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Abstract .  In [33], we studied the constraint problem for two-dimensional quantum 
gravity in the conformal gauge. In this gauge, we proposed an ansatz for the grav- 
itational sector. Using this ansatz, we established a striking connection between the 
matrix models and continuum 2D gravity. We also announced several results on 
semi-infinite homology of the Virasoro algebra with coefficients in a suitable class of 
positive energy modules. In this article, we will provide details of the proof of the 
announced results. 

1. Introduct ion  

1.1. Motivation 

The Liouville theory has been the focus of a number of recent discussions in the 
contexts of two-dimensional quantum gravity and non-critical strings [14, 35, 42, 
11, 10]. When c < 1 matter is coupled to 2D gravity, certain aspects of the theory - 
critical exponents, string susceptibilities, correlation functions - have been extensively 
studied via both the continuum and matrix-model approaches. There is, however, one 
fundamental aspect of the theory which lacks the same level of understanding - what 
are the basic building blocks of the physical state space? 

If we consider 2D gravity coupled to a conformal field theory (matter) in the 
conformal gauge, then gauge fixing results in the Virasoro constraint [11] 

TcZr(z) + T~(z) + The(z) ~ O, (1.1) 

where TCFr(z), T~(z), The(z), are the stress-energy tensors of the CFT, the Liouville 
field ~, and the conformal ghosts respectively. T~(z) has the form [11, 42] 

T ~ ( Z )  = _ 1 (099)2 q_ i ~ 0 2 ~  , (1.2) 

* Supported in part by the Alfred P. Sloan Foundation 
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where ~ is a parameter of the theory. Since (1.1) is a first class constraint, a natural 
way to quantize the theory is the BRST procedure. Thus it is clear that the basic 
building blocks of the physical state space, in the presence of a matter CFT, should 
be the BRST homology classes. These homology classes depend on the choice of the 
matter and on the representation of the Virasoro algebra in the Liouville sector. We 
will begin with the minimal models as matter. A natural class of representations in 
the Liouville sector is given by the free field realizations of the Virasoro algebra [8, 9, 
22], also known as the Feigin-Fuchs modules. The importance of these modules has 
been demonstrated both in physics (see for example [20]) and in mathematics [18]. 
In our previous announcement [33], we determined exactly which of these modules 
lead to non-trivial BRST homology. In this article, we provide details of the proof. 
Our ansatz for the gravitational sector has also been used for studying c = 1 boson 
coupled to gravity [34]. The c = 1 theory was shown to be substantially different 
from the c < 1 theory. 

We begin by briefly reviewing the BRST formalism. In addition to the Feigin- 
Fuchs modules, two other classes of Vir representations - the Verma modules and 
their irreducible quotients - arise naturally in our discussion. In fact in our earlier 
announcement, some key results concerning all three classes of modules were stated 
(Theorems 1-3 of [33]). Here, we will devote Sects. 2 and 3 to the proofs of these 
results. We then conclude with a few remarks and some preliminary results on super- 
gravity. More detailed discussions can be found in [31]. 

We thank A. Rocha for helpful discussion. We especially thank C. Crnkovic and 
G. Moore for numerous valuable discussions during the course of this work. 

1.2. The BRST Formalism 

For a mathematical review of the BRST theory of graded Lie algebras, see [17, 21, 
32, 31]. The content of 2D gravity coupled to matter in the conformal gauge has the 
form 

Liouville | Matter | Ghosts. (1.3) 

This system has a first class constraint given by the algebra Vir | Vir. For simplicity, 
we will focus, throughout this article, on the left-handed part of theory. 

Upon quantization, the Liouville sector is represented by the Feigin-Fuchs modules 
F~, n. They are the free-hield representations in which the Virasoro algebra, Vir, acts 
by: 

TL(z )  = 1 :j(z)2: + ~Oj(z) (1.4) 

with central charge 
CL : 1 -- 12~ 2 . (1.5) 

The space F~,~ is the linear span of the vectors 

JnlJnz ' ' ' jnkV( ,n  nl _< n2 <__ . . . nk  < 0. (1.6) 

The modes of j ( z )  satisfy 

[J,~, Jm] = n6n+~,0, (1.7) 
jnv~, n = (~ - rl)6r~,OV~, n n >_ O. 

A natural class of matter to be coupled to gravity consists of the conformal field 
theories (CFT). Associated with each CFT is a collection of modules M over Vir. 
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Thus there is a stress-energy T M ( z )  which operates on each M, with central charge 
CM. We will primarily focus on the case when M is a minimal model representation 
[3]: 

M = L(cp,q, Ar,s) , (1.8) 

6(p - q)2 
CM = cp, q = 1 - - ,  (1.9) 

Pq 
( p r  - q s )  2 - ( p  - q)2 

Ar's  = 4pq ' (1.10) 

where p, q, r, s are positive integers with gcd(p, q) = 1, pr  > qs, q > r, p > s. 
The Liouville sector and matter together do not constitute the full quantum state 

space; neither do they necessarily contain all the physical states. Gauge-fixing of 2D 
gravity naturally leads to the ghost sector and the BRST constraint, by which physical 
states are determined. 

According to the prescription of BRST quantization, there is, associated with the 
constraint algebra Vir, a Clifford algebra ~ defined by the relations: 

{~(x'), ~(y)} = ( x ' , y )  x '  c Vir', y E Vir. (1.11) 

There is also a representation of Vir, {A~ +.(Vir/C&), ~/}, given by 

~(x) = ~ :c(L')~([L,~, x]): + (~, x) (1.12) 
m 

with/3 = - L ~  - 2 6 ~ ' .  In more familiar notations, we write 

Cg h = - -  26, b~ = ~(Ln), c~ = e(L'_n), (1.13) 

L~ h = ~I(L~) = E ( m  - n):c_,~b,~+~ : - 6~ , (1.14) 

Tgh(z )  = ~ Lah z - n - 2  = : c(z)Ob(z) + 20c(z)b(z)  : (1.15) n 

c(z) = E c ~ z - ~ + l '  b(z) = E b~z -n -2 ;  (1.16) 

c(z),  b(z) are respectively the ghost and anti-ghost fields. The spaces A~+.(Vir/C~) 
in which the ghosts act are spanned by vectors of the form 

bni . �9 �9 bnieml �9 �9 �9 CmjWO , 
(1.17) 

n l < - . - < n ~  < 0 ,  m l < . . . < m j < _ O ,  

where w0 is the vacuum vector carrying ghost number zero. 
(X3 

Now the fu l l  quantum state space should be the -~--chain complex: 

C_~ +,(Vir, C5; M | Fr = M @ F~,n | A.~+,(Vir/C~). (1.18) 

The full gauge constraint to be imposed is 

T M ( z )  + T L ( z )  + Tgh(z )  ,-~ O. (1.19) 

In order to get any state to obey (1.19), we must at least have zero total central charge: 

C M -~- C L + Cg h = O .  (1.20) 
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The BRST operator is given by 

d = E ( L r n + L M ) c _ n -  �89 E ( n - m ) : e _ n e _ m b n + m : - c o .  (1.21) 

It can be written as 

d = ~ J(z )dz ,  (1.22) 

J(z) ~- :(TM(z) + TL(z)  -- b(z)Oe(z))c(z): . (1.23) 

The energy operator in each sector is given by the zeroth component of its stress- 
energy field. Thus the total energy operator is 

Lo = L L + Lo M + Lg h �9 (1.24) 

This operator is BRST exact: 
{d, b0} = Lo. (1.25) 

Therefore, the subspace annihilated simultaneously by bo and Lo is stabilized by d. 
oc 

This subspace is the -~--complex relative to Viro = CLo + CO: 

C~+.(Vir, Viro; M | Fr 

= {w E M | F(, o | A~+.(Vir/C0) I Low = 0 = bow}. (1.26) 

This is the main object of our study in this article. We will return to the complex (1.18) 
later. The homology groups, H~+.(Vir, Vir0; L(ep,q, z~r,s) | F(,o), of this complex 
are called the semi-infinite homology groups relative to Viro. 

Problem 1. Given p, q, r, s, classify the Feigin-Fuchs modules F~, o for which 

H~+.(Vir, Vir0; L(cp,q, At,  s) | F~,o) 7~ O. 

This is the equivalent to determining all free field representations of the gravitational 
sector which result in non-trivial BRST invariant states, in the presence of confcrmal 
matter L(cp,q, At,s). 

Theorem 3.1 (Theorem 3(a) [33]). For r/E C, H ~  (Vir, Viro; L(cp,q, A~,~)|162 

iff 
rl = x / ~ e l  (2pqt + pr + e2qs) 

2,/7N 
for some t E Z, el, e2 = +1. 

If we interpret the zero mode j0 as the center-of-mass momentum variable, as one 
does in the free bosonic string theory, then Problem 1 really amounts to diagonalizing 
the momentum operator J0 in the space of physical states. Thus it is reasonable to 
ask for the multiplicities of the eigenvalues. 

Problem 2. Determine the exact number of BRST invariant states in each case, i.e. 
calculate dim H~+,(Vir, Vir0; L(cp,q, Ar,s ) | F~,O). 

2pqt + pr + ~2qs P + q  ~'~?']=el Theorem 3.3 (Theorem 3(b) [33]). For ffZ-f~ -- 2 v ~ '  
/~ E Z ,  61, ~'2 : -4-1, 

H_~+n(Vir, Viro; L(ep,q, Ar,~) @ F~, o) ~ 5n+sign(t)a,,oC, 

where d o is given by Eq. (3.55). 
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The next two chapters will be devoted to proving the two theorems above. Several 
examples of the results are illustrated in Figs. 1-4 at the end of Sect. 3.2. 

2. Irreducible and Verma Modules 

Our first step toward solving Problem 1 is to first classify the highest weight irreducible 
modules L(e, ,4) which afford non-trivial homology: 

H~+ , (Vi r ,  Viro; L(cp,q, ,4r, s) @ L(c, A)) r O. (2.1) 

The next few sections are devoted to this question. We will return to Problem 1 in 
the next section. The problem of characterizing (2.1) involves the knowledge of the 
structure of  Verma modules over the Virasoro algebra [18, 19, 28, 39]. 

2.1. Structure of Verma Modules 

Recall that for c, ,4 C C, the Verma module M(c, A) is the largest highest weight 
module with highest weight (c, ,4). Given another M(c t, A'), we can ask whether 
there is a non-trivial module map 

M(c', A') ~ M(c, A).  (2.2) 

Note that if it exists, this map is an embedding. Obviously, the map exists only if 
c = c'. Since M(c, A t) is generated by a single highest weight vector vzx, (we suppress 
c from the notation, and assume that c is fixed) the map (2.2) is clearly determined 
by the image of v,a,. Because vzv is singular 

Lnvzv = 0,  n > 0,  (2.3) 

so is its image under (2.2). Thus, that the map (2.2) exists implies that M(c, A) has a 
singular vector of weight At (we call A t a singular weight of  M(c, ,4)). Conversely, 
if M(c, ,4) has a singular vector u of  weight At, then U(Vir) �9 u is a highest weight 
submodule in M(c, A). By universality of  M(c, A), there is a unique (injective) map 

M(c, ,4') ~ M(c, A) (2.4) 

with va ,  ~-~ u. Thus the knowledge of the embeddings among Verma modules is 
equivalent to knowing the singular weights in every Verma module. If A t is a singular 
weight of M(c, A), we write 

,4 ~ ,4' (at c). (2.5) 

Thus (2.4), (2.5) are two equivalent statements. We will also use 

A -~# A'  (2.6) 

to mean that /1 ---+ A '  but A ~ ,4' (again at a given e). 

T h e o r e m  2.1 (Feigin-Fuchs). Every submodule of M(e, ,4) is a sum of Verma modules. 
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Theorem 2.2 (Feigin-Fuchs). The following 
embeddings among Verma modules: 

I I I +  : M(c , ,4o)  ~ M(c , ,41)  --+ 

I l l _  : 

\ 

M(c, ,40) +-- 
\ 

I I I '+:  M(e, ,40) -+ 

I l K  : M(e,  ,40) +-- 

I I  : M(c,  ,40) +-- 

I : M(e , ,40)  

are the only possible diagrams of  the 

M(e,  ,42) "-+ M(c,  A3) . . .  

M ( c , , 4 - 1 )  --* M(c , ,4_2)  --* M ( c , , 4 _ 3 ) . . .  

M(c, ,41)  +- M(e, A2) +- M(c , ,43)  . . .  

M(e , ,4 -1 )  +- M(c , ,4 -2 )  +--- M ( c , A _ 3 ) . . .  

M(c , ,41)  ~ M(c,  A2) ---+ M(c , .43)  . . .  

M(c, ,41)  ~-- M(c, ,42)  +-- M(c , ,43)  . . .  

M(c,  ,41) 

Each arrow represents a unique map (up to multiple). Every Verma module M(c ,  A)  
belongs to a single such diagram. The diagram containing M(c,  A)  also contains all 
the Verma modules related to M(e ,  A)  by non-zero maps. 

As mentioned earlier, an equivalent description of a map between two Verma 
modules is an arrow relating their highest weights. The following terminology will 

be handy later. If  A ~ A/(A ~ A/), we call A / a (proper) descendent of A; ,4 an 

(proper) ancestor of ,4/. If  ,4 ~r ,4' and there is no A" such that "4 r A" r A',  we 
call A I an immediate descendent of "4; A an immediate ancestor of "4~. If ,4 --~ ,4~, 
we define the distance between them 

d(,4, ,4 ')  = d (A ' , , 4 )  = max length of chain ,4 ~ A1 ~ r  ~# An ~r ,4 ' .  (2.7) 

Thus d(,4, ,4) = 0 for any ,4; d(,4, ,4/) = 1 if ,4~ is an immediate descendent of ,4. 
Feigin and Fuchs proved the two theorems above by studying the geometry of  the 

roots of the Kac determinant formula [28, 18]. Moreover, they gave an algorithm for 
computing all the ancestors and the descendents of any given A. For example, in the 
(p, q) minimal models, we have 

c = ep,q, ,4 = ,4r,8. (2.8) 

The diagram of ,4r,8 is of type I I I _  [39]: 

M(c,  bo) +- M ( c , a _ l )  +-- M(e ,b_I )  +- M(c,a_2)  . . .  

%. ~( ~( (2.9) 

M(e,  ao) +-- M(c,  bl) +-- M(C, al) . . .  , 

where 

(2pqt + pr  + q8) 2 - (23 - q)2 
at = 4pq 

(2pqt + pr  - qs) 2 - (p - q)2 
bt = 

4pq 

for t E Z. 
The following is consequence of  the theorems of  Feigin-Fuchs. 

(2.10) 

(2.11) 
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L e m m a  2.3. chM(c, A) = ~ chL(c, A'), i.e. 
A~Ar 

1 if A--~ A I 
[M(c, A) :L(c ,  A~)] = 0 otherwise. 

Feigin and Fuchs discovered yet another remarkable fact about Verma modules. It 
turns out that 

M ( c , A ' )  ,-+ M(c,  A)  iff M(26  - c, 1 -  A ' )  e--~ M(26  - c, l - A)  (2.12) 

("reflection principle"). Thus given a diagram D in Theorem 2.2, the new d iagram/) ,  
obtained by replacing every M(c,  A)  in D by M(26 - c, 1 - A) and reversing the 
arrows in D, is also an embedding diagram. We call b the reflection image of D. 
This will be a useful way to get new embedding diagrams. 

2.1.1. Structure o f  Irreducible Highest Weight Modules 

Proposi t ion 2.4. Every irreducible L(e, A)  has a resolution by Verma modules. In 
particular, there is an exact sequence 

�9 .. ---+ M2 ~ M1 ~ Mo --+ L(e, A )  -+ O, (2.13) 

where Mi  is either zero or a direct sum of  Verma modules M(e ,  B ~) with d(A,  B ~) = i. 

Proof. The special cases c = 0, 1 ,25,26 were considered by Rocha-Wallach [41], 
and c = Cp,q, A = A~,~ was considered by Feigin-Fuchs [19] and Rocha [39]. For 
later reference, we will give a uniform treatment here. 

Case 1. A has no proper descendent. This means that M(c,  B)  is irreducible. So 

0 ~ m ( c ,  A)  ~ L(c, A)  ---+ 0 (2.14) 

is exact. 

Case 2. A has a single immediate descendent M(c,  BP). This means that M(c,  A ~) is 
the maximal submodule of  M(c,  A). Thus 

0 ---, M(c ,  A')  ~-, M(c, A) ~ M(c,  A ) / M ( e ,  A ' )  = L(e, A)  ---+ 0 (2.15) 

is exact. 

Case 3. A has two immediate descendents A1, A~. 

Step 1. Let 
Mo = M(e,  B ) ,  

M1 = M(c,  A1) @ M(c,  •tl). (2.16) 

Define fl  : M1 ---* M0 by 
f l ( x ,  x')  = x - x' (2.17) 

for x E M(c,  A1), x ~ E M(c,  A]). Then I m f l  = M(c,  A 1 ) +  M(c,  A]) is the maximal 
submodule of  M0. So 

M1 ~ Mo --~ L(c, A)  ---+ 0 (2.18) 

is exact with Ker f l  = {(x, x) [ x C M(c,  A1) n M(c,  Z~)}. 
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Step 2. We now proceed inductively. According to Theorem 2.2, there are now two 
possibilities: either Aa, A] have a single common immediate descendent A 2 in which 
case we let f2:M2 ~ M1 be as follows: 

M2 = M(c, A2), (2.19) 

fz(x) = (x, x) ,  x E M2. (2.20) 

Clearly, f2 is injective. Since M(c, A2) is the maximal submodule of M(e, A1) and 
M(c, A]), we have M(e, A2) = M(e, A1) + M(c, A]). Thus 

0 ~ M2 f_s M1 I-L1 Mo --* L(e, A) ~ 0 (2.21) 

is exact, and we are done; or, A1, A] have two common immediate descendents A2, 
A~, in which case we let fz:M2 ~ M1 be as follows: 

M2 = m(c,  A2) @ m(c,  A~) , (2.22) 

fz(X, X') = (X -- X', X -- mr). (2.23) 

Clearly, Im f2 = {(Y, Y) I Y C M(c, A2) + M(c, A~)}. Since M(c, A2) + M(c, A~) is 
the maximal submodule of M(c, A1) and M(c, Ar 1), we have M(c, A2)+ M(c, A~) = 
M(c, A1) n M(c, A]). Thus 

M2 & M1 ~ Mo ---+ L(c, A)  ---+ 0 (2.24) 

is exact with Ker f2 = {(z, x) [ x C M(e, A2) A M(c, A~)}. We can repeat Step 2 all 
over again (with (A2, A~) playing the role of (A1, A]) etc.). Continuing this way, if 
the process terminates, we get a finite exact sequence: 

0 -+ M~ ~ . . .  --+ Mo --* L(e, A) ~ 0 (2.25) 

Otherwise, we get an infinite exact sequence 

�9 .. --* M~ ~ . . .  --+ Mo --~ L(e, A) ~ O. (2.26) 

In any case, L(e, A)  has a resolution. [] 

Corollary 2.5. The formal character of L(c, B) in each case is given as follows." 
(a) In Cases 1 and 3 above, 

eh L(e, A) ~f trr(c,A)q Lo c/24 7_ q-C/24 I I  (1 -- qn)-I E (--1)d(A'A')qA' " 
n > 0  A - * A  t 

(b) In Case 2 above, 

ch L(c, A) = ch M(c, A) -- ch M(c, A~). 

When one has knowledge of the irreducible characters, there is a useful tool for 
oe 

detecting non-trivial ~--homology - namely, the Euler characteristic. Let V be a 

positive energy Vir-module. Define 

Eul(V) = E ( -  1)n dim H~+n(Yir, Vir0; L(ep,q, An,s) | V ) .  (2.27) 
n c Z  

By the Euler-Poincar6 principle, 

Eul(V) = E ( -  1)n dim C~+,~(Vir, Vir0; L(cp,q, An,s) | V).  (2.28) 
nEZ 
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Lemma 2.6. For any positive energy Vir-module V, we have 

Eul(V) = E [V :L(26 - ep, q, 1 - bs)] (# descendents of 1 - bs) 
s c Z  

- E IV :L(26  - Cp,q, 1 - as)] (# descendents of  1 - as). 
s c Z  

Proof. It is enough to restrict to V in which ~ acts by the scalar c = 26 - %,q. Let 
U be the ghost number operator. By Eq. (2.28), 

Eul(V) = Z ( - 1 ) n  dim[A~+n(Vir/Vir0) | L(cp,q, At,s) | V] L| 
n 

= [trA_~ (~ir/Viro)(--1)Uq LO • trL(cp,q,Ar,s)q L~ • trvq L~ 

= [ q - l H  ( 1 - q ~ ) 2 •  H (1-q7%)-1 E (-i)a(zx~'~'zV')qZX" 
L 

• Iv: ZX)leh ZX)] 
Zl .] qO 

t n > 0  A q0 

where []q0 means the coefficient of  q0. In getting the last expression, we have used 
diagram (2.9). Now using Corollary 2.5, it is clear that those A r {1 - a t ,  1 -b~}tez 
will not contribute to Eul(V). Thus we can write Eul(V) as 

E u l ( V ) = ~ t  [ E [ V : L ( c , l - b s ) ] q  -b" 
I-bs ~ l -br  

-- Z [V:L(c, 1 - bs)]q -a~ - E [V:L(c, 1 - as)]q -b~ 
[-bs---q-ar 1-as---* l -br  

+ E [V:L(c, 1 - as)]q -b~] - E [same]q-~ 
1-as-~ l -a r  J q-bt t 

= E [V:L(c, 1 - bs)] - E [V:L(c ,  1 - as)] 
1-bs--~ l -br  1-as--~ 1-br 

+ E [V:L(c, 1 - bs)] - E [V:L(c, 1 - as)] 
]-bs --* l - a r  1-as--* 1-at  

= E [V : L(c, 1 - bs)] (# descendents of  1 - bs) 
sEZ 

- E [V : L(c, 1 - as)] (# descendents of  1 - as) [] 
sEZ 

We now return to the resolution of  L(c, A) given by Proposition 2.4. Using the 
resolution, we can construct a spectral sequence {En}n_>0 according to Proposition 
A.2. This spectral sequence has 

E3,b  = H~+b_a(Vir ,  Vir0; L(cp,q, At,s)  @ Ma) ,  (2.29) 

E~ 'b = Ha(H~+b_a(Vir, Vir0; L(cp,q, A~,s) O M , ) ,  0 ) ,  (2.30) 
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and it converges finitely to a graded object associated with 

H ,  (C~+,(Vir, Vir0; L(cp,q, A~,s) | M ,  ), d + O) 

H ~  +,(Vir,_ Vir0; L(cp,q, At,s) | L(c, A)) . (2.31) 

Of course, it is the right-hand side of (2.31) that we ultimately want to compute. Note 
that we only need to worry about the case when 

c = 26 - Cp,q. (2.32) 

So from now on, c will assume this value. 
Our first step is to compute E0. By definition of the Ma, we have 

I 

Eo a'b ~ ( ~  H~+b_a(Vir, Vir0; L(cp,q, A~,,) | M(c, /1')) (2.33) 

! 

(~ here means summing over the Verma modules appearing in Ma. This reduces the 
problem to studying the right-hand side of (2.33). 

2.1.2. Computing H~+,(Vir,  Vir0; L(cp,q, A~,~) @ M(e, A')). By the Reduction The- 
orem (Theorem 2.13 of [32]), this homology reduces to 

H~+,(Vir,  Vir0; L(cp,q, Z~r,s)| , At)) ~ H_~ +,(Vir+, L(cp,q, z~r,s))l_Zy . (2.34) 

Recall that 

A~+kVir_ = Span of the b_nl b_n2.., b-n~ 1_, (2.35) 

A~_kVir+ = Span of the c_~ c_,~2 .. .  e_,~ k 1+. (2.36) 

Thus there is a non-degenerate bilinear pairing 

( , ) :  A~+,  Vir_ x A~_,Vir+ --+ C (2.37) 

such that 
(1_, 1+} = 1, b~ = b-n, c~ = c-n.  (2.38) 

Also we know that L(cp,q, Z2ir,s) has a non-degenerate bilinear form with 

<va .... vex~,,> = 1, L~ = L_~. (2.39) 

Note that both forms are non-degenerate on each eigenspace of L0. Thus the tensor 
product of the two forms gives a non-degenerate pairing on the total eigenspaces of 
L0: 

<, ) : C~+,(Vir_, L(cp,q, Ar,s)))~ x C~_,(Vir+, L(cp,q, Z~r,s))) ~ ---+ C (2.40) 

with 
(1_ | vex .... 1+ @ vz~,s) = 1, d*_ = d+, (2.41) 

where d• are the respective 2-differentials on the two complexes. This pairing 

induces an isomorphism on homology 

H~+,(Vir_,  L(cp,q, A~,~))~ = [H~_,(Vir+, L(cp,q, Ar, s))a] # . (2.42) 
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Here [ ]# means the space of linear functionals on [ ]. Thus Eq. (2.34) becomes 

H~+,(Vir, Vir0; L(cp,q, A~,~) | M(c, A~)) 

[H~_,(Vir_, L(cp,q, A~,~))1_2,,] # . (2.43) 

Since we know the embedding diagram of M(cp,q, A~,~) (diagram (2.9)), we can 
use Proposition 2.4 to get a resolution of L(ep,q, Z~r,s): 

. . .  ---+ IVI1 ~ Mo 0.~ L(cp,q, A~,s) ---+ O, (2.44) 

Mo = M(cp,q, bo), 

MI = M(ep,q, a-L) (9 M(cp,q, ao) , (2.45) 

M2 = M(cp,q, b-l) �9 M(cp,q, bl), etc. 

We want to use it to compute the homology of {C~+,(Vir_, L(cp,q, A~,s))I_A, , d_}. 
Once again, Proposition A.2 tells us that we have yet another spectral sequence 
{/~}n_>o with 

/~,v = H~+v_u(Vir_,/V/~)I-A,, (2.46) 

/)1 '~ = H~(H~+~_~(Vir_, J~,)l_At~ 6), (2.47) 

and which converges finitely to a graded object associated with 

H,(C~+,(Vir_,/17i,)1_2`, , d_ + c~) ~ H~+,(u L(cp,q, A~,~))I-A,. (2.48) 

By definition of _~7/,, and Eq. (2.46), 

E 0~~'~= _ _  H~+~_ _~(Vir_,M(c, " ))l--At 
d(Att,Ar, s)=V 

Ar,s- -*  Att 

~- ~ 6~,~61_2`, A, C2`,,. (2.49) 
d( Att, Ar, s)=U 

A r , s  ~ A tt 

We note that the semi-infinite homology of Vir_ coincides with the ordinary Lie 
algebra homology of Vir_. Since the module M(c, Art) is free over Vir_, the homology 
space is zero except at degree zero. Equation (2.49) immediately implies that the 
spectral sequence collapses, i.e. 

E~  = E o ~- 5 ~ , u  5LA,+a,,Ca,,. (2.50) 
d(Att,Ar,s)=U 

A r , s ~ A  tt 

Since {/)n},~_>0 converges to a graded object associated with (2.48), we have 

H~+~(Vir_, L(cp,q, A~,~))1_2`, =~ ( ~  61,2`'+A"CA" - (2.51) 
d(A",Ar,s)=v 

---4 t! ~r,s 2, 

Returning to Eq. (2.34), we have 
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Proposi t ion 2.7. For any A',  

H~+~(Vir,  Viro; L(cp,q, "4~,~) | M(26 - %,q, ,4')) ~- 

Corollary 2.8 (Theorem 1 [33]). 

B.H. Lian and G.J. Zuckerman 

| 
d(A~ Ar,s)=--v 

A r ,  s---+ z:~ tt 

(51,A% A" C A . .  

(a) H ~  (Vir, Viro; L(cp,q, ,4~,,) | M(26 - Cp,q, ,4'))  r 0 iff ,4~,~ -+  1 - ,4'. 

(b) For ,4~,~ --+ 1 - ,4', 

dim H~+,~(Vir, Viro; L(cp,q, ,4~,~) | M(26  - Cp,q, A')) = 5 n + d (  A . . . .  1--A'),0 �9 

2.2. Computing H~+.(Vir ,  Vir0; L(cp,q, ,4r,s) | L(c, A)) 

We are now ready to return to Eq. (2.33). Combining Proposition 2.7 and Eq. (2.33), 
we get 

! 

Eoa,b ,*,a ~ O~I,At+AttCzvt (2 .52)  

d(A",Ar,s)=a-b 
z~r,s----~A t' 

Theorem 2.9 (Theorem 2(a) [33]). H ~  (Vir, Vir0; L(cp,q, ,4r ,s ) |  L(26-Cp,q,  ,4)) r 0 
iff ,4r, s ---+ 1 - ,4. 

o() 
Proof Suppose that the ~- -homology  is non-trivial. Recall that {En}n>_0 converges 

finitely to a graded object associated with (2.31). Thus 

dim H~+b(Vir,  Vir0; L(cp,q, ,4~,,) | L(26 - Cp,q, A)) 

= dim Hb(C~+,(Vir,  Vir0; L(cp,q, ,4~,~) N M , ) ,  d + O) 

= ~ d i m E ~  b 
a 

<- E "" ~a,b olin ~0 
a 

=E E 
a d(A",Ar,s)=a_ b 

Ar, s--~ A" 

! 

E~I,A ' +A"  �9 (2.53) 

The third sum ranges over the highest weights A'  appearing in the a m term, M~, 
of  the resolution of  L(26 - Cp,q, ,4) [see Eq. (2.33)]. In particular, these ,4' must be 
descendents of  ,4. By assumption, the left-most term of (2.53) is nonzero. So the right- 
most term must be nonzero too. Thus there must be a descendent ,4' of  ,4(,4 ~ ,4') 
and a descendent ,4" of  ,4r,~(AT,, --+ ,4"), such that ,4" = 1 - ,4'. This means that 
,4r, s --+ 1 - ,4' (at Cp,q). By the reflection principle (2.12), ,4 ---+ ,4' (at 26 - Cp,q) 
implies that (1 - ,4') --+ (1 - ,4) (at Cp,q). Combining this with ,4r,, --+ (1 - ,4') (at 
Cp,q), we get ,4r,* --~ (1 - ,4) (at Cp,q), proving the first half of  our claim. 
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Conversely, for A~,s ~ 1 - A i.e. A = 1 -- at or 1 -- bt, Lemma 2.6 gives 

Eul(L(c,  ,4)) = E [L(c, , 4 ) :L(c ,  1 - bs)] (# descendents of  1 - b,)  
8 

E [L(e, A)  : L(c, 1 - as)] (# descendents of  1 - as) 
s 

= E 6zx,l-b,(# descendents of  1 - b~) 
8 

E 5ZX,l-a~(# descendents of  1 - as) i 

8 

= 4-(# descendents of  "4) 

which is non-zero. This completes the proof. [] 

We conclude this section with a more quantitative statement about the above ho- 
mology. From now on assume that A~,s ~ 1 - A at Cv, q. In this case, Eq. (2.52) can 
be written as 

Eo  ' b ~  ~ O 5,,z~'+zx"Czx" �9 (2.54) 
d(Att,Ar, s)=a-b d(A,At)=a 

Ar,s__+ Al '  A---~ A / 

Recall that E,~+l is the homology of  the complex: 

�9 "" 7-4 E ~  'b --~ E,2 - n - l ' b - 1  --+ . . . .  (2 .55)  

We claim that En+l  = E,~ for all n > 0. Consider n = 0. Using Eq. (2.54) and the 
reflection principle, we get 

d i m  E ~  'b = E 6 A ' , A "  

d(1- A,z:~/)=a, AI--* 1-- A 
d( AII,Ar,s)=a-b , Ar, s---* All 

= ~" 1. (2.56) 

d(1--A,A~)=a, d(Ar s)=a-b 
Ar,s---~ AI--~ 1-- A 

Note that if  ,4~,s ---+ ,4'  ~ 1 - ,4, then 

d(1 - ,4, ,4~,s) = d(1 - ,4, ,4') + d(,4', ,4~,s). (2.57) 

Thus (2.56) is zero unless 

d(1 - ,4, ,4~,s) = 2a - b. (2.58) 

In particular, we have 

dimEo 'b # 0 ~ dim Eo -1'b-I = O. 

This means that (see sequence (2.55)) 

E1 = EO. 

By the same argument, we see that 

E ~ = E o ,  n > O .  

(2.59) 

(2.60) 

(2.61) 
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So Eq. (2.53) becomes an equality: 

dim H~+b(Vir , Vir0; L(cp,q, A~,~) | L(26 - ep,q, A))  

= E E 1. (2.62) 
a d(l_ A,AI)=a, d(AtAr , s )=a_b  

Ar,s--~ A C-+ I-- A 

Proposition 230 (Theorem 2(b) [33]). For A~,~ --. 1 -- A, 

dim H~+b(Vir, Vir0; L(cp,q, A~,~) | L(26 - Cp,q, A)) 

f 1+( - -1 )  b+d(zx .... I - A ) _  5N,d(A .... l--A) /f Ibl __< d(A~,~,l-- A) 
(2.63) [ 0 otherwise 

Proof Let's abbreviate the left-hand side of Eq. (2.63) as Bo and write k = d(Ar,s, 
1 - / 1 ) .  From the conditions of the summation in Eq. (2.62), it's clear that for Bb ~ O, 
we must have 

k _> d(1 - A, A') = a > 0, (2.64) 

k >_ d(A', A~,s) = a -- b _> 0. (2.65) 

They imply that 
Ibl _< k, (2.66) 

which proves half of Eq. (2.63). Assume the inequality (2.66). Equation (2.62) says 
that Bb ~ 0 implies that 2a = k + b is even. Let's assume so. Then Eq. (2.62) 
becomes 

E { 1 if Ibl = k (2.67) 
Bb = 1 = 2 if Ibl < k. [] 

d(1--A,A')=-~,  d( At ,Ar ,  s)= ~ - 
Ar,s-~AI--*I--A 

3. Original Problems 

3.1. Returning to Problem 1 

We are now ready to determine exactly which F~,o affords non-trivial homology. 
Once again, the balance of central charge fixes v/L-]-~ to be 

v/L-f ~ - P + q 2 4 ~  (3.1) 

Theorem 3.1 (Theorem 3(a) [33]). For r/C C, H ~  (Vir, Vir0; L(cv, q, A~,s) | F~, n) 5 0  

/ff 
= xflZ~el (2pqt + pr + e2qs) 2x/U ~ for some t C Z, sl,~2 = +1 .  

Proof. Computing the formal character of F~,n, we get 

eh Fr def trF~ oq L~ 

= q-O-12~2)/a4q�89 H (1 -- qn)-i 

n>0 

- c h M ( 1 - 1 2 4 2  , 1 2 - -  ~ (T] - -  ~ 2 ) ) .  (3.2) 
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Suppose 

This gives 

7] = 4_v/-Z- f (2pqt + pr + sqs) (3.3) 
2V5  

1 { 1 - at if e = +1 (3.4) 
(7]2 __ ~2)  = 1 bt if e = - 1 .  

Using this to compute the Euler characteristic, we get 

( - 1 )  d(at,Ar,s) if e = +1  

E u l F L v =  ( - 1 )  d(bt,A~,s) if e = - I  

= e .  ( 3 . 5 )  

In particular 
H_~ (Vir, V i r 0 ;  L(ep,q, Z~r , s )  | F( , rT)  7 k 0 .  (3.6) 

Conversely suppose (3.6), i.e. F~,~ affords homology. This implies that F~,~ has 
a composition factor that affords homology, i.e. 

H_~ (Vir, Vir0; L(cp,q, At, s) @ L(26 - Cp,q, A)) 7~ 0 (3.7) 

for some A with 

[F~,~ "L(26 - Cp,q, A)] r 0.  (3.8) 

By Theorem 2.9, (3.7) implies that 

Ar,s --+ (1 -- A) at Cp,q. (3.9) 

By Eqs. (3.2) and (3.8), we have 

1 [M(26 - Cp,q, ~ (7]2 _ ~2)):L(26 _ Cp,q, A)] r 0.  (3.10) 

This means that (Lemma 2.3) 

1 (3.11) (/12 __ ~2)  __+ A at 2 6  - Cp,q 

or, by the reflection principle (2.12), 

(1  - A )  --+ (1  - -  1 (7]2 _ ~ 2 ) )  at Cp,q. ( 3 . 1 2 )  

Combining (3.9) and (3.12), we have 

Ar,~ --+ (1 - �89 (7] 2 - -  ~2)) at Cp,q. (3.13) 

This means that (diagram (2.9)) 

1 1 - ~ ( 7 1 2 - ~ 2 ) = a t  or bt for s o m e t .  (3.14) 

Solving this gives us Eq. (3.3). [] 

Theorem 3.1 answers Problem 1. 
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3.2. Multiplicities of Physical States (Problem 2) 

(3O 
In the last section, we had quite a bit of success in computing ~--homology, when 

the coefficients involved only irreducibles or Verma modules. Those computations 
relied heavily on constructing resolutions. In turn, constructing a resolution requires 
the knowledge of the coefficient module structure. Now in Problem 2, we are dealing 
with 

H~+.(Vir,  Vir0; L(cp,q, At ,s)  @ F~,n) z ? ,  (3.15) 

where 

v/L-l~ -- P + q V/71rl = (r (2pqt + pr + ~qs) 
2 v ~ '  2V ~ , a , e  = - t - l , t  E Z.  (3.16) 

We can try to resolve L(ep,q, A~,s) by Verma modules as before. But then we would end 
up with something like H~+.(Vir+, F~,,?). Computing this directly requires knowing 
the structure of Fe,n to a great extent. There is, fortunately, a slicker way to do (3.15). 
There exists yet another object that resolves L(ep,q, At,s). It is known as the Felder 
resolution [20]. It is a chain complex {F~,,,7, , 5} consisting of Feigin-Fuchs modules 

with 

(3.17) 

~ , _  P - q  

2pqt' + pr - ps 
~]-2t' = 2 V / ~  , (3.18) 

2pqt' + pr + qs t' C Z,  
/7_2tk 1 z 2 V ~  

and having homology that is isomorphic to L(cp,q, At,,): 

H,,(F~,,m , 6) TM 6,~,oL(cp,q, A t , , ) .  (3.19) 

We now apply this resolution to study the homology (3.15). By Proposition A.2, there 
is a spectral sequence {E~}n>o with 

E~ 'b = H~+b_a(Vir, Vir0; F~,,n ~ | F~,n), (3.20) 

E~ 'b = Ha(H~+b_a(Vir , Viro; F~,,~. | F~,v) , 0), (3.21) 

and which converges finitely to the graded object associated with 

H,(C~+,(Vir ,  Vir0; F~,,n, | F~,,), d + 0) 

H ~ + . ( V i r ,  Vir0; L(cp,q, At,s) @ F~,rj) . (3.22) 

(0 is the map induced by Felder's map (5.) Of course the right-hand side of (3.22) is 
what we eventually want to know. But we must first study the spectral sequence. 

3.2.1. Computing Eo. At first sight, we seem to have made matters worse by intro- 
ducing the resolution (3.17), because we have ended up with (3.20), which involves 
the uncanny object Fr a | F~,,?! However, this tensor product module over Vir turns 



Semi-Infinite Homology and 2D Gravity. I 577 

out to have a remarkable property: it is invariant under the group S0(2 ,  C). In fact, 
for any ~, r/, ~', ~' E C and 

( -9f-i i f f)  E S0(2 ,  C),  ( f 2  g 2 =  1) 

we have a canonical isomorphism of Vir-modules 

F~,,n, | F~, n = F . , , j  | Ft.,~ , (3.23) 

where 
# '  

(3.24) 

This symmetry was observed by one of us [43] in studying the problem of computing 
H~+ . (Vi r ,  Vir0; V(p,~t)), where V(p,~t) is the usual bosonic Fock space with fixed 
momentum p in the D-dimensional  string theory. The Virasoro algebra operates in 
V(p,la) by a deformed stress-energy: 

1 T(z)  = g : j ( z ) - j ( z ) :  §  0 j (z ) ,  (3.25) 

where j(z)  is the D-dimensional bosonic field with j0 = P. Observe that for D = 2, 
V(p,la) is canonically isomorphic to (3.23) with v = g - p .  

Equation (3.23) will be our key to computing E0 [Eq. (3.20)]. It is well-known 
that at generic values of #, u, the Feigin-Fuchs module Fm~, is isomorphic to the 

1 (u2 #2)). In this case, both modules are irreducible. Verma module M(1 - 12# 2, 7 - 
But what we have is F~,~ a | F~,,7, where the parameters are given by Eqs. (3.16), 
(3.18). Neither factor of  the tensor product is generic. Thus we hope that we can use 
an element of  S0(2 ,  C) to rotate this tensor product [according to Eqs. (3.23), (3.24)] 
to F#,~,, |  such that both new factors become generic. I f  such a rotation exists, 
then computing E0 becomes possible: 

Eg 'b = H~+b_a(Vir, Viro; F~,,v a @ F~,v) 

- H~+b_a(Vir ,  Viro; F # , j  | Fro.  ) 

-~ H~+b_a(Vir, Viro; M(1 - 12# '2, �89 (un _ #,2)) | M(1  - 12# 2, �89 (u 2 - #2))) 

,-,,a 1 (y ,2  t2 = H~+b_a(Vir+,  M(1 - 12# a ,  g - # )))1_1(~2 /~2) (Reduction Thin) 

,-,o 1 (/],2 ,2 # = [H~+a_b(Vir_,  M(1 - 12# '2, g - # )))]~_�89 (taking dual) 

5 a , b C S � 8 9  (t.,,2 /if2), l_ �89 a2) �9 (3.26) 

Therefore, we must determine whether or not the above rotation exists. 

Proposition 3.2. Let 

~ 1  P - q  

v / Z ~  _ P + q 

, = 2pqt' + pr + e'qs 
2 v ~  ' (3.27) 

vfZ~rl = _ 2pqt + pr + eqs 
2v~N (3.28) 



578 B.H. Lian and O. J. Zuckerman 

Then there exists 

( - i 9  f igf / ~ s o ( 2 ,  c) 

such that on the right-hand side o f  Eq. (3.23), both Fd,  J ,  F~,,v are irreducible. 

Proof. Note that the statement would be false if we had chosen a different sign for 
x/Zl-~] (see below). Choose f to be a transcendental number. We will show that Fro,  
is irreducible. The argument is the same for Fu , . j .  

Recall that F m.  is irreducible iff the corresponding Verma module M(1 - 12# 2, 
1 (u2_ #2)) is irreducible. But the latter is determined by whether the Kac determinant 2 
has a zero. This determinant is the product of  expressions of the form 

r A)  = B~,fl(#, u) .  B_~,_3(#,  u) ,  a ,  fl c N ,  (3.29) 

where 
1 (/22 __ /Z2) e =  1- -12/*  2 , A =  ~ 

(O~ - -  f l )2  ( 3 . 3 0 )  
B~,;~(#,/2) = (c~/, - / 2 )  (3/z - / 2 )  

2 

To show that M(c,  A) is irreducible, it is enough to have 

B~,3(#,/2) ~k 0 for all integers c~,fl. (3.31) 

By Eq. (3.24) and a simple calculation, we get 

B,~,e(iz ,/2) = B,~,3(-i9~' + f { ,  - i g r /  + frl) 

= f2(B~,3({,  r/) - B,~,3({' , ~7')) 

- f g A  + B,~,3(~', rl'), (3.32) 

where 
A = 2o~fl{'i{ + 2r/ir I - (o~ +/3) (~'irj + rl'i{). (3.33) 

For the given values of parameters {', ~', {, r/, it is obvious that B,~,fff G ~), 
B~,3({',  7') and A are rational whenever ~, fl E Z. Suppose 

B~,3(#,/2) = 0 for some ~ , f l  E Z .  (3.34) 

We wish to get a contradiction. Since f is trancendental (hence, so is 9), Eq. (3.32) 
implies that 

B~,;~(~, ~7) = 0,  (3.35) 

B~,3(~', r/) = O, (3.36) 

A = 0.  (3.37) 

Substituting the (3.28) into (3.35), we get 

pa  + q 3 -  2 v / ~ i ~ / =  O, (3.38) 

or p f l + q a -  2 v / ~ i ~  = O. (3.39) 

Substituting (3.27) into (3.36), we get 

pa  - qfl - 2 V / ~ '  = O, (3.40) 

or pfl - qc~ - 2 V / ~ r / =  O. (3.41) 
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Case 1. Equations (3.37), (3.38), (3.40) hold. Solving for/3, we get 

2q/3 = -(71' - irT) 2 V ~  

= - ( 2 p q t '  + pr  + e 'qs + 2pqt + pr  + eqs ) .  (3.42) 

The right-hand side is not divisible by 2q (because gcd(p, q) = 1, 0 < r < q), while 
the left-hand side is, which is a contradiction [Eq. (3.42) would have been all right if 
i71 had a different sign!]. 

Case 2. Equations (3.37), (3.38), (3.41) hold. Then substituting the given ~, ~/and 

2 V ~  i71 = p a  + q/3, (3.43) 

7]' = p/3 - qa  (3.44) 

into (3.37) and simplifying it, we get 

(392 _ q2) (a  - /3 )2  = O, (3.45) 

which implies 
a = / 3 .  (3.46) 

Combining (3.43), (3.44), (3.46), we get 

(19 - q)i71 = (39 + q)r/ . (3.47) 

Using (3.28), we get 

p p q ( t + t ' ) + p r + - - - - f f - q s  = q  q ( t - t ' ) +  ~ q s  . (3.48) 

Once again, the right-hand side is divisible by q while the left-hand side isn't. 

Case 3. Equations (3.37), (3.39), (3.40) hold. Just like Case 2. 

Case 4. Equations (3.37), (3.39), (3.41) hold. Just like Case 1. 

In any case, Eq. (3.34) is impossible. This completes the proof. [] 

We now return to E0 [Eq. (3.26)] for ~, r/, ~', 7' given by Eqs. (3.27), (3.28). 
Proposition 3.2 tells us that Eq. (3.26) holds. By (3.24), it is easy to check that 

/,t2 ~_ /,2 = 7112 q_ 712, (3.49) 

#,2 q_ /Z2 = ~,2 _}_ ~2 .  (3.50) 

Thus Eq. (3.26) becomes (with 71' = 71a) 

Eo  'b ~ )C (3 51) = 6a,b~l,  l(r/2_br/2 r r - 

Recall that we defined the distance function d(A, A') for A, A' belonging to the same 
Verrna module embedding diagram. Let 's  try to rewrite Eq. (3.51) in terms of  this 
function. It is easy to check that 

1 - 12~ a = Cp,q, 

1 2 _ ~ ,2)= / b_~ if k even 

(71k a k+l if k odd k 2 
1 - 1 2 ~  2 = 2 6 -  Cp,q,  

1 f 1 - b t  i f  e = - i  
g (712 __ ~2) = ~ 1 -- at if r = 1 

( d  = - 1)  

( d =  1) 
(3.52) 
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Thus 
1 = � 8 9  iff 

- 2 t  if e = - I  iff 
k = - 2 t -  1 if e = 1 

(3.53) 
-sign(t)d(bt,bo) if e = - 1 iff 

k = -sign(t)d(at, bo) if e - -  1 

k = - sign(t)d(�89 2 - ~2), 1 - b0). 

The last part follows from the reflection image of diagram (2.9) and Eq. (3.52). Let 's 
write 

7r(~) = sign(-x/-Z]-T]) = sign(t), (3.54) 

dv = d(�89 - ~2), 1 - bo). (3.55) 

Then 

Now Eq. (3.51) becomes 

51,1(~/2-]-~71--~2--~'2 ) = 5k+~r(v)dv,O. (3.56) 

Therefore 

H~(C~+.(Vir ,  Viro; F~,,m | F~,,7), d + 0) TM 6~+~(~)a,,oC �9 (3.60) 

Using Eq. (3.22), we get 

H_~+~(Vir, Vir0; L(%,q, A~,s) | F~,~) ~ 5~+~(~)d,,oC �9 (3.61) 

Theorem 3.3 (Theorem 3(b) [33]). For x/-L---f~ - p + q v/-Al~ = 5 2pqt + pr + r 
t E Z, cr, c = -4-1, 2 x / ~ '  2 v ~  ' 

H_~+~(Vir, Vir0; L(cp,q, At,s) | F~, v) -~ 5n+~r(r/)dv,0C �9 (3.62) 

Proof. We established Eq. (3.61) using Proposition 3.2, which holds only for a = - 1. 
For cr = + l ,  observe that there is a canonical isomorphism of Vir-modules, 

F~, v ~ F~,_ v (restricted dual of F~,_v). (3.63) 

This means that there is a non-degenerate bilinear pairing 

{, } : C~+n(Vir ,  Vir0; L(cp,q, At, s) @ F~,rj) 

x C~r Viro; L(cp,q, A t , s )  | F~ _~?) --+ C (3.64) 
2 

E~ 'b ~-- 5a,bSa+~(n)d,,oC. (3.57) 

This completes the computation for E~ 'b (3.20). 

3.2.2. Returning to H~+. (Vi r ,  Viro; L(cp,q, A~,s)| Equation (3.57) immediately 

implies that the spectral sequence {E~},~>o collapses, i.e. 

E ~  b ---- E o  'b _~ 5a,bSb+~(~7)d.,O C . (3 .58)  

Now, the spectral sequence also converges finitely to the graded object associated 
with 

H,(C~+,(Vir ,  Viro; F~,,v , | F~,v), d + 0).  (3.59) 
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such that d t = d. This induces a similar pairing on homology. Thus 

H~+n(Vi r ,  Vir0; L(%,q, At ,  s) | F~,n) 

----- H~__ n(Vir, Vir0; L(ep, q, At ,s)  | F~,_n) # . (3.65) 

But now F~,_ n corresponds to ~r = - 1, for which Eq. (3.61) holds. So Eq. (3.65) 
becomes 

H ~  (Vi L( ) |  ) = " ~  5 _ n + ~ r ( _ r / ) d _ v , O  C 5 - n - T r ( v ) d ~ ? , o C  [ ]  +n r, Viro; Cp q, A~,s ,~ = 

Theorem 3.3 answers Problem 2. The diagrams below show a few examples of  BRST 
invariant states with x/-Z]-7/ > 0. Each dot represents a single BRST invariant state 
whose (x, y)-coordinates are the "quantum numbers," ( 2 v ~  i~h -gh# ) ,  corresponding 
to that state. 

3 . �9 

I I I I I I I I I I I I I 
10 20 30 40 50 60 70 

Fig. 1 . (p ,q)=(3,2)  Pure gravity 

t " " �9 ~ 0 L ~ I I I I I I I I I I I I I 
10 20  30  40  50 60 70 

Fig. 2. (p, q) = (5, 2) Yang-Lee edge singularity 

t �9 . .  o. 

0 , .  q I t I I I I I I I I I I 
10 20  30 40 50 60 70 

Fig. 3. (p,q)=(4,3) Ising 

t ~176 ~176176 *~176 ~176 
oo . . . . . o  , .  

0 ' "  I '~ I -  I I I I I I I I I I I 
10 20  30  40 50 60 70 

Fig. 4. (p, q) = (5, 4) Tri-critical Ising 

3.3. Formula for the BRST Invariant States 

O<3 
In the last section, we computed the -~--homology by getting a double complex from 

Felder 's  resolution. We then applied a rotation symmetry to show that the resulting 
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spectral sequence collapses at E0. This led to the isomorphisms [Eqs. (3.22), (3.60) 
with rr(r/) = - 1] 

5,~,d, C -~ H,~(C~+.(Vir ,  Vir0; F~, , .  | F~,v) , d + O) 

-~ H~+~(Vir ,  Vir0; L(cp,q, Dr, s) | F~,v). (3.66) 

Because of the degenerate nature of  the homology of the double complex {C_~ +,(Vir, 

Vir0; F(,,,7. | F(,,7), d + 0}, there is a trick in homology algebra which allows one 
to get a formula for a non-trivial d-cycle (i.e. non-trivial BRST invariant state). It is 
known as the "zig-zag method" [2], and it goes as follows. 

2pqt + pr + eqs,  (7 = - 1. The case We will illustrate the case in which i V = a 2 v / ~  

cr = 1 has a similar argument. Recall that [Eqs. (3.20), (3.51), 3.57)] 

F~ "~ C~k,o~l, ~ C6k oQ,o 1 H~+k(Vir ,  Vir0; ',vL | F ~ , r / )  = l(r/2q_~/2_r ~2 ) = , , . (3.67) 

An arbitrary state in the complex C ~  (Vir, Vir0; F~,,~ | F~,~) is a linear combination 
of basis states 

b_~ . . .  b - ~ c - m l  . . .  c-,~2Wgh | J-~l "'" J-~zv~',m | j-s~ . . . j _ ~ v ~ , v  (3.68) 

with total energy zero (remember the condition L~ ~ = 0): 

1 2 __ ~12) - -  1 + 5(rh q_ 1(?.]2 _ ~ 2 )  q_ ( n  1 q _ . . .  _}_ n i  ) 

+ (ml + " "  + m y )  + (rl + ' "  + r , )  + (sl + - "  + s~,) = 0.  (3.69) 

By Eq. (3.67), a d-cycle will be a trivial d-cycle, unless all the ra, n, r ,  s, are zero, 
and 

l = dn = N .  (3.70) 

This means that among all the d-cycles in any of the spaces 

{C~+k(u  Viro; F~,,v I | F~,~)}(k,t)~z• (3.71) 

there is a single non-trivial d-cycle: 

W 0 = Wg h | Vet,tIN | Ve,rl , (3.72) 

l 

I 
d i-- WO 

~ IO t 

~ 1//2 

Q 
d 

~-- ION_ 2 
o~ 

__o__ ~ I///7 

Fig. 5. Zhe zig-zag method 
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which occupies the (0, N)  th space. Let ' s  put the spaces (3.71) in an integral lat- 
tice on the (k, /)-plane. Each integral point (k, l) is occupied by the (k, l)th space 
C~+k(Vir ,  Vir0; F~,n~ | F~,n). The maps that intertwine two adjacent spaces are the 
(horizontal) BRST differential d, and the (vertical) Felder differential 0 [induced by 
Felder 's  map 5 in (3.17)]. By construction, these two differentials anti-commute: 

{d, 0} = 0.  (3.73) 

Assuming that N > 0 (the case N = 0 is trivial), we now begin the zig-zag walk on 
the plane, starting from (0, N) .  First 

dOwo = - Odwo = 0,  (3.74) 

i.e. Owo is a d-cycle in the (0, N - 1) th space. By (3.72), it must be trivial, i.e. 

Owo = d w l  for some wl, at (1, N - 1). (3.75) 

Once again Ow is at ( 1 , N -  2), and 

dOWl = - Odwi  = - 02wo = 0 (3.76) 

implies that 
Owl = dw2 for some wa at (2, N - 2).  (3.77) 

Continuing this way, we end up with 

OWN-~ = d w N  for some wN at (N, 0).  (3.78) 

Clearly d w N - 1  E Ker0o, where 00 is 0 restricted to the spaces in the zeroth row of 
Fig. 5. We claim that W N  can also be chosen to be in Ker 00. By definition, this 0 is 
induced by Felder 's  map 

5o: F~,,~ o ---* F~,,, 7 1" (3.79) 

This means that 

Ker0o = C~+N_I (Vi r  , Vir0; KerS0 | F~,~). (3.80) 

Now the truncated Felder resolution 

0 --+ KerS0 ~ F~,,n 0 ~ F~,,~_I --+ . . .  (3.81) 

is exact, by construction. But we already know that each F~,,rlz in this sequence has 
no BRST homology because l = 0, - 1 , . . .  all differ from N = d~ [Eq. (3.70)]. This 
means that Ker 5o, in the exact sequence above, cannot have any BRST homology 
either, i.e. any d-cycle in the BRST complex (3.80) is trivial. In particular, 

d O w N  1 = - OdWN-1  = 0 ~ OWN-1 = dWN for some W N  C Ker0o .  (3.82) 

To summarize: we have obtained a sequence of states wo, Wl ,  . . .  , WN with the 
properties: 

wi is in (i, N - i)th space,  (3.83) 

Owi -=- dWi+l i < N ,  (3.84) 

OWN = 0.  (3.85) 
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[2pqt + pr  + ~qs I 
Theorem 3.4. For  i~ -- p + q i~? = the homology space H ~ + d v  2v ' 
(Vir, Vir0; L(ep,q, Ar,s)  | F~,v) has a representative o f  the f o r m  

713 u = [(d-I O)N wo q - I m 0 ]  E K e r 0 / I m 0 .  

OO 
The ~ - h o m o l o g y  class o f  (vN is independent o f  the choices o f  inverse images under d. 

Proof. First, t~u is a d-cycle (BRST invariant): 

dffJN -= O ( d - l O ) N - l w o  q - I m  0 ~- 0 (rood Im 0) .  (3.86) 

Suppose ~-~N is  trivial, i.e. 

qTo N ---- - -  d ~ N ,  for some UN E Ker 0 at (N  + 1,0).  (3.87) 

Then 

WN q- dUN = OUN-I , for some UN_ 1 at (N, 1) ~ dw N  = -- OUN- 1 �9 (3.88) 

Combining (3.84) (for i = N - 1) and (3.88) gives 

WN-1 4- duN-1  E K e r 0  at ( N  - 1, 1). (3.89) 

By exactness of Felder's resolution (away from dimension zero), we have 

W u - 1  + dUN-1 = OUN-1 , for some UN-2 at (N  - 1,2).  (3.90) 

Continuing this way, we get 

Wl + dui  = Ouo, for some u0 at (1, N ) .  (3.91) 

Now w0 is the lowest energy state in the space C~(Vir ,  Vir0; F~,,v N | Fr with 

L~~ = 0, 9h#wo = 0. So there is no other independent state w in this space, since 
w would have higher energy, implying that Lto~ 7s O. But by (3.91), u0 is in this 
space and has 9h#uo = - 1. Thus u0 must be zero. Since Owo = dWl, Eq. (3.91) 
means that 

Owo = dwl = - d2ua = 0. (3.92) 

By exactness of  Felder's resolution and Eq. (3.92), 

wo ---- Wah | V~,,n N | V~, v 

: O(?.Og h | V | re,V) 

= Wgh | 5N+lV | V~, v (3.93) 

~(~N -- (,2), as V~,,,TN. But this is for some v E F~,,mv+ 1, having the same energy, 1 2 

~(~N+I and yet impossible because the lowest energy in F~,,VN+ ~ is 1 2 _ ~ t 2 )  

1 2 I 2 ,  ~ t2 )  . ~(/]N+I -- ~t2) > ~(71N (3.94) 

This contradiction shows that the supposition (3.87) is false. Thus ~ N  is indeed a 
non-trivial d-cycle. 

! 
We now show the last statement of  Theorem 3.4. Suppose that wo, w],  . . .  , w N 

is another sequence satisfying (3.83)-(3.85). Then as before, 

l! ' = d w (  for some w 1 (3.95) Owo = dWl = dw] ~ Wl - w 1 
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This gives 

Once again, we get 

OWrl - -  OWl  : --  dOw~ ! = dw12 - d w 2  

w ; -  w 2  ~ - O w f  

= d w ~  

for some w~ ~ . (3.96) 

OWt2 --  OW2 z --  dOw~ t " (3.97) 

Continuing this way, we end up with 

l If I! 
W N  -- W N  + O W N  1 = d W N  " (3.98) 

Projecting onto the quotient space 

Ker[0:C.~+N(Vir,  Vir0; F~,,,7o @ F~,v) ~ C~+~v(Vir, Viro; F~,~ i @ F~,v)] 

Im[0: C~+N(Vir ,  Vir0; F~,,~ 1 @ F~,~) ~ C~+N(Vir  , Vir0; F~,~ o @ F~,v)l 

= C~+N(Vir ,  Viro; L(cp,q ,  A~,~) | F~,~) (3.99) 

we get 
--l --II 

W x  -- W N  = d W N  . (3.100) 

It follows that abe, ~N are two equivalent d-cycles in C~+N(Vir, Viro; L(cp,q, At, s)| 
F~,v). This completes the proof. [] 

3.4.  C o m p u t i n g  H~+.(Vi r ,  CO; L(cp,q,  z3r,s) | F~,n) 

O0 
In Sect. 1, we formulated our problems in terms of the relative ~--complex 

C~+.(Vir ,  Viro; L ( c p , q ,  z~r , s )  @ F~,V) 

clef {W E L ( c p , q ,  z~r ,s)  @ F~,r/@ A~+.(Vir /C~)  [ tot L o w = 0 = b o w }  (3.101) 

We now examine the full complex 

C~+.(Vir ,  C& L(cp,q,  Z~r,s) @ F~,rl) 

deU L ( c p , q ,  Z~r,s)  @/V~,r/@ A~+.(Vir /CO).  (3.102) 

As before, We need only to consider the case when the total central charge is zero 

1 - 12~ 2 + Cp,q - 26 = 0.  (3.103) 

Since L~ ~ is BRST exact, 

{d, b0} = L~ ~ (3.104) 

any d-cycle w with non-zero Lb ~ eigenvalue )~, is trivial: 

1 
)~w = Lto~ = (dbo + bod)w = dbow =~ w = ~ d b o w .  (3.105) 
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H~+,(Vir, CO; L(cp,q, Ar,~) | F~,n) 
tot  

~-- H,(C~+,(Vir ,  CO; L(cp,q, A~,s) O F~,n) L| , d). (3.106) 

2pqt + pr + sqs 
x /Z]~  = ~r 2 x / ~  , t E Z ,  cr, s = 4-1, (3.113) 

then letting k = - 7r(~l)d n, we get from Theorem 3.1, 

H~+~(Vir ,  Vir0; L(cp,q, A~,~) | F~,~) ~ 5~,kC. (3.114) 

Conversely, if 

Using b~ = 0 and definitions (3.101), (3.102), we can easily show that 

0 --+ C~+.(Vir ,  Vir0; L(cp,q, At,s) | F~,~) 

C~+,(Vir ,  C& L(cp,q, Ar,s) | F~,n) Lo~ 

(-1-~)*b~ Viro; L(cp,q, A~,s) | F~, n) -+ 0 (3.107) 

is an exact sequence of complexes. Thus we have a long exact sequence 

. . .  ~ H~+~(Vir ,  Viro; L(cp,q, A~,s) | F~, n) 

---+ H.~+~(Vir, C0; L(cp,q, Ar,~) | F~, n) 

---+ H~+n+l(Vir ,  Vir0; L(cp,q, A~,~) @ F~,n) 

H~+~_l(Vir ,  Vir0; L(cp,q, At,  s) @ F~,n) ---+ "'" �9 (3.108) 

Note that we have used Eq. (3.106) to get rid of H . ( C ~ + . ( V i r ,  C0; L(cp,q, A~,s) | 

F~,n)LO ~ d) from the sequence. 

Theorem 3.5. For x/'L-14 -- p + q 
2x/~' 2pqt + pr + sqs 

(a) H ~  (Vir, CO; L(cp,q, A~,s) | F~,n) r 0 iff x / ~ 7  = cr 2V ~ , t E Z, 

cr, s = "4"1. 
(b) For the special values of (4, ~7) given above, 

H~+~(Vir ,  CO; L(cp,q, At,s) @ F~,w) ~ 5n+Tr(w)dn,oC G 5n+Tr(v)dn,-1C . (3.109) 

Proof. For fixed (4, ~]), it can be easily shown that the sequence (3.108) terminates 
on b~)th ends. If 

2pqt + pr + sqs 
~/~-]-~/# a 2 v / ~  , t E Z ,  cr, s = -4-1, (3.110) 

then by Theorem 3.1, we have 

H_~ +,(Vir, Viro; L(cp,q, A~,s) | F~,n) = 0.  (3.111) 

By exactness of (3.108),-we get 

H~+, (Vi r ,  CO; L(cp,q, Ar,s) O Fr n) = 0.  (3.112) 
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Substituting this into (3.108), we get 

0 ~ H~+n(Vir,  CO; L ( c p , q ,  At, s) @ F~,~)  ---+ 0 for n r k, 

0 ~ C ~ H~+k(Vir,  C& L ( c p , q ,  Z~r,s)  @ F~,~) --+ 0 ,  

0 ~ H~+k_l(Vir,  C8; L(cp,q, At,s) | Fr ~ C --40. 

This proves part (b) and the second half of part (a). [] 

k - l ,  

3.5. Discussions 

A discussion of gravity would be incomplete without mentioning supergravity [13]. 
As anticipated, the formulation of the problems studied in [33, 34] and this paper has 
natural super extensions. To make our discussion more focused, let's restrict ourselves 
to the c < 1 case. 

The quantum state space of 2D supergravity has the same form as (1.3). The grav- 
itational sector is now given by the super Liouville theory with the Neveu-Schwarz 
algebra Vir ys, or the Ramond algebra Vir R, being the underlying symmetry. This 
symmetry is generated by the stress energy T and its superpartner G: 

1 X z-2 = - (0~) 2 + ir + ~ 0 r 1 6 2  + -~ , (3.115) 

g = ir  + 2~0r  (3.116) 

where X = 0(X = 1) gives the Neveu-Schwarz (Ramond) algebra. Here 9) is the spin 
1 0 Liouville field and r is its spin g superpartner. Equations (3.115), (3.116) define a 

super extension of the Feigin-Fuchs module. 
We will restrict ourselves to the case in which the matter sector is one of the super 

minimal models. The (50, q) model has central charge 

2(19 - q)2 
Cp,q = 1 - - ,  (3.117) 

Pq 

whereeitherp, q E 2 N - l ,  gcd(p,q)=lorp,  q C 2 N , ~ - ~ c 2 N - l ,  gcd(2 ,  q )  = 

1 (we follow the conventions of [40]). The primary fields ~ir,s in this model have 
conformal dimensions 

A r  s = ( p r  --  q s )  2 - -  (p  - -  q)2 4- __X (3.118) 
' 8pq 8 ' 

l < r < q - 1 ,  l < s < p - 1 ,  r - s C 2 x + 2 Z .  (3.119) 

The representation spaces of the model are the irreducible modules L(ep,q, A~,~) over 
Vir Ns or Vir R. (Note that the notations we use here are the same as those used in the 
bosonic case.) Finally, the ghost sector is generated by the (super) conformal fields 
(b, c), (fl, 7) of dimensions (2 , -1 ) ,  (2, - �89  respectively. 

Now the super versions of Problems 1 and 2 (Sect. 1) can be easily formulated 
by replacing Vir by Vir ys (or VirR), the minimal model representations and Feigin- 
Fuchs modules by their respective super extensions, as discussed above. Recall that 
in Sects. 2 and 3, we relied heavily on the embedding structure of Verma modules 
over Vir, in order to solve Problem 1. To our knowledge, the full embedding structure 
of Verma modules over Vir ys (or Vir R) has not been worked out (see [40]). But one 
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should anticipate that the super versions of  Theorem 2.1 and 2.2 will hold. Actually, 
one can answer at least half of  Problem 1 in the super case without knowing the full 
embedding structure. Namely (cf. Theorem 3.1) if 

P + q  
~ = i ~ ,  

(2pqt + pr  + e2qs) (3.120) 
r / =  iel 4 v ~  , t c Z ,  e l ,e2 = -I-1, 

then 
H ~  (VirNs, V i ~ ;  L(cp,q, Air,s) | FGv) • O, (3.121) 

A similar statement holds for Vir R. The proof requires the use of  Rocha 's  character 
formulas [40] for L(cp,q, Ar,~). Problem 2 in the super case also requires some further 
work. One should first construct Felder 's  resolution for the super minimal model 
representations L(cp ,q ,  A~r,s). One can then apply our rotation trick to compute the 
BRST homology exactly just as we did in the bosonic case (Sect. 3). 

We can also compute the scaling dimensions of those physical states (3.121) cor- 
responding to the super Liouville charges (3.12). Imitating the arguments in [33], we 
obtain a gravitational dressing equation for each non-trivial BRST invariant state: 

A X 1 c~(c~ - Q) 1 
8 2 = 2 '  (3.122) 

where o~ = i(~ - ~7), A C {at ,  b t} tez ,  

(2pqt + pr  + qs) z - (19 - q)2 + X 

8pq (3.123) 
bt = (2pqt + pr  - qs) 2 - (19 - q)2 + X . 

8pq 8 

When A = b0, Eq. (3.122) reduces to the one obtained by [13]. From (3.122) and 
applying Seiberg's condition, we obtain the dressed dimensions 

z~ = 1 c~ _ 12pqt + pr  + eqsl - mp,q , (3.124) 
O%w p q- q - -  7Tbp,q 

where t E Z, e = +1  and (r, s) range over (3.119). Here mp,q is the minimum value 
of [pr - qs[ as (r, s) range over (3.119). 

This completes our discussion of  supergravity in the conformal gauge. We now 
tuna our discussion to a different problem. 

In Sect. 3, a key step for computing H~+ , (Vi r ,  Vir0; Fern | L(cp,q, Z~r,s)) was to 
consider (Eq. (3.26)) 

H~+ , (Vi r ,  Vir0; F~, v | F( ,v , )  = ? ,  (3.125) 

where ~ ,  ~7 ~, ~, r/ satisfy certain conditions. In our earlier work on e = 1 gravity, 
we also encountered the same problem (3.125). This problem can be generalized 
mathematically to the case when ~,  r/ ,  ~, ~7 are completely arbitrary. The solution to 
this problem may eventually be useful for studying c > 1 matter coupled to gravity. 
Thus it is interesting to work out (3.125) in complete generality. It turns out that our 
rotation trick (Proposition 3.2, Sect. 3; Proposition 2.1 [34]) works equally wetl in the 
general case. Specifically, the BRST homology is completely determined by values 
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of the two fundamental S 0 ( 2 ,  C)-invariants: the symmetric and the anti-symmetric 
2-forms. 

Proposition 3.6. Let ~, 7/~, (, ~ E C. (a) If ~2 jr_ ~t2 ~ -2, then 

H~+~(Vir, Vir0; F(,~ | F~,,4 ) = 0 (3.126) 

for  all n. 
(b) I f  ~2 + ~,2 : _ 2, then 

H~+,~(Vir, Vir0; F~,, 7 | F~, ~,) 

H~+,~(Vir, Vir0; F_i./~,iv~(@+~,4V 2 @ Fo,i~/2@,_~,W2) (3.127) 

for  all ~. 

Note that in case (b), the right-hand side of (3.127) has already been calculated 
explicitly (see Corollary 2.3 and Theorem 2.5 in [34]). 

Appendix A. Resolutions 

In this appendix, we illustrate how to compute semi-infinite homology using reso- 
lutions and spectral sequences. Throughout this appendix, let S be a Z-graded Lie 
algebra, ~ C ~ be a subalgebra which acts semi-simply on Jg" via the adjoint 
action, and V~, V, V ~, V" be Z-graded JU-modules in which ~ acts semi-simply. 
Moreover, assume each ~"~, Vn etc. is finite dimensional. 

PropositiOn A.1. The functor C_~+,(.2d', ~g; V1 | - )  is exact. That is, if 

0 ~ V I ~ V ~ V"  ~ 0 

is exact, then 

0 ~ C_~ + , ( S ,  ~ ;  V1 | V') --+ C~+,(~% ~, ./~, V~ | V') 

---4 C . ~ + , ( S ,  J~ ;  V 1 | V it) --+ 0 

oo 
is an exact sequence of  ~ - c h a i n  complexes. 

Proof. Recall that 

C~+,(._%", Jg; V1 | - )  = ( -  | V1 | A~+,~'~(~))  ~ , (A.1) 

where A~+,J~g "~('w) denotes the subspace of A ~ + , ~  annihilated by all t(x), :r c S .  
Now 

0 -+ V' | V1 | A~+, .s  ~(~) ~ V | V~ | A~+,3b "~(~e) 

---* V" | V1 | A~+,J{  "t(~) ~ 0 (A.2) 

is clearly exact as a sequence ~g-modules. Now by assumption, each term in (A.2) 
is semi-simple. This immediately implies that the sequence of J~-invariants 

0 ---+ {V' | V1 | A~+,~L('~)} ~ ---+ {V | ~ | A~+,,5%/"4~)} J~ 

{ V " |  V~ | A.~+,~"~(~)} ~ --+ 0 (A.3) 

is also exact. [] 
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Let N be a .Ye~-module. An exact sequence of ~ -modu les :  

�9 .. --+ M1 ~ M0 r N --+ 0 (A.4) 

is called a resolution of N. In this case, one has 

Ker 05i-I = Im 05~ i _> 0, (A.5) 

N TM Mo/Im Ca- (A.6) 

Thus the truncated sequence 

-- --~ M1 r Mo ---+ 0 (A.7) 

is also exact except at the zeroth dimension. By (A.5), (A.6) this sequence is a chain 
complex {M, ,  05,} with homology 

Hn(M,, qS,) ~ 5n,oN. (A.8) 

By abuse of language, we will also call the sequence (A.7) a resolution of N. More 
generally, given a sequence of ~S-modules 

. . .  ---+ M1 r Mo ~o M-1 ---+ . . .  (A.9) 

with 

Ker r = Im r , i r 0,  (A.10) 

Im051 C Kerr  (A.11) 

X ~ r / I  05 (A.12) = Ker 0 m 1, 

we called {M, ,  05,) a (2-sided) resolution of the ~q~'-module N. Our goal is to make 
OO 

use of this extra structure of N,  to study the ~--homology 

H~+,(Y~' ,  ~ ;  171 | N ) ,  (A.13) 

By Proposition A.1, the functor C~+,(YS,  ./~; V1 |  preserves exact sequences. 
Let 's abbreviate it by 

C ~ + , -  = C~+,(~Z~',,/~; V1 | - ) .  (A.14) 

Thus given a resolution (A.9) of N,  we get a sequence of vector spaces for each r, 

- . .  ---+ C ~ + r M  1 ~-~ C ~ + r M  0 r C ~ + r J ] / i  1 - - -+. . .  (A.15) 

which is exact except at the zeroth dimension. It clearly remains so if we replace the 
induced maps 05~ by 

O de f (_  1)r05,i. (A. 16) 

OO 
Since the 05~ are induced by the module maps 05i, they commute with the -~-- 

differential d. Thus by (A.16), we get an anti-commutative diagram 

d 
C~+rM~ , C_~r_IM~ 

~ "l 
d 

C_~+rMs_l ~ C~+r_lMs-I 

(A.17) 
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This means that {C~ +, M, ,  d + 0} is a double complex. Let's calculate the "vertical" 
homology of (A. 17), H ,  (C~ +~M,, 0). But this is just the homology of (A. 15): 

Ker(r : C~+~Mo ---+ C~+rM-1) 
H~(C~+~M,, 0) = g~,o Im(r ---+ C_~+~Mo) (A.18) 

Once again, by the exactness of C ~ + , - ,  we have 

Ker(r 0 .C~+~Mo ~ C~+~M-1) = C~+~ Kerr 
(A.19) 

lm(r 1 : C~+,~M1 ~ C~+~Mo) ~ C_~+~ Im r  

and 

C~ +~ Ker r 
H~(C~+~M,, O) ~ ~,o c~+~ i~ r 

c~ (K r r =fn ,0  +r er 0 Im 1 

5 C~ (A 20) = n,O -+r N �9 

Now consider the double complex (A.17). Recall that C~+,M,  is a Z(deg)-graded 
space with deg d = deg 0 = 0. So, we can restrict to a deg-homogeneous subcomplex 
{C~+,M,[rn] ,  d + 0}. We make the following assumption: forfixed m, 

C_~ Ms[m] = 0 for all s sufficiently negative. (A.21) 
2 

In all of our applications, this assumption will hold. Now associated with the double 
complex are two standard filtrations: 

1FP(C-~ M[m])n= G C_~+~Ms[m], (A.22) 
r+s=n 

r<p 

2FP(C-~ M[m])~ = 0 C_~+~M,[m]. (A.23) 
?~+8=n 

s<_p 

Using the assumption (A.21) and that we are holding m fixed, one can easily show 
that both filtrations are finite. Thus [25] we have two spectral sequences (1En [m])~>0, 
(2En[m])n>_O which converge finitely to the graded objects associated with 
H,(C_~ M[m], d + 0). 

Proposition A.2. Let 

�9 ..--~M1 ~ M o - - ~ M - 1 - - ~ . . .  

be a (possibly 2-sided) resolution of fi~-module N satisfying assumption (A.21). Then 
for each m, there is a spectral sequence (En[m])n>o such that 

E g ' q [ m ]  : H~+q p ( 3 g ' , ~ ;  V 1 @ Mp) [m], 

E~'q[rn] = H;(H~+q_p(ff5",~; V1 | M,),  O) [m], 

and converges finitely to the graded object associated with H, (C~M[m],  d + O) 
(induced by the filtration {2FP(C_~ M[rn])}pez). Moreover, 

H , ( C ~  M[m], d + O) ~ H_~+,(.~, ~ ;  �89 | N) [ml. 
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Proof. Take (E~[m])n_>O to be (2En[m])~_>o above. Computing the first two terms 
[25], we get 

Eg 'q = Hq_p(C~+,Mp[m], d) 

H~+q_p(,~/', ~/~; g 1 @ My) [m] ,  

E p'q = Hp (H~+q _ p (~ ,  J~;  V1 | M , ) ,  0) [m] .  

To get the third claim, we use {tE~[m]}~_>o: 

1Eg'q[m] = Hq_p(C~+pM, [m], 0) 

--~ Hq _p(C~+pM, , O)[m] 

- 5p qC~+pN[rn] 

1E~ 'q -= HpHq_p(C~+.M.  [m], 0), d) 

~- (sq,pHp(C~+,N[rn], d) 

'~ (sq,pH~+p(fl~i',J~; V1 | N)  [m] .  

This immediately implies that the spectral sequence {1En[m]}~_>o collapses: 

~P'q E p'q ~ (5 H_~ (ff'2~ ,/~; 1/1 | N)  [m] .  llZJoo = 1 = q,p +p 

But this spectral sequence converges finitely to the graded object associated with 
Hp(C~M[rn],  d + 0). Thus 

Hp(C~M[m] ,  d + O) TM H_~+p(JC, ,/~; 171 | N)  I ra] .  [] 
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