2 ,  a , - l ( i , - 1 ) N a , ( i , ) N V  | al |  " |  a , - 2 )  �9 

Continue this way, thus we have 

Cq . . . . .  i, = ( X, a l  (i i)  N . . . a , ( i , ) sV)  . 

This is precisely the coefficient of (z~ 1))- i1 -1 . . .  (z[,))-i,- 1 in 
(i)L . .  

( x , r ( a l , Z l  , N .  Y(a , , z[") )NV>,  

as was to be shown. [] 

F in the theorem is called the n-pointed correlation functions associated to x, v 
and al (i = 1 . . . . .  n). 

Remark .  If S is projective with the projective structure {U~, z~}, we use {U~, z~} to 
give local coordinates wi at Pi, then Theorem 6.2 is true for al . . . . .  a, quasi- 
primary. Using this fact together with the fact that every element of V is a sum of 
the form L k_ 1 bk with bk quasi-primary, one can prove that for arbitrary a l , .  � 9  a ,e  
v, 

( x ,  r (aa, Wl)k .  �9 . Y (a,, W,)kV> 

converges on the domain e >]wl[>"  �9 "> I w,[ > 0, and the limit can be extended to 
a meromorphic function on the domain e > [wi] > 0 (i = 1 . . . . .  n) with the only 
possible singularities at w~ = w  j,  and this meromorphic function is independent of 
the ordering of Y (ai, zi). This generalizes Theorem 2.1. 
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7. Examples 

We give examples of the space of vacua for some cases. The space of the vacua for 
an one-pointed sphere relates to the vacuum vector l eV. The space of vacua 
for a two-pointed sphere relates to the dual representations. And the space of 
vacua for a three-pointed sphere relates to the interwining operators. The notions 
of dual representations and interwining operators are introduced in [-FHL]. The 
space of vacua on a torus with one puncture relates to the q-trace of vertex 
operators, which is studied in [Z]. We also discuss the space of vacua for the vertex 
operator algebras associated to the affine Lie algebras and Heisenberg algebras. 
The space of vacua for vertex operator superalgebras associated to the Clliford 
algebra is known completely. 

We assume that the vertex operator algebra V in the examples 1-4 below 
satisfies that V is a sum of highest weight representations of its Virasoro algebra 
and dim(V o ) - 1  and a representation W= @,~=o W (n) of V under consideration 
satisfies that dim W (n)< oo and L o acts on W (n) as n + h for some constant h. 
Under this assumption on V, by Theorem 5.2 and Lemma 5.3, every vector in V is 
a linear combination of vectors L k_ 1 a for keZ  and a homogeneous quasi-primary, 
and the quasi-global vertex operators annihilate the space of vacua on a projective 
N-labeled Riemann surface. 

We first recall the notions of dual representations and intertwining 
operators for representations (see [FHL] for details). Only the basic definitions is 
deeded. 

Let W= @ , ~  1 IV, be a representation of V. The restricted dual W ' =  ~,,~ ~ W* 
of W admits a structure of representation of V given by 

(Y (a, z)v', v) = (v', Y (e~LI(-- z-  e)L~ z-1)V) . (7.1) 

The identity (7.1) for ae,~,(V) is equivalent to 

(a(i)v', v ) = ( - 1 ) " ( v ' ,  a ( 2 n - 2 - i ) v )  for every ieZ . (7.2) 

The representation W' is called the dual representation of W. 
Let Wi = @,~--o Wdn) (i= 1, 2, 3) be representations of V such that Lo acts on 

( W3 ) i s a l i n e a r m a p l ( , z )  Wdn) as n + hi. An intertwining operator of type W2 W1 

I ( ,  z): W2 ~ End(W1, W3)[[z, z-1]]z  -hl-h2+h3 , 

v~--~I(v, z)= ~ /)(i)z - i - l -hl -h2+h3 
i =  - -o0  

such that I ( ,  z) satisfies that for fixed v ~ W2 v x ~ Wl, v (i)/)2 = 0 for i sufficiently large 
(truncation condition), and for every f (z, w) = ( z -  w)"z", 

Rest_ w(I(Y (a, z -w)v ,  W)tw, z- w f (z, w) ) 

= Resz(Y (a, z)I(v, w)z~,~f(z, w))-ResdI(v, w)r (a, Z)Zw,zf(z, w)), (7.3) 

d 
and I(L _ 1 v, z) =dz I(v, z). 
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1. One-Pointed Sphere. Consider X = (CP 1; 0; z; W), where z is the standard co- 
ordinate. It is clear that ~ is projective, so Theorem 5.2 applies. And it is easy to see 
that L o = w(1) is a global operator on ~. So if L0 W= W (this situation happens 
when L 0 acts semi-simply on W without 0 eigenvalue), then N(CP 1; 0; z; W ) = 0. 
Note that F(~;  0; ~- ,+1) has a basis 

z 2 . - ~ ( d z ) - , + l  ' z 2 . -  3 ( d z )  , +  1, z 2 , - , ( d z ) - . +  l ,  . . . , 

so ~ff(Z), the space of quasi-global vertex operators, is spanned by 

{a(i) lae-~,(V), neZ, i=<2n-2} . (7.4) 

The following Proposition is easy to prove. 

Proposition 7.1. N(CP i ;0; z; V)~  C. The dual vacuum l ' e V * defined by (1', a ) =  0 
/ f d e g a > 0  and (1', 1> = 1 is a basis o f N ( C p t ;  0; z; V). 

2. Two-Pointed Sphere. Considering X = (CP i; O, oe; z, l/z; Wl, WE). It is clear that 
is projective, so Theorem 5.2 applies. And F(CP1; o%0; ~c -"+1) has a basis 

zi(dz) -"+1 (ieZ). At the point oe and coordinate w=  l/z, zi(dz) -"+1 is written as 
( _  1),+lw2,-2-i(dw)-,+ 1, so the quasi-global vertex operator associated to a t  
~,(V) and the differential zi(dz) -"+1 is 1 | ( - 1 ) " + i a ( 2 n - 2 - i ) + a ( i ) |  1. 

Proposition 7.2. The vacua space N ( S ) = N ( C P 1; o% 0; l/z, z; W i , WE) is isomorphic 
to the space Homv(W~, Wi), where W ~ is the dual representation of W2. 

Proof Given a homomorphismfeHomv(Wi,  W~), we define N(f)e(W1 | W2)* as 
usual by ( N ( f ) , v l  |  Using (7 .2)  and the fact 
f (a(i)vi)=a(i) f(vx) ,  we have N ( f ) . a ( f ,  ~ ) = 0  for every quasi-global operator 
a( f ,X)  on Z, so N ( f ) e N ( Z ) .  Thus f~-~N(f )  defines a linear map from 
Homv(W1, Wi) to N(Z). Conversely, if xeN(Z)  c (W1 | WE)*, we define for each 
vieWt a linear functional f~(vi)eW* as usual by (f~(vl), v2>=(x ,  vl | v2>. 
Lo | 1 -- 1 | Lo is a global vertex operator on Z, we have 
( x , ( L o | 1 7 4 1 7 4  This implies that ( fx(LoVl) ,V2)= 
(fx(Va),Lov2>. So for vleWl(n), (f~(vl),v2>=O unless Lov2=(n+hl)v2,  this 
implies that fx(v i )eWi.  So we have a linear mapfx: W1 --} Wi.  It remains to check 
that 

f~(a(i)vl)=a(i)fx(vi) for every a e V .  (7.5) 

For ae~,(V),  we have 

(fx(a(i)vi), v2> = (x,  a(i)vi | v2) = (x,  vi | ( -  1 ) "a (2n-2 - i ) v2 )  

= (fx(vl), ( -  1)"a(2n - 2 -  i)v2 ) = (a(i)f~(vl), v2 > . 

This proves that (7.5) is true for a quasi-primary. Using the facts that every aeV 
is a sum of Lk_lb for b quasi-primary and (Lk_lb)( i )=(--1)ki( i+l) . . .  
( i+k--  1)b(i-k),  it is clear that (7.5) is true for every asV. Thusfx is a morphism of 
representations of V. It is clear that the maps fw-~N(f)  and x~--}f~ are inverse 
maps. [] 

Since the points 0 and oe are symmetric, we also have N(CP1; o% 0; 1/ 
z, z; W1, W2)-  Homv(Wz, W [). We give some corollaries of Proposition 7.2. 
Corollary 7.3. I f  W1, WE are irreducible representations, W ~ is the dual representa- 
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tion of W2, then 

Proof Using the Proposition 7.2 and the fact that W~ is irreducible. [] 

Y. Zhu 

3. Three-Point Sphere. Every three-pointed sphere is conformally equivalent to 
(CP 1; 0, 1, oo). It suffices to consider 

Z=(CP~;  0, 1, oo; z, z - 1 ,  1/z; W1, W2, W3). 

Since Z is projective, so Theorem 5.2 applies. F(CP1; 0, 1, oo; x -n+l) has a basis 
{zm(z - 1)'(dz) -"+1, m, I~Z}. 

Proposition 7.4. N(~)=N(CP1; O, 1, oo; z, z - l ,  1/z; W1, W2, W3) is isomorphic to 

the space I(W1, W2, W3) of intertwining operators of type \ W2 W1 " W; is the dual 
representation of W3. 

Proof Let I ( ,  z) be a interwining operator of type \W2 WI,]' we define a linear 

functional fie(W1 N WI | W3)* by (FI, vl | v2 | v3 > = (v3, I(v2, 1)vl >. For 
ae~k(V), f= zm(z--1)"(dz) -k+ 1, the quasi-global vertex operator a(f, 2~) is 

Res~(Y (a, z)zm(z- 1)") | 1 | t 

+ 1 | Reszl(Y(a, zl)(zl + 1)"z~) | 1 

+ l | l | Resz=(Y (a, zoo)(- 1) k+l zooZk-2-m-"z'[l - - Z o o )  n . 

Set f(z,  W)=zm(z--w) ", by (7.3), we have 

0 = (v3, Resz-w(I(Y (a, z-w)v2, w)tw, z_wf(Z, w))vl > 

- - (V3,  Res~(r (a, z)I(v2, w)tz. wf(Z, w))vl 5 

+ (v3, Res~(I(v, w)Y (a, Z)tw.J(z, w))vl > . (7.6) 

Put w = 1 in (7.6),the right-hand side is precisely (FI, a( f  S)vl | v2 | v3 >. Thus 
we have FI. a( f  Z)=0,  so F• Thus we have established a linear map from 
I(WI, Wz, W3) to N(Z). Conversely, for xeN(Z), we define 1~ by 

( V;, Ix(V2, W)Vl)=(X , w--L~ Q W L~ 2 (~) w L ~  ) . (7.7) 

Note that for fixed v 1, v2, v~, (7.7) is a in C I-w, w - ~ ] w- hi - h~ + h~. And it is easy to see 
that 1(v2, w) is an element of the space End(W1, W3 ) [ [w, w- 1 ] ] w -h~- h~ + h~ and it 
satisfies the truncation condition. To prove the L 1 property, choose f =  z(dz)-1, 
the global vertex operator co(f, Z) is 

Lo | 1 | 1+1 |174 1--1 | 1 |  

Remark. If W1 = W~, let ei (i = 1, 2 , . . . )  be a homogeneous basis of Wl, {e~} c W2 
o0 be a dual basis of {e~}, then ~i=1 e ' |  is in N(CP1; o%0; 1/z,z;W1,W2), it 

corresponds to the identity map of Homv(W~, W~). 
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(x, ~o(f Z, )w-L~ | W-L~ | Wr~ > = 0  is precisely 

(v;, I~(L- 1Vz, w)vl ) = d_d__ <v;, Ix(vz, w)vl ) . 
a w  
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This proves L ~ property. We next prove the Jacobi identity (7.3). For ae~k(V), 
f (z ,  W)=(Z--W)mZ ", set f=(z--1)mz"(dz) -k+l, then we can check that the identity 
(x, a(f, Z)w-4"~ | w-L~ | WL~ > =0  is the same as (7.3). This proves (7.3) for 
a quasi-primary. For arbitrary aeV, write a as a sum of elements of type L~_~b 
for b quasi-primary, using L_a property of vertex operators and (7.3) for 
quasi-primary fields, it is easy to prove (7.3) is true in general. So Ix is an 
interwining operator, thus we have established a linear map from N(Z) to 
I(W~, W2, Wa) which is clearly the inverse map of the map of 1(14'1, W2, W3) to 
N(Z) defined earlier. [] 

4. One-Painted Torus. Set q = e 2~'/-2i~. Let L~ be the lattice (mz + n}, and let T~ be 
the torus C/L,. Take the image 0eC in T, to be the marked point Q and the 
standard cordinate z be a local coordinate at Q, and we denote Q by 0. We will 
consider the l-labeled torus (Td 0; z; V). 

The torus T~ can be also obtained by identifying the boundaries of the annuli 
{ I q l < l w l <  1} by the relation w ~ wq. The point Q corresponds to the image of 1. 
We have another local coordinate z ' = w - 1  at Q. z and z' are related by 
z ' = e x p ( 2 r c ~ - l z ) - l .  Let T be the associated operator with respect to the 
transition function z' = exp(2n x f - ~ z ) -  1. 

The process of gluing the boundaries of the annuli { ] q l =< [ w[ < 1 } corresponds 
the process of taking traces of the vertex operators. Let W=@i~=o W(i) be 
a representation of V with the action of Lo on W(i) as i+h for some constant h. 
Consider the trace of the operator Y (zL~ z)q L~ on W : 

trlw Y (zL~ z)@ ~ �9 (7.8) 

It is easy to see that (7.8) is a power series in C[[q]]q h. It is proved in [Z] that 
tr[wY(zL~ z)q L~ converges on 0<lql  < 1 for every a under the condition that 
dim V/C2(V) < o% where C2(V) is the subspace of V spanned by the vectors of the 
form b1(-2)b2 for bl, b2eV. We define a functional z(W, z)eV* by 

(z(W, z), a) =trwo(Ta)q L~ , 

where we put o(Ta) instead of a because of the coordinates transformation. The 
results of [Z] about the trace trwo(a)q L~ implies that z(W, z)eN(T~; O; z; V). 

5. Vertex operator algebras associated to the affine Lie algebras. Let g be a simple 
Lie algebra, ~ = g |  -1] O Ck be the associated affine Kac-Moody Lie 
algebra [K].  We write a(n) for a | t", and a(z)=~i ~_ oo a(n) z-"-l" For k a posi- 
tive integer, the integrable highest weight representa}ior[ of g of level k has a vertex 
operator algebra structure. The set of irreducible presentations of Lk are the same 
with the set of integrable highest weight representation of g of level k, and Lk is 
rational. See [FZ]  for detail. 

For a N-labeled Riemann surface 

S = ( z ;  Q1,.  �9 �9 QN; zl . . . . .  z,; Wl . . . .  , W~).  
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Let M(S; Q~ . . . . .  QN) be the space of meromorphic functions on S with poles at 
most at Q ~ , . . . ,  QN (so it is the same as F(S; Q~ . . . .  , QN; ~:o)). For aeg, f~ 
M(S; Q~ . . . . .  QN), put a(f, ,?)=~'~=~ Res~,(a(z,)t~,f)~ which acts on |  W~. 

The space of vacua defined by Tsuchiya-Ueno-Yamada is 

~ ( Z ) =  {xe(W~ |  Q WN)*lx.a(f ,Z) 

=0 for all aeg andfeM(S;  Q1 . . . . .  QN)} �9 

Since a(z) is a vertex operator of a primary field of degree 1, we see that the 
condition for x e V ( Z )  appears weaker than the condition for xeN(S) .  Since Lk is 
now generated by ~, using the same method in proof of Theorem 5.1 with the Lie 
algebra ~ playing the role of the Virasoro algebra, one can prove that V (Z) = N(S). 

6. Vertex operator algebras associated to Heisenberg algebras. Let {1, a(n)(neZ) } 
be an infinite dimensional Heisenberg algebra; it has commutation relations 
[h(m), h(n)] =mSm+,,ol. The polynomial ring V=C [ a ( -  1), a ( - 2 ) , . . . ]  of vari- 
ables a ( -  1), a ( - 2 )  . . . .  (V is also called the Fock space) is a representation of the 
Heisenberg algebra. F has a vertex operator algebra structure; the vertex operators 
are generated by the basic vertex operator a ( z )=~  ~ ~ a(n)z-"-1 [FLM2]. For 
a I-labeled Riemann surface Z = (Z, Q, z, V) (Q is a point on z, z is local coordinate 
at Q), with a little effort, one can prove that 

N(2) = {xeV*[x .  Res~(a(z)f(z)) = 0 for e v e r y f e H ~  Q)} , 

where H ~  Q) denotes the space of meromorphic functions with possible poles 
at Q. Then we can follow a method in [DVV] to compute N(Z). It goes as follows 
(see [DVV] Sect. 6c for detail). Let g(z) be a multi-valued meromorphic function 
with possible poles at Q and with constant shifts around the nontrivial cycles of the 
surface, then dg(z) is a meromorphic differential with possibles at Q, so 

[Res~(a(z)g(z) ), Res~(a(z) f (z) ) ] = Res~(f (z)dg(z) ) = 0 ,  

for every f ( z )eH~ Thus the operators Res~(a(z)g(z)) preserve N(Z). The 
space of such g(z) modulo H ~  is naturally dual to Hi(N, C), hence is 2g 
dimensional (g is the genus of N). We take 2g such multi-valued meromorphic 
functions g& . . . . .  gAg; gS~,. � 9  gB, corresponding to cycles A~, B~ in HI(S) such 
that 

[Res~(a(z)g A~(z) ), Res~(a(z) g Aj(Z) ) ] = [Res~(a(z)gB,(z) ), Res~( a(z)gsj(z) ) ] = 0 ,  

[Res~(a(z)gA,(Z) ), Res~(a(z)gBj(z) ) ] = 5i~ 1 . 

One can then prove that there is a unique xoEN(S,) (up to scalar) such that Xo is an 
eigenvector for Res~(a(z)gA~(z)) (i = 1 , . . . ,  g) and N(Z) is a completion of the space 
spanned by Res~(a(z)gR~(z))... Res~(a(z)gB~(z))xo. In particular, we see that N(~) 
is infinite dimensional if g > 0. 

7. Vertex operator superalgebras associated to Clifford algebras. Recall that an 
infinite dimensional Clifford algebra generated by b,, c .neZ has anticommuting 
relations: 

b,,b,+b,b,,=O, c,,c~+c~c,,=O, b,,c,+c, bm=J,,+,,o �9 
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For an integer j, the canonical Clifford module Vj is generated by a vacua vector 
1 and 1 is annihilated by annihilation operators ba_j,  b z - j , . . .  ;Cj, Cj+l . . . . .  
A basis of Vj is obtained by acting the creation operators b j, b_j_ ~ . . . .  ; c_ (1-j), 
c_(l_j)_ ~ , . . .  on 1. Vj has a structure of vertex operator superalgebra, the vertex 
operators are generated by two basic vertex operators b(z)= ~.,~=-o~ b , z - "  - j  and 

c(z)=~,~=_~ c,,z-,,+J -1 (see [A] Sect. 4 for a proof). 
The notion of global vertex operators and the space of vacua generalize directly 

to vertex operator superalgebras. It is easy to see that V~ is its own unique 
irreducible representation, and use a similar argument as in the proof of Theorem 
6.1, we can prove that the space of vacua for N-labeled Riemann surface is 
isomorphic to that for i-labeled Riemann surface. Therefore is sufficient to con- 
sider the case Z = S ,  Q, z, v~). Note that b(z) (c(z)) is a primary field of degree 
j (1-j) .  One can prove 

N (S ) = {x~ V*  l x .  Res~(b(z) f (z) )=  x .  Resz(c(z)g(z) )= 0 

for every f (z)e F ( Z ; Q, tc - j -  1), g(z)~ F ( Z ; Q, x J)} . 

In [GGMV],  N(Z) is proved to be one dimensional and an explicit formula for 
a basis is given. This conformal field theory is also studied in [-KNTY]. 

8. Gluing Construction of the Space of Vacua and Modular Functors 

Having defined the space of vacua on labeled Riemann surfaces, an immediate 
question is to study the structure of these spaces. We give a conjecture on the 
construction of the space of vacua by gluing Riemann surfaces. This conjecture can 
be roughly stated as that S ~ N(S) is a modular functor if the vertex operator 
algebra V satisfies a certain finiteness condition. 

Let 

$1 =(Sa; Q1 . . . . .  QN, P';  z l  . . . .  , zN, z ')  , 

,~2 =($2; QN+ I . . . . .  QN+M, P"; zN+ l , .  . . , ZN+M, Z") (8.1) 

be two pointed Riemann surfaces. Let D1 = {Iz'] <[ql  I} and {D2 = [z"l <lq2 l} the 
discs near P'  and P" respectively such that they contain none of Qi's. We cut off 
D1 from $1 and D 2 from Z 2 and glue the two boundaries together by the relation 
z ' z " =  ql q2, we get a (M+ N)-pointed Riemann surface with the genus equal to the 
sum of genus of S~ and Z2- Similarly, we can glue two marked points on a single 
pointed Riemann surface. If 

S '= (Z [ ;  Q1 . . . . .  Qu, P', P"; zl . . . . .  zN, z', z") (8.2) 

is a (N + 2)-pointed Riemann surface, we cut off two discs { [z'l < I qll} and {Iz"l <1 
q21} which contains none of Qi's and glue the two boundaries by the relation 
z ' z " =  qa q2, we get a N-pointed Riemann surface with genus increase by 1. In both 
cases the resulting pointed Riemann surface Sq depends only on the product 
q = qa q2. Every n-pointed Riemann surface can be obtained in this way by success- 
ively gluing the 1-pointed, 2-pointed or and 3-pointed Riemann spheres. 

Let V be a rational vertex operator algebra, W~ . . . . .  Wz  be a sequence of 
irreducible representations of V and assume Ws and Wt (1 < s < t < m) are dual with 
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each other, a linear functionalfe(Wa |  �9 �9 | Win)* is called contractable at the s-th 
argument and the t-th argument if the following holds: let {e,}~ ~ be a homogeneous 
basis of W~, {e'}i%1 be its dual of Wt (so (el, ej)=6ij) ,  for every xieWi 1 N i < m ,  
i =~ s, t), the series 

f ( x l  |  "Ne~| �9 " |174 " |  (8.3) 
i = l  

converges absolutely. For such f, the contraction o f f  at the s-th argument and the 
t-th argument is defined to be the vector in (W~ |  l~s . . .  W~...  | W~)* 
(where ^denotes the omission) whose value on @i,~,t x~ is (8.3). 

Conjecture 8.1. Assume vertex operator algebra V satisfies the conditions: (1) V is 
rational. (2) V is a sum of highest weight representations of  its Virasoro algebra, 
dim(Vo) = 1. (3) V is an irreducible representation. Let We . . . . . .  We. be a complete 
list of irreducible representations of  V. Then 

(1) For two labeled Riemann surfaces: 

Zl, e=(2:l; Q1 . . . . .  QN, P'; zl  . . . . .  zN, z' ; W1, . �9 �9 , WN, We),  

S2, e '=(Sz; P", QN+ I . . . . .  QN+M; ZN+ I , .  �9 �9 , ZN+ M; W~, WN+ i . . . . .  WN+M) . 

let 

~q=(Sq;  Qt . . . . .  QN+~;  z ~ , . . . ,  zN+M; W~ . . . .  , WN+~) 

be the labeled Riemann surface obtained by gluing the points P'  and P" with the 
Lo parameter q described as above. Let be qN+~ be the operator which acts on 

(W1 | �9 �9 | WN | We)* as the operator qLo on the (N + 1)-th faetor We. For every 

xleN(~I,e) c(W1N" " |  WN| We)* 

and 

xzeN(Z2, e') c (W•+  1 @ "  " " @ W N + M  @ W ~ ) *  , 

L0 qN+ 1 x l  | x2 is contractable at (N + 1)-th argument and (N + 2)-th argument and the 
contraction is in N (S,q). This defines a linear map Le: N (~f q, e) | N(~z,e,) ~ N (~q). 
The linear map 

+ L~: + N(SI, e,) | N(~2,~;) ~ N(Sa) 
/=1  i=1  

is a linear isomorphism. 
(2) For a labeled Riemann surface 

t ! tt ! i t .  Z e = ( Z ' ; Q i  . . . . .  QN, P , P  ;zi  . . . .  ,zs,  z , z  , W1,. �9 �9 , Ws, W~, W~,), 

let 

2 ,  =(zq;(21  . . . . .  QN+u; z l  . . . . .  zN+u;  Wi . . . . .  Wu+M) 

be the labeled Riemann surface obtained by gluing Zi  at the points P'  and P" 
�9 ~ t  L 0 descrzbed as above. Then for every xeN(Z: ) ,  qN+lx is eontractable at (N + l)-th 

argument and (N + 2)-th argument, and the contraction defines a linear map 
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L~: N(Z~,) ~ N(Zq). And the map 

N ( ~ , )  N($q) 
i = 1  i = 1  

is a linear isomorphism. 
(3) N(Z) is finite dimensional for every Z. 

There are three infinite families of known vertex operator algebras satisfies 
these conditions: the vertex operator algebras associated to integrable highest 
weight representations of the affine Kac-Moody algebras [FZ]; the vertex oper- 
ator algebras associated to the minimal modules of the Virasoro algebra [Wa]; and 
the vertex operator algebras associated to positive even lattices [-FLM, Dol]. In 
the lattice case, the relation of vertex operator algebras with the path integral 
approach is discussed in [T]. These three families corresponds to WZW-models, 
Minimal Models and the torus models in conformal field theory, respectively (see 
e.g., [BS, TUY, KNTY] for other approaches to conformal field theory). And the 
Moonshine module [FLM1, Bol, FLM2, Bo2] also satisfies these conditions, and 
it is proved in [Do2] that the moonshine module is rational and it has the unique 
irreducible representation. 

This conjecture reduces to the construction of the space of vacua on any labeled 
Riemann surfaces to the construction of the space of vacua on 1, 2 and 3-labeled 
spheres with representations assigned at each marked point irreducible, these cases 
have been discussed in Sect. 7. 

For the vertex operator algebras associated to integrable highest weight 
representations of the affine Lie algebras, the results in [TYU] imply the above 
conjecture. 

The truth of Conjecture 8.1 together with Theorem 6.2 implies the correspond- 
ing gluing properties for correlation functions. Let xl ~N(Z1, ~) and x2~N(Z2, ~,) as 
in the Conjecture, x~N(Zq) be their contraction. Let {ei} be a homogeneous basis 
of W~ and {el} be its dual basis in W~,. Let P1 . . . . .  Pm be m points on Zq such that 
the first s points are in Z~ and the last m - s  points are in Z2. Then the correlation 
function on Zq 

Fx(vl,. �9 �9 , VN+M; al . . . .  , am; P1 . . . . .  Ps) 

associated to x, viEWi (i= 1 . . . . .  N + M ) ,  ai~V(i= 1 , . . . ,  m) is equal to 

~ F~, (vl . . . . .  v~, ei; al . . . . .  as; Pt . . . . .  P~) 
i = 1  

�9 Fx2(e~, vN+ 1 . . . . .  VN+M; a s +  1 , .  �9 �9 , a m ;  Ps+ 1 . . . . .  P,n) �9 

Recall the definition of modular functors in [Se]. Let @ be a finite set of labels 
which contains 1 and has an involution ~b ~ ~ such that T = 1. Let 9l~ be the 
category whose objects are disjoint unions of Riemann surfaces with each bound- 
ary circle parametrized and equipped with a label from ~. A morphism in !R~ is 
several sewing operations which sew together pairs of parametrized boundaries, 
and we allow a pair circles to be identified only if they have the same labels. 
A modular functor is a holomorphic functor from 9t~ to finite dimensional 
complex vector spaces satisfying the certain properties [-Se]. If we take the label set 

to the set of irreducible representations of V, and the involution in �9 is given by 
the dual representations, the label 1 is the adjoint representation. And we modify 
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the category 9t~ by taking the objects as disjoint unions of labeled Riemann 
surfaces and a morphism as the gluing operations on pairs of labeled points with 
dual labels described as above. For an object O = S 1 H ' " H Z k ,  we define 
N(O)=N(Z1) |  | N(ff-,k). Then Conjecture 8.1 says that N defines a functor 
from the category 9~ to finite dimensional vector spaces which satisfies similar 
properties with a modular functor. One of the conditions of a modular functor is 
that when {Xb}b~n is a holomorphic family of surfaces parametrized by a complex 
manifold B the spaces corresponding to {Xb} forms a holomorphic vector bundle 
on B. In our situation, we can define the sheaf of vacua on a local family of 
N-labeled Riemann surfaces as in [TUY], presumably the Virosoro algebra gives 
a connection of the sheaf of the vacua. However in order to generalize the results in 
[TUY] to arbitrary rational vertex operator algebras satisfied the assumptions 
given earlier in the section, we need a structure theory for rational vertex operator 
algebras which is not available today. 

The spaces of vacua on a 1-pointed Riemann surface with 0-section assigned at 
the puncture for the vertex operator algebras associated to integrable highest 
weight representations of Kac-Moody affine Lie algebras (they are the same as the 
spaces of vacua defined in [TUY], see Sect. 7) can be identified with the space of 
global sections of certain line bundles on the moduli space of stable G-bundles on 
the underlining Riemann surface [Fa]. We expect similar geometric interpretations 
for the spaces of vacua associated to other rational vertex operator algebras, e.g., 
the space of vacua for the moonshine module may relate to the moduli space of 
M-structure (M is the Monster group) on the underlying Riemann surface. And we 
expect that the vertex operators Y (a, z) for a primary and their correlation func- 
tions associated to a vector in the space of vacua also have interesting geometric 
meanings. 
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