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Abstract: We study the initial value problem for the Whitham averaged system 
which is important in determining the KdV zero dispersion limit. We use the hodo- 
graph method to show that, for a generic non-trivial monotone initial data, the 
Whitham averaged system has a solution within a region in the x-t plane for all time 
bigger than a large time. Furthermore, the Whitham solution matches the Burgers 
solution on the boundaries of the region. For hump-like initial data, the hodograph 
method is modified to solve the non-monotone (in x) solutions of  the Whitham av- 
eraged system. In this way, we show that, for a hump-like initial data, the Whitham 
averaged system has a solution within a Cusp for a short time after the increasing 
and decreasing parts of the initial data begin to interact. On the cusp, the Whitham 
and Burgers solutions are matched. 

1. Introduction 

In this paper, we study the Whitham averaged system: 

flit "q- "~i(fll,fl2, fl3)flix -~" O, i = 1, 2, 3 ,  

where 

and 

o ,K(s) 
�9 '~l(fll, f12, f13) = 2 ( i l l  -Jr- t2  + f13) + 4(fll - p2)E--- ~ , 

sK(s) 
22(fll,f12, f13) =2(fll  + f12 + f13) + 4(fl2 - fl~)'E(s) (1 s)K(s)  ' 

~3(fll,f12, f13) = 2 ( i l l  + f12 + f13) "]- 4(fl2 -- fl3)E(sTK(-~S)-)-)T'(S))--I~ 

t2  -- t3  S - -  
fl~ - f l~"  

(1.1) 

(1.2) 
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K ( s )  and E ( s )  are complete elliptic integrals of the first and second kind. Equation 
(1.1) was first found by Whitham [17], and its hierarchy was fotmd independently 
by Lax and Levermore [7, 8], and Flaschka, Forest and McLaughlin [3]. 

The zero dispersion limit of the KdV equation can be determined by an initial 
value problem of the Whitham averaged system (1.1) and its hierarchy [7, 8, 16]. 
This initial data is the same as the KdV initial data. Solutions of the different 
systems of the hierarchy are matched naturally on the phase transition boundaries. 
In particular, the Whitham solution of (1.1) would match the solution of the Burgers 
equation: 

fit + 6flflx = 0 
on the boundaries separating the Whitham and Burgers solutions. The Burgers equa- 
tion and the Whitham averaged system (1.1) are the first and second members of 
the Whitham hierarchy, respectively. 

The investigation of the initial value problem of the Whitham averaged system 
began with Gurevich and Pitaevskii [4]. They solved the initial value problem of 
system (1.1) for step initial data, and studied numerically the case of cubic ini- 
tial data. However, the structure of system (1.1) and its hierarchy was understood 
only during the last decade. Dubrovin and Novikov [1, 2] developed a geometric- 
Hamiltonian theory for the hierarchy. Based on this theory, Tsarev [15] was able 
to prove that each member of the hierarchy can be solved by a hodograph method. 
This method was put into an algebro-geometric setting by Krichever [5]. Using the 
Tsarev-Krichever approach, Potemin [10] and Wright [18] managed to solve the 
initial value problem of system (1.1) for cubic and cubic like initial data, respec- 
tively. 

Another way to make use of Tsarev's hodograph method is to further transform 
system (1.1) into a linear overdetermined system of Euler-Poisson-Darboux type 
[11, 12, 13], 

02q ~q Oq 
2(fli - flJ) dflidB,. . -- afli afij '  i , j  = 1,2,3, 

q(fl, fl, f l ) = f ( f l ) ,  i # : j ,  (1.3) 

where x = f ( u )  is the KdV initial data. Part of this result was also obtained by 
Kudashev and Sharapov [6]. All the other members of the Whitham hierarchy are 
also connected with higher dimensional linear overdetermined systems of Euler- 
Poisson-Darboux type [14]. 

System (1.3) has a unique solution, and its solution can be written down expli- 
citly. This explicit expression of solution to system (1.3) enabled the author [11, 12] 
to solve the initial value problem for decreasing initial data with only one inflection 
point. 

In this paper, we consider the initial value problem for the Whitham averaged 
system for generic decreasing and hump-like initial data. We show that for a generic 
decreasing initial data, the initial value problem for system (1.1) has a solution for 
t bigger than a large time. Tsarev's hodograph method is modified to solve system 
(1.1) for hump-like initial data. We show that the Whitham averaged system has a 
solution for a short time after the increasing and decreasing parts of the hump-like 
initial data begin to interact. 

This paper is organized as follows. In Sect. 2, we describe in detail the initial 
value problem and the hodograph method. The Whitham averaged system in the 
case of generic decreasing initial data is solved in Sect. 3 for large time. In the last 
section, we solve the initial value problem for hump-like initial data. 
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2. A Hodograph Method 

81 

In this section, we describe the initial value problem of the Whitham averaged 
system, and introduce the hodograph method. Properties of system (1.1) will be 
discussed, and some known results will be presented. 

Consider a horizontal motion of an initial curve u = uo(x). Each point on the 
curve has a different speed. Initially, the curve is expressed by a single valued 
function u = fl(x, t), and the motion of each point is given by the Burgers equation: 

fit + 6flflx = 0,  

~(x, O ) = Uo(X) . (2.1) 

At a later time, the evolving curve can only, in general, be given by a multi-valued 
function with an odd number of branches: u = f l k (x , t ) , k  = 1,2 . . . . .  2 9 +  1, where 
fl2g+l < fl2g < "'" < fla. These branches move according to the (g + 1)th system 
in the Whitham hierarchy. In this paper, we concentrate on the three branch case. 
Therefore, the motion of ill, t2 and t3 is governed by the Whitham averaged system 
(1.1). 

Within the multivalued region, fll,/~2 and f13 satisfy system (1.1) while outside 
it, the single branch /3 is given by the Burgers equation (2.1). The Whitham and 
Burgers solutions are matched naturally on the boundaries. 

a) At the trailing edge: 

f l l  = the Burgers solution defined outside the region. 

(2.2) 

b) At the leading edge: 

t 3  = the Burgers solution defined outside the region. (2.3) 

The initial value problem of the Whitham averaged system is to determine the 
multibranches i l l , t 2  and t3 with boundary conditions (2.2) and (2.3) from the 
initial curve u = uo(x). 

Complete elliptic integrals K ( s )  and E ( s )  have some well-known properties. As 
-1  < s < 1, we have: 

x , t )  
(x,t) 

X 

Fig. 1. 
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x [ s 9 ( 1 - 3 - . . ( 2 n - - 1 ) )  2 ] 
K ( s ) = ~  1 + ~ +  s 2 + . - . + \  -2.~-7...2n s n +  . . .  

E ( s )  ~ 1 -- ~ ~--~s --.  2 n  - 1 \ 2-4 . . .2n  

while, as 1 - s << 1, we have: 

1 16 
K ( s )  ,.~ ~ log 1 - s ' 

4 [ 1 6  E ( s ) ~ I +  ( l - s )  l O g l _ s  

Furthermore, 

- -  - 1] . 

d K ( s )  _ E(s )  - (1 - s ) K ( s )  

ds  2s(1 - s) ' 
dE(s )  _ E( s )  - K ( s )  

ds 2s 

It immediately follows from (2.4) and (2.5) that: 
$ 1 K(s)  1 

- -  < < - -  f o r 0 < s < l .  
1 - ~  E ~  1 - s '  

Using (2.10) in (1.2), we obtain: for fll > f12 > f13, 

21 --  2 ( i l l  + / 3 2  + f13) > 0 ,  

22 --  2 ( f l l  + f12 + /33) ( 0 ,  

23 - -  2 ( i l l  + /32 -{- /33) < 0 .  

By (1.2) and (2.4)-(2.7), we find that 21,22 and 23 have behavior: 

1) At /32 = f13: 

21(/31, f13, f13) = 6 i l l  , 

22(f l l , /33,  f13) ~-~ 23(/31,/33, f13) ~ 12fl3 - -  6/31 �9 

2 )  At fll  = /32: 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

21(/31,/31,/33) = 22(/31,/31,/33 ) = 4/31 + 2/33 ,  ( 2 . 1 3 )  

21 (/31,/31,/33 ) = 6/33 �9 ( 2 . 1 3 )  

The Whitham averaged system (1.1) is a strictly hyperbolic and genuinely non- 
linear system. In fact, we have [9]: 

Lemma 2.1. For fll > /32 > /33, 

i) Strict  hyperbolicity: 
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'~ l (f l l , i2 ,  fl3) > ~2(f l l , /2 ,  f13) > ~3(fll,f12, f13)" (2.14) 

ii) Genuine nonlinearity: 

~,~;(#1,12,/~3) > 0, i =  1,2,3. (2.15) 

Other results are given in the next lemma [11, 12]. 

Lemma 2.2. For i l  > i2 7~ i3, 

~/~3 3 }~2 -- ~3 ~/~2 
- -  < < - - .  
0i3 2 BE -- i3 0 i2  

The most remarkable feature about the Whitham averaged system is that it can 
be solved by a hodograph method. More precisely, we have [15]: 

Theorem 2.3. I f  w i ( ib  i2, [33)'s solve the following linear overdetermined system: 

~Wi 
Ofij -- aij(f l l , i2,i3) [wi - wj],  i , j  = 1,2,3 i=t=j, (2.16) 

where 

~13: i , j  = 1,2,3 i~ : j ,  (2.17) a iAl l ,  i 2 ,13 )  = ,~ _ ,~/, 

then the solution (ill(X, t ), fl2(x, t ), fl3(x, t ) ) o f  the hodograph transformation: 

x = 2i( i l , t2 ,  i3)t  + Wi(fll,i2, i3), i = 1,2,3 (2.18) 

satisfies system (1.1). Conversely, any solution (i1,i2, i3) of system (1.1) can 
be obtained in this way in the neighborhood of  (xo, to) at which l ix 's  are not 
vanishing. 

We shall use the hodograph transform (2.18) to construct the Whitham solution 
satisfying boundary conditions (2.2) and (2.3). First, system (2.16) needs to be 
solved for wi( ib i2 , i3 ) ' s .  In this respect, we want to understand what kinds of 
boundary conditions should be imposed on wi(t l ,  [32, t3)'s. 

Clearly, the Burgers solution of (2.1) outside the multivalued region satisfies 
the characteristics equation: 

x = 6 i t  + f ( i ) ,  (2.19) 

where f ( u )  is the inverse function of the decreasing initial data u = uo(x). 

By (2.2), (2.3), (2.12), (2.13), (2.18) and (2.19), we see: 

At the trailing edge: 

W1 (ffl, f13, f13 ) = f(fl l  ) ,  
W2(fll, f13,ff3) = W3(fll, f13, f13)" (2.20) 

Similar conditions hold at the leading edge: 

W1 (ill,  ill, f13) = W2(fll, i l ,  f13 ) ,  
W3(fll, ill, f13 ) = f(fl3 )" (2.21) 
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Motivated by the above observation, we consider system (2.16) with boundary 
conditions (2.20) and (2.21). We shall explicitly construct all the solutions to this 
boundary value problem. This is carried out in the next two theorems [11, 12]. 

Theorem 2.4. I f  q([31, f12, t3 ) is a solution of'. 

~2q Oq Oq i,j = 1,2,3 (2.22) 
2(//i - ~j) Ofl-~-flj - ~ O---ffj' 

q(fl, fl, f l )=f(f l) ,  i+-j, (2.23) 

then (w], w2, w3) given by: 

1 Oq 
wi(fll,fl2,fl3) = ~[~i--2(fll -'}-f12~-f13)]~// + q ,  i =  1,2,3 (2.24) 

solves the boundary value problem (2.16), (2.20) and (2.21). Conversely, every 
solution of  (2.16), (2.20) and (2.21) can be obtained in this way. 

Theorem 2.5. The boundary value problem (2.22) and (2.23) has a unique solution. 
This solution is symmetric, and is given by: 

{l+~]+vo _ l+,a-vo . ]-s 1 ) )f~-2---2-'pl-i---~-"] -IJ2~- 
q(fll,[J2, f13) -- 2V~g-1-1  ~-(-1 - - - ~  - - ~ )  z / a#dv. (2.25) 

The hodograph transform (2.18) with wi's given by (2.24) and (2.25) needs 
to be solved to produce the solution to system (1.1). More precisely, we have 
[11, 12]: 

Theorem 2.6. Consider a decreasing initial data x = f(u). Suppose that f (u)  has 
only one inflection point and that f '"(u) < 0 beyond this inflection point. Then 
the hodograph transform (2.18) with wi' s given by (2.24) and (2.25) can be solved 
for ill, t2 and t3 within a cusp in the x-t plane for all time after the breaking 
time of the Burgers solution of (2.1). Furthermore, these ill,t2 and t3 satisfy 
boundary conditions (2.2) and (2.3) on the cusp. 

Theorems 2.3 and 2.6 immediately establish [11, 12]: 

Theorem 2.7. Under the conditions of  Theorem 2.6, the Whitham averaged system 
(1.1) has a solution (flb fl2,fl3 ) within a cusp in the x-t plane for all time after the 
breaking time of  the Burgers solution of (2.1). Furthermore, this solution satisfies 
boundary conditions (2.2) and (2.3) on the cusp. 

Local conditions on f (u )  will give short time results [11, 12]. 

Theorem 2.8. Consider a decreasing initial data x = f(u). Suppose that u* is 
the inflection point that causes the breaking in the Burgers solution of  (2.1), and 
that f" '(u) < 0 locally in a deleted neighborhood of  u = u*. Then the Whitham 
averaged system (1.1) has a solution (fll,flz, fl3) within a cusp in the x-t plane for 
a short time after the breaking time of  the Burgers solution of  (2.1). Furthermore, 
this solution satisfies boundary conditions (2.2) and (2.3) on the cusp. 

A hump-like initial data can be decomposed into a decreasing and an increasing 
data. It is known that the decreasing part causes the Burgers solution of (2.1) to 
blow up, while the increasing one does not. These two data would not interact 
with each other for a short time after the breaking of the Burgers solution. As a 
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consequence, a short time result similar to Theorem 2.8 holds for a hump-like initial 
data [11, 12]. 

Theorem 2.9. For a hump-like initial data whose decreasina part satisfies condi- 
tions o f  Theorem 2.8, the Whitham averaeed system (1.1) has a solution (/31,/32,/33 ) 
within a cusp in the x-t  plane for a short time after the breakin# time o f  the Bur- 
gers solution of(2.1 ). Furthermore, this solution satisfies boundary conditions (2.2) 
and (2.3) on the cusp. 

3. Large Time Results for the Whitham Averaged System 

In this section, we study the initial value problem for the Whitham averaged system 
for large time. We shall show that for generic decreasing initial data, the Whitham 
averaged system has solutions after some large time. The main idea is to use the 
hodograph method to solve the Whitham averaged system for large time. 

For convenience, we consider a smooth decreasing initial data u = uo(x) which 
is bounded at the infinity: 

lim Uo(X) = a, lim uo(x) = b .  
X---+-- O0 X---~ + O ~  

Other types of  decreasing initial data will be considered later in this section. The 
inverse function x = f ( u )  of  the initial data is defined over (b, a),  and behaves as: 

l i m f ( u )  -- - o %  l i m f ( u )  = + o o .  (3.1) 
u--~a u--~b 

First, we have: 

Lemma 3.1. Consider a decreasin9 initial data x = f ( u )  defined over (b,a). Sup- 
pose that in addition to (3.1), f ( u )  satisfies: 

f ' " ( u )  < 0 

in the neiohborhood o f  u = a and u = b. Then there exists a 6 > 0 such that 
q(/31,/32,/~3) of  (2.25) satisfies: 

~3 
O~i ~ " i ~  < 0, k = 1,2 and i + j + k = 3 

1 2 3 

f o r  a > /31 ~ /32 ~ /33 > b and  6 > /33 - b > O. 

Proof. We first claim that 

f " ( u )  < 0, in a neighborhood of  u = a ; 

f " ( u )  > O, in a neighborhood of  u = b .  (3.2) 

We shall prove the first inequality by contradiction, and the second one can be 
shown in the same way. Suppose that the first inequality of  our claim does not 
hold. Since f " ' ( u )  < 0 in the neighborhood of  u = a, we must have f " ( u )  > 0 
near u = a. This implies that f ' ( u )  is increasing in the neighborhood of  u = a, and 
that therefore, f ' ( u )  is bigger than a constant when u is near a. A simple integration 
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would prove that f ( u )  is bounded from below in the neighborhood of  u = a. This 
contradicts the assumption (3.1), and the claim is justified. 

It immediately follows from (3.1) and (3.2) that 

lim f ' ( u ) = - e %  ~ i m f ' ( u )  = - c ~ .  (3.3) 
U--r a 

Choose al and bl such that a > al > bl > b, and that 

f ' " (u)  < 0, outside (bbal ) .  

By (2.25), we obtain: 

03 

Off i 0 oJ Ofli q(fll, f12, f13 ) 
1 /J2 3 

~ f23 f" ' (r162 - fl3)i+J(r/- r d~(fl, _ r /y - �89  f12) - : d r /  = C  i 1 

h (r/--/~3 ) ~- 
for a > /31 > f12 > f13 > b, where 

1 
C =  

2re(ill - f l 2 ) i + J  " 

Since f ' " (u )  < 0 outside (bl, al) ,  it suffices to show that there exists a 6 > 0 such 
that 

I1 It! k l 
f f  (4)(r - fl3)i+J(r/- 4) - ~ d ~  < 0, for all ~/ > b 1 (3.4) 
#3 

w h e n 0  < f l 3 - b  < 6 .  
For a fixed small e0 > 0, we have: 

I l l  ~ ~ i k 1 f f  ( )( f l 3 ) i + J ( r / -  4) -~d~ 
#3 

tl bl --e 0 
k t k 1 = f f" ' (r  - f l 3 ) i + J ( r / -  4) -~d~ + f f ' " ( ~ ) ( ~ -  fl3)i+J(r/- 4) -~d~ 

bl -aO f13 

al k 1 t ~ _ l  b l -aO  
=< f If'"(~)l(~ - f l 3 ) i + J ( r / -  4) -~d~ + ~0 2 f f,, ,(~)(~ _ f l 3 ) i + J d ~ .  

bl --eO f13 

(3.5) 

The first term is uniformly bounded for all f13 E (b,a) and r~ E [ba,a), and the 
second one can be decomposed into: 

bl -e-o 

f f " ( r 1 6 2  -- fl3)i+Jd~ 
~3 

= (ba - eO -- fl3)ftt(bl - 80) - f t (bl  - ~0) + ft(fl3), 
o r  

when i + j = 1 

= (bl - e0 - fl3)2ftt(bl - ~0) - 2(bl - eo - fla)ft(bl - co) 

+ 2 f ( b l - e 0 ) - 2 f ( f l 3 ) ,  w h e n i + j = 2 .  
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This when combined with (3.1) and (3.3) proves: 

b 1 --e 0 
f f " ' (u ) ( {  - fl3)i+Jd~ --+ -oo, as/73 ---+ b ,  
~3 

which together with (3.5) implies (3.4). Therefore, Lemma 3.1 is proved for the 
c a s e  fll > //2 ~ //3. The rest of  Lemma 3.1 will be shown as follows. 

A t  //1 ~ - / / 2 ,  by (2.25) we have 

0 3 fll k l 
O~ P~ q(fll, f12,//3 ) = Cl f f " ' ( ( ) ( r  - / / 3  ) i+J( / /1  - ~ )  - ~ d ~ ,  

~3 

where 

C1 21+i+JTr(flll _ 
= v y - ~ d v .  --.~3)~ (1 + v ) i - l ( l  - �9 1 

This and (3.4) prove Lemma 3.1 at fll = f12. The proof of Lemma 3.1 is completed. 
We need the next two lemmas. 

Lemma 3.2. Under the conditions of Lemma 3.1, we have: 

#1 
lim f f " ( ~ )  eo ~)dr -oo,  for each fl3 E (b,a) x ~ t P l  - -  = 

~l-+a& 

fll 
lim f f " ( ~ )  ro ~)d~ = +oo for each fll E (b,a) 

fl3--+b fl3 

Proof By (3.2), we can choose a2 and bE such that a > a2 > bE > b, and that 

f " ( u )  < 0, for u > a2, 

f " ( u )  > 0, for u < bE. 

For each f13 E (b,a), we can choose 82 such that max{fl3,a2} < d2 < a. Thus, 

, 0  

fll a2 
= f + f  

a2 f13 
1 fll a2 ## 

= < . - = - - - -  f f " (~ ) ( f l l  - ~)d~ + f ~ f (4) to ~)d~ 
vi//1 - / /3  ~2 ~3 x/C-Is3 wl  

1 
-- [--ft(a2)(//1 -- if2) -b f( / /1)  -- f (a2)]  el,/- Tg_ e, 

+ f "/v_'_z~-o (//1 - ~)d~ 
f13 V ~  - - P 3  

for//1 > 82. This and (3.1) prove the first limit of Lemma 3.2. 
As to the second limit, for each/11 E (b, a) we choose/~2 such that b </~2 < 

min{//1, b2}. Therefore, 
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fll f l l  [ J~'~ 
a ~/T---a-tpl - ~)d~ 

fll & 
= f + f  

& f13 

[11-f22 , - , I~ f " ( r  , o  
> , = - - - - - - - [ f  (b2) - f ' ( [ 1 3 ) ]  -1- j ~ k p l  - -  r 1 6 2  

x/b2 - [13 & x / r  f13 

for [13 < /~2 which when combined with (3.3) proves the second part of Lemma 
3.2. 

In the same way, we can prove the next lemma. 

Lemma 3.3. Under the conditions o f  Lemma 3.1, we have: 

fll 
lim f f " ( r162  - [13)~/[11 - r162 = - c o ,  f o r  each f13 C (b ,a ) ,  

lim f f " (~) (~  - [13)V~11 - ~ d ~  = @ c o ,  for  each ,81 E (b,a).  
f13 ~b f13 

We are now ready to use the scheme of Sect. 2 to solve the Whitham averaged 
system for large time. We need to solve system (2.18) with wi's given by (2.24) 
and (2.25) for [11,[12 and [13 as functions of (x , t ) .  

System (2.18) is simplified as follows. Eliminating x from (2.18) yields: 

F (  t, [11, [12, [13 ) = O, 

G(t, [11, [12, [13) = 0 ,  (3.6) 

where 
F = (21t + W1) -- (J,2t + W2), 

G = (22t  q- w2)  - (,~3t + w 3 ) .  
Substituting (1.2) and (2.24) into system (3.6), we obtain: 

P(t, fll,[12,[13) = 0 ,  

G(t ,  [11,fl2,[13) ~--- 0 ,  

where 

F (  t, fiX, f12, f13 ) 
P (  t, [11, [12, [13) - 

([11 - [12)X(*)  

= 4  E - ~  t+2c~[11 j+ 
G(t, [11, [12, [13) 

a ( t ,  [11, [12, f13 ) - -  
([12 - [13) 

s 

E(s) - (i - s)K(s) t + 2 OflzJ 

- 4 [  (_1 _--_s)K(s) ( t  + 1 0 q  ) 
k~'(~) - (1 - s)z,c(~) \ 2 ,~[12} 

+ E ( s 3 -  7c(s) t + 5 ~ 

(3.7) 

(3 .8 )  
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Clearly, system (3.6) is equivalent to system (3.7) in the region fit > i2 > f13. 
The reason to consider system (3.7) is obvious from the fact that system (3.6) is 
degenerate at the trailing edge (fl~ -- fls) and leading edge (ill = f12), while system 
(3,7) is not. We shall first solve system (3.7) at both the trailing and leading edges. 

Lemma 3.4. Under conditions of Lemma 3.1, there exists a t- > 0 such that 
system (3.7) has a unique solution (ff~(t),flf(t),fl3(t)) with Ell(t) > fi[(t)= 
fl~(t) for all t > t-. 

Proof Using (2.4) and (2.5) in (3.8), we find: 

7 2 P(t, fll,fl2, t 3 ) = 8 [ ( l +  4s+ -~s + . . . ) ( t +  18q Off, J 

+2 1 - 8 s - ~  + . . .  t+~g~-; , 

~2q 
G(t, fl,,flz, fl3) = - 4 [  ( 1 -  7s+ " " )  2(i, -13) 8fl28i~ 

+( 
Therefore, at the trailing edge f12 = f13 where s = 0, (3.7) becomes: 

dq 8q 6,+~+2~:0, 

82q 3 It 18q ] 
2(fl~ - f13)a72af13 2 + 2 aft3] = o.  

(3.9) 

(1 + #)d#  

& f " (~ )  ,o 1 , - , f  r 
4 ( f l ,  - fl3)~#3 ~ , p t  - �9 

Substituting the first equation into the second one, and using (2.22), we obtain: 

8q 8q 
U(t, f l l , f l3) = 6t + -ff~l(fll,fl3,fl3 ) q- 2~-~(f l l , f i3 , i3  ) -~- 0 ,  (3.10) 

2 2 3 q  ~ q  
V(fll , f l3 ) -- 6q~--~fl3(fll,fl3,13) % 4 ~ ( f l l , f 1 3 , f 1 3 )  ~--~- 0 . (3.11) 

By Theorem 2.5, (2.25) can be rewritten as: 

/ ' l+# l+vo -b l+#l--va .~_ 

q(fll,i2, fl3) = 2V/~rc-l-i ~=__ ~(~=_ ~ d#dv . 

Substituting this into (3.11), we have: 

v(tl,/b) = T6-_~ 4 l  - u  
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First we want to solve (3.11) when [33 is close to b. Choose a fixed J~l C 
(b + 5, a), and it follows from the second limit of Lemma 3.2 that we can find a 

3 E (b, b + 6) such that 
> o, 

where 5 is given in Lemma 3.1. On the other hand, by the first limit of Lemma 
3.2 we can also find a fll > fl~ such that 

V ( f l l , f l ; )  < O. 

These two inequalities show that there exists a [3~ > [3~ such that 
:r * 

V([31, [33 ) = 0. 

Denote t -  by 

1 [~q , , , . . ~ q , , , ,  ] 
t"  = - - ~  ?--~'-l([31,[33,[33)-q-Z~'ff-3{,Ol,fl~,fl~ ) > 0. (3.12) 

where we have used (2.25) and the assumption that f + '  < 0 in the inequality. 
Hence, (t-,[3~,fl~) satisfies (3.10) and (3.11), and [3~ E (b,b + 5). Before we pro- 
ceed, we need the following lemma. 

L e m m a  3.5. Under the conditions o f  Lemma 3.1, we have: 

~2q _ ~2q ~2q 
o, < o ,  

~2q ~2q ~2q 
~[3~ -- ~[3] --3a~--~-~3 > 0 

on the solution ([31,[33,[33)of(3.11), where a > [31 > [33 > b and 6 > [33- b > O. 

Proof. By (2.22), we have: 

2(ill -- [ 3 2 ) - -  
02q ~q aq 

~fll~fl2 (~[31 ~f12 

Taking derivative with respect to f13 yields 

a2q a2q 

o/h o/h 0#20133 

~3q 
- -  - -  2 ( i l l  - f 1 2 )  O f l l - ~ z O f 1 3  " 

This and Lemma 3.1 imply 

~2q t~2q 

~fllt~fl3 (~fl2t~fl3 ' 

which together with (3.11 ) proves: 

82q 82q 
- -  > 0 ,  - - < 0 .  

The rest of Lemma 3.5 can be shown in the same way. 



Initial Value Problem for Whitham Averaged System 91 

We now continue the proof of Lemma 3.4. Using (3.11 ), Lemma 3.1 and Lemma 
3.5, we calculate partial derivatives of U and V on the solution (fll,fl3,fl3) of (3.11), 
where [33 E (b,b + 6): 

0U 6~2q 02q 
- o[31 + < o ,  0131 

OU 02q 02q 

0[33 = 2 ~  + 80-~2020fl3 -- O, 
OV 03q 03 q 

Ofll -- 0f120f13 + 40fl10f120f13 < O, 
O V 633q 03q 633q 

- + + 4.~--~-v7-._ + 
0fl3 013101320fl3 OfllOfl~ 

03q 
4 ~ < 0 .  

Therefore, by the Implicit Function Theorem, (3.10) and (3.11) can be solved for: 

fiT(t) = A(t), [33(0 = B(t) (3.13) 

in the neighborhood of t - ,  where t -  is given by (3.12). It can easily be checked 
that A(t) and B(t) are increasing and decreasing with time, respectively. Therefore, 
[3~(t) keeps closer to b as t increases. Repeat the Implicit Function Theorem; we 
see that (3.13) are defined for all t > t - .  This proves Lemma 3.4. 

At the leading edge [31 = [32 where s = 1, it follows from (2.6), (2.7), (2.22) 
and (3.8) that system (3.7) turns out to be: 

1 Oq 
t + ~ ( f l l , f l b f l 3 )  = O, 

1 Oq 
t + ----z";.--~([31,[31,[33) -~- O. 

2d~3 
(3.14) 

In the same way as we handle Lemma 3.4, we can use Lemma 3.3 to solve the 
above system for fll and [33 as functions of t. Therefore, we have: 

Lemma 3.6. Under conditions o f  Lemma 3.1, there exists a t + > 0 such that sys- 
tem (3.7) has a unique solution ([3+(t),[3+(t),[3+(t)) with [3+(t) + = [32 (t) > [3+(0 
for all t > t +. 

The following lemma is obvious. 

Lemma 3.7. On the solution (t~[31,[32,[33) o f  (3.6) [or equivalently (3.7)] in the 
region [31 > [32 > [33, we have: 

0(2# + wi ) 
= 0 ,  for i , j = 1 , 2 , 3  i@j .  0& 

Proof 

O(2it+wi)  
o& 

02 i OWi 
- -  t + - -  o& o& 

= aij(fll, [32, [33 )[(2it + wi) -- ()~jt + wj)] 
~ 0 ,  
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where we have used (2.16) and (2.17) in the second equality, and (3.7) in the last 
one. This proves Lemma 3.7. 

By Lemma 3.4, (fl~(t),fl~(t),fl~(t)) satisfies system (3.7). For each fixed 
t > t - ,  we need to solve (3.7) for /31 and /33 as functions of/32 in the neigh- 
borhood of/32(t) .  This is carried out in: 

Lemma 3.8. For each t > max{t- , t+},  system (3.7) can be solved for/31 and/33 
in terms o f t2  in the neighborhood of (fl?(t),flz(t),fl;(t)): 

/31 = M ( f l 2 )  (3.15) 
f13=N(/32) 

such that/31(t) = M(/32(t)) and fl3(t) = N(~( t ) ) .  Moreover, for/32 > flz(t), 

N(fl2) < t2 < M(fl2). (3.16) 

Proof Calculating first partial derivatives of (3.9) at (/31(0,/3~-(t),/3~-(t)) and using 
(2.22), we find: 

8 [102q 02q ] 

cqF 8 [3 6q2q t32q] 

c~P 8 [ 02q 1 cq2q 1 c~2q I = 0 '  
0/33 -- ~ L0fl---~3 "1- 2 ~/316~fl3 4 6q1~20/31 
~e [ 02q 3 02q + ~2q ] 

OG [ 5 O2q c33q ] 
0/3~ - 4 - 2 0/320fl~ + 2(/31 - f 1 3 ) ~ ]  > 0 ,  

0G [ 1 c32q 3 d2q c33q ] 
0133 -- 4 4 0fl20/33 4 0/3~ + 2(/3t - / 3 3 ) ~ j  > 0 ,  (3.17) 

where we have used Lemma 3.5 in the first inequality, (3.11) and Lemma 3.5 in 
the second, third and fourth equations, and Lemma 3.1 and Lemma 3.5 in the last 
two inequalities. 

It follows from (3.17) that the Jacobian: 

O(F, G) 

is not vanishing at (flF(t),fl~(t),fl~(t)). Hence, (3.7) can be solved for: 

f l l=M(f l2) ,  fl3=N(fl2) 

in a neighborhood of flz(t) such that fl~(t) = M(fl~(t)) and fi~(t) = N(fi~(t)) for 
t > max{t- , t+}.  

It follows from (3.7) and (3.17) that 

< 0 ,  
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which implies (3.16). The proof of Lemma 3.8 is completed. 
Later, we shall show that, for each fixed t > max{t- , t+},  solutions (3.15) of 

system (3.7) can be further extended whenever: N(132) < 132 < M(132). The Jaco- 
bian of system (3.7) with respect to (131,133) has to be estimated along the extension. 
This is carried out in the next lemma. 

Lemma 3.9. Under conditions of  Lemma 3.1, the following inequalities: 

0()`1t q- Wl ) c3(22t + W2) 0(23t -I- w3) 
< O, > 0, < 0 

0131 9132 0133 

hoM on the solution (131,fl2,133) of(3.6) [or equivalently (3.7)] in the region 133 < 
132 < 131, where 0 < 133 - b  < 5. 

Proof Using (2.24), we see that (3.6) is equivalent to: 

( 1 0 q ~  ( 
[)`1 -2(131 -~-f12-~f13)] t +  2 ~ 1 J  = [)-2 -2(131-1-fl2 +133)] t 

1 8q~  
+ , 

(3.18) 

( 1 0 q )  ( 
[22 -2(131 +132+,83)] t +  ~ = [)`3 -2 ( i l l  't-132+133)] t 

+ 2 0fl3 ] " 
(3.19) 

which together with (2.22) gives: 

O q _ Oq at(/~1,/32,/~3). 
o132 o133 

This when combined with (2.14) and (3.19) implies: 

1 Oq 1 Oq 
t +  - t +  - 0 .  (3.21) 

2 0fl2 2 0fl3 

By (2.11), (3.18) and (3.21), we obtain: 

1 8q 
t q - - - - -  

2 6~fll 

which together with (2.22) and (3.21) gives: 

- -0  

By Lemma 3.5, 

02q 02q 02q 
- -  < 0, - -  < 0, - -  > 0 (3.20) 
0ill 0fl2 0fl10f13 0f12~f13 

at the trailing edge. 
We claim that (3.20) hold for all the solutions of (3.6) with f13 < f12 < fll 

and 0 < f13 - b  < 6. We justify the claim by contradiction. Suppose, otherwise, 
for instance, at some point (fll,fl2,fl3) on the solution of (3.6) with f13 < /~2 < /~l 
a n d 0  < / ~ 3 - b  < 5: 

OZq -- 0 
Of 120f13 
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(~fll ~/32 0/310/33 ~f12 ~/33 
m - - 0  
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(3.22) 

a t  (fll,/32,f13) where f13 E ( b , b +  6). 
On the other hand, by (2.22) and Lemma 3.1: 

82q 82q 
~/318/33 ~/32~/33 

83q 

- -  --2(/31 -- /32)SfllOf12~f13 < 0  (3.23) 

at (/31,/32,fl3). 
Equations (3.22) and (3.23) contradict each other. This proves the claim. 
By (2.22), we have: 

02q 8q Oq 
2(/31 -- fl3)~-'-~-fl3Pl 0 -- O/33 

Differentiating this with respect to fll yields: 

82q O2q ~3q 
8/31 ~ = 3 0~--~-~ + 2(/31 - / 3 3 ) ~  < o,  

where we have used (3.20) and Lemma 3.1 in the last step. 
It follows from (3.20) and (2.22) that 

8q 8q 8q 
~ /3---; < - ~  < 8 /3-S 

(3.24) 

(3.25) 

which when combined with (2.11), (3.18) and (3.19) gives: 

1 8q 1 8q 1 8q 
t + ~ - ~ l  < 0 ,  t + ~ - ~ 2  > 0 ,  t + ~  3 > 0  (3.26) 

on the solution (fll,fl2, fl3) of (3.6) in the region /33 < f12 < fll where /33 E 
(b, b + 6). 

Therefore, by (2.24): 

8(21t -]- Wl)8~l 0fl1021 ,,(t+ 2-~1,11 8q ~ 1 82q -- + 5121 -- 2(ill + f12 + f l3)]~2 

< 0 ,  

where in the last inequality we use (2.11), (2.15), (3.24) and (3.26). This proves 
the first inequality of Lemma 3.8. 

Next we shall prove the rest of Lemma 3.8. By (2.22), we have: 

82q 8q 8q 
2(fl2 - f13 ) 8fl-~-f13 -- ~ 2  8fl3 

Differentiating this with respect to f13 yields: 

82 q 82q 83 q 
= 3 8f128fl-------------- 7 2(fl2 -- fl3)8fl--~-fl'~zc~ " (3.27) 8fl 2 

From (2.22) and (3.19), we obtain: 



22 - 23 ( t  

< 

where we have used (2.11 
It follows from (2.24) 

0(23t + W3) _ 0};3 

0//3 0fl3 

3 };2 
< 2fl2 

< 0 ,  
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[ 10q]2 0//2J 02q (//~ ( 2  2 --  23) t + + [};3 - -  2(//1 +//2 q- f13)] ~f l - - - f l~  3 ~ - -  / /3)  = 0 

which together with (3.27) gives: 

1 0 q ~  
+ 2 0//2.] + [};3 -- 2(//1 +//2 - ~ - / / 3 ) ]  0~32 

O3q 
--2[23 -- 2(fll +//2 -1-//3)1(//2 --//3)~U-20//2 

O, (3.28) 

) and Lemma 3.1 in the last inequality. 
that: 

1 0q ~ 1 02q 
t + 2 ~-3'] + 2 [23 -- 2(//1 + f12 + f13)] ~ 3  2 

- 2 3 (  1 0 q )  1 02q 
//3 t-1- 2 ~ 2  + 2[};3 -- 2(fll -l- f12 + //3)10//2 

oP oP 

oO oO 
o//3 

is diagonal and that therefore, nonsingular. Furthermore, system (3.6) determines 
(3.15) as two decreasing functions of//2,  and therefore, N(//2)E (b,b + 6) as //2 
increases. 

This immediately guarantees that (3.15) can be extended as far as possible in 
the region: //1 > //2 > //3 with //3 E (b,b + 6). Since M(//z) is decreasing, (3.15) 
stops at some point/ /+(t)  where, obviously, M(//+(t)) =//+(t). Therefore, we have 

where we have used Lemma 2.2, (3.25) and (3.26) in the first inequality, and (3.28) 
in the last one. 

This proves the third inequality of Lemma 3.9. In the same way, we can prove 
the second one. The proof of Lemma 3.9 is completed. 

We are ready to solve (3.6) for fll and f13 as functions of f12 for t > 
max{t- , t+}.  

By Lemma 3,8, system (3.6) can be solved for: 

i l l  = M(fl2) 

f13 N ( / / 2 )  

in the neighborhood of(//[(t),//~(t),fl3(t)), where/ /3( t )  E (b,b + 6) for each t > 
max{t- , t+}.  Furthermore, (3.16) holds if//2 > //~-(t). We shall extend functions 
(3.15) in the positive 32 direction as far as possible. It follows from Lemma 3.7 
and Lemma 3.9 that, along the extension of (3.15) in the region /11 > / /2  >/ /3 ,  
where//3 E (b,b + 6), the Jacobian matrix: 
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shown that (3.7) determines [31 and t3 as decreasing functions of [32 over  interval 
[[3~-(t), [3+(0]. 

Let 
fl+(t) = M([3~(t)), [3f(t) = N([3+(t)) . 

Clearly, ([3+(t),fl+(t),fl+(t)) solves system (3.7) at the leading edge [31 =[32. 
Hence, these fl+(t), [3~(t) and fly(t) are exactly the ones appearing in Lemma 3.6. 

Substituting (3.15) into (2.18), we obtain: 

X = J.2(M([32), [32,N([32))t + w2(M([32), [32,N([32)),  

which by Lemma 3.7 and Lemma 3.9 clearly determines x as an increasing function 
of t2 over interval [[3~-(t), [3~-(t)]. It follows that, for each fixed t > max{t- ,  t+}, [32 
is a function o f x  over the interval [x-(t),x+(t)], and that so, therefore, are [31 and 
[33, where: 

x+(t) = 22(fll+(t),[3~(t),f13+(t))t + w2([3~(t),[32+(t),fl+z (t)) .  (3.29) 

Thus, (2.18) can be solved for: 

fll = f l l (X, t ) ,  t2  ~- f l2(x , t ) ,  t3  ~" f l3(x , t )  

within a region: 

x - ( t )  < x < x+(t), for t > max{ t - , t+} ,  (3.30) 

where x -  and x + are given by (3.29). 
Boundary conditions (2.2) and (2.3) can be checked easily. Therefore, we have 

proved: 

Theorem 3.10. Under the conditions o f  Lemma 3.1, the hodograph transform (2.18) 
with wi's 9iven by (2.24) and (2.25) can be solved for ill , t2 and [33 as functions 
o f  (x, t) within reoion (3.30) for  all t > max{t- , t+}.  Furthermore, these [3b[32 
and [33 satisfy boundary conditions (2.2) and (2.3). 

Theorem 2.3 and Theorem 3.10 immediately give: 

Theorem 3.11. Under the conditions o f  Lemma 3.1, the Whitham averaged sys- 
tem has a solution (fll(X,t),fl2(x,t),fla(x,t)) within reoion ( 3 . 3 0 ) f o r  all t > 
max{t- , t+},  and this solution satisfies boundary conditions (2.2) and (2.3) on 
the boundaries o f  the reoion. 

Remark. Conditions of Lemma 3.1 are quite generic. For instance, it is easy to 
check that these conditions are satisfied by decreasing initial data uo(x) with the 
following asymptotes at the infinity: 

1 
uo(x) ~ b + - ~ ,  as x ---* + c o ,  

1 
uo(x) ~ a as x ---+ - c o ,  Ixl~' 

where ~, fl > 0. 
We conclude this section by considering the case when one or both of a and 

b are infinite. In addition to the assumption that f " ( u )  < 0, we need to put extra 
conditions at a = +co or/and b = - c o .  More precisely, we suppose 
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f i t (u)  < 0, in the neighborhood of  u = a if  a = + o o ,  

lim f " ( u )  = + ~ ,  if  b = - c ~ .  (3.31) 
u--~b 

Under these conditions, it is easy to check that Lemma 3.1, 3.2 and 3.3 with 
slightly different wording still hold when a -- + c ~  or/and b = - c ~ .  Obviously, the 
proof  of  Lemma 3.4-3.11 do not or only superficially depend on whether a or/and 
b is infinite. Therefore, we have similar results in the case when the decreasing 
initial data is not bounded at x = - ~  or/and x = ~ .  

Theorem 3.12. Consider a decreasing initial data x = f ( u )  defined over (b,a), 
where a : +cx~ or~and b =-cxD. Suppose that in addition to (3.1) and the as- 
sumption that fro(u) < 0 in the neighborhood o f  u = a and u = b, f ( u )  satisfies 
(3.31). Then there exists a t* > 0 such that the Whitham averaged system has 
a solution (fll(x,t),fl2(x,t),fl3(x,t)) within region (3.30) for all t > t*, and this 
solution satisfies boundary conditions (2.2) and (2.3) on the boundaries o f  the 
region. 

As in Theorem 3.11, it is easy to see that the conditions of  Theorem 3.12 are 
also quite generic. 

4. The Whitham Solution for Hump-l ike  Initial Data  

In this section, we consider the case of  hump-like initial data. For convenience, we 
assume the initial data to have a single extremum. We further normalize the initial 
data such that 

max Uo(X) = u0(0) -- 1 . 
--oo <x< +cx~ 

We denote f+(u)  and f - ( u )  as the inverse functions of  the decreasing and in- 
creasing parts o f  u = uo(x), respectively. 

As in Sect. 2, the initial value problem is to solve the Whitham averaged system 
for the multibranches i l l , t2  and t3  from the initial curve u = uo(x). Boundary 
conditions (2.2) and (2.3) should also be satisfied on the trailing and leading edges. 

The hodograph transform (2.18) when i = 1 after differentiation with respect to 
x and use of  Lemma 3.7 becomes: 

1 - 0(2it + w1)/~lx , 1 _  

Since the maximum of  the initial curve is preserved along the horizontal motion, 
the above equation indicates that (2.18) when i --- 1 is singular at the maximum of  
fll (see Fig. 2.). A modification of  the hodograph method is therefore necessary. 

Instead o f  ill, t2 and f13, we introduce X/(x, t ) 's :  

fli(x,t) = uo(Xi(x,t)),  i = 1 ,2 ,3 .  

Later we will see that X~(x, t ) ' s  are monotone in x. 
As a result, the Whitham averaged system (1.1) becomes: 

Xit -Jr- 2i(uO(Xl),uo(x2),uo(x3)~ix = 0, i = 1 ,2 ,3 .  (4.1) 

The Burgers equation (2.1) becomes: 
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u 

" S P2 (• 

. I  

Fig. 2. 

) X 

Xt + 6u0(X)Xx = 0.  (4.2) 

Figure 2 indicates that (X1,Xz,X3) should be restricted in the region: 

f - (uo(X2))  < X1, f - (uo(X3))  < X1, 3(2 > 0, and )(3 > 0.  (4.3) 

Boundary conditions (2.2) and (2.3) are transformed to: 

a) At the trailing edge: 

X1 = the solution of (4.2) defined outside the multivalued region, 

)(2 =)(3 > 0.  (4.4) 

b) At the leading edge: 

xl =x2 > 0, 

)(3 = the solution of (4.2) defined outside the multivalued region. (4.5) 

Therefore, the initial value problem of system (1.1) for the initial data u = uo(x) 
becomes the initial value problem of the modified Whitham averaged system (4.1) 
for the initial data X = x. 

We want to use another version of Theorem 2.3 to solve system (4.1) for the 
initial data X = x. Consider the hodograph transform: 

x : 2i(uo(X1),uo(X2),uo(X3))t+ Wi(XI,X2,X3), i = 1,2,3, (4.6) 

where Wi(XbX2,X3)'s are determined by the linear overdetermined system: 

~3Xj -aij(u~176176176 Wj], i , j  = 1,2,3,i~=j, (4.7) 

and ali'S are given in (2.17). 
We need to understand what kinds of boundary conditions should be imposed 

on Wi(XbX2,X3)'s. The Solution of (4.2) satisfies the characteristics equation: 

x = 6uo(X)t + X .  (4.8) 

By (2.12), (2.13), (4.4), (4.5), (4.6) and (4.8), we see that at the trailing edge: 

W I ( X I , X 3 , X 3 )  ~- -Xl ,  X3 > O,  

" W 2 ( X 1 , X 3 , X 3  ) : W 3 ( X I , X 3 , X 3  ) . (4.9) 
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Similar conditions hold at the leading edge: 

wl(Xl,Xl,X3) = v/2(Xl,Xl,x3), Xl > o,  

W3(X1,X1,X3) = X3. (4.10) 

As a consequence, it is natural to consider system (4.7) with boundary conditions 
(4.9) and (4.10). Similar to Theorem 2.4, we have: 

Theorem 4.1. I f  Q(XI,X2,X3) defined in region (4.3) is a solution of'. 

O2 Q t3Q g Q 
oxj 

2[uo(X/) - uo(XJ)]u, ( ~ X .  ~ -- 
o, ,, o, , ,  ugX,) ua(Xj)' 

with boundary conditions: 

i,j = 1,2,3 i:4=j (4.11) 

Q(X,X,X) =X, for X > O, (4.12) 

oQ(xl,x3,& ) 
2[uo(X1 ) - uo(X3 )] gx1 

u~(Xl) 

then (W1, W2, W3 ) defined by: 

+ Q(XbX3,X3 ) =X1, for Xl < 0 ,  (4.13) 

m(Xl,X2,X3 ) 

1 ~ .  
= ~ [ ~ , ( u o ( X l ) , u o ( X 2 ) , u o ( X 3 ) )  - 2(uo(Xl) + uo(X2) + uo(X3))] ,~., 

Z UotXi) 
+ Q(X1,X2,X3), i = 1,2,3 (4.14) 

solves the boundary value problem (4.7), (4.9) and (4.10). 

Before we prove this theorem, we shall solve the boundary value problem 
(4.11)-(4.13). This is carded out in the following theorem: 

Theorem 4.2. System (4.11 )-(4.13) has one and only one smooth solution in region 
(4.3). The solution is symmetric with respect to X2 and )(3, and is given by: 

l + v  - 

Q(Xa,X2,X3)= 1 ~F(XI ,*  + (!~uo(X2) + 'T-uo(X3))) d v (4.15) 

where 

Furthermore, 

F(X, Y) = 
1 

, l u g ( X )  - uo(r) [ ;  2 x / u o ( ~ )  - uo(r) 

V/1--uo(Y) ) f+ (L~  + L~uo(Y) ) ] 
-} 2 V ~ --1 7VI'I Z -~ d ll 

U'o(X, ) 

is also smooth in region (4.3). 
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Proof. Under a change of variable: 

we obtain: 

v',-  uo~ ~ s + ( ~  + ~ u o ~ )  

+ 1 ~-~U~o(Y)) , 

1 f r ~u~(~)  

-2Jo v/uo(~) - u0(r) 

for Y > 0. This enables us to rewrite F(X, Y) of  (4.15) as: 

F(X, Y) 
v'uo(~) - .o ( r )  v'uo(X) - uo(r) 

which under a new transform: 

~=f+(~--~-uo(X) 

becomes: 

~ I + ( ~ . o ~  + ~ u o ~ )  
F(X,Y)= - ~  f -~=_._==~ d# 

F.R. Tian 

d~ 

x a < 0  

x ~ > 0  

_ - T - P 3 ) d v  Q'~(fll,fl2,fl3) = ~ -1 ~ 7 (4.17) 

We next rewrite Q(XI,X2,X3) as: 

Q ( X I , X z , X 3  ) = 
Q- (uo(X1), uo(X2 ), uo(X3 ) ), 

I Q+ ( uo(Xl ), uo(X2 ), u0(X3 )), 

where 

in the case that X __> 0 and Y > 0. This allows us to write Q(X1,Xz,X3) as 

Q(X1,Xz,X3 ) 

(1:. l+g 1-v TI+/z _~_ U0 (X31+v)) .1 1 1 f +  , ~ u o ( X l )  + T T U o ( X 2 )  + 
d tut v 

2VF27~-dl J1 4 ( 1 -  /./)(1- 1) 2) 
(4.16) 

for )(1 > 0,X2 > 0 and X3 > 0. Notice that (4.16) is exactly the same as (2.25) 
in view of the transform fli = u0(X/) and the symmetry as stated in Theorem 2.5. It 
immediately follows from (4.15) and (4.16) that Q(XbXe,X3) is smooth in region 
(4.3). A simple calculation with (4.15) also shows that 

~ (XI,X2,X3 ) 
"o(Xl ) 

is smooth at Xl = 0, and therefore it is also smooth in region (4.3). 
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and 

_ 1 

~ / z : 7  

and 2 = + , - .  

2 ~ d {  + 2 v ~  --al ~/1 - # d/.t 
A 

To prove that Q(X1,X2,X3) satisfies (4.11), it suffices to show that: 

a2Q ~ 0Q,~ OQ~ 
2(fl i  - flJ) a ~ . ~  - -  af l i  Ofl j  " 

It is straightforward to use (4.17) to check that 

O2Q 2 OQ z OQ ~ 
2( /h  - 3 3 ) a / h a / h  - ~ a33 " 
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(4.18) 

Since Q'~(fll, f12, f13) is obviously symmetric with respect to f12 and f13, it is enough 
to show that 

O2Qa OQa 8QZ (4.19) 
2(ill --  fl3)OfllOfl 3 -- ~ 1  Off3 " 

A simple calculation on (4.18) yields: 

By (4.17), we have: 

t~2G2 2 oGa t~Ga 
2 ( ~  - f l ) ~ - ~ - - ~  = ~ Off . 

0 ,~2G2 f O 1--vO ~ f 1 3 )  1 + Vdv cq2Q 2 1 1 2 ( i l l  - -  p3)O"~- ff kpl ,  T V 2  "[- 

2(fll- f13)Ofll(~fl  3 = 7 _fl -V/"ll ~ -~ 2 

(4.20) 

o "~02G 2 ( o  l - -v t )  1 1 ( f 1 2  - -  V3)O-~fl I, Pl,  "-~1-'2 + -~f13) 1 - 1 ~2 

+ -Yl i/ -7 
1 1 (2 aG~ a ~ ) ( f l , , k ~ - z f l 2 + ~ - f l a ) l + V d v  

=-~f-1 \ o= 
- x / 1  - v 2 2 

1 1 ( 3 2  ~2OA l + v o  "* - 3 3 ) ~ ( 3 1 ,  ~ - e 3 2  + - T - v 3 )  1 - v: 
+ 7f-1 ~ / 1 - v  2 2 dv 

902  902  1 1 OG2 

-- aft I aft3 "-~ -~ f-1 O~t - -  _ ~----{-~_ ~2 vdv 

_)i ~ (~,, ~ =  + ~ 3 )  i v = l I ~ 
+ - dvJ (/82 - f13) (4.21) 

,~ { - 5 - - 4  ~ ' 

21 w3/] (flh ~ f 1 2  + Z~fl3) 1 + Vdv 
= ~ f  V1 - v 2 2 
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where we have used (4.20) in the third equality. Simply integrating by parts, we 
can check that the last two terms of (4.21) cancel each other. This proves (4.19), 
and therefore, system (4.11). 

Boundary conditions can be checked as follows. At X2 = )(3, we have: 

OQ OF 
~11 -- 0-Y (XI'X3) 

u~ ) [0 ~1 ~ u t ~  
= - 2(u0(X1) - uo(X3))~ 2v/u0(r - uo(X3) 

V/1 ~uo(X3) ) f +  (!~_a + L~e_uo(X3) ) ] XlUto(Xl ) 
+ 2x/2 --1 V5 - - ~  d# + 2[uo(X1) - u0(X3)] ' 

which together with (4.15) yields (4.13). Boundary condition (4.12) immediately 
follows from (4.16). 

Finally, we want to prove the uniqueness of solution to the boundary value 
problem (4.11)-(4.13). Suppose Q(X1,Xz,X3) and Q(Xa,Xz,X3) are two solutions. 
Since the boundary value problem in question is a linear one, 0 = Q - 0 satisfies 
(4.11) and boundary conditions (4.12) and (4.13) with homogeneous terms. In 
the region X1 > 0, X2 > 0, )(3 > 0, if we let X1 = f+(/~l), X2 = f+(//2) and 
3(3 = f+(fl3), we have: 

O20(/+(fll ),/+(f12),/+(f13)) __ dQ dQ 
2(fli -- flj) ~fliOflj Ofli O~j' i,j = 1,2,3,  

O(f+(fl),f+(~),f+(fl)) = O, i=[=j, 

which by Theorem 2.5 implies: 

O(X1,Xz,X3) = 0, for X1,X2,X3 > 0.  (4.22) 

On the other hand, for X1 < 0, condition (4.13) with a homogeneous term can 
be rewritten as: 

[V/uo(Xl) -- uo(X3 )O(Xl,X3,X3 )] = 0 
OX 1 

This and (4.22) at X1 = 0 prove 

O(X1,X3,X3)=O, forX1 < 0 .  

Using the notation )(2 = f+(]/2) and )(3 = f+(//3), by (4.11) we have: 

02Q(yl,f+(fl2),f+(fl3)) O0 OQ 
2 ( / ~ 2  - / ~ 3 )  - - -  

~2~fl3 ~ 2  ~f13 ' 

Q(Xhf+(fl),f+(fl)) = 0, for X~ < 0 ,  

which by Lemma 3.4 of [12] gives: 

O(X1,X2,X3)=O, forXl < 0.  

This and (4.22) proves the uniqueness, and the proof of Theorem 4.2 is completed. 
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We are now ready to prove Theorem 4.1. 

Proof of Theorem 4.1. For X1 4 = 0, 2 = +, - ,  let 

X1 = f2 ( f l l ) ,  )(2 = f+ ( f l2 ) ,  X3 = f+ ( f l 3 )  �9 (4.23) 

In this way, we write Wi's of (4.14) as: 

W/(f'~(fll ), f +  (]~2), f +  (/~3)) = 1 [~i(fll, f12, f13 ) -- 2(ill + f12 -'~ f13 )] ~ /  

+ Q(f'~(t~l ), f+(~2), f +  (/~3)). 

In view of (4.11) and (4.23), Q(fX(~l),f+(fl2),f+(~3) ) satisfies (2.22). By The- 
orem 2.4, we obtain 

~/~j = a iA~, /~2 , /~3)[N - N ] ,  

which is equivalent to (4.7). 
Boundary conditions can be checked as follows. The second condition of (4.9) 

at the trailing edge follows from (2.12), (4.14) and the fact that Q(X1,Xz,X3) is 
symmetric with respect to X2 and X3. The first condition of (4.9) can be easily 
verified using (2.12) and (4.13) in the case of X1 < 0. The part of the trailing 
edge for )(1 > 0 can be handled as follows. 

It follows from (2.12) and (4.14) that 

o9. 
OXl + Q(X1,X3,X3) (4.24) WI(X1,X3,X3) = 2[u0(X1) - u 0 ( X 3 ) ] ~  

Differentiating this with respect to )(3 yields: 

d Wa ( X1, X3 , X3 ) 
dX3 

8 0  
= + 

OX2 

= 0 ,  

 Q-2u'o(X3  ~ + 0x~Qx3 
+ 2[u0(x l )  - u0(X3)] ~xlax2 u~ (xl) 

where we have used (4.11) in the last equation. WI(X1,X3,X3) is independent of 
)(3, and therefore, the first condition of (4.9) follows by substituting )(3 = X1 into 
(4.24) and using (4.12). Boundary condition (4.10) can be checked in the same 
way. This completes the proof of Theorem 4.1. 

We now study the hodograph transform (4.6) with W,.'s given by (4.14) and 
(4.15). We shall show that transform (4.6) can be solved for X1,X2 and X3 as 
functions of (x, t) within a cusp in the x-t plane. 

We make some assumption about the initial data. We suppose that the decreasing 
part of the initial curve x ---- f+(u) has only one inflection point at u = u*, more 
precisely, 

f+"(u*) = 0; f+"(u)  < 0, for u4=u* . (4.25) 

Therefore, by Theorem 2.6 and 2.9, the hodograph transform (4.6) can be solved 
within a cusp until a finite time T when the maximum of the initial curve hits the 
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trailing edge. The main purpose of this section is to solve the hodograph transform 
for time alter T. 

First, we simplify the hodograph transform. Eliminating x from (4.6), we obtain: 

( 2 1 t + W 1 ) - ( ~ 2 t + W 2 ) = O ,  

which is equivalent to: 

()~2/+ W2) - (23t + W3) = 0 ,  

( 2 i t +  W1) - (22t+ W2) 
~ 0 ,  

[u0(X1 ) -- uo(X2)]K(s) 

(4.26) 

()~2t + W2)-  (23t+ W3) 
= 0.  (4.27) 

uo(X2 ) - .o(X3 ) 
Similar to the equations above (3.10), this system becomes: 

aQ(x~,x~,x~) aQ(x~,x3,x3) 
6 t +  aXl + 2  ax3 - 0 ,  

Uto(Xl ) Uto(X3 ) 
~ Q(xt' x3> )[3) F ~ ' X3, X3 ) 

ax2~x3 3 [ 1 ox3 = 0 (4.28) 
2[uo(X1)-uo(X3)] [u~(g3)] 2 2 t +  2 u~(X3) 

at the trailing edge )(2 = X3. Substituting the first equation into the second one, and 
using (4.11), we get 

aO(xi,x~,x~) aQ(x~,x3,x3) 
U(t, X1,X3) = 6 t +  ax~ + 2  ax3 

u ~ ( x l )  u~(X3)  

a2Q(Xl,X3,X3) 02O(Xl,X3,X3) 

- 0 ,  (4.29) 

I~(X1,X3 ) _ axjax3 + 4 ax2ax3 - O . (4.30) 
U'o(X, )u~(x3 ) [u6(X3)]2 

In particular, as mentioned previously, when t = T system (4.29) and (4.30) has 
a solution (T, X I ( T ) , X 3 ( T ) )  with X I ( T  ) = 0 and X 3 ( T  ) > 0. To solve (4.29) 
and (4.30) for X1 and )(3 for t > T, we shall calculate partial derivatives of 0 and 
P on the solution (t, XbX3) of (4.30), where uo(X1) > uo(X3). 

and 

Integration by parts gives: 

x, Cu~(~) 
f - - - -  3er 
o [uo (~ )  - uo(X3) ]~  

2)(1 x~c d~ 

x/uo(X~) - .o(X3) + 2Jo .,/uo(~) - uo(X3) 
(4.31) 

l+'UU X3) 

f d~ 
- 1  X/1 - -#  

, i+' + D 
= [uo(X3)  - 1If 

-1 v " r -  ~ 
(4.32) 
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Using (4.15) and the symmetry of Q about X2 and )(3, we rewrite 0 of 
(4.29) as: 

\ 

OF(X1, )(3 ) OF(XI, X 3 ) 
(f ( t, Xl ,X3 ) = 6t + oxl + ~x3 

u~(X1) u6(X3 ) 

= 6 t  + 2 o V/[uo(~) - uo(X3)][uo(X1) - uo(X3)] 

"~--~- u o ( X 1 ) _ u o ( X 3 ) a  1 ~ / 7 ~  7 d/~ ,(4.33) 

where we have used (4.31) and (4.32) in the second equality. This gives: 

oO 1 1 u~(X1) f l ~  d~ 
= . . . .  3 K J 

2uo(X1)-uo(X3) 2[uo(X1)-uo(X3)]2 [ 2 0  V/uo(r 

+--~- V/1 - uo(X3)f .d# 
--I V --~  J 

> 0 ,  forX1 < 0 ,  

where we have used the assumption that uo(x) is increasing for x < 0 and decreas- 
ing for x > 0. 

Differentiating (4.11 ) when i = 2 and j = 3 with respect to )(3 yields 

O2 Q O2 Q t32 Q 
u~'(X3) OQ _ 3 0x2ax3 ? ex2ox3 

u6(X3) [u~(S3)] 2 ox3 u6(X2) - 2[u0(X2) - uo(X3)]t3x3 U'o(X2 )u'o(X3 ) " 

This becomes 
02Q u~'(X3) 0O ~ O2Q 
OX 2 u6(X3) OX 3 -- ..5 ~ X ~ 3  (4.34) 

when )(2 = X3. Since Q(X1,X2,X3) is symmetric with respect to )(2 and X3, we get: 

~2Q U~o'(X2) OQ ~ O2Q ~32Q O2Q 
OX 2 u~(S2) ~X2 -- J ~S--'~-~3' ~XI~X2 = -OXlOX3 (4.35) 

when X2 = X3. 
By (4.29), (4.34) and (4.35), we obtain: 

02Q ~ O2Q 

-fs U'o(xl--3 
= 0 (4.36) 

on the solution (X1,X3,X3) of (4.30). 
On the other hand, it follows from (4.30), (4.33) and (4.36) that 
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O0 

1 
! ~ ( x ~ , x 3 )  - 2  uo(X3) 

_ 1 J'2:~ 1 d~ 

- 16x/uo(X~) - uo(X3) ~ Jo  [uo(~) - uo(X3)]~ 
Xl d~ 

+ e l  
o x / u o ( ~ )  - u o ( X 3 ) [ u o ( X l )  - uo(X3)] 

+ v~V/1 - uo(Xx)f (1 + tt)dtt 

1 "-7~l/~--uo(X1) ) f+' (L~ + L~uo(X3)) d#}  
V~[u0(X1) __ U0~A3)]~ t _ u0(X3) _1 ~r~ ~ 

+ 
B 

(4.37) 

Therefore, we obtain: 

817 _ 1 f 4  1 
ox~ 16~ /uo(X~)  - uo(X3) [ [uo(X~) - uo(X3)]~ 

Xl 
- 2f U~o(Xl ) d ~  

0 4U0(~)  -- uo(X3 )[uo(Xl ) - no(X3 )]2 

VI2ulo(Xl ) 1 f+t (~--~ --~ ~-~uo(X3) ) 
-- [uo(X1 ) -- uo(X3)]V/1_ uo(X3)_fl ~//1 Z ~ -  d//  

[uo(g l )  -- uo(X3)]241  - uo(X3)__al ~/1 - # j 

>0, forX1 < 0  

on the solution (X1,X3) of (4.30) with uo(X1) > uo(X3). 
Similarly, 

OF < uo(X3 ) { i  1 3d{ 5 
OX3 = 16V/uo(X1) - uo(X3) [uo(~) - uo(X3)]~ 

xl d{ +f 3 
o [uo(r  - uo (X  3 )] ~ [uo(X 1 ) - uo (X  3 )] 

X1 d~ 
+ 2 f  

0 VUo(~) -- uo(X3)[uo(X1) -- uo(X3)] 2 

:+" + 
V~ 1 - 2uo(Xl ) + uo(X 3 ) 1 

-J- 2 [uo(s x / l - .  (1 
+ #)d# 

+ ~_2[! :uo(Xl_)_][2+__uo(Xl)-_ 3uo(X3)] ~f f+' (L~ + ~-uo(X3)) } 
2 [uo(X1)_uo(X3)]2[l_uo(X3)] 3 3__ 1 -V/'-ilS-~ all 
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u~(X3 ) { i  1 3d~ 

= 16v/u0(-~l) -- u0(X3) [Uo(~) - uo(X3)]~ 

9 uo(Xl)-Uo(x3 ) AY 
X1 _ 1--uo(X3) ~'~ 

+f 
o [uo(O - uo(X3)] ~ [uo(Xl) - uo(X3)] 

X 1 l+2u0(X1 )--3u0(X 3 ) 
-~- f 1--u0(X3 ) d~ 

0 4Uo(~)  -- uo(X3)[uo(X1) -- uo(X3)] 2 

x/2[1 . . . . . . . .  -u0(X1)][1 + 3uo(X1)-4uo(X3)] if f+': ( L ~  + 12+_~uo(X3)) d/ t} + 
2 [uo (X l )_Uo(x3 ) ]2[ l_ - f f o~  d 1 ~ /1 - -#  

>0,  forX1 =< 0 

on the solution (X1,X3) of  (4.30) where we have used f + "  <= 0 in the first inequal- 
ity, and replaced the integral involving f + "  by (4.30) and (4.37) in tile equality. 

All these imply that the Jacobian: 

0(g, v) 
- - 4 : 0  
0(XI,X3 ) 

at the solution (XbX3) of (4.30), where uo(X1) > u0(X3) forX1 < 0. Since system 
(4.29) and (4.30) hold for (T, XI(T),X~-(T)) ,  it follows from the Implicit Function 
Theorem that system (4.29) and (4.30) can be solved for X1 and X3 as functions of  
t for t in the neighborhood of T. Furthermore, it is easy to check that the solutions 
X - ( t )  and X3( t  ) are decreasing and increasing, respectively, as t increases. Since 
X - ( T )  = 0, we have Xl(t) < 0 for t > T. Equations (4.29) and (4.33) imply that 
X{-(T) can not catch up with f - (uo(X3( t ) )  ) in finite time. Using the Implicit 
Function Theorem again, we see that X l ( t  ) and X3( t  ) can be further extended for 
all t > T. Therefore, we have established: 

Lemma 4.3 Consider a smooth initial data u = Uo(X) with a sinole hump. Suppose 
that uo(x) reaches its only maximum at x = O, where the maximum is normalized 
to be 1. I f  the inverse function f +(u) of  the decreasin9 part of  u = Uo(X) satisfies 
(4.25), system (4.27) has a unique solution (X{-(t) ,Xf (t),X3(t)) with X2( t  ) = 
X~-(t) for all t > T. Furthermore, we have uo(Xl(t)) > uo(X3(t)) for t > T. 

At the leading edge X1 = X2 
lent to: 

1 
t + ~  

1 
t +  

2 

> 0, system (4.27), similar to (3.14), is equiva- 

o-~I Q(XI,X1,X3 ) 

U'o(xl ) = o, 

~ Q(Xl 'X l 'X3  ) : 0 

U'o(X~ ) 
This system, under transform fli = u0(X/), becomes (3.14) with q(fll,fl2, fl3) re- 

placed by Q(f+(fll), f+(fl2),  f+(fl3))- Therefore, by Lemma 3.6 we have: 

Lemma 4.4. Under conditions of  Lemma 4.3, system (4.27) has a unique solution 
(X+(t),X+(t),X~-(t)) with X+(t) = X+(t) for all t > T. Furthermore, we have 
uo(X+(t)) > uo(X+(t)). 
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For each t > T, we want to solve (4.27) at )(1 = 0. Under a change of variable: 

X1 = f+(31), )(2 = f+(/32), )(3 = f+(33) (4.38) 

system (4.27) when X1 = 0 becomes (3.7) with 81 = 1 and q(31,/32,/33) replaced 
by Q(f+(/31),f+(f12),f+(33)). It follows from (3.9) and (3.17) that 

dF 24 dF dF 
- - 0 ,  - 0  

0t 7~' d32 d33 

dO dO dO 
dt - 6 ,  ~-~2 > 0 ,  ~ 3  > 0  

which implies the non-vanishing of the Jacobian: 

d(P, 0) 
a(t,33) 

at (T, 1,uo(Xf(T)),uo(X3(T)) ). Hence, system (3.7) can be solved for r3 and t 
as functions of/32: 

/33 = H ( / 3 2 ) ,  t = L( /32)  

in the neighborhood of uo(Xf(T)). 
Clearly, H(/3z) decreases as /32 increases, and therefore, (t, flb/32,f13)= 

(L(fl2), 1,/32,H(/32)) satisfies system (3.7) for r2 in the neighborhood of uo(Xf(T)) 
and/32 > uo(Xf(T)). 

Before continuing, we need a lemma whose proof will be given later. 

Lemma 4.5. The following inequalities: 

d()~2t + W2) d(~3t + W3) 
> 0 ,  < 0  

~ d32 a33 

hold on the solution (t,l,fle, fl3) of(3.6) in the region r2 > f13. 

By (2.14), Lemma 3.7 and Lemma 4.5, system (3.7) determines t = L(fl2) as 
an increasing functions of f12. Accordingly, r2 is an increasing function of t, and 
therefore, r3 is a decreasing function of t for t > T in the neighborhood of T. 
Using Lemma 3.7, Lemma 4.5 and Implicit Function Theorem again, we see that 
we can extend t for all t > T. This together with (4.38) establishes: 

Lemma 4.6. Under conditions of Lemma 4.3, system (4.27) when X1 = 0 has 
a unique solution (t,O,X~(t),X~(t)) for all t > T frith X ~ ( T ) = X f ( T )  and 
X~(T) =X3-(T ). Furthermore, X~(t) and X~(t) are decreasing and increasing 
functions of t, respectively. 

We now come back to prove Lemma 4.6. 

Proof of Lemma 4.6. By (4.11) and (4.38), we have: 

o ,  O2Q dQ dQ 
2 ( ~  - w ) a / ~ a - - / ~  ~ - ~ d/~2 " 

Taking derivative with respect to r3 yields 
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02Q 02Q o ~ 03Q 

031033 0fl---~-~-'-33 -- 2(31 -- VZ/031-~--'~2-220fl 3 . (4.39) 

Using (4.25) in (4.16), we find: 

03Q 
< 0 .  

031032033 
These two equations and inequalities give: 

02Q 02Q 

031033 032033 

at (T, 1, uo(Xs uo(Xf(T))). 
This together with (4.30) implies: 

02Q 02Q 
- - < 0 ,  - - > 0  
031033 032033 

at (T, 1,uo(Xf(T)),uo(X3(T)) ). The symmetry of Q with respect to 32 and 33 
gives: 

02Q 02Q 
< 0  

031032 031033 

at (T, l, uo(Xf(T)), uo(Xf(T))). 
We claim that 

02Q 0ZQ 02Q 
< 0 ,  - -  > 0 ,  - -  < 0  ( 4 . 4 0 )  

031033 032033 031032 

on all the solutions (t, 1,32,33) of (3.7) with 32 > 33- 
Suppose otherwise, for instance, 

O2Q 
- 0  

032033 

at some point (1,32,33) on the solution of (3.7) where ]~2 > ~3" This when com- 
bined with (4.11) gives: 

0Q 0Q 
- ( 4 . 4 1 )  

032 033 
at (1, 32, 33 ) where fi2 > /~3. 

Using (4.14) and (4.38), we write (4.26) as 

(!~ 
[21(1,32,33) - 2(1 + 32 + 33)] t + 2 031,] 

( 1 0 ~ 2 2 )  (4.42) = [22(1,f12, f3)--  2(1+ f12 + f13)] t + ~ 

( [22(1,32,33) - 2(1 + 32 + 33)] t + 2 032,} 

( 10Q'~ 
=[23(1,32,33)-2(1+32+33)] t +  2b~3] " (4.43) 
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By (2.14), (4.41) and (4.43), we have: 

t +  - - -  -- 
1 OQ 1 OQ 

- t +  - 0 ,  
2 0fl2 2 c3fl3 

which together with (2.11) and (4.42) gives: 

1 0Q 
t +  - 0 .  

2 0131 

Therefore, by (4.11) we have 

~32Q c~2Q O2Q 
-- - -  -- 0 (4.44) 

91319133 01320fl3 ~flm ~f12 

at (1, ]32,/~3), where /~2 > ]~3" 
On the other hand, we obtain from (4.16), (4.38) and (4.39) that 

OEQ O2Q o , O3Q 
~1310133 0 ~ 3  - 2(ill - p2) o131-'~"-222Of13 < 0 (4.45) 

at (1,132,133) where/12 > /~3. 
Equations (4.44) and (4.45) contradict each other, and the claim is justified. 
It follows from (4.11), (4.38) and (4.40) that 

aQ dQ OQ 

a131 < Y 3  < ~13--7 ' 

which when combined with (2.11), (4.42) and (4.43) gives: 

1 0Q 1 0Q 1 0Q (4.46) 
t + ~ ~ 2 > t + ~-~3 > 0 > t + ~ ~13-- 7 

on the solution (l, f12,f13) of (3.7) with 1 > 13z > 133. 
By (4.11) and (4.38), we have: 

o ,  O2Q OQ OQ 

Differentiating this with respect to t2 yields: 

~32Q ~ 02Q o ~ ~33Q 
Off 2 - J ~fl--fl-~3 + 2(fl2 - p 3  ) o f l - -~- f l3  . (4.47) 

Using (4.11) and (4.38) in (4.43), we obtain: 

10Q ] OEQ 
(~2 - ,~3) t + 2 b--~3 ] + [,~2 - 2(131 + 132 + 1 3 3 ) 1 ~ ( 1 3 2  - /~3 )  = o ,  

which together with (4.47) gives: 
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22 -- 23 ( 10Q "~ o ~102Q 
3 ~-7--~ . t +  5 ~-~) +[2~ - 2 ( ~  + B~ + v~. e-~ ~ 

) 3e 
---- 2[22 -- 2(ill "4- t2 + f13)](f12 -- t3 6~/j26qfl 3 

> O, when//2 > f13 (4.48) 

where we have used (2.11), (4.16), (4.25) and (4.38) in the last inequality. 
It follows from (4.14) and (4.38) that 

O(~2t -{- W2) ~22 ( l O Q )  1 o,aO2Q 
~f12 -- Off2 l + 2 ~ 2  q-2122--2(j~l+f12+P3JJ~-~22 

3 2 2 -  23 ( IOQ'~  1 
> 2fl2 t3 t+20f13.] +2122-2(fll+f12+f13)]O2Q 
> 0, when t2 > t3 , 

where we have used Lemma 2.2 and (4.46) in the first inequality, and (4.48) in 
the last one. This proves: 

O()-2t + W2) 
> 0 .  

In the same way, we can show that 

~3(23t + W3) 
< 0 .  

0/~3 

This completes the proof of Lemma 4.6. 
Next, we want to solve system (4.26) for X1 and X3 as functions of  X2 at each 

t > T when (t, X1,X2,X3) is in the neighborhood of (T,O,X~(T),X~(T)). 
By (2.12) and (4.9), we have: 

a(21t + WI) 
= 1, (4.49) 

at (T,O,X2(T),X~-(T)), where Uo(X) reaches its maximum at x = 0. 
It follows from (1.2), (2.4), (2.5), (2.8) and (2.9) that 

0-~2'22(fll, f12, t3 = 9.  

This together with (2.12), (4.14) and (4.35) gives: 

O(~2t+W2) 
OX2 

[U~ (X2)] 2 aX 2 

( ~32Q 

_ 022 t+ - - -  +4[uo(X3)-uo(X1)] [ _do(X2) 
~x2 2 U'o(X2 ) 

OXzOX3 
1 ~2 + 12[uo(X3) - uo(X1)]U~o(X3 ) = 9ugX3) t+ 2u'o(x2) 
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at Xz =)(3. Using (4.28) and the symmetry of Q about X2 and )(3 in the last 
equation, we obtain: 

0(22t + W2) = 0 (4.50) 
OXz 

at (T,O, X2 (T),X3-(T)). 
Equation (4.16) when combined with (4.25) gives 

O3Q 03Q 

< 0 ,  < 0  
[U'o(X2 )]2U'o(X3 ) U'o(X~ )[U'o(X3 )] 2 

at (T,O,Xf(T),X~-(T)). This together with (4.49) and (4.50) allows us to choose 
an e > 0 such that 

IXf(t)-XZ(T)I < e ,  IX;(t)-X3(T) I <e,  whentE[T,T+e) (4.51) 

and that the following inequalities 

0(,~1 t q- W 1 ) 0(22t + W2) 1 0(2 It + W 1 ) 
OX 1 > 0, OX2 < 2 ~Sl 

33Q O3Q 
~x~x3 ~x2ax~ 

< 0, < 0 (4.52) 
[U'o(X2 ) ]2U'o(X3 ) [U'o(Xi )[U'o(X3 ) ] 2 

hold in a set S where 

S- -  {(t, XbX2,X3) \ T _-< t < T +  ~,lXll < ~,IX2-X2(T)I < ~, 

IX3 -X3 (T ) I  < e, and u0(X1) > u0(X2) > u0(X3)} �9 

Following the proof of Lemma 4.5, we can use (4.40) and (4.52) to show that 

0(;~2t + W2) 0(23t + W3) 
< 0, > 0 (4.53) 

0X2 0X3 

hold on the solution (I, XbX2,X3) of (4.27) whenever the solution is in S with 
X2 :~=X 3 . 

Lemma 3.7, (4.52) and (4.53) enable us to solve (4.27) for 

= m R ) ,  ~ = n ~ )  

in the neighborhood of X~(t) for each t E (T, T + e). Moreover, m(X2) and n(X2) 
are decreasing functions of X2, and in particular, we have: 

~-~x2 (22t + W2) (4.54) 
m'(Xz) = ~xl (21 t + W1) " 

Using the Implicit Function Theorem again, we can extend m(X2) and n(X2) in the 
positive X2 direction so far as (t, X1,X2,X3) is in S and X2 < X3. 

By Lemma 4.6, X~(t) and X;(t) are decreasing and increasing functions of t, 
respectively. Hence, we have X;(t) < X2-(T) = X3(T  ) < X;(t) for t > T. Since 
X3 = n(X2) decreases as X2 increases, if we increase X2 starting at X~(t), then by 
(4.51) we find 
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I)(2 - X2-(T)I < e, I)(3 - X3(T)[ < 

for X2 < X3. Thus, to prove that (t, X1,X2,X3) E S before X2 and n(X2) meet, it 
suffices to show that - e  < X1 < 0 during this extension. 

It follows from m(X~(t))--0 and the fact that X1 = m(X2) is a decreasing 
function of )(2 that X1 < 0. Using m(X~) = 0 again, we see 

x2 
X 1 = f m'(~)d~ 

x;(t) 

1 
> - 5 [x2  - x 2 * ( t ) ]  

> --/3 

for X2 > X2*(t), where we have also used (4.52) and (4.54) in the first inequality, 
and (4.51) and Ix2(t)-X2-(T) I < e in the last one. Therefore, we have proved 
that (t, X1,X2,X3) C S before )(3 -- n(X2) and X2 meet. 

As a consequence, we can extend m(X2) and n(X2) so long as m(X2) < X2 < 
n(X3). Eventually, n(X2) and )(2 will meet at Xz-. Denote, 

X{- = m(X~-), X 3 = n(X~-) . 

Obviously, (t, Xl(t),X~-(t),X~-(t)) satisfies (4.27) and therefore, X/-( t) 's  are given 
in Lemma 4.3. Thus, we have proved: 

Lemma 4.7. Under the conditions of  Lemma 4.1, there exists an ~ > 0 such that 
(4.27) can be solved for 

11(1 = re(X2), 
x~(t )  < x2 < x~-( t) ,  

x3 = n(X2), 

for each t 6 [T,T + 5). Furthermore, m(X2) and n(X2) are decreasin9 functions 
of X2. 

We are now ready to solve the hodograph transform (4.6) for X1,X2 and X3 
as functions of (x, t) for a short time after T. By Lemma 4.7, (4.27) determines 
X1 = m(X2) and X3 = n(X2) for X~-(t) < X2 < X~(t). We want to extend m(X1) 
and n(X2) for Xz < X~(t). The change of variables (4.38) allows us to transform 
system (4.27) when X1 > 0 into system (3.7). The method of Sect. 3 can be used to 
show that (4.27) determines )(1 and X3 asdecreasing functions of  X2 for X+(t) < 
X2 < X~(t), where X+(t) is given in Lemma 4.4. Therefore, we have shown that 
(4.27) determines X 1 and X 3 as decreasing functions of )(2 over [X+(t),X~-(t)]. 
Substituting X1 = re(X2) and )(3 = n(X2) into the hodograph transform (4.6), we 
obtain 

X = 22(uo(m(X2 )), uo(X2), uo(n(X3 )))t  

+ W2(uo(m(Xz)), u0(X2), uo(n(X3)))t, 
which by Lemma 3.7, Lemma 3.9, (4.52) and (4.53) determines x as a decreasing 
function of X2 over [X+(t),Xf(t)]. This implies that X2 is a function of (x,t) for 
x-( t )  < x < x+(t) and t > T, where 

x• = 22(uo(m(X~(t))), uo(Xf(t)), uo(n(Xf(t))))t 

+ W2(uo(m(X2~(t))), uo(X2i(t)), uo(n(X~(t)))). 
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In the same region, X2 and X3 are, accordingly, functions o f  (x, t). 
Thus, (4.6) can be solved for 

Xx = Xl(X,t), X2 = X2(x,t), X3 = X3(x,t) 

F.R. Tian 

within a cusp for a short time after T. Therefore, we have proved: 

Theorem 4.8 Under conditions of Lemma 4.3, the hodograph transform (4.6) with 
Wi given by (4.14) and (4.15) can be solved for X1,X2 and X3 as functions of  (x,t) 
within a cusp for a short time after T. Furthermore, boundary conditions (4.4) 
and (4.5) are satisfied on the cusp. 

Theorems 2.3, 4.8 and the transform fli = u0(X/) immediately establish the main 
theorem of  this section. 

Theorem 4.9 Under conditions of Lemma 4.3, the Whitham averaged system has 
a solution (fll(x,t),~2(x,t),fl3(x,t)) within a cusp for a short time after T. Fur- 
thermore, the Whitham solution satisfies boundary conditions (2.2) and (2.3) on 
the cusp. 

Remark. Lemmas 4.1-4.6 are all time results. However, we did not succeed in 
proving Theorems 4.8 and 4.9 for all time t > T. 

Acknowledgments. I thank C. David Levermore for several discussions. 
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