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Abstract: We develop an approach towards construction of conformal field theory
starting from the basic axioms of vertex operator algebras.

1. Introduction

The notion of vertex algebras was introduced in [Bol]; the variant of this that
we call “vertex operator algebras” defined in [FLM2] and [FHL] can be
regarded as a mathematical reformulation of “chiral algebras” or “conformal
algebras” in conformal field theory. The basic ingredients in the definition of
vertex operator algebras are a space of states and the vertex operators associated
with the states. One of the two main axioms, the Jacobi identity, involves the
properties of vertex operators on a complex disc; the other main axiom is about
the Virasoro algebra which is supposed to encode the information of infinitesimal
deformations of Riemann surfaces with local coordinates. It is expected that
these axioms and certain finiteness conditions are sufficient to formulate and
verify the theorems on all Riemann surfaces. The present work discusses this
problem. We introduce the notions of the global vertex operators and the space
of vacua on a Riemann surface with punctures, and prove some initial results.
And we will discuss the relation of our approach with the modular functors defined
in [Se].
For a given vertex operator algebra V and a given data

(Z;Qla"'bQN;Zln""ZN)’

where X is a compact Riemann surface, Q4, . . . , Qy are N distinct points on X and
z; is a local coordinate at Q; satisfying z;,(Q;)=0, a global vertex operator on such
data is defined to be the sum of the residues of an operator valued differential form
associated to a primary vertex operator Y (q, z) and a meromorphic differential
f with the dual degree on X. In this language, the operators of Virasoro type and
Kac-Moody type on a two-punctured Riemann surface defined in [KN] are
essentially the global vertex operators associated to the Virasoro algebra and
primary fields of degree one on a two-pointed Riemann surface, respectively.
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Suppose further we assign at each point Q; a representation W; of V, so we have
the data

fz(Z;Qla---’Qn;zl7~--3ZN;W19--‘>WN)5

the space of vacua on £ is defined to be the subspace of (W; ® - - - @ Wy)* whose
elements are annihilated by all the global vertex operators. This definition is
motivated by physical literatures (e.g., [DVV, GGMV, W1).

In the case that the vertex operator algebra under consideration is generated by
a Kac-Moody affine Lie algebra, the notion of the space of vacua is defined in
[TUY ], which appears to differ with our definition, but one can prove that the two
definitions are essentially equivalent (see remarks in Sect. 7). After we introduce the
notions of the global vertex operators and the space of vacua, we prove some
results similar to the results in [TUY]. One of these results (Theorem 6.1) is that if
the data

f/=(2§ Qoo 5O Ont15 205+ -5 ZNs 2413 Wy o o, Wy, V)

is obtained by adding (Qy 1, zy + 1) to the data £ and assigning the adjoint module
V (or 0 sector) at Qy 4 ;, then the space of vacua on £’ and the space of vacua on
5 are canonically isomorphic. This result is used to define the correlation functions
associated to every vector in the space of the vacua on the Riemann surface (see
Theorem 6.2). Some of the arguments used in proving these results is similar to the
argument used in [ TUY ]. However, since there is no affine Lie algebra structure in
a general vertex operator algebra, we cannot appeal to the representation theory of
the affine Lie algebras as in [TUY]. To overcome this difficulty we are forced to
define the quasi-global vertex operators on a Riemann surface with projective
structure, and we prove that the space of quasi-global vertex operators forms a Lie
algebra (Proposition 4.2) and that the space of vacua is annihilated by quasi-global
vertex operators (Theorem 5.1). These results are used as technical tools in the
proof of our main theorems (Theorem 6.1 and Theorem 6.2). In the end we discuss
a conjectured procedure to construct the space of vacua on higher genus Riemann
surfaces by gluing lower genus Riemann surfaces. This gluing construction relates
to the modular functor defined in [Se].

The paper is organized as follows. Sect. 2 gives a brief review of definitions of
vertex operator algebras and the results needed later in order to make this paper
self-contained. Section 3 sets up the notations and gives the definition of global
vertex operators and the space of vacua on a n-pointed Riemann surface. In Sect. 4
we define the space of quasi-global vertex operators on a n-pointed Riemann
surface with a projective structure and prove that it is closed under the Lie bracket.
In Sect. 5, we prove that the space of vacua on a Riemann surface with a projective
structure is annihilated by the quasi-global vertex operators. In Sect. 6, we prove
that there is a system of correlation functions corresponding to the each vector of
the space of vacua. In Sect. 7, we discuss the examples of the space of vacua for
various situations. In particular, we give the relations of the space of vacua on
2-pointed and 3-pointed spheres with the notion of dual representations and
interwining operators defined in [FHL]. In Sect. 8, we give a conjecture on
constructing the space of vacua on higher genus Riemann surfaces by gluing lower
genus Riemann surfaces and discuss its relation with the modular functors.

We will denote by C and Z the set of complex numbers and the set of rational
integers respectively. And we denote by §.f(z)dz the contour integral so nor-
malized that §.2dz=1 for a contour C surrounding 0.
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2. Definitions of Vertex Operator Algebras and Representations

We recall the basic definitions of vertex operator algebras and representations, and
give a summary of the results used later and sketch their proofs. For more details,
see [FLM2] and [FHL]. And see [FLM2, FK, FZ, Li] for various examples.

Definition 2.1. A vertex operator algebra is a graded vector space V= @fflo V,
equipped with a linear map

V- (EndV)[[zz 1],
a—Y(a,z)=) amz " Y(am)eEnd V)
neZ

(we call Y (a, z) the vertex operator of a) and with two distinguished vectors 1€V,
weV, satisfying the following conditions for a, beV :

a(m)b=0 for n sufficiently large ; (2.1)
Y(1,2)=1; (2.2)
Y(a,2)1eV[[z]] and liné Y(az)l=a; (2.3)
the vertex operator Y(w,z)=Y _ L,z ""* generates a copy of the Virasoro
algebra:
3_
[LmaLn]:(m—n)Lm+n+5m+n,0¥c s (24)
where c is a constant which is called the rank of V ; and
Loa=na=degaa for acV,, (2.5)
d
Y(L—laa Z)=~Y(a9 Z) > (26)
dz

and the following Jacobi identity holds for every m, n, leZ:
Res, _,,(Y (Y (a, z—w)b, W1, ., F(z, w))
=Res,(Y (a, 2)Y (b, w)1,,, F (z, w)) — Res (Y (b, W)Y (a, 2)1,, . F(z, w)) , 2.7)
where F(z, w)=z"w"(z—w).. This completes the definition.

Identity (2.7) needs some explanation. Expressions 1, ,-,,F(z, w), 1, ,F(z, w)
and1,, . F(z, w) mean the power series expansions of the rational function F(z, w) on
the domains {w|>|z—w|, |z|>|w]|, |w|>|z]| respectively, ie.,

IW,z—w(zmw"(z_w)l)z i (?)Wm+n*i(z_w)l+i ,

i=0

lz,w(zmwn(z*w)l): i (_ 1)l <i>2m+l—iwn+i s

i=0

Ly, Z"W(z—w))= ) (_1)1+i<i>zm+iwn+l—i .
i=0
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And Res,_ (. . .)in (2.7) means the coefficient of the (z—w)~* of the formal power
seriesin (. . .).Res,(...)and Res,,(. . .) have the similar meanings. And we will use
the similar notations later. So (2.7) is equivalent to

i (T)Y(a(Hi)b, w)wm+n—i=i (—1)i<i>a(m+l_i)y(b’ wywh i

- i (—I)Hi(i)Y(b, wiam+i)w" 7 (2.8)
i=0

13

And taking coefficient of w™! in both sides of (2.8), we have

<T>(a(l+i)b)(m+n—i)= y (—1)’<i>a(m+l—i)b(n+i)
i=0 i=0

- (—1)’+’<i>b(n+l—i)a(m+i) . (29

i=0
By (2.1), for a fixed veV, there are finitely many vectors among a(l+i)b, b(n+i)v
and a(m+i)v (i=0) are non-zero, so all the three terms in (2.9) are well-defined
linear operators on V. The Jacobi identity (2.7) are equivalent to (2.9) for every
m,n,leZ.
We give some immediate consequences of the definition. We have relations:

Y(a z)=0 iffa=0, (2.10)

Lam), ¥ (b, w)]= 3 <T>Y(a(i)b, wyw™ | 2.11)
i=0

L Y = d Y 2.12

[ -1 (a:Z)]_E (a,Z), ( . )

[Lo Y (@ A1=0 Y (@ D2+ ¥ (Loa D), 213

a(M)Viy © Viur gega—n—1 for a homogeneous , (2.14)

a(ml=0 fornz=20, (2.15)

Y(a, z)1=exp(zL_,)a, (2.16)

a(—k—1)1=%(L_1)"a for k=0 . (2.17)

We sketch the proofs of the above relations. Equation (2.10) follows directly from
(2.3). Equation (2.11) is obtained by specifying [=0, n=0 in (2.8). Equations (2.12)
and (2.13) is proved by using (2.11), (2.5) and (2.6). Equation (2.14) follows from
(2.13) directly. Equation (2.15) follows from (2.3). Equations (2.16) and (2.17) are
k
equivalent. To prove (2.17), using (2.12), we have (adL - )*Y (a, z)= % Y (a, z),
apply this identity to 1 and take lim,.,, using L_;1=w(0)1=0, we obtain
(L-y*a=kla(—k—1).
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From (2.10) we see that the operators a(n) (acV, neZ) are closed under the Lie
bracket. And from (2.14), we see that for a homogeneous element a, the operator
a(n) (neZ) maps a homogeneous subspace into a homogeneous subspace, and a(n)
has degree dega—1—n, we write deg(a(n))=dega—1—n.

Definition 2.2. A representation of V or a V-module is a graded vector space
M=@P,;_ M,, such that there is a linear map

V> (End M)[[zz"]],

a—Yyla,z)=Y amz ""!
: neZ

and the following properties are satisfied:
amM,, © My dega—n—1 fOr every homogeneous a (2.18)
and (2.2) (2.4) and (2.6) and the following Jacobi identity holds:
Res,_,,(Yu(Y (a, z—w)b, wht,, ., F (2, W))
=Res,(Yy(a, 2)Yar(b, W), ., F(z, w)) —Res, (Yo (b, W) Yis(a, 2)1,, . F(z, w)) (2.19)
for every rational function F(z, w)=z"w"(z—w)'m, n, [eZ.

Equation (2.19) has the same interpretation as (2.7). And relations (2.11)—(2.13)
hold also for representations of V. We will write Y (g, z) for Yy (a, z). Note that by
(2.18), for fixed aeV and ve M, a(n)v =0 for » sufficiently large. Thus, for a Laurent
power series f(z)=)"7 , l;z’, the operator

e
Res,(Y (a,2)f(2)= ), La(i)
iZN

is a well-defined operator on M.

It is clear that V itself is a representation of V; we call it the adjoint module or
0-sector.

Subrepresentations, direct sums of representations, irreducible representations,
etc., are defined as expected.

An important class of vertex operator algebras are rational vertex operator
algebras, which is defined as follows:

Definition 2.3. A vertex operator algebra is rational if it has only finitely many
irreducible representations, and each irreducible representation M =P,y M, satis-
fies dim(M,) < oo, and moreover every representation is a direct sum of the irreducible
ones.

We quote a result of [FLH] on correlation functions on the Riemann sphere
which is not used later but will be compared with our results on correlation
functions on general Riemann surfaces.

Theorem 2.1. Let M=) ' M, be a representation of V, let M'=Y o M (M is
the dual space of M;). Then for every v'eM’, veM and a; (i=1,. . ., n), the formal
power series

<vr’ Y(als Zl)' . Y(ana Zn)v>
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converges on the domain |z,|> - - +|z,|>0 to a rational function (v', Y (ay, z1). .
Y (a,,, z,,)v) with only possible poles at z;=z; (i%j) and z;=0. For every permutatwn
iy ,in of 1,. .., n, we have the identity of the rational functions

(U,, Y(ail; Zil) s Y(ai,,3 Zi")v):(v’, Y(alr Zl) s Y(ana Z,,)U) -
And if C is a contour of z, which surrounds z, and 0, z5, . . . , z, are outside of C, then

§(u’, Y(ay,z1)Y (a2, 23). . .Y (ay, Zn)”)(Z1—Zz)de1
c

=(v', Y (a1(k)as, 22)Y (a3, 23). . .Y (@n, 24)0) . (2.20)

Proof. We first derive a formula which expresses the (n+ 1}-point function
v, Y(ay,z1). - Yt z)Y (b, WY (@1, Zes1) . - Yian, z)vy  (2.21)
in terms of the n-point function. Write Y (b,w)=)"_ b(mw ™ '+
v b(—mw™™!, and move the term ) ”_ b(mw ™ ! across the terms
Y (@t15Zk+1)s- - - » ¥ (n, 2,) to the right, and move ) *_ . b(—m)w™ " across the

terms Y (a, z),. . ., Y (ay, z1) to the left, and using (2.11) to compute the Lie
bracket, we obtain

Q20) =0, ¥ (@1, 20)- ¥ (@ 20) S blmw ™10

m=0

+<v’, i b(—myw™ 1Y (ay, z,). . .Y(a,,,z,,)v>

o0

+ Z lw,zj((w—zj)_i_1)<v', Y(as,zi)...Y(b()a;,z;). . .Y (@ 2,)0)
Krli

]]\/

i lzj,w((w—zj)_"_l)(v’, Y(ai,zy)...Y(b()a; z;). . .Y (ay, z,)v) . (222)

H/\M

Note that all the four terms of the right-hand side of (2.22) are actually finite sums
since b(i)v=0, b(i}a;=0 and (v’, b(—i)x)=0 (xeV is arbitrary) for i sufficiently
large. From (2.22), we see by induction that

<U’, Y(alazl)' . 'Y(am Zn)U>

converges on the domain |z;|>" - ->|z,| to some rational functions with poles at
z;=z;(i%j) and z;=0, and the fact that the limit rational function is independent of
the ordering of the product of ¥ (a;, z;) also follows from (2.21). To prove (2.20), let
C, be a contour of z; which contains 0 while z; (i=2,. . ., z,) are outside C;, and
C, be a contour of z; which contains 0 and z, while z; (i=3, . . . , n) are outside C,.
By the Cauchy Theorem for contour integrals, we have

§(U’s Y(ai,z1)Y (a2, 22) . . .Y (ay, Zn)U)(Z1—Zz)de1
c
=c§ (v, Y (a1, 21)Y (a2, 23). . .Y (ay, z,,)v)(zl—zz)kdzl

- § (v, Y(as, z1)Y (a2, 23). . . Y (ay, Zn)”)(z1_22)kd21-
Cy
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The both integrals over C; and C, are meromorphic functions of variables
22,23, . - . , Z, With singularities at z;=z; and z;=0. The integral on C; has a power
series expansion on the domain |z3|>- - ->|z,|>|z,]| as

v, Y(as, z3). . . Y (ay, z,) Reszl(lzl,zz(zl_ZZ)kY(ala z1)Y (az, 22))v) .

The integral on C, has a power series expansion on the domain |z3|>- * - >|z,|>|
z4| as

v, Y(as, z3). . . Y (an, z) Res;, (15, 5, (24 —23)*Y (a2, 22)Y (a1, 2,))) .
By the Jacobi identity, we have
Res;, (1, 2,(z1 —22)*Y (a1, 21)Y (a2, 22)) —Res, (15, 5, (21 — 22)*Y (a3, 22) Y (41, 21))
=Y (ay(k)az,z;) .

Thus we have proved that both sides of (2.20) have the same power series expansion
on the domain |z3[>" * ->|z,|>|z,|, so they are the same meromorphic function.
This concludes the proof. []

The rational functions (v', Y (a4, z;). . . Y (a,, z,)v) are called correlation func-
tions on the sphere. It can be proved that a certain converse of Theorem 2.1 is true:
the convergence of the products of vertex operators and the properties of the limit
as in the theorem implies the Jacobi identity.

To describe a generalization of this theorem to an arbitrary Riemann surface, we
write (v’, Y (a4, z1)...Y (a,, z,)v) in a different way. Assume dim(M;)< oo for
every i, let {e;, i=1,2,...} be a basis of M, and {e;, i=1,2,. ..} be its dual basis
(ie., {ei,e;>=0; ;). Then x=2§‘_’__1 e; ® e;, viewed as a vector in (M’ ® M)*, has
the property:

0" @)=L, v) .
So

v, Y(ag,21). . .Yy, 2)0)=4{x,0 @Y (ay,z1)...Y(ay, z,)v) .

As we will see later x is a vector in the space of vacua of the two-punctured Riemann
sphere with punctures oo and 0. Our generalization of Theorem 2.1 to a compact
Riemann X surface with N punctures can be roughly described as follows (see
Theorem 6.2 for detail): if x is in the space of vacua on Z, then

%01 @1, ® " @uy-1 @Y (a1,21). . .Y (A, 2,)Vx)

converges on the domain |z,|>" - ->|z,|>0 in a coordinate neighborhood of the
N-th point, and the limit can be extended to a global meromorphic section of
a certain line bundle over XZ*, and this meromorphic section is independent of the
ordering of the product of the vertex operators.

By the definition, every representation of V is in particular a representation of
the Virasoro algebra. We will frequently assume that V is a sum of highest weight
representations of its Virasoro algebra. And we assume all the representations of
V in this paper satisfy the condition that L, acts semi-simply.
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3. Global Vertex Operators and Space of Vacua on Riemann Surfaces

We will give the definitions of global vertex operators and the space of vacua for
a labeled Riemann surface. And associated to each vector in the space of vacua we
define 1-point correlation functions on the underlying Riemann surface.

We first fix some notations. Let 2 be a compact Riemann surface, Qy,. .., QOx
be N distinct points on X, z; be the local coordinate near Q; satisfying z;(Q;)=0. We
will denote this data by

(Z;04,..,085 21, .., 2Z§) (3.1)

and call it an N-pointed Riemann surface. Let k be the canonical line bundle over X;
we denote by

I'(Z;04,...,08 k" (3.2)
the space of global meromorphic sections of the line bundle k" holomorphic away
from points Q;,. .., Qy, or equivalently, (3.2) is the space of n-meromorphic

differentials on X with possible poles at Q; (i=1,..., N). k" has a local section
(dz;)" near the point Q;, for a fin (3.2). Write f=f:(z;)(dz;)". We denote 1, f the
Laurent series expansion of f;(z;) in z;; we call it the expansion of fat (Q;, z;). So we
have a linear map 1, from (3.2) to C((z;)). The following standard lemma will be
used later.

Lemma 3.1. For each neZ, the linear map
N N
l=@ lzi: F(Za Ql, tees QN; Kn)*@ C((Zl)) H
i=1 i=1
[t f)

is injective. And if (, ) is the bilinear form

691 C((z:)) @1 C((z:))-C

given by
(fize)s -« Snzn)) (91(z0)s - - 5 galzn)) > = '21 Res;(f(z:)g(z:))

then (g1(z1), . . . , gn(2zx)) is in the image «(I'(X; Q4,. . ., Qn; k™)) if and only if
(g1(z1)s - - - gnlzw)) (f1(z1)s - - - Sfu(2n)) > =0
for every (f1(z1),. . ., fulesNeT(Z;04,. .., 0n; k" 1))

The following consequence of the Riemann—Roch theorem is used in the proofs
of Theorem 5.1, Theorem 6.1 and Theorem 6.2 without mentioning it. For every
integer k, m, there exist a fe'(Z; Qy, . . . , Qn; k") such that

k
L f=zy Modzy,

and 1, f=0 Modz" for 2<Zi<N.
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Recall that a projective structure on X is a covering of coordinates chart
{U,, z,} such that every coordinate transition function is a Mobius transformation.
Given a projective structure {U,, z,} and points Q;,. . ., Qy on Z, for each Q;, we
choose a local chart (U,, z,,) such that U, contains Q; and take z;=z, —z,(Q;) as
the local coordinate at Q;. So the obtained N-pointed Riemann surface is said to be
projective.

By assigning a representation W; of V at each point Q; of (3.1), we have the data

fz(z;Qla'--5QN;Zla'-'nzN;W13---7WN)' (3'3)

This is the main object in our investigation, and we call it a N-labeled Riemann
surface with labels as representations of V as simply the N-labeled Riemann surface.
If (3.1) is projective, we call (3.3) a projective N-labeled Riemann surface.

Recall that the space Z,(V) of primary fields of degree n is defined as

2,(V)={aeV|L;a=0 for i>0, Lya=na} .

For ae#,(V), using (2.11) and (2.6), we have the commutation relation:
[Ly Y (a,2)] <n(m+ 1)z™ +zm+1; )Y(a, zZ). (3.4)

The commutation relation of L, and ¥ (w, z) is close to (3.4) with n=2 except for
a central term:

3

(m> —m)c

12

Note that (3.4) is similar to the formula of the Lie derivative of a local
n-differential f(z)(dz)" on a Riemann surface with respect to the holomorphic

[Lo, Y (0, 2)]= <2(m+1)z +z’"+1;>Y( 2+ ™2 (3.5)

vector field z" "1 —

V,mesa f(2)(d2)"= ((m+1)nz +zmt— >f(z)(dz)"

So Y (a, z) has the similar covariance property as a n-differential which is for-
mulated in the first part of Lemma 3.2 below.
Let zand w be local coordinates near Qe 2 such that z(Q) = w(Q) 0 w=¢(z)=
2, iz’ be the transition function. Write ¢(z)=exp(} 7  Lz'*! 24z; such an
expression is unique by requiring 0<Im/,<27. Followmg [H and TUY], the
operator T(P) associated to the transition function ¢(z) is defined as

T(¢)=exp< i liLi> . (3.6)
i=0
The following lemma is easy to prove.
Lemma 3.2. For ¢(z) and T(¢p) as above, we have relations
T($)Y (@, 2)T($)" ' =Y (a, ¢(2))($'(2))" for aeZ(V), (3.7)
T($)Y (0, 2)T($) =Y (0, p(2))(¢'(2))* +12{$(2), z}c , (3.8)

" 3 "
where {¢(z), z} _d()p ((ZZ)) 2 <(§>((ZZ))

) s the Schwarzian derivative of ¢(z).
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~ The additional term #5{$(z), z} ¢ in (3.8) is caused by the central term in (3.5).
From (3.7) we may view heuristically Y (a, z)(aeZ,(V)) as an operator valued
n-differential on a Riemann surface X; and from (3.8), we view Y (0, z) as an
operator valued quadratic differential on a Riemann surface 2 with z as a local
coordinate in a projective structure since the Schwarzian derivative { ¢(z), z} =0 for
$#(z) a Mobius transformation. Thus we may view Y (a,z)f(2)(dz)™""!
(Y (o, 2) f(z)(dz2)* resp.) for f being a global (—n+ 1)-meromorphic differential on
% (meromorphic vector field, resp.) as a global operator valued 1-differential.
Motivated by this point of view, we will define global vertex operator on a N-
labeled Riemann surface (3.3) by taking the “sum of residues.”

We first set some notation which is used for the rest of the paper. For a tensor
product Wy @ - - - ® Wy of vector spaces W; and an operator A on W;, we write

A4=1® - ®1® A(i-th place) @ - @1, (3.9)

$0 A;isan:operator on Wy ® - - - ® Wy. And for an operator A on a vector space
W, A acts on the dual space W * from the right by the rule (v'4, v) =<{v’, Av) for
every v'eW * and veW.

Definition 3.1. For a N-labeled Riemann surface £ as (3.3), ac?,(V) and Je
I(Z;01,...,0n k"), the global vertex operator associated to a and f on 2 is
defined as the operator

N
a(f5)= 3, (Res, (¥ (@, 201 )

which acts on W, ® - - - @ Wy. The dependence of a f, £) on the local coordinates z;s
can be easily derived using (3.7). If

iwz(Z;Ql""sQN;wl’~-'>WN;W1’---3WN) (3'10)

is the N-labeled Riemann surface obtained from (3.3) by changing z; to w;. Let
w;=;(z;) be the local coordinates transition function, T(p;) be the associated

operator. Write f,(z;)=1, f and g;(w;)=1,, f, then g,(¢;(z;)) & (z:) "+t =fi(z;). This fact
together with (3.7) implies that

Res,, (Y (@, Wi, f)=T{($:) Res, (¥ (a, 21, )T ()~ .
Therefore we have

a(f, E)=(IL, T($al f; HULAT($)i ) . (3.13)

The following lemma makes it possible to define global vertex operators
associated to w.

Lemma 3.3. Let X as(3.3) and £, as (3.10) be projective N-labeled Riemann surfaces.
Let w;=¢,(z;} be the coordinate transition function at Q;, T(¢;) be the associated
operator. Let feI'(2;Q1,...,0Qx; k™ 1) Then

N

Z (ReSW,'(Y (w, Wi)lwif))i

i=1

:(H;}\I:lT((bz‘)i) Z (Reszi(Y (o, Zz‘)lz;f))i(ﬂgil:r(d)i)i_ . (3.12)

i=1
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Proof. Put fi(z)=1,f and gi(w;)=1,f. Then g{¢«(z))¢i(z:)” " =f(z). This fact
together with (3.8) implies that

Res,, (Y (@, wi)n, f)=T($i)Res (¥ (o, 21, /)T () ™" +1—02 Res, (1., f{di(z:), z:}) -

So it is sufficient to prove that

N
‘ '21 Res, (1. f{$i(z:), 2:})=0. (3.13)

Let {U,, z,} and {Vj, wg} be the projective structure which gives the local coordi-
nates of 2 and 2|, respectively, let wg= Ppg,(z,) be the local coordinate transition
function. Considering {®p,(z,), z, } (dz,)*, which defines a holomorphic quadratic
differential on V3 U,, recall the pseudogroup property of the Schwarzian deriva-

tive (e.g. [G] p. 164): for ¢(w), ¥ (z) and h(z)= P (Y (z)),
{h(z), z} ={p(w), w} - ¢¥'(2)* + {¥(2), 2} . (3.14)

Using this property, it is easy to prove that {@g,(z,), z, } (dzy)?, as « and B run over
the index sets, defines a global holomorphic quadratic differential g on 2. Then
(3.13) is the sum of residues of the meromorphic differential fg, so it is 0. [

Definition 3.2. For £ as in (3.3), feI'(Z;Q4,...,Ox; k1) Choose a projective
N-labeled Riemann surface £, as (3.10), let z;=¢:(w;) be the local coordinates
transition function at point Q;, T(¢;) be the associated operator. The global vertex
operator associated to « and f on ¥ is the operator

o(f,£)= Zl T(:)i * (Resy (Y (@, wi)tw /DT (i) »

which acts on W ® - - - @ Wy.

The independence of the choice of a projective N-labeled Riemann surface
(3.10) follows from Lemma 3.3. And it is clear from Definition 3.2 that the
dependence of the global vertex operator associated to w on the local coordinates is
similar to (3.11):

o(f,Z2) =L, T(¢))oo(f, ENITL T(¢) ) - (3.15)

We denote the space spanned by the global operators associated to aeZ, (V)
(neZ) and o on £ by 4(Z). Operators in 4(£) act on ® LW, s0 they act on the
dual space from the right. The space of vacua is defined by the principle that “sum
of the residues of a 1-differential is 0”:

Definition 3.3. For a n-labeled Riemann surface 5 asin(3.2), we associated £ a linear
space N(2) by

NE)={xe(W; ® - ®@ Wy)*|xA=0 for every Ae%(%)} .
We call N(X) the space of vacua associated to £.

_ The dependence of the space of vacua on local coordinates is as follows. Let
2'=(2;Q1,...,0n821,...,2z5; Wy,. .., Wy) be another N-labeled Riemann sur-
face, let z; = ¢;(z;) be the transition function and T'(¢;) be its associated operator,
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T(p)® - - ®T(¢y) acts from the right on space (Wy ® - - - ® Wy)*, then by
(3.11)and (3 15), we have T(¢,) ® - - - ® T(¢px) map 1somorphlcally from N(£') to
N(E).

For each xe N(Z), we can define a system of correlation functions associated to
x, we first define 1-point correlation functions, the general n-pointed functions will
be defined in Theorem 6.2.

Proposition 3.4. For xeN(Z), 1; ® - - - Q@ vyeW; ® - - - @ Wy and acZ,(V), let
9(z)={61. @ ®Y(a,z)v; @ P uyy,

then there exist a unique geI' (Z; Qy, . . ., Qn; k") such that g(z;)(dz;)" is the Laurent
series expansion of g at (Q;, z;) for each i.

Proof. For every feI'(X; Q1,. .., Qn; (k) """ 1), we have
N
Y Res((t,f)g(z)=<{xa(f£, 2), 1, ® Quvy>=0.
i=1
Using Lemma 3.1 proves the lemma. [

The global meromorphic n-dlﬂerent1a1 in Proposition 3.4 is called a 1-point
correlation function for xeN ) ®- ® v, and aeZ,(V ). In Sect. 6, we define

for each xeN(Z), v, ® - - ® vy of W, ® ‘@ Wy and g, (V) (i=1,...,n),
a meromorphic section of the bundle
1 11 R ® TC

over X”, where 7; is the pI‘O]eCtIOIl of 2" into the i-th component, n; Lich is the pull

back of the line bundle " under 7;. This meromorphic section is called a n-pointed
correlation function.

4. Quasi-Global Vertex Operators

In this section, we define quasi-global vertex operators on a projective labeled
Riemann surface which will serve as a necessary technical tool in the proof of
Theorem 6.1.

We assume in this section that V is a sum of highest weight representations of
the Virasoro algebra and dim(V,)=1, i.e., every element of V; is a multiple of 1.
Recall that the space of quasi-primary fields 2(V)=)"" = 2,(V) is defined as

2,(V)={aeV|Lia=0 and Loa=na}. )]

It is clear that Z,(V) <= 2,(V) and we2,(V). For ae2,(V), ¥ (g, z) transforms as
a n- differential under the Mobius transformation. To be more precise, for

oz )— , we write it as ¢(z)=exp lozi—l-llz?‘i z. The associated
k3 dz dz

transmon operator is T(¢)=exp(lyLo+ 1L ). Using the relation

[L,Y(a, z)]=(2nz+22—‘i>Y(a, z),
dz
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which is a corollary of the conditions in (4.1), we have

T($)Y (@, 2)T($)" ' =Y (a, ¢(2))(¢'(2)" . (4.2)
Let _
Z=(Z;Q1,...,QN;Zl,...,ZN;Wl,...,WN) (43)

be a projective labeled Riemann surface. For a quasi-primary state ac2,(V ), and
a global meromorphic differential felI'(Z, Q,...,Qy, k" "*"), we define the

o~

quasi-global vertex operator associated to such a and fon X as

N
alf, £)= 2 (Res; (Y (@, z)1f)) » (4.4)

which acts on ® - ; W;. We denote the linear span of the quasi-global operators by
9%(%). It follows from the definitions that %(X) = 2%(%). The main result of this
section is the following proposition.

Proposition 4.1. If V is a sum of highest weight representations of the Virasoro
algebra and dim(Vy)=1, 2 as in (4.3) is a projective labeled Riemann surface, then
9%(2) is a Lie algebra.

From the formula

[Res. (Y (4, 2) f(2)), Res.(Y (b, Z)g(Z))]=i§ ;l,ReSz(Y(a(l)b, 2)fP2)g(), 45)
=0t

which is a direct corollary of (2.11), we see that in order to prove 29(%) is closed
under the Lie bracket, we first need to represent each a(l)b (I=0) as a sum
Y. (L —1)°v, for v, quasi-primary.

"Let a,b be a homogeneous quasi-primary state with degree |a|>0, |b|>0
respectively. A simple degree argument shows that a(l)b=0 for I>|a|+|b|—1, the
first possible non-zero a(l)b is a(|a|+|{b]—1)b, which has degree 0 by (2.14), it is
a multiple of 1, in particular it is quasi-primary. For 0<n<|al+|b|—2, we will
define quasi-primary fields x, ., and represent a(/)b in terms of x, p.,. For this
purpose, we set for integers [, n satisfying 0<1<n<|al+|b|—2 the constants

1 (=2lal+n+D1(=2]a|—2|b|+n+1+2)
=D (—2la|+I+ DI (—2{a|—2]b|+n+2)! °

where x!=I'(x+1), I'(x) is the usual Gamma function. (Note that since

(x+k)
I'(x)
With the above notation, x, ., (0=n=|a|+|b|—2) are defined by the following
linear equations:
|al +]b]—2
a(l)b= Z Ca,b;l,n(L—l)"ﬁlxa,b;na 0§l§|a|+|b|_2 . (47)
n=1

Ca, blan™ (4 6)

. T o
I'(x+1)=xI"(x), the expression for k a non-negative integer makes sense.)

Since a(l)b (0=<I=<|a|+|b|—2) and x, p.; (0<I=Z|a|+|b|—2) are related by a tri-
angular matrix with diagonals C, 5,5 %0, 50 x; .7 (0<1=<]|a|+|b|—2) are uniquely
fixed.

Lemma 4.2. Under the assumption in Proposition 4.1, X, p.1€ 241+ p|—1-1(V ).
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Proof. It is clear that x, ;.; has degree (|a|+|b]| —I—1). The assumption that V is
a sum of highest weight representations of the Virasoro algebra implies that every
element in V with degree 1 is primary, in particular, X, p.|q|+ 5|2 15 quasi-primary.
Assume X, p; 1€ 9| +(b|—n—i(V ) for n 21, we want to prove based on this assumption
X, b;1-1€ 2 a)+ 15 —1—2(V s

LyCypyi-1,1—1Xa, b;1—1

la]+1bj—2
=L, (a(l—l)b— Y Ca,b;l—l,n(L—l)n_l+1xa,b;n>

n=1}
lal+]b|—2
=Qlal-I1-Dal)b— Y  (r—I+1)
a=1}
><(2|a|'l'zlbl'_n_l_z)ca,b;l—l,n(L—1)n_l~xa,b;n
lal+1b1—-2
= 2 (Qlaj=1=1)Cqp;pp—(n—1+1)
n=1

X (2la|+2]b]—n—1—-2)Cq p;1-1,)(L - 1)" " Xa b;n -
It is easy to see from (4.6) that
Clal=1=1)Cp, ;1 n—(n—1+D2]al+ 2| —n—1=2)Cp,p;1-1,, =0,
s0 L1X, p,;—1=0, as was to be shown. [

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. 1f one of a and b has degree 0, then by our assumption it is
a multiple of 1, then the Lie bracket of quasi-global operators a(f, £) and b(g, £)
are 0. For homogeneous quasi-primary fields a, b with degrees |a|=1, |b|=1 and
Laurent series f(z), g(z), write L=|a|+|b|—1, we have

[Res(Y (4, 2) f(2)), Res(Y (b, 2)g(2))]

lal+b]—1
= ¥ gRes(¥(a)b,2)fV(2)g(2))
=0 :
|a|+]bi—2 1
= Y ;Res(¥ (@b, 2)f (@g() + 7 Res(Y (@(L)b, 2)f P(@)g(2)
=0 . :
ja]+]b] -2 ]a|+|b]—2c bl
= 2 Y T Res(Y (L g by 2 V(2)0(2))
=0 n=1 ‘

+$ Res(Y (a(L)b, 2) f P(2)g(2))
la|+|b|=2 la]+|b|-2 qyn—
Y D" Cabsinpo (¥ (0 02) (F V@) )

PR I

4 Res(¥ (a(L)b.2) [ P(2)g )

la|+1b| -2
= Z Res(Y (xa, b ns 2) Ga, b;f g; #(2))

#=0

+$ Res(Y (a(L)b, 2) f P(2)g(2)) (4.8)
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where we have set for 0<n<|a|+|b|—2,

n (1 n—1
Ganran@=3 T C,(F O (49)

=0 M

For fel(Z; Q4,. .., On; k1% Yy and gel' (Z; Qy, . . ., Qn; kP1+1), we need to
prove that

[a(£; £), b(g, £)1e2%(5) .
Write 1, f=f;(z;) and 1,,g=g(z;). By (4.8), we have
[Res, (Y (a, z;) fi(2:)), Res, (Y (b, z:)gi(z:))]

la]+1b|—2
= Z Resz,-(Y (xa, b;ns Zi)Ga, b;fi,g,-,n(zi))
n=0
1
+Res(¥ (@l )b, z) () gu(z1)) - (4.10)
It suffices to prove the following two claims.
Claim 1. For each 0<n<|a[+|b|—-2, Gu .1, g, n(z) (i= , N) are Laurent
series expansions of F,(f,g)el'(Z; Qy,. .., Qn; k"4~ ”’|+2) at points Q; under
z; respectively.
Claim 2.

N

. Res(¥ a(L)b, 2) 7 (@) 91z =0 .

To prove Claim 1, let {U,, z,} be the projective structure of &, for fand g as
above, write f=1,(z,)(dz,) ~'**1, g = g,(z,)(dz,) " ""'* ! on U,. We define a meromor-
phic differential on U, by

Fo, v, = Ga, by, g, nlza)(dz)" 14171142 (4.11)

Using Lemma 4.3 below (k; = —2|a|+2, k, = —2|b| +2), one can check tat F,, y, =
Fyy, on Uy nU,,. So (4.11) defines a global meromorphic differential F,(f, g) in
I'(Z704, ..., Qy; k" 191=1+2) This proves Claim 1.

To prove Clalm 2, we first note that a(L)b (recall that L=|a|+|b|—1) is
a multiple of 1, and it can be proved that a(L)b=0 unless |a|=|b|. So it suffices to
prove that when |a|=|b|,

i Res,(£(2:)9:(2:))=0 . 4.12)

Again we will use Lemma 4.3 below. We define a meromorphic differential on U,:

L (L)(—4]a|+2L [+2)!

F =Y (=1) W) xor! dz, .
Lulh 0= % (0 garrp iy 0 x 05 e
Using Lemma 4.3 (k; =k, = —2|a| +2), one checks that Fy, y, (f, 9)=F, v, (f, g)on
U,, nU,,, so we have a global differential Fi(f, g)eI'(Z; Q1,. . ., Qn; k). It is easy
to see that (4.12) reduces to the fact that the sum of residues of Fi(f,g)is 0. [J
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Lemma 4.3 used above is a modified version of Theorem 7.1 in [Co], which is
used in [Co] to prove that certain bilinear forms in the derivatives of modular
forms are modular forms.

Lemma 4.3 [Co]. Let f(z), f2(z) be two meromorphic functions on an open set of C.
For given real numbers kq, k,, set:

o n\ (ky+n—1p+n—1)1 .
Fn(fl’fZ)_lgo(_1)l<l>(k1+n—l—1)'(k2+l—1)'az flxazf2 »

where x!=T(x+1) and 6z=%. Then

b
(a) For all y=<z d>eSL2(C) we have
F.(f1 Ikl%fz|k2?)=Fn(f1,fz)|k1+k2+2n7’ s

where (7)) =(cz ) (40,
(b) One has the identity:

e n\ (ki +n—1N(k+k,+2n 2)! ne
Fn(fl,fz)—lgoel’( >(k1+n—l—1)'(k1+k2+n B LX)

Though the statement of Lemma 4.3 is not the same as Theorem 7.1 in [Co], the
proofs are essentially the same.

5. Space of Vacua on Projective Labeled Riemann Surfaces

The purpose of this section is to prove that the space of vacua on a projective
labeled Riemann surface is annihilated by quasi-global vertex operators. Only the
statement of the following theorem is used later.

Theorem 5.1. If £=(2;Q.,...,0n21,...,25 Wi,..., Wy) is a projective
labeled Riemann surface, xeN(2), b is a highest weight vector for the Virasoro
algebra with degree |b|, L(b) is the highest weight representation of the Virasoro
algebra generated by b, ae2,(V)nL(b) and feI'(Z;Qq,...,Qn; k""" 1), then
xa(f, £)=0.

The essential reason for xa(f, £)=0 is that a(f, £) is generated by the global
vertex operators associated to b and o in a certain way. However we did not
succeed in proving there exists an expression for a(f, 2) in terms of the global
vertex operators associated to b and w. A part of the following indirect proof is in
the same spirit as the proof of the Proposition 223 of [TUY].

We need to fix some notations used in the proof. Let {U,, z,} be the projective
structure of X which gives the local coordinates in £. Let |b| be the degree of b. Let
%(b) be the Verma module of the Virasoro algebra with a highest weight vector
b such that Lob=|b|b, and % (1) be the Verma module of the Virasoro algebra with
a highest welght vector 1 such that L,1=0. There are obvious morphisms of
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modules of the Virasoro algebra:
pUDb)->V:IL_; .
pUV)->V:L_;...L ;I—L

. .L_imE’—)L_il ...L

L_; 1.

—ige g,

We write @=L _, 1; it is clear that p(&)= w. For each positive integer k and k points
On+ts---5,Qn+x on X such that Q;%0Q; when i%j (i,j=1,..., N+k), and we
choose a open set U, 3Q; for each i=N+1,. .., N+k and take z;=z, —z,(Q;) as
a local coordinate at point Q;. So we have a projective (M + N)-pointed Riemann
surface

(2501, -, OMaN Zas o o5 ZN 1K) - (5.1)

We assign the Verma module #(b) or %(1) at the point Qy.;, and assign the
Verma module % (1) at points Qn+2,. .., Oy+x. S0 we have the data

(Z:01,- - Onii 21 - s 2Nt Wiy o o W, (b)), %(L), ..., %(1)), (5.2)
(Z;01,. ., Ot Zis e v s Bnais Waae oo, Wi, (1), (D), . .., (1)) . (5.3)
Set
B=W,® ® WN®%(b)®%(l)®(k_1) s
A=W, ® - @ Wy® %(1)®*.

It is clear that the operators associated to coordinate transformations T(¢) as
defined in (3.6) and operators Res, (Y (w, 2) f(2)) for ¥ (w,2)=)." __ L;z"*~? and
f(z) a Laurent series act on % (b) and #(1). For feI'(Z;Q1,...,0x+i; k1Y),
we write o(f, z;)=Res,(Y (v, z,)1,.f). For f,gel(Z;Q4,...,Qn+i; k1), write
fiz))=1,.f and g;(z;)=1, g, we have the commutation relation

N+k N+k

Y. [o(f z)i, (g, 2 1= ), Res, (Y (0, z)(fi (2))gilz) —£i(2)gi (2))i . (5.4)
i=1 i=1

Note that f;(z;)gi(z;) —fi(z:))gi(z;) (i=1, . . . , N+ k))is the Laurent series expansion
of _[f;g]er(za Ql:"'JQk; K—‘l) at pOint (Qiszi)' For fer(z; le"-:
On+isk ') and gel(Z;Qy,. .., Oy P171), write fiz:)=1, f and gi(z;)=1.,9,
we have the commutation relation

N+k N+k

.;1 [o(f, 20 b(g, 201 = 3, Res, (Y (b, z)(IbI = 1) f; (2)9:(2) = fi(2)9i(2))): » (5.5)

i=1

where b(g, z;) denotes Res, (Y (b, z;)1,,9). Note that (|b] —1) f(z;)gi(z:) — fi(2:) 9i (z:)
(i=1,..., N+k))is the Laurent series expansion of the Lie derivative of —g with
respect to a meromorphic vector field f at points (Q;, z;).

Proof of Theorem 5.1. We divide the proof into several steps.
Step 1. We will first construct vectors
VOnt1s-- > ONtks ZN+1s- - 5 Zn+)EBE
=W1® - ®@Wy®Ub)@u(1)®)*,
QN+t > Oneks Zva 1o+ -5 Zn)EAR =W @ - - @ Wy @ U ()®F)*
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based on x such that the following properties are satisfied for the sequence {y,}
(k=1,2,...)
(1) For

fel(Z;01,.. ., Oniis e 1),

N+k

z VOn+15+ - Onaii ZNt 15 - 5 Zvi) (S 20 =0 .

i=1
(2) Forv'eW,; ®- - @ Wy @Ub) @ % (1) 2, v"eU(1)* I (sov' ® I ® v"eB, and
v" @ v"eB;_1), we have
CYOn+1se s ONtrS ZN4 15+ -+ 5 ZNHE)s U’®T®U”>
/\ / "
={y(@Qn+15--- ,QN+j,- e s ONtl ZN4 15 - s ZN+ja o JIN+kh U @ 07)

where ™ indicates the missing terms.
(3) For v’ and »” as in (2), we have

CYOn+1s- > ONtrs ZN a1 - - s ZN+k) U,®UL—1T®U">=O s

where u is in the universal enveloping algebra of the Virasoro algebra.
(4) For veW,; ® - - - ® Wy, feI'(Z; Q1, . . ., On+1; k~P171) such that

f|zN+1=z§il + higher terms ,
we have
_ N
VOns1,Zn 41 0@ bY=— 3 <X, b(f, z;)v) .
i=1
Similarly, the sequence {x;} {k=1,2,...} satisfies the properties:
(1) For '
fel(Z; 04, .., Onsis Kél) s
N+k

Z XOn+1r- > Onai Zna1s - - -5 Zuen)0(f, 2 =0 .
i=1
(2') For v'eW, ® - - @ Wy %)L, v'e(1)*J (so v ®1I®v"cA, and
v ®v"€A,_+), we have
XOnt1s- > ONats Zntts - - -5 Zya) U QT ® 07D

/\ /\
={X(Qn+1>- .- aQN+j:‘ s ONak ZNa s s ZN4jse JIN+k U ®V7)

where ™ indicates the missing terms as before.
(3’) For v" and v” as in (2’), we have

X(ONstre s QN+ ZN w1 -« -5 Znsah UV QL ;.. . L, L_;T®v")=0.
')
xX@n+1,28+1), 0@ 1D =(x,0) .
YOn+1 - s O Zhs1s -« -5 Zn+k) A0 X(Qnits- - o5 ONtks ZN41s - - 5 ZN4k)
will depend on the data (Qx+1,-..,0ON+k ZN+15- - - » Zy+x), When no confusion

will arise, we write them as y, and x, respectively.
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Let %(b) be the vector space with basis of formal symbols Z_; ...L_; b
(—i;<0), %(b) has two gradations given by

degl(l:gil .. 'E—im5)= Z ij s
j=1

dego(L_;,...L_; by=m.
There is an obvious surjective map from %(b) to %(b).

We will construct {y,} by induction on k. To construct y,, we first construct
J1eW, ® - @ Wy ®%(b))*, then prove that y; reduces to y,e(W,®:---
® Wy ® %(b))*. Constructing ¥, is equivalent to defining the numbers

(F1,0@L 4 ...L_;b),
we do it inductively on deg,. Choose feI'(Z; Q1,. . ., On+ 1; k1?1*1) such that

f=2zy {1 +higher terms ,

lZN+ 1

we define

N
(G, 0®@by=—3 {x,b(f, z)v) . (5.6)
i=1

(Note that this definition is forced by Property (4).) It follows from the conditions
satisfied by x that (5.6) is independent of the choice of f. And using (5.5), we can
prove that

N
Y {F1,0(g, 2w @ bY=0 (5.7)
i=1

for every geI'(Z, Q;, . . . , On; k1) satisfying
1;,,,9=sum of terms higher than Zneq -

Assume we have defined {(j;,v®b’)> for every v and every b'e%(b) with
deg, b’ <k, and the property

N

Y {F1,0(g, 20 @b >=0 (5.8)
i=1

for every geI'(X; Q4, . . ., Qn, k1) satisfying

. 1+deg; b’
lzy.,g=sum of terms higher than zy} e

holds. Based on this induction assumption, we define {7, v ® L _;b’> as follows.
Choose fel'(Z; Qy,. .., 0Qn+1; k1) such that

—i+1 . 1+deg; b’
f=zy4+1 +terms higher than zyi ",

lZN+1

we define

N
(Fi,v@L_;b'>=—3 (J,o(f,z)v®b">,
i=1

it follows from (5.8) that it is independent of the choice of f. And it can be proved
that property (5.8) is again satisfied. So we have completed the construction of y,.
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By a direct computation using (5.4), we can prove that
<.)71’U®I:—mlj—nb,>_<.}715U®L—‘—ni—mb’>=(n_m)<}71’U®[:—(m+n)b’> .

So 7, reduces to a vector y;e(W; ® - - - ® Wy ® % (b))*, and with some effort we
can prove that y, satisfies the condition (1) for k=1. By the same method as
constructing y; based on x, we can construct y,,, based on y;. For example,
{Vir 1, V@ 1) for veW, ® - - - @ Wy @ (b)) ® (#(1))* ! is defined to be  y;, v).
Then it can be proved that y,=y(QOni1,--->On+il ZN+1s- - - » Zn+s) Satisfies
the properties (1), (2), (3), (4). It is not hard to see that {y;} satisfying (1)—(4) are
unique. Taking b=1, we then get the sequence {x;} (k=1,...) x=
V(Ons1r. - Oniki ZN+1s- - - » Zn+i) Satisfies (1')—(4') above, and they are charac-
terized by (1')-(4").

Step 2. We prove the following claim in Step 2.

Claim A. If (U, z) is a coordinate chart in {U,, z,}, and Qy .4, . . . , Oy are in the
domain {|z|<e} = U while Q;, . . ., Qy are outside {|z| <&}, let &y ;=2(Qn+;) the
z-coordinates of the points Qy +;, take zy ; =z — &y, as the local coordinates at the
point Qy..;, then for veW; ® - - - @ Wy and ae%(b), the function

Y(€N+17~ .. >éN+M)

={y(@1,- -, ONams 2N+ - > ZN+M) VR A ® (03)®(M_1)> (5.9)
and
X(€N+1,- s éN+M)=<.V(Q1>- e ONEMIZN s e s EN M), U@(@)®M>
are meromorphic functions on {|&y.;/<e; (i=1,..., M)} with singularities at

Env+i=Cn+i (i#)). And for fixed {yv15. - -5 vrm—1> Y (Ev+1s- -+ 5 Env+ar) has the
Laurent series expansion

(-1, Y (0, Exig—Ena )10 @ A® ()2 M=) (5.10)

for the variable &y, 5, at the £y . (When we want to emphasize v and 4 in (5.9), we
write the left-hand side of (5.9) as Y (v, & Env 1y - - » Enina))

Proof of Claim A. By Hartog’s Theorem, to prove Y (Extq1,-..,Enim) 18
meromorphic, it is sufficient to prove that for each k, Y (&nyy,. .-, Enen) iS
meromorphic for &, when the rest of &; are fixed. To prove that ¥ (Ex+1,- .-, En+m)

is meromorphic with respect to £y .5, we consider the Laurent series
9i(z)={ym-1, Y (0, 2)0 @ a @ @®M -2

(i=1,..., N+M-—1), by the condition (1), g;’s satisfy the condition of the second
part of Lemma 3.1, so there exists a meromorphic 2-differential ge
I'(Z,01,...,0n+m—1;%>), such that g;(z;)=1,9 (i=1,..., N+M—1). Write
g=g(2)(dz)"* on {|z| <&} = U, s0 g(z) is a meromorphic function on z with poles at
Ent1se o> Enem—1, WE Want to prove that

gnam)=Y (€1, - s Enam—1-Enam) - (5.11)
For this purpose, we choose feI'(Z, Q1,. . ., Qn+u; K~ 1) such that

floy.,,= 2+ + higher terms .
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Then we have
N+M-1 N+M-1

oo ) =Resg, (0f)=~ % Resglaf)=— 3 Ress(0iz)1sf)

N+M~1

=— Z ym-1,0(f,z)iv®@a® O®M-2),

i=1
=Y, 1 ®a® (@M1
=Y(§N+1,- ces fN+M) .

This proves (5.11). S0 ¥ ({x+1, . - . , Ex+u) is meromorphic for &y .3 with poles at
points &y4; (i M) and has Laurent series expansion (5.10). The same argument
proves the same statement for the variables &y, . . ., Ey+p. It remains to prove

that Y (Ey+1,. .., Ev+um) 18 meromorphic with respect to &y.3. For a=»b and
M =1, considering Laurent series

gi(z)={x, Y (b, z;);v) i=1,...,N,

then by Proposition 3.4, there exists a gel'(Z,Qi,...,0On; x!?) such that
1;,d=gi(z;). Write g as g = g(2)(dz)!*' on {|z| <&} = U. By the similar argument as in
the proof of (5.11), one can prove that g(&y+ 1))=Y (Ex+1). This sets down the case
d=b and M=1. For the case a=bh and M =2, for fixed Qy.,, choose a fe
I'(Z;01,...,08 Qns2; k1) such that

f=2zx+,+higher terms ,

lZN+2

then we have

Y (Ens1s Ene2)=<V(On+1> Ons2; Zne1, Zn+2) TQ D@ @)
N+1

=—Y {y@n+1>2n+1) 0(f;2:)iv @b
i=1

= z {y@n+1>2v+1) 0(f,2)iv ® b>
i=1

—{yQn+1>2n+1), O(f 2y e v+ 10 @ B (5.12)

The first term of the right-hand side of (5.12) is meromorphic for £y, 1 by the case
M =1. For the second term of the right-hand side of (5.12), if f has the expansion

o«
lZN.“f: z liZIlV+1 >
i=0
then
e o]
o(f,zy41)= Z LL;-y.
i=0

Thus the second term of the right-hand side of (5.12) is
(y@n+1>2n+1) v ® L1 b+ 10 @ Lob) .
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Using Property (1), it is easy to prove that it can be written as

1
Z Li{y(On+152n+1)s Ui®5> > (5.13)
i=0

for some v’s in W; ® - -+ ® Wy. By the case M =1 and since [; depends on
£n+1 meromorphically, so (5.13) is meromorphic for &y, . This proves that for
a=band M=2,Y (Eyy1, Ens ) is meromorphic for éy, (. The argument general-
izes to the cases a=bh and M =3. Thus we have proved that Claim A for
a@=b. Assume that Claim A is true for d=a,, based on this assumption, we want to
prove that Claim A is true for @=L _,a,. By (5.10) in the induction assumption, we
have

Y(,d;¢5415. .. Enen)

=§Y(U, a;eystre s £N+M+1)(£N+M+1_éN+1)_i+1di+M+1 > (5.14)
c

where C is a contour of &y 5 surrounding &y 1. Since Y (a1; Ex+15- - - s Enane+1)
is a meromorphic function for the variables &y, (i=1,..., N+ M+1), (5.14)
implies that Y (a; éy+1,...,¢y+um) is @ meromorphic function for the variable
En+1. S0 we have proved the assertions about ¥ (x4, . . . , En+a)in Claim A. The
assertions about X(Ex+1, . - - » Ex+ar) is proved by setting b= 1. This completes the
proof of Claim A.

Step 3. We prove Claim B in this step.

Claim B. Let (U, z) be a coordinate chart in {U,, z,} such that the domain
{|z| <&} = U contains the points Qx, On+1,. . - , On+a While Q; (1 Si< N, i+k)are
outside {|z|<¢}, and the local coordinate of Q, is given by z,=z—z(Qx)=z—¢&.
Write £y ;=2(Qp+;), take zy.;=z—Eyx+; as the local coordinates at the point
On+i- ForveW; ® - - - @ Wy and ae#(b), let Y ({n+1,- - - , Ex+a) be the function
defined as

Y (Exetse s nam) =, v @ aQ@ @® M=y
=Y (@1s s ONe b3 2Nt 15 - - > ZNam), V@ A® GO MD (5.15)

(When we want to emphasize of v and 4 in (5.15), we write it as
Y(,a,¢y+1,- .., En+u)) Then we have the following

B1) Y(&ys1s...-Ev+nm) is a meromorphic function on {[&yii<é;
(i=1,...,N)} with singularities at {y.;=Eny; (z:l:;) and &y ;=&

(B2) For fixed &yv1,. -5 Enem—15 Y (En+1,- .., 8nen) has the Laurent series
expansion faw

{ym-1,Y (o, fN+M—fN+1)N+1U®d®@®(M_2)>

for the variable &y at Exvq.

(B3) For fixed &nyn,. ooy Enams Y Exsts- - ,5N+'A}f has 'thé Laurent series ex-
pansion

{x(Qniare - s Oninms Zh2s- - -5 Znam)s Y(P(@), Evi1— G ® 0_)®(M*1)>

for the variable &y .4 at &.
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Proof of Claim B. The statements (B1) and (B2) can be proved using exactly the
same method used in the proof of Claim A. We only need to prove (B3). We may
assume k=N. We prove the statement (B3) for the case d=»5 first. We use the

induction on M. If M =1, considering for i=1,. .., N the Laurent series
gi(zi)= <xs Y(b: Zi)iv> s
by Proposition 3.1, there exists a gelI'(Z; Qy, . . . , Q; k!°) such that 1.9 =g:{(z).

Let g=g(z)(dz)"® on the domain {|z| <&} = U, then by the same argument as used
in the proof of (5.11), we can prove that g(éy+1)=Y (Ex+1). This proves (B3) in the
case g=b and M=1.

Now assume that (B3} is true for 4=b and M =S— 1, we want to prove (B3) for
the case a=b and M=S. For fixed Qyi,,...,Qp:s, we choose a fe
I'Z;04,...,0x Onss; k1) such that S
f=zx1s+higher terriis , "

lZN+S

f=0Modzy,; for2<i<S.

lZN+i

Write x(Qn+2,- - ., On+s)for X(Qni2,. .., Onssi Zy+2,- - . » Zy+s) fOr simplicity.
Then we have

<x(QN+27- e QN+S)a Y (b, ZyN0 ® CL-)®(S_1)>
N+S—1

- Z (X(@n+25- -5 Onis—1) O(f )Y (b, zy)vo @ @®E )

i=1

== ¥ AxX@x+25- - > Oxes-1) O 2)Y (b, 20y ® 0°E72)

N

== % Qysa- -2 Quas-a) Y b (@, f, 20 ® d® 6D

—{x(Qn125- s Onis—1) [0(f z0)n, Y (b, 2y Jo @ @® G2y . (5.16)

The first term of the right side of (5.16) converges on a domain {0<|zy|<e,},
since it is a Laurent series expansion of some meromorphic function on {|zy| <&}
by the induction assumption. For the second term, a direct computation shows
that

[o(f, zx)n, Y (b, zx)n] —f(ZN)'_Y(b ZN)N+|b| f(ZN)Y(b ZN)N

where f(zy)=1,,f, so the second term of (5.16) also converges on the domain
{0<|zy| <&, } by the induction assumption. This proves that the Laurent series

<‘x(QN+25 ceey QN+S): Y(b, ZN)NU®O_)®(S—1)> .

converges on {0<|zy| <& }.
To complete the induction step, it remains to prove that

x@n+2>- -+ Qn+s) Y (b, zn)y0 ® @®(Sm1)>|z,,,=§~+1—§~=Y(5N+1,- s énss)
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when |&y +s—Ey| <e;. To achieve this, we choose a fel' (Z; Qy,. . ., On, On+s; K Y)
such that

Ly.of=2y+s-+higher terms ,
L,..f=0Mod zy,; for2<i<S,
L., f=0Modzg,, .

Using (5.16), we have

CX(On+2s- -+ Onesh Y (b, zy)yo ® @G~V
N
== (x@n+25- - Onis—1), Y (b, zy)yoo(f, z)iv @ @262
i=1

—x(On+2s- - s Onss—1)s [O(f, 28)n, Y (B, zy)n]v @ @® -2

(5.17)

(5.18)

Denote by T;(zy) and T, (zy) the first term and the second term of the right-hand

side of (5.18) respectively. Using the induction assumption, we have

T1 (ZN)IZN=€N+1'—€N

N
=_Z Y(o(f, )i, b5 Env1s- o s Enes—1)

2

i=1

N+S§S—-1

z CY@n+1s- > ONnts—132N+15 - - - s ZN45-1) O(f,2)i0 ® b @ @D

= Z Y@n+1s- - Onts—13ZN+1s- - - > Zns-1h O(f, 2 )U®b®w®(s 2)>
i=1

=(Y(Ons1s- > ONa83 ZN+ 15 - - » I+ VR DR GO~V
=Y (v, 5; Ensts s Ches).

It remains to prove that

T2(ZN)|2N=5N+1—5N = 0 ‘
Using the identity

[Lo(f zn)w, Y (b, zy)w] f(ZN) Y(b sz)zv+|bl f(ZN)Y(b ZN)v
(where f(zy)=1,, f) we have
d d
—<f(ZN)EN+|b|d—ZNf(ZN)>

X (X (Qns25e s Onis—2) Y (b, zy)yv @ @262y |

Using the induction assumption and the fact

d
f(ZN)IZN='fN+1“§N=d—ZNf(ZN)IZN=fN+1*fN=0

(this follows by the third property of fin (5.17)), we have T, (zy),,~¢,,, £, =0. This

completes the proof of (B3) for a=b.
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Assume (B3) is true for 4, and every v. Based on this assumption, we are going
to prove that (B3) is true for L _,a;. Since for fixed &yy; (i=2,..., M),
Y(,L _d;Ens1,--.,Envenm) is a meromorphic function of &y.ye{[éysy|<e}
with poles at &y, &ysa,...,¢v+m- The Laurent series expansion of
Y(v,L _3dy; En+1s- .- Ens ) for variable &y, at the point &y is

._i <§ Y(0,L_xd1; SNty - s £N+M)(€N+1_5N)ndi+1)('fN+1—fN)_"—l i

where C, is a small contour of &y, surrounding the &y. It suffices to prove that

g; Y(,L xay;¢nr1s- -5 Enam)Cne1—En)"den sy

={xX(Qn+25- - > Oneah (PLid ) (M))yv @ P M1 (5.19)

If C, is a contour of &y, 4 surrounding &y ;, we have

$Y (W, L xdi;Enrts- - Enen)(Ener—En)"dEnsy

Cy

= ‘5’ §Y (0,515 o Envemr1)Enaenrr—Enrg) T
C, Cy
X1 —En)" Ay 1 deniaret

= § § Y(,d;¢8v11,. -+ £N+M+1)(6N+M+1_5N+1)_k+l
C; C,
X(Ent1—En)" Ay imr1dEni 1
- § § Y(0,8558n 51 -5 Envamr 1) Enaner—Ener) FT1

¢, G

X(En+1—En)"denr1dEn a1

=I-1II,

where C5 is a contour of &y, a4+ Which is outside C,, and C5 is a contour of
En+m+1 which is inside C;. The first equality follows from (B2) and the second
equality follows from the Cauchy theorem for contour integrals. By (B2) and the
induction assumption, we have

I=CX(@+2,- - - Qnrae) Do ® (@O D)

and
IH={x(Qx+2>- - > Onsa)s IDyo @ (@)™ |
_ where
(I)=Res,, Res,, (Y (0, w3)Y (p(d1), W1)ty,, w, (wy —wy) ¥ 1w]))
and

(II)=Res,, Res,, (Y (p(d1), w1)Y (@, w2 )i, w (W2 —w1) ¥ 1w1)) .
Using the Jacobi identity, we have
)+ =p(L —xa;)(n) .
This proves (B3).
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Step 4. We are now ready to give the final touch. For ae2,(V)n L (b), it is easy to
prove that a has a preimage de%(b) such that L, =0 and dega=n. Let kg be the
fiber of the line bundle " at the point Q; it has a basis (dz)" for z a local coordinates
at Q. We will first prove Claim C.

Claim C. For every veW; ® - - - ® Wy, the vector
{Y(On+1;Zy+1), V@ Ay (dzy+1) €Ky (5.20)

is independent of the local coordinates chosen from the projective structure
{Uaca Za}-

Proof of Claim C. If zj . | is another local coordinate obtained from the projective
structure {U,, z,}, let zy+1=¢(zy+1) be the transition function, (note that it is
a Mobius transformation), and T(¢) be the associated operator, so T(¢) has the
form T(¢p)=exp(loLo+11L1). We define J(Qy+ 1; 2y +1)€(B1)* by

(VOn+1328+ 1) 01 ® a1 ) =Y Qn+1; Z¥+1), 11 ® T(P)ay ) .

It can be proved that y(Qx+1; zy+ 1) satisfies the property (1) and (4) satisfied by
y(Qn+1;2zy+1) Since (1) and (4) uniquely determine y(Qn+1;2n+1), SO
V(On+15 Zv+1)=y(Qn+1; Zn+1). Therefore

GOn+13 2w+ 1) 01 @ A1) ={¥(Qn+1;28+1) 11 @ T(P)ary . (5.21)
Using the fact that L;d@=0 and L,a=na, we have
T(¢)ar=(¢'(0))"a; .
Substitute this in (5.21). We have
Y@u+1; 28+ )V ® @) =<Y(Qn+1; 25+ 1)V ® @) (Pn+ m(0)" .

This means that (5.20) is independent of the local coordinate chosen at Qy ;. This
completes the proof of Claim C.

So (5.20) defines a section g=g(Qy-1) of the line bundle x* on the domain
On+1%0; (i=1,...,N). By Claim A and Claim B above, we know that g is
meromorphic with possible poles at Qq,...,Qy, and by Claim B, g has the
Laurent series expansion at the point Q; (i=1,...,N) as <x,Y (a, z;);v). For
fer(Z; Q.,...,Qx;x ""1), we have

<x3 a(f; f)v> = i <x7 Resz,—(Y (a5 Zi)i‘z,-f)iv>
i=1

N
='Z Resg,(gf)=0. (5.22)

Since (5.22) is true for every veW, ®- - -® Wy, we conclude that
N xa(f,5)=0. O

i=1
Theorem 5.2. If'V is a sum of highest weight representations of the Virasoro algebra
and dim(Vy)=1 and f:(Z;Ql,. 0N Ze,. .-,z Wy, ..., Wy) is a projective
labeled Riemann surface, xeN (%), ac2,(V) and fel'(2;Q4,. .., Qn; Kk "+1), then
xa(f, 2)=0.
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Proof. To apply Theorem 5.1, we need to prove that ae2,(V) can be written as
a Z:’zl a; such that a,€2,(V)nL(b;) (i=1,...,n) for L(b;) a highest weight
representation of the Virasoro algebra generated by the highest weight vector b;.
This is the following lemma. []

Lemma 5.3. If V is a sum of highest weight representations of the Virasoro algebra
and dim(Vy)=1, then every ac2,(V) can be written as a= Z | @; such that a;e
2,(VYnL(by) (l— ,n) for L(b;) a highest weight representatlon of the
Virasoro algebra generated by the highest weight vector b;.

Proof. We first prove that every element x in a highest weight representation L (b)
of the Virasoro algebra generated by the highest weight vector b can be written as
a linear combination of elements L™,y for n20 and yeL(b) homogeneous and
quasi-primary. We prove the statement using induction on degx. If deg x=0 or
I or x has the lowest degree in L(b), then x is primary, in particular it is
quasi-primary. We assume that the statement is true for every x with degx<S$§
(S=1). If degx= S+1 since degL ; x=S, applying the induction assumption, we
have L, x= Zf ; L%, x; for some non-negative integer n; and homogeneous quasi-
primary field x; in L (b). Set y=x— Zl L (1/(n+ 1) (m;+ 2 deg x;)) L™ ]L x;. It is easy
to check that L;y=0, so x can be written by a linear combination of L" ; x for
x homogeneous quasi-primary in L(b). This completes the induction.

If ae2,(V), by our assumption on V, a=z;."=1 x; for x;eL(b;), L(b;) is the
highest weight representation of the Virasoro algebra generated by the highest
weight vector b;. And by what we just proved, we can write each x; as Zk "’1' X i
for x;,; homogeneous quasi-primary fields in L (b;). We choose these XS and x; 1SS0
that the number Z, k; is minimal. Applying operator L; to the equality

=y" Zkf L ’ix, i» we can prove that each n; ;=0 and k;=1. This completes
the proof O

6. Correlation Functions

In this section we prove that the space of vacua on a N-labeled Riemann surface is
unchanged when adding a new point and assigning the O-sector V at the point. To
be more precise, let

§=(2;Q17~":QN;Zla-'-9ZN;W15-~-:WN)

be a N-labeled Riemann surface. Adding (Qy 41, zy+1,V) to £, we have the
(N + 1)-labeled Riemann surface

Z~I=(E'Q1,--- ON+15215- -5 Zne s Wiy oo, Wy, V).

We will prove N(£")~N(Z). This result leads to a definition of n- pointed correla-
tion functions associated to a vector of N(£).

Theorem 6.1. Assume V is a sum of highest weight representations of its Virasoro
algebra and dim(Vy)=1. Let i be the linear map:

N N
EQRQW—,QWRV, v—1®l,

k=1 k=1
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i*: (®k W ® VY*>(®1F_, W)* is the dual map. Then the restriction of i* on
N(Z )e(®k . W, ® V)* is an isomorphism from N(£') to N(£). Moreover if £, and
5" are the labeled Riemann surfaces obtained by changing coordinates z; to w;, let
Ty, T, be the associated isomorphisms from N(£,)) to N(Z) and from N(£1,) to N(5")
respectwely, then the diagram of maps

NE) -5 NG

5l 1

NEY) L NG
is commutative.

Proof. For ae#,(V), feI'(X;Q¢,...,0n;k ""!), we need to check that
(i*x)- a(f, £)=0. Since f is regular at QNH,we have

RGSZN+1(Y(a7 ZN+1)IZN+1f)1=0 .
So for ve @, W

Gi*x, a(f, £)vy = i Ci*x, Res, (Y (a, z:)1,, )iv)
i=1

= i {x,Res, (Y(a,z),fliv®1)
i=1

N+1

— Z {(x,Res,(Y(a, z:)1, )o@ 1)
={x,a(f, 2w ®1>=0.

Similarly, we can prove that i* is annihilated by the global vertex operators
associated to the Virasoro element. This proves i*xeN(Z). So we have a map
i*: N(£') > N(). Tracing the definitions, we can prove that the above diagram is
commutative.

Next we prove that i*: N (f )—> N(Z) is injective. By the above commutative
diagram, we may assume that £ is projective. For x such that i* x =0, we need to
prove x =0. It suffices to prove that {x, v ® a)=0for all ve ®l . W;and aeV. By
our assumption on V, we know from Theorem 5.2 that x is annihilated by the
quasi-global vertex operators and from Lemma 5.3 that every acV is a linear
combination of the elements of form L™ |  for b homogeneous quasi-primary. So it
suffices to prove <x,v®LZ;b>=0. For this purpose, choose fe
I'(Z,Q4,...,0n4+1; k%21 such that

., f=mlzy 'y ' +regular terms .
Then we have
(e, v@®LT bY={x, ResZNH(Y (b, ZN+1)12NHf)N+ w1

=— % {(x,Res, (Y (b, z;)1,,f)iv @ 1)
i=1

= —Z <l X, Resz (Y (b Zl)lZ f)lv> 0.

Thus x=0. This proves the injectivity of i*.
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To prove the surjectivity of i*, we may also assume £ is projective. Let {Uy> 24}
be the projective structure of £. We choose a local coordinate chart (U, z) among
{Uy, z4} such that {|z|<e} for some & contains Qy, while Q;, i=1,...,N—1 are
outside {|z| <e}. We only need to prove the surjectivity for the case QN+ 1 e{ |z|<e}.
Because if we prove the isomorphism of N(£') and N(£’) at the above situation,
then for Q. , at arbitrary posxtlon we may choose points Qn 2, On=as. - . » Onis
such that any two successive points P,Q in the sequence Qy,Qn+2,. .-,
Qn+1, On+ 1 fit the above situation. Let 2, be the labeled Riemann surface obtained
by adding points Qy . », . . QN+ %> On+1 to £ and assigning V at these points. By
deleting points Qy.; (1— ., k) in the order Qy+z,...Qn+x, We have an
isomorphism of the spaces of vacua each time, thus we have N (£)~N(Z"). On the
other hand, by deleting points Qy.; (i=1, .-,k) in the order
On+1>0n+2,. .., Onip, We have the isomorphism N(Zk)zN(f). Thus N(2) is
isomorphic to N(£") and it is easy to see that this isomorphism is just i*.

Thus we can assume that Qy and QN+ 1 are in {|z| <e}. For every xeN (2), we
need to find x’eN(Z"’) such that i*x'=x. Our method to construct such x’ is
similar to the proof of Theorem 5.1 with the Lie algebra of the quasi-global vertex
operators playing the role of the Viraroso algebra and the “Verma module”
" define below playing the role of (1) and #(b).

For a positive integer M, pick M points Qy11,...,Qnsx in {|z] <&}, set
Env+i=2(Qn+:) (1=0,1,..., M), take zy,;=z— &y, as the local coordinate at
Oy +;. In this way, we obtain a projective (N + M)-pointed Riemann surface

(2501, -, ONaMiZ1se o s ZN1M) -

By assigning the “Verma module” ¥~ (which is defined below) at each point Qy 4 ;
(i=1,..., M), we have the data

f(51‘]‘{'13' .. 5£N+M)
=(2,Q1, .. ’QN+M;Z19- e s ZN+M> Wla- . ,WN,V,. .. ,V) . (6.1)

To construct x'e N(E') = ( i=1 W; ® V)* such that i*x'=x, we first construct
x(éNH)e(@l . W; ® 77)*, then we prove that x(&y- ;) reduces to the needed x'.
For this purpose we will construct for each M, x(éyii,...,Ensm)E
(@i~ W, ® ¥ ®M)* associated to the data (6.1).

The “Verma module” 7~ is defined as follows. Let «f be the free associative
algebra with identity 1 generated by the symbols a{n), where ac2(V) and neZ,
and a{n) is linear in a. Set Y {a, Z>:Z;O:—oo al{nyz "1, so Res,(Y {a,z>z™)=
alm). Let o/ be the quotient algebra of ./ modulo the relations

lal+1b]—2

[a<m>= b<n>] = Z RCSZ(Y (xa, b;is Z> Ga, b; z™, z";i(z))

i=0
+% Res, (Y {a(L)b, z) (z™)P(2)z") , (6.2)

and 1{—1)=1, 1{i)>=0 for i+ — 1, where a, b are homogeneous quasi-primary
fields with degrees |a| and |b|, L=|a|+|b|—1, x4 ;:; are quasi-primary fields as
defined by (4.7), G, ; .= ,»;(2) is defined in (4.9). The relation (6.2) is motivated by
the formula (4.8). We continue to write elements of .o/ as a{m>b<{n)>1.
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Let 7~ be the left regular representation of /. So a typical element of ¥ is
a1 {i1>...a,{i,>1. Let ¥ be the left regular representation of &/ modulo the
relations

a; i) ...a,{,>1=0 when i,=0. (6.3)

We continue to write elements in ¥~ as a;<iy) . . . a,<{i,>1. And we write a for
a{—1>1e?". We have the obvious surjective linear maps

p: ’17‘—}1/‘ a1<i1> .. .an<in>_1_|——>a1<i1> . .a,,(i,,}T ,
p:V = Vialii). . alipl—a; ). .. a, iyl . (6.4)
Both 7" and ¥~ have a gradation defined by

deg(as <ivy - - - aCiydT)= Y. (degai—iz—1)

i=1

It is clear that both maps in (6.4) preserve the gradation. And it is easy to prove
using (6.2) and (6.3) that ¥~ doesn’t have a non-zero element with negative degree.
Thus for fixed ae2(V) and ve?”, a{n)>v=0 for n sufficiently large. Therefore for
a Laurent series f(z)=) .., l;z’, the operator Res, (Y {a, z) f(2))=) ..., ha{i) acts
on ¥". We will write Res,(Y (a, 2)f(z)) for Res,(Y {a, z) f(z)), and for a homo-
geneous quasi-primary, fel'(Z;Qy,...,0n+i k'), we write a(f,z;)=
Res, (Y (a, z;)1,,f) as before.

X(ENt1se s CNJF,C)E(@L W, ® 7 ®8* (k=1,2,...) to be constructed will
satisfy the following properties:

(1) For every homogeneous ac2(V) with degree |a|, and ever
y y
fel(Z;04,. .., Qneps 19T,

N+k

Z X(Cnt1s-- s fN+k)ReSz,.(Y(a, Zi)lz,-f)i=0 .

i=1
(2) For ve @YX, W,
ey 1) v @ TD=Lx,0) .
(3) For ve @Y, W, ® ¥ ©K,
llnsts s Enarr 1 0@ T =(xns1s- - Evaa)s 0D
(@) For 0,e®@Y W, ® ¥ ®, 1,67 ®, (50 1, ® T ®1,e@_, W, @ ¥ @+,
and v; ® v,€ ®f.v=1 W, ® v ©0+))
e+t oo Enrinjr1) 11 @ T® )
=CX(CNt1se s ENtittse o s CENHinjr1h V1 @ V2,

where ™ indicate the missing terms.

To construct x(y+ 1 ), we construct X(Ey 4 )e(W; ® - - - ® Wy ® ¥ )* first, then
prove that X(&y+q) reduces to x;(y+1))e(W; ®- - @ Wy ® ¥7)*. Defining
x(&y+1) 1s equivalent to defining

Gén+1,0®@ar i) . .. axligdI),
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we do it inductively on k. For k=0, we define
<x(€N+1)7U®T>=<x’ U> .
For k=1, choose feI'(X; Q1, . . ., On+1; 1%+ 1) such that

f=2zy .1 +positive terms ,

lZN+ 1

we define

{Kenr1)v® a1<i1>T>= - Z (ens1)al(fs Zi)iU®T> .
i=1

Using (4.10) in Sect. 4, we can prove that

N
Y KX (En+1) alg, z)iv®bY=0 (6.5)
i=1

for b=a,(i;)T or 1, ac2(V) with degree |a| and gel'(Z,Q,,...,Qx; 14+
satisfying

. —|a}+1+degh
1;,.,g =sum of terms higher than zNH v

Assume we have defined (X({y+1)v® b) for every v and every b
=a:{iy ). ..a<{i 1 and the property that

N
Y, (E(Ey+1)alg, z)v®b)>=0 (6.6)
i=1

for every ac2(V) with degree |a| and gel'(X; Q4,...,0n; x~laI+1y satisfying

. —lal+1+degh
1;,,,9=sum of terms higher than v 8

Based on this induction assumption, we define {X(y+1), v ® ali>h) as follows.
Choose feI'(Z; Q1, . . ., On+1; 1971, such that

i . —|a|+1+degh
f=zy+1+terms higher than ZNH &

lZN+ 1

we define

(1) v®alidby=—73 (X(Eys1)al(f, z)iv®b),
i=1

it follows from (6.6) that it is independent of the choice of f. And with some effort, it
can be proved that the property (6.6) is again satisfied. So we have completed the
construction of X(£x+1). By a direct computation, we can prove that

<x(fzv+1), v®biiy. .. bk<ik>T>=0
when i, =0, and
(Z(€n+1) v ® [almp, b<{ny]c)

la]+1b]—2
= Z <x(éN+ 1); 1 ® Resz(Y <xa, b;is Z> Ga, b; z™, z"; i(Z))c_>

i=0

+<>z(fN+1), v® 7 Res, (Y alL )b z>(z"')<L>z")c-> .
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So X(£y+1) reduces to a vector x(éy.)e(W; ® -+ - ® Wy ® 77 )*. And we can
prove that x(&y. ;) satisfies the condition (1) for k=1 and condition (3). By the
same method, we can construct x(Eys 1, Ex+,) based on x(Eyy ) (constructing
X(Ens1, Ent2)EW; ® - - @ Wy ® ¥ ® ¥ )* first as constructing %(éy4 1), then
proving it reduces X(Ey+1, En+2)e(W1 ® - @ Wy ® ¥" ® ¥7)*). For example,
X(Cnr1sEnra)v® 1) for veW; @ - - @ Wy @ ¥ is {x({y+1), v). And we con-
tinue this way; we can construct x(Ey+1,. .., Ev+x) (k=1,2,...). It can be proved
that x(Exs 1, - - -, Eny) satisfies the properties (1), (2), (3), (4) above. It is not hard
to see that {x(&x+1,. .., Ex+i)} satisfying (1), (2), (3), (4) are unique.
Next we prove the following claim.

Claim A. For every veW, ® - - - ® Wy, be?’, a,,. .., ayc2(V) homogeneous.
Then the function

lyatse s Enem)h VPR, ® @ dy) (6.7)

is a M-variable meromorphic function on the domain {|&y.;|<e, i=1,..., M}
with singularities at &y, ;=¢ys; (#Fj) and &y, ;=&y. And . for fixed
Entise - s Ensm—1, (6.7) has the Laurent series expansion

lwstse s Enam—1h Y (Oas Enen —Ene v 10 @ DR G ® - - ®ay-—1) (6.8)
for the variable &y, at €y -
Proof of Claim A. Consider the Laurent series given by

giz)={xCn+1s- -5 Evam—1), Y (@nia, 2)i0 @41 ® R Ay p—17

(i=1,..., N+ M—1). The condition (1) implies that g;’s satisfy the condition of the
second part of Lemma 3.1. Apply Lemma 3.1; there exists a meromorphic (|ay + |
)-differential gel(Z, 04, . .., Onin; k@), such that gi(z;)=1,9
(i=1,...,N+M—1). Write g=g(z)(dz)* on {lz|<e} < U, so g(z) is
a meromorphic function on {|z|<¢} with poles at &y, ..., Eyiar—1. We want to
prove that

9Cln+m)={xCrr1s e M)V ® b®d ® - ®du) . (6.9)
For this purpose, we choose feI'(Z, Q1, . . . , Qn+ar; £+ +1) such that
f|zN+M=z,§iM+higher terms ,

Then we have

N+M-1 N+M-1

g&nsm)=Resg,, (gf)=— 3 Resg(gf)=— 3 Res,(g:(z)1,f)
i=1 i=1

N+M—1

= z xCn+ts- o> Cnim-1) aM+N(f,Zi)iU®E® G @ay-1y
i=1

1

=<x(fN+1,---,§N+M):U®5®dz®"'®dM>-

This proves (6.9), so (6.7) is meromorphic for &y on {|Ey+ x| <&} with poles at
points éx; (i=0,1,..., N+ M —1) and has Laurent series expansion at £y, as
(6.8). The same argument proves that (6.7) is meromorphic for &y, (j=2,..., M)
on {|&y+;|<e} with poles at points &y (1=0,1,.. ., N+ M, i=%},).



Global Vertex Operators on Riemann Surfaces 517

If b=a, for a, quasi-primary and homogeneous, the above argument applies to
the variable £y, 4, so we have in this case (6.7) is meromorphic for &y, on
{|én+1]<e} and has poles at &y4; (1=0,2,...,M). Thus, if b=a, for a, quasi-
primary and homogeneous, by the Hartog’s Theorem, Claim A is true.

Suppose Claim A is true for b, based on this assumption, we want to prove it is
true for b'=a{i )b, where a is quasi-primary and homogeneous. Set g,  =a. By
induction assumption, we know that

C{( TR ,€N+M+1):U®5®dl®' @Ay

is a meromorphic function of &y 4,. .., Eyrar+1 With poles at &y =8y (i))
and &y.;=¢&y, and it has Laurent series expansion for the variable &y p4q at
En+1 as

eyt Eniah V@Y (@ ey 1 — vt N1 DR B ® - @y .
So
lenttse - Enam) 0 ®aliDb® A, ® - ® Ay
=§<x(éN+1,. M1 VRD® A ® @Ay

XEnimr1—Ene1) dyinet (6.10)

for C a contour surrounding £y, . Since the right side of (6.10) a meromorphic
function of variables &y.y,...,Ey+n with poles at &yi;=E&yy; (i=j) and
En+i=En, so is the left side of (6.10). The proof of the fact that the left side of (6.10)
has a Laurent series expansion for y . at &y as

xCnstse s vt 1) 0®Y (4, Enim—Ens v D @G ® @y
is already given before. This completes the proof of Claim A.

Claim B. (B1) Equation (6.7) has the Laurent series expansion for the variable
En+mat &y as

natse s Enaim-1 Y (@ps Enie—EnINOV R DR B @ - @ Gy 1) -
(B2) Equation (6.7) has the Laurent series expansion for the variable £y, ; at &y as
w2 ) Y0, Eyi 1t — vy v @A, @ - @ ay )
where b=p(b).

Proof of Claim B. (B1) is already proven in the proof of Claim A. To prove (B2), it

suffices to prove the case when b=b,<i; > . .. b (it >1 for b;c2(V) and homogene-
ous. We use induction on k.
If k=0, then b=1, then we have

6.7={x(lnr2s-+  Enem) VR A Q- @ ay)

={Xnr2s- > ENaMh Y (L Sy 1 =S nv @@ ® - - @y .
This proves (B2) for the case k=0.
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Assume (B2) is true for 5_= by, based on this assumption, we are going to prove
that (B2) is true for b=a {i >b,, where ais in 2(V) with degree |a|. Set ay +, =a,and
set

Flystse o s Enam)=<{xCNt1s- - Enam) VO D® A ® - @y,

and set

GCn+1r-- s Enams1)={xCEnr1se o Enam+1) V@D QA ® ®dn+1) -
By Claim A,

F(£N+1:~ .- :€N+M)

is a M-variable meromorphic function on {|&y.;]<e} with singularities at
n+i=Cn+; (i%j) and E&yy;=E&y. The Laurent series expansion of
F(¢y+1,. .., Eyspm) for the variable &y, 4 at the point &y is

0

Z (é& F(§N+1:- ce 6N+M)(€N+1_éN)nd£N+l>(€N+1—€N)_n_1 s

i=—ow

where C; 18 a contour of &y, surrounding the &y. It suffices to prove that

(if Flnits- s Cnem)(Ene1—En)" din s

={xX(Cn+2s- -5 5N+M)al’(a<i>51)(")zvv® AQ® @y - (6.11)

By the statement on the Laurent series expansion in Claim A, we have, for
C, a contour of &y, p4 ¢ surrounding &y 4,

g; G(EN+19- .. :éN+M+1)(éN+M+1_€N+1)id£N+M+1=F(éN+1a- s §N+M) :

So we have

é§ Fy+1s- -5 Envenm)@rr1—En)"dln s

z(if é G(€N+17 L] €N+M+1)(5N+M+1_5N+1)i(5N+1'"SN)udi+M+ldéN-l—l

zg'g G(£N+15- .. a£N+M+1)(6N+M+1_6N+1)i(éN+1_éN)ndéN+M+1di-)—l

“‘g (;f G(£N+1a- . :£N+M+1)(6N+M+1—£N+1)i(£N+1_fN)nd€N+1d€N+M+1

=1-1I,

where C3 is a contour of &y. a4+ Which is outside C,, and C; is a contour of
En +m+1 Which is inside C,, the second equality follows from the Cauchy theorem
for the contour integrals. By (B1) and the induction assumption, we have

I={x¢ns2s- - Sntm)h UV ® A @ - ®ay)

and

H={xUns2, - Enam) U0 ® @G Q- @ ay)
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where
(I)=Res,, Res,, (Y (a, w2)Y (p(b1), W), w, (W2 —w;)'wi))
and
(IT)=Res,, Res,,, (Y (p(b), w1)Y (@, w2) 1y, o, (W2 —wq)'w1)) .
Using the Jacobi identity, we have

(1) —(1)=(a(i)p(b:))m)=p(a<i>b,)(n) .

This proves (6.11) therefore (B2).
Now we are ready to give the final touch. By Claim A, for ve@l : W; and
bey’,

(x(én+1), 0@ b) (6.12)

is a meromorphic function of ¢y ; on {|z| <&} with poles at £y. By Claim B, (6.12)
has Laurent series expansion at &y as

%, Y (p(b), Env 1 —Ennn)

This means that if p(b)=0, then <{x(éyiq),v ® b>=0. So x((yii)e
(W, ®---®Wy® 7 )* reduces an element x'e(W, ® - - - @ Wy ® V)*. By condi-
tion (1) itis clear that x’e N(£") and i* x’ = x. This proves the surjectivity of i*. [J

If V is a sum of highest weight representations of the Virasoro algebra and
dim(Vp)=1, £ is a N-labeled Riemann surface as above. Let P=(P;,. .., P,) be
n-different points on 2 such that P;+Q;, w; be a local coordinate at Pl, write
w=(Wi,...,w,). Let b Pow be the (N + n)-labeled Riemann surface given by addlng
points P on 2 and assigning w;, V at P;. For xeN & ) let xp,,, be the image of x in
the isomorphism N(£)~N(Z} ). Then for veW; ® - - - @ Wy, a; €@ (i=1,...,n),

F,ay,...,a;P1,...,P)={xp, 0 Qa; ®" - ®a,>(dw)".. .(dw,,)l" (6.13)

(the local coordinate w; at P; defines a basis (dw;)" of the fiber K,li, we continue to use
(dw; )" to denote the corresponding basis in 7 K,li) defines a vector on
(7" ®- - @7, k). We have the following theorem.

Theorem 6.2. F(v,a;,...,a,;Py,...,P)e(ri ikt ®. ~Lx)p defined in (6.13)
is independent of the local coordmates w. And as P varylng on Z " it defines a global
meromorphic section of the line bundle n7 'k" ® . . . m, ‘" over ", and the only
possible singularities of this section are those P s satisfying P,-=Pj for some
Lj=1,...,nor P,=Q; for some i=1,...,n,j=1,..., N.

The meromorphic section F(v, ay,. . ., a,; Py,. .., P,) relates to the vertex oper-
ators Y(ay,z1),...,Y(ay,z,) as follows For each O (k=1,...,N), let U=
{lz|<e} bea nezghborhood of Qi which contains no other Q;’s, let (zk ye..,2z;) bethe
coordinates on U™ < 2" induced from z;, write

Fv,as,...,a0P1,. .., P)=f(z", ...,z dzi")s . . ., (dz™)"
on ({ " Then for every permutation(iy, . . . ,i,) of (1,. . ., n), the meromorphic function
f(z Do ) has the expansion

{x, Y (a4, z( i) .Y,z (l"))kv>
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on the domain &> |z,£i‘)| > - > |z(l")| >0. (Recall as in Sect. 3, Y (a;,, zk‘))k denotes the
operator 1 @ - - ® Y (a;,, z( (k-th place)® - - - ® 1.)

Proof. To prove the right-hand side of (6.13) is independent of the local coordinates

w,let w' =(w1,. .., w;) be another choice of the local coordinates, let w; = ®;(w;)=
i1 d . .
exp < Z;" o Ci Wi *t 7 > w; be the transition functions, T; =exp( Z;‘; o Ci,7L ) be the
Wi

associated operators, then we have xp ,,=Xp  II;=1(L)y+;. In other words, we
have

<xP,wa U®a1 ® ) '®an>=<xP,w” U®T1a1 ® t ®T;tan> . (614)

A direct computation using the facts L,a;=0 for k>0 and L ya;=1;a; shows that
Tya;=exp(lic;, o) @ =(®{(W;))"|w,=0» a;. Substituting this to (6.14) and using the facts
(dw:)"(®{(w;))"|,,.—o=(dw{)", one proves that

(Xp s V@ a1 ® @ ap)(dwy) . . (W)= {xpw, v ® 1 @ - ® 4D
x(@wi) .. (dwh)h .
This proves (6.13) is independent of w.

As P varying on X" F(v,ai,...,a,P,...,P,) is a section of
K ®. ik defined on P,+P; (i+j) and P;+Q;. We next prove that
F (v, ay,. . a,,, Py,. .., P,)is meromorphic. By Hartog’s Theorem, it suffices to

prove that F is meromorphic for each variable P;. To prove that F is meromorphic
with respect to P,, let 2,_; be the (N +n—1)-labeled Riemann surface given by
deleting (P,, w,, V) from b)) P LEt X, 1eN (Zn-1) correspond to x as in Theorem
6.1. Considering the Laurent power series g;(z;) (i=1 ,N+n—1) (zy+;=w;)
given by

gi(Z)=<{Xn-1, Y (@, 2)iv Qa1 ® - - ®a, 1) .

By Proposition 3.4, there exists a geI'(Z; Q1, . . . , On+n—1; k") (Where Qy ;= P)
such that g(z;)(dz;)" is the Laurent series expansion of g. Write g = gy 4 4(w,) (dw,)"
near P,; we claim that

In+n(0)=<xp ,, VR a; @ " ®a,) .
Indeed, choose a feI'(Z; Q1, . .., Onsn; Kk =*1) such that
1y, f=w, ' +higher terms .

So we have
N+n—1
gn(0)=Resp(g9f)=— ), Resy(gf)
i=1
N+n—1
Z {15 Reszi(Y (ay, Zi)lz,-f)iv Q®a® " ®ay-1)
i=1
=P, VR Q" ®a,) .
This proves our claim. So F is meromorphic for P, with poles at Q4,..., O,
P,,...,P,_;. Similarly we can prove that F is meromorphic for other Varlables

Thus F is a meromorphic section.
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It remains to prove that F has the Laurent series expansions as in the theorem.
We may assume k=1 and that the permutation (iy,...,4,)is (1,2,...,n). Write

F(v,aq,...,a0 P1,. .., P)=fE", ..., 2" dz")s . . ., (dz")h

on U" Let £; (i=1,...,n) be the (N +i)-labeled Riemann surface obtained by
adding (P, z—z(Py), V),. oy (Pyz—z(P), V) to £, let x; eN(Z) correspond
xeN(X). We have the expanswn on the domain {¢> |21 )| > Iz(z)l > > |z(")| >0}:

1 Oy—i i
f(z() ...,Zin))= Z Cil,..,,i,,(zi )) i 1--'(2?)) Bl

(igs- -, 0n)eZ”
where

cil,...,,-"=§- §f(z‘“...,zi"))(zﬁ”)"l...(zi'”)i»dzi” Lz, (6.15)

where the contour C; is for z and C; contams C 1.
By the proof above, we know that f (21 - 21 ) have expansion for z ) at ¢,

<xn—19Y(ale ho®a; @ ®ay—1) .

Thus we have

§>f(z‘“ 2 )E) Y = (1 () @ 4 R @ )

Similarly,

§ o1 G0 R A R+ R 1 Y VY1 dz,

=<xn—23 an—l(in—l)Nan(in)NU®a1 & ®an—2> .

Continue this way, thus we have

Cipyoo iy =X ar(i)y - - - au(in)n0)

This is precisely the coefficient of (z{")==1. . . (z{")~#~!in

Y (@, 2 Y (g 27 w0
as was to be shown. [J

F in the theorem is called the n-pointed correlation functions associated to x, v
and g; (i=1,...,n).

Remark. If £ is projective with the projective structure {U,, z,}, we use {U,, z,} to
give local coordinates w; at P;, then Theorem 6.2 is true for a,,...,a, quasi-
primary. Usmg this fact together with the fact that every element of V is a sum of
the form L* , b, with b, quasi-primary, one can prove that for arbitrary a,, . . . , a,e
Va

x, Y(ay, wik. .. Y (an, wo)v)

converges on the domain ¢>|w,|>- - ->|w,| >0, and the limit can be extended to
a meromorphic function on the domain ¢>|w;|>0 (i=1,...,n) with the only
possible singularities at w;=w;, and this meromorphic function is independent of
the ordering of Y (a;, z;). This generalizes Theorem 2.1.
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7. Examples

We give examples of the space of vacua for some cases. The space of the vacua for
an one-pointed sphere relates to the vacuum vector 1eV. The space of vacua
for a two-pointed sphere relates to the dual representations. And the space of
vacua for a three-pointed sphere relates to the interwining operators. The notions
of dual representations and interwining operators are introduced in [FHL]. The
space of vacua on a torus with one puncture relates to the g-trace of vertex
operators, which is studied in [ Z]. We also discuss the space of vacua for the vertex
operator algebras associated to the affine Lie algebras and Heisenberg algebras.
The space of vacua for vertex operator superalgebras associated to the Clliford
algebra is known completely.

We assume that the vertex operator algebra V in the examples 1-4 below
satisfies that V is a sum of highest weight representations of its Virasoro algebra
and dim(V,)—1 and a representation W= ,~o W (n) of V under consideration
satisfies that dim W (n)< oo and L, acts on W (n) as n+h for some constant h.
Under this assumption on V, by Theorem 5.2 and Lemma 5.3, every vector in V is
a linear combination of vectors L* ; a for ke Z and a homogeneous quasi-primary,
and the quasi-global vertex operators annihilate the space of vacua on a projective
N-labeled Riemann surface.

We first recall the notions of dual representations and intertwining
operators for representations (see [FHL] for details). Only the basic definitions is
deeded.

Let W=~ W, be a representation of V. The restricted dual W'=Y "_ W,
of W admits a structure of representation of V given by

<Y (a, 2)0, 0y =<0, Y (e1(—z7*)oa, 27 Y)o) (7.1)
The identity (7.1) for ae2,(V) is equivalent to
La(i)v', v>=(—1)<v’, a2n—2—i)v) for every ieZ . (7.2)

The representation W' is called the dual representation of W.
Let W,=(P,~o Wi(n) (i=1, 2, 3) be representations of V such that L, acts on

W;(n) as n+h;. An intertwining operator of type > is a linear map I(, z)

3
W, W,
I( N Z): W2 - End(Wl, W3)[[Z’ Z_lj]z_hl_hz‘i'hg, ,

v I, 2)= Z i)z 1l haths

i=—o

such that I( , z) satisfies that for fixed veW,v,eW,, v(i)v, =0 for i sufficiently large
(truncation condition), and for every f(z, w)=(z—w)"z",

Resz—w(I(Y (a, Z—W)U, W)lw,z—wf(za W))
=Res, (Y (4, 2)1(v, Wi, f (2, W)} —Res, (I(v, W)Y (a, 2)1y,.f (2, W), (7.3)

and I(L v, z)=%1(v, z).
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1. One-Pointed Sphere. Consider 5=(CP';0;z; W), where z is the standard co-
ordinate. It is clear that & is projective, so Theorem 5.2 applies. And it is easy to see
that Lo=w(1) is a global operator on £. So if LoW=W (this situation happens
when L, acts semi-simply on W without 0 elgenvalue) then N(CP';0; z; W)=0.
Note that I'(X; 0; x~"*1) has a basis

ZZn—Z(dZ)—n+1’ZZn—3(dZ)fn+ 1,22"_4(dz)_"+1, .

H

s0 2%(%), the space of quasi-global vertex operators, is spanned by
{a(i)|ae2,(V), neZ,i<2n—2} . (74)
The following Proposition is easy to prove.

Proposition 7.1. N(CP*;0; z; V)~C. The dual vacuum 1'eV * defined by {1',a> =0
ifdega>0 and {1’,1)>=1 is a basis of N(CP*;0; z; V).

2. Two-Pointed Sphere. Considering & =(CP*;0, c0; z, 1/z; W, W,). It is clear that
5 is projective, so Theorem 5.2 applies. And I’ (CP1 ,0; k7""1) has a basis
z'(dz)""*1 (ieZ). At the point oo and coordinate w=1/z, z’(dz) "+1is written as
(=)™ tw2" 27 dw) "1 50 the quasi-global vertex operator associated to ae
2,(V) and the differential z'(dz) "' is 1@ (—1)"" ta@n—2—i)+a(i) ® 1.

Proposition 7.2. The vacua space N(£)=N(CP'; «,0; 1/z, z; Wy, W,) is isomorphic
to the space Hom(W,, W), where W5 is the dual representation of W,.

Proof. Given a homomorphism feHomy (Wy, W 3), we define N(f)e(W, ® W,)* as
usual by <N(f),v1®v,)={f(vy),v,>. Using (72) and the fact
fla(i)v,)= a(z) f(vy), we have N(f)-a(f, £)=0 for every quasi-global operator
a(f,£) on £ so N(f)eN(Z) Thus f>N(f) defines a linear map from
Homiy (W, W}) to N(£). Conversely, if xe N(£) = (W, @ W,)*, we define for each
v;eW; a linear functional f,(v;)eWj as usual by {f.(vy), U2 =<X, 01 ® V3.
Lo®1—-1®L, is a global vertex operator on £, we have
G (Lo@1-1®Lo)vy @vy»=0. This implies that {fi{Lovy),v,)>=
{flv1), Lovy>. So for vieWi(n), {fi(vy),v,>=0 unless Lyv,=(n-+h,)v,, this
implies that f,(v;)eW 3. So we have a linear map f,: W, - W . It remains to check
that

fela())v)=a(i) fi(vy) for every acV . (7.5)
For ae 2,(V), we have
{fxlai)v), 2> =<x, ali)v; @ vy ) =<x,v; @ (—1)*a2n—2—i)v, )

={falvr), (= 1)"an—2—i)v; > =<a(i) fi(v1), v2> .

This proves that (7.5) is true for a quasi-primary. Using the facts that every aeV
is a sum of L¥ b for b quasi-primary and (L* b)(i)=(—1D*i(i+1)...
(i+k—1)b(i—k), it is clear that (7.5) is true for every aeV. Thus f, is a morphism of
representations of V. It is clear that the maps fr—» N(f) and x+f, are inverse
maps. [

Since the points 0 and oo are symmetric, we also have N(CP';c0,0;1/
z, z; Wi, W,)~Homy(W,, W1). We give some corollaries of Proposition 7.2.
Corollary 7.3. If Wy, W, are irreducible representations, W5 is the dual representa-
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tion of W,, then

C ifw=w,,
Pl; 00,0;1/z,z; Wy, Wy)=
N(C 500, U; /Z,Z, 1» 2) {0 lle#Wé.
Proof. Using the Proposition 7.2 and the fact that W3 is irreducible. []

Remark. If W, =W}, lete; (i=1,2,...) be a homogeneous basis of W;, {e;} = W,
be a dual basis of {e;}, then )7 ¢/ ®e¢; is in N(CP'; 00, 0;1/z, z; Wy, W), it
corresponds to the identity map of Homy (W, Wy).

3. Three-Point Sphere. Every three-pointed sphere is conformally equivalent to
(CP1;0,1, c0). It suffices to consider

f=(CP1; 05 ]-9 o0; Z,Z—l, I/Za Wl: WZ: W3) .

Since £ is projective, so Theorem 5.2 applies. I'(CP!; 0, 1, co; k~"*1) has a basis
{z™(z— 1) dz) """, m, IeZ}.

Proposition 7.4. N(f)zN(CPl; 0,1,00;z,z—1,1/z; Wy, W,, W3) is isomorphic to

w
the space I(W;, W,, W) of intertwining operators of type W Vi] > W 3 is the dual
representation of Ws. .

Wi
W, W,
functional fre(W; ® W; @ W3)* by (Fr,v; ® v, ® v3»=<{vs, (v, 1)v; ). For
ae2(V), f=z"(z—1)"(dz)"**1, the quasi-global vertex operator a(f, £) is
Res, (Y (@, 2)z"(z—1)")® 1® 1
+1®Res;, (Y (a, z1)(z: +1)"27) ® 1
+1R 1 ®Res, (Y (@ z,)(— DT 122727 "(1—z,,)" .
Set f(z, w)=z"(z—w)", by (7.3), we have
0= <U3> Resz—w(I(Y (aa Z—W)U2; W)lw,z—wf(za W))Ul >
_~<U39 RCSZ(Y (as Z)I(Uls W)lz,wf(za W))U1>
+ <U3a RCSZ(I(U, W)Y(a> Z)lw,zf(z’ W))Ul> . (76)

Put w=1in (7.6), the right-hand side is precisely {Fy, a(f, Yo, ® v, ® v3). Thus
we have Fy-a(f, 2)=0, so FieN(2). Thus we have established a linear map from
I(Wy, W,, W3) to N(X). Conversely, for xe N(2), we define I, by

<%, L(vg, W) =<{x, when; @ wlov, @ whovg ) . (7.7)

Note that for fixed vy, v,, 053, (7.7)isain C[w, w*Tw ™" ~h+4 And it is easy to see
that I(v,, w) is an element of the space End(W, W3)[[w, w1 w ks and it
satisfies the truncation condition. To prove the L _; property, choose f= z{dz) "1,
the global vertex operator w(f, 2) is

Proof. Let I(, z) be a interwining operator of type , we define a linear
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x, o(f, EywLop, @ whop, ® whopy ) =0 is precisely
d
<Ué, Ix(L~102: W)vl >=2_1'—V—<Ué’ Ix(UZa W)Ul> .

This proves L _; property. We next prove the Jacobi identity (7.3). For ae 2,(V),
£z, w)=(z—w)"z", set f=(z—1)"z"(dz)"**?, then we can check that the identity
(x, alf, EywLov, @ wlop, ® whovs ) =0is the same as (7.3). This proves (7.3) for
a quasi-primary. For arbitrary aeV, write a as a sum of elements of type L' ;b
for b quasi-primary, using L., property of vertex operators and (7.3) for
quasi-primary fields, it is easy to prove (7.3) is true in general. So I, is an
interwining operator, thus we have established a linear map from N(Z) to
(W, W,, W3) which is clearly the inverse map of the map of I(W;, W,, W3) to
N(%) defined earlier. [

4. One-Painted Torus. Set g =e2"\/:_”. Let L, be the lattice (mt +n}, and let T, be
the torus C/L,. Take the image 0eC in T; to be the marked point Q and the
standard cordinate z be a local coordinate at Q, and we denote Q by 0. We will
consider the 1-labeled torus (7;; 0; z; V).

The torus 7, can be also obtained by identifying the boundaries of the annuli
{lq|<|w|<1} by the relation w~wq. The point Q corresponds to the image of 1.
We have another local coordinate z’=w—1 at Q. z and z' are related by
z'=exp(2n./—1z)—1. Let T be the associated operator with respect to the
transition function z’=exp(2n./ —1z)—1.

The process of gluing the boundaries of the annuli {|q|<|w|<1} corresponds
the process of taking traces of the vertex operators. Let W=P;Z, W (i) be
a representation of V with the action of L, on W (i) as i+ for some constant h.
Consider the trace of the operator ¥ (zF°a, z)g%° on W:

tr|y Y (zFoz, 2)qhe . (7.8)

It is easy to see that (7.8) is a power series in C[[g]]q" It is proved in [Z] that
tr|y ¥ (z5z, z)g%° converges on 0<|q|<1 for every a under the condition that
dim V/C ,(V) < oo, where C, (V') is the subspace of V spanned by the vectors of the
form by (—2)b, for by, b,eV. We define a functional y(W, t)eV * by

(W, 1), a) =tr wo(Ta)g™

where we put o(7Ta) instead of a because of the coordinates transformation. The
results of [Z] about the trace try o(a)g-° implies that y(W, 1)eN(T;; 0;z; V).

5. Vertex operator algebras associated to the affine Lie algebras. Let g be a simple
Lie algebra, §=g® C[t,t !]@ Ck be the associated affine Kac-Moody Lie
algebra [K]. We write a(n) for a ® t", and a(z)=)." _ a(n)z "~ '. For k a posi-
tive integer, the integrable highest weight representation of g of level k has a vertex
operator algebra structure. The set of irreducible presentations of L, are the same
with the set of integrable highest weight representation of g of level k, and L, is
rational. See [ FZ] for detail.
For a N-labeled Riemann surface

S=(Z;04,. .., 0n 210 . s 2 Wi,y ., Wy .
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Let M(Z; Q.. .., Q) be the space of meromorphic functions on & with poles at

most at Qy,. .. QN (so it is the same as I'(X; Q4,...,Qx; k%). For aeg, fe

M(Z;0Q,,. .. QN) put a(f, )= z -, Res; (a(z)1,,f); which acts on ®l L Wi
The space of vacua defined by Tsuch1ya—~Ueno—Yamada is

”//(f):{xe(Wl@- @ Wy)t|x-a(f, %)
=0 for all aeg and feM(Z;Q4,...,0x)} .

Since a(z) is a vertex operator of a primary field of degree 1, we see that the
condition for xe ¥~ (27 ) appears weaker than the condition for xeN (£). Since L, is
now generated by g, using the same method in proof of Theorem 5.1 with the Lie
algebra g playing the role of the Virasoro algebra, one can prove that ¥~ (Z)=N (Z)

6. Vertex operator algebras associated to Heisenberg algebras. Let {1, a(n)(neZ)}
be an infinite dimensional Heisenberg algebra; it has commutation relations
[h(m), h(n)] =m0+ 4 01. The polynomial ring V=C[a(—1),a(—2),...] of vari-
ables a(—1), a(—2),. . . (V is also called the Fock space) is a representation of the
Heisenberg algebra. F has a vertex operator algebra structure; the vertex operators
are generated by the basic vertex operator a(z) Zn_ @Mz 1 [FLM2]. For
a 1-labeled Riemann surface £=(Z, 0, z, V) (Q is a point on X, z is local coordinate
at Q), with a little effort, one can prove that

N(f)={er*|x-Res (a(2)f(z))=0 for every feH*(Z—Q)},

where H®(X — Q) denotes the space of meromorphic functions with possible poles
at Q. Then we can follow a method in [DVV] to compute N(Z). It goes as follows
(see [DVV] Sect. 6¢ for detail). Let g(z) be a multi-valued meromorphic function
with possible poles at Q and with constant shifts around the nontrivial cycles of the
surface, then dg(z) is a meromorphic differential with possibles at Q, so

[Res(a(2)g(2)), Res,(a(2)f(2)) ] = Res.(f (2)dg(2))=0,

for every f(z)e H®(X —{Q}). Thus the operators Res,(a(z)g(z)) preserve N (£). The
space of such g(z) modulo H°(Z —Q) is naturally dual to H,(Z, C), hence is 2g
dimensional (g is the genus of Z). We take 2g such multi-valued meromorphic
functions g4,,. .., 94,598, - -9, corresponding to cycles 4;, B; in H{(X) such
that

[Res.(a(2)g.4,(2)), Res(a(2)g4,(2)) ] =[Res.(a(z)gB(2)), Res.(a(z)gp,(2))1=0 ,
[Res,(a(2)9.4,(2)), Res.(a(z)g,(2)) ] =01 .

One can then prove that thereis a unique xoeN(E) (up to scalar) such that x, is an
eigenvector for Res,(a(z)g4,(2)) (i=1,...,g9)and N (£) is a completion of the space
spanned by Res,(a(z)g Bx(z)) Resz(a(z)gB (2))xo. In particular, we see that N ()
is infinite dimensional if g >0.

7. Vertex operator superalgebras associated to Clifford algebras. Recall that an
infinite dimensional Clifford algebra generated by b,, ¢,neZ has anticommuting
relations:

Z)mbn'i'bnbm:oa CmCnt CnCm=0, bmcn'i'cnbm:ém-i-u,()'
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For an integer j, the canonical Clifford module V; is generated by a vacua vector
1 and 1 is annihilated by annihilation operators bi_;, b2—j,...;¢) Cjatsr-. ..
A basis of V; is obtained by acting the creation operators by, b_;_1,...;¢-1-j,
€—(1-j)—1,- - - o0 1. V; has a structure of vertex operator superalgebra, the vertex
operators are generated by two basic vertex operators b(z)= Z,._ —wb,z7" 7 and

c(2)=)"__ ¢,z "t~ (see [A] Sect. 4 for a proof).

The notion of global vertex operators and the space of vacua generalize directly
to vertex operator superalgebras. It is easy to see that V; is its own unique
irreducible representation, and use a similar argument as in the proof of Theorem
6.1, we can prove that the space of vacua for N-labeled Riemann surface is
isomorphic to that for 1-labeled Riemann surface. Therefore is sufficient to con-
sider the case 2=2, 0,z V;). Note that b(z) (c(z)) is a primary field of degree
j (1—j). One can prove

N(£)={xeV}|x-Res,(b(z) f(2))=x- Res,(c(2)g(z)) =

for every f(2)el'(Z; Q, k1Y), g(z)el'(Z; Q, k%) } .

In [GGMV], N(£) is proved to be one dimensional and an explicit formula for
a basis is given. This conformal field theory is also studied in [KNTY].

8. Gluing Construction of the Space of Vacua and Modular Functors

Having defined the space of vacua on labeled Riemann surfaces, an immediate
question is to study the structure of these spaces. We give a conjecture on the
construction of the space of vacua by glulng Riemann surfaces. This conjecture can
be roughly stated as that £ —» N(Z) is a modular functor if the vertex operator
algebra V satisfies a certain finiteness condition.

Let

le(zl;Qla- "5QN’P,;217- . -3ZN=Z,):

§2=(22; On+ts- > Onirs PP Znits s Znems 27) (8.1)

be two pointed Riemann surfaces. Let Dy ={|z'|<|q;|} and {D,=|z"|<|q,|} the
discs near P’ and P” respectively such that they contain none of Q;’s. We cut off
D, from X, and D, from X, and glue the two boundaries together by the relation
z'z" =q1q,, we get a (M + N)-pointed Riemann surface with the genus equal to the
sum of genus of X, and X,. Similarly, we can glue two marked points on a single
pointed Riemann surface. If

2/=(21;Q17- .. 7QN: Plap,,; AR aZN’Z,’Z” (82)

is a (N + 2)-pointed Riemann surface, we cut off two discs {|z'|<|q,|} and {|z"| <]
g»|} which contains none of Qs and glue the two boundaries by the relation
z'z" =q,q,, we get a N-pointed Riemann surface with genus increase by 1. In both
cases the resulting pointed Riemann surface 2, depends only on the product
q=q14q>. Every n-pointed Riemann surface can be obtained in this way by success-
ively gluing the 1-pointed, 2-pointed or and 3-pointed Riemann spheres.

Let V be a rational vertex operator algebra, Wy,..., W, be a sequence of
irreducible representations of V and assume W, and W, (1 <s<t<m) are dual with
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each other, a linear functional fe(W; ® - - - ® W,,)* is called contractable at the s-th
argument and the t-th argument if the following holds: let {¢;};2, be a homogeneous
basis of W, {e{}/=; be its dual of W, (so <e;, ej>=4;), for every x,eW; 1Si<m,
i=s, 1), the series

fri® Re®  Qei® - @Xy) (8.3)
i=1

converges absolutely. For such f, the contraction of f at the s-th argument and the
t-th arqument is defined to be the vector in (W, ®... W,.. . W,...®@W,)*
(where ~denotes the omission) whose value on &, , X; is (8.3).

Conjecture 8.1. Assume vertex operator algebra V satisfies the conditions: (1) V is
rational. (2) V is a sum of highest weight representations of its Virasoro algebra,
dim(Vp)=1. (3) V is an irreducible representation. Let W, , ..., W, be a complete
list of irreducible representations of V. Then

(1) For two labeled Riemann surfaces:
5.a=C00s, s Ons Plizese 2 2 Way o, W, W),
i2,oc’=(22;P”7 ON+1s o5 QNF+M;ZN+1>- v 2N Wo Whats oo, W)
let
fqz(zq;Qla- s ONeas Zs s Znans Was o oo, W)

be the labeled Riemann surface obtained by gluing the points P’ and P" with the

parameter q described as above. Let be qﬁil be the operator which acts on
(W, ®: - ® Wy ® W,)* as the operator qL° on the (N + 1)-th factor W,. For every

X1€NE1 ) (W, ® - ® Wy ® W,)*
and
XZEN(SZ, )Wy 1 @ - @ Wy @ WH*,

q,’(,‘i 1X1 @ x, is contractable at (N + 1)-th argument and (N + 2)-th argument and the
contraction is in N(Z,). This defines a linear map L,: N(£1,,) ® N(£3,») = N(Z,).
The linear map

B L, PNCEL,)ONE, )~ NEY
i=1 i=1
is a linear isomorphism.
(2) For a labeled Riemann surface
S&=(Z,, Qla L QNaP’, P”; 215+ - -5 2N, Z,a Z”; Wla v WNa Woc: Wm’) 3
let

Zq=(zq;Q1,- s ONar Zas e Zhaas Wi oo, Waen)

be the labeled Riemann surface obtained by glLuing 5! at the points P’ and P"
described as above. Then for every xeN(2y), gy’ 1x is contractable at (N + 1)-th
argument and (N +2)-th argument, and the contraction defines a linear map



Global Vertex Operators on Riemann Surfaces 529

L,: N(Z}) - N(£,). And the map

(-B L, @ N(E;)->N(E)
i=1
is a linear isomorphism. .
(3) N(2) is finite dimensional for every X.

There are three infinite families of known vertex operator algebras satisfies
these conditions: the vertex operator algebras associated to integrable highest
weight representations of the affine Kac—Moody algebras [FZ]; the vertex oper-
ator algebras associated to the minimal modules of the Virasoro algebra [ Wa]; and
the vertex operator algebras associated to positive even lattices [FLM, Dol]. In
the lattice case, the relation of vertex operator algebras with the path integral
approach is discussed in [ T]. These three families corresponds to WZW-models,
Minimal Models and the torus models in conformal field theory, respectively (see
e.g., | BS, TUY, KNTY] for other approaches to conformal field theory). And the
Moonshine module [FLM1, Bol, FLM2, Bo2] also satisfies these conditions, and
it is proved in [[Do2] that the moonshine module is rational and it has the unique
irreducible representation.

This conjecture reduces to the construction of the space of vacua on any labeled
Riemann surfaces to the construction of the space of vacua on 1,2 and 3-labeled
spheres with representations assigned at each marked point irreducible, these cases
have been discussed in Sect. 7.

For the vertex operator algebras associated to integrable highest weight
representations of the affine Lie algebras, the results in [TYU] imply the above
conjecture.

The truth of Conjecture 8.1 together with Theorem 6.2 implies the correspond-
1ng gluing properties for correlation functions. Let x; e N(£ ,) and x,eN (£, ) as
in the Conjecture, xe N (2 ) be their contraction. Let {e;} be a homogeneous basis
of W, and {e; } be its dual basis in W,.. Let Py, . . . , P,, be m points on Z, such that
the first s points are in X' and the last m—s points are in X',. Then the correlation
function on Z,

Fx(vla---aUN+M;a17-~-aam;P1:-'-9Ps)

associated to x, v;eW; (i=1,. .. , N+ M), aeV(i=1,...,m)is equal to
[e e
z Fxl(”la- . 5UN’ei;a1’~ .. 9as;P19' .. sPs)
i=1

’ . .
'sz(eisUN-{—la' .. 9UN+Maas+13~ .. ’am5Ps+15' . . 9Pm) .

Recall the definition of modular functors in [Se]. Let @ be a finite set of labels
which contains 1 and has an involution ¢+ ¢ such that T=1. Let R, be the
category whose objects are disjoint unions of Riemann surfaces with each bound-
ary circle parametrized and equipped with a label from @. A morphism in Rg is
several sewing operations which sew together pairs of parametrized boundaries,
and we allow a pair circles to be identified only if they have the same labels.
A modular functor is a holomorphic functor from g to finite dimensional
complex vector spaces satisfying the certain properties [Se]. If we take the label set
& to the set of irreducible representations of V, and the involution in @ is given by
the dual representations, the label 1 is the adjoint representation. And we modify
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the category Ry by taking the objects as disjoint unions of labeled Riemann
surfaces and a morphism as the gluing operations on pairs of labeled points with
dual labels described as above. For an object 0=5,11---11%,, we define
N@O)=N(2{)® - - &® N(2};). Then Conjecture 8.1 says that N defines a functor
from the category R to finite dimensional vector spaces which satisfies similar
properties with a modular functor. One of the conditions of a modular functor is
that when {X}},p is a holomorphic family of surfaces parametrized by a complex
manifold B the spaces corresponding to {X,} forms a holomorphic vector bundle
on B. In our situation, we can define the sheaf of vacua on a local family of
N-labeled Riemann surfaces as in [ TUY ], presumably the Virosoro algebra gives
a connection of the sheaf of the vacua. However in order to generalize the results in
[TUY] to arbitrary rational vertex operator algebras satisfied the assumptions
given earlier in the section, we need a structure theory for rational vertex operator
algebras which is not available today.

The spaces of vacua on a 1-pointed Riemann surface with 0-section assigned at
the puncture for the vertex operator algebras associated to integrable highest
weight representations of Kac-Moody affine Lie algebras (they are the same as the
spaces of vacua defined in [TUY], see Sect. 7) can be identified with the space of
global sections of certain line bundles on the moduli space of stable G-bundles on
the underlining Riemann surface [Fa]. We expect similar geometric interpretations
for the spaces of vacua associated to other rational vertex operator algebras, e.g.,
the space of vacua for the moonshine module may relate to the moduli space of
M-structure (M is the Monster group) on the underlying Riemann surface. And we
expect that the vertex operators Y (g, z) for a primary and their correlation func-
tions associated to a vector in the space of vacua also have interesting geometric
meanings.
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