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Abstract: In this paper we continue some investigations on the periodic NLSE 
iut +Uxx + ulu[ p - 2 =  0 (p  < 6) started in [LRS]. We prove that the equation 
is globally wellposed for a set of data ~ of full normalized Gibbs measure 

1 1 e-fla(~)Hd~(x),H(q~) = -~ f I~b'[ 2 - ~ f I~bl p (after suitable L2-truncation). The set 

and the measure are invariant under the flow. The proof of  a similar result for the 
KdV and modified KdV equations is outlined. The main ingredients used are some 
estimates from [-131] on periodic NLS and KdV type equations. 

1. Introduction 

Consider the nonlinear Schrrdinger equation (NLSE) in the space periodic setting 

iut + u= + u[ul p-2 = O, (1.1) 

where u is a function on zr • IR on 7z • I (I  = an interval [0,z]) with an initial 
condition 

u(x,O) = cp(x), (1.2) 

where cp is a periodic function of x. Here rc stands for the circle, i.e. IR/2~. 
In the nonperiodic case (replacing rc by IR), the Cauchy problem for (1.1)-  

(1.2) is well understood (see for instance [G-V]). One has a local solution (in 
the generalized sense) for (1.1) if  p - 2 < ~ and data cp E HS(lR),s > O. The 

exponent ~ is called HS-critical (in 1 space dimension). I f  p > 6, there is even 
for smooth data a possible blow up. In this discussion, the existence result is in fact 
a global (or local) wellposedness theorem, in the sense of uniqueness and regularity. 

In [B1], we have developed a parallel theory in the periodic case, although 
incomplete so far. The following facts are shown in [B1]. 

Theorem 1. ( p  = 4) The cauchy problem 1 

1 The result holds both in focusing and defocusing case (with same proof). 
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iut + Uxx + ulul a = 0 
(1.3) 

u(x, o) = ~o(x ) 

is 9lobally wellposed for  data q~ c H~(Tc),s > 0 and the solution u is in C(IR, 
HS(rc)). I f  u, v are the solutions corresponding to data (p, ~ E H ~, there is the 
regularity estimate 

[lu(t) - v(t)llns < cItlllq~ - q, ll,,  (1.4) 

where C depends on the LZ-size o f  the data, i.e. 

c = c(ll~oll=, 11~o112) �9 

Theorem 2. ( p  > 4) The cauchy problem 2 

iut + Uxx + ulul p-2 = 0 
(1.5) 

u(x, o)  = ~o(x ) 

is locally wellposed on a time interval [0, ~] for  data ~o E H s, s satisfyin9 

4 
s > O  for  p < 6 and s > s , , p - 2 -  - -  for  p > 6 ,  

1 - 2s.  

where , = ~(ll~llHs) > 0. Again the solution u is in C([0 ,~] ,H *) and depends in 
a Lipschitz way on (p. The dependence o f ,  on IIqG -1 is power-like (see (2.24), 
(2.25) below). 

Our investigations in the periodic case originate from the work of  Lebowitz-  
Rose-Speer  [L-R-S] on the statistical mechanics aspects o f  the flow. In fact, we 
wilt complete here some of  their investigations by proving the invariance of  the 
measure they introduced on a certain (natural) statistical ensemble. In the case 
p = 4, one basically has to combine their work with Th. 1 on the existence of  the 
flow. For 6 > p > 4, there is a problem, in the sense that the flow is only locally 
defined, on a t ime interval depending on the size of  the data in HS-norm (s > 0 
arbitrarily chosen). For 1 > s > 0, there is no apriori bound on Ilu(t)llns. It is 
possible however  to combine the local existence result and the invariant measure 
ideas to construct both the flow on the statistical ensemble and the measure. This 
gives in particular rise to global solutions of  (1.1), (1.2) for 4 < p < 6 and data 
(p E HS(rc), s < 1 (2). More precisely, for almost all co, the random Fourier series 

q~a,co(x) = a + ~ 9J(~ , (1.6) 
j~z J 
j4~O 

where a C 112 and {gy(co)} independent LZ-normalized Gaussians yields for p < 6 
a "good" data, meaning that (1.1), (1.2) with ~o = (Pa,o~ is globally wellposed. I f  
p = 6, the same statement is true, provided one imposes a restriction 

IIq~a,~ll2 < Cl,  (1.7) 

where cl is a certain positive constant. This restriction is linked with the discussion 
in [LRS] on the definition of  the measure. 

2 The condition p < 6 is only needed for the normalizability of the Gibbs measure and may be 
dropped in the non-focusing case. 
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The natural conserved quantities for the NLSE (1.1) are the 

L2-norm: 

N ( u ( t ) ) ,  where N(~)  = fl4~(x)12dx. 

Hamiltonian: 

H ( u ( t ) ) ,  where (q~)= l f l~Y(x) lZdx  - l f [ (o(x) lPdx . 

The (unnormalized) measure studied in [LRS] is formally given by 

(1.8) 

(1.9) 

o r  

iq, + 

N(qb) < B .  (1.11) 

For p < 6, B may be chosen arbitrary, for p = 6, B is a specific constant. From 
the LZ-conservation, a cutoff (1.11) is clearly acceptable. The conservation of the 
Hamiltonian (1.9) implies the formal invariance of (1.10). Our main problem is to 
make this figourous. One approach is to replace the NLSE by a discrete system 
(ODE) (eft [ML-S, Zhl])  

io n + qn+l + qn-1 - 2qn h2 + q,  lq,,[ p-2  = 0 (1.12) 

qn+l -k- qn-1 -- 2q,  1 
h2 + ~(qn+l + qn-1)lqn[ p-2  = 0 ,  (1.13) 

2~ and thus the unknown function u where n = O , . . . , N  - 1 E 7lN ~ ~/NT~, h = 
from (1.1) becomes now a vector valued time function q = (q0, ql,"" ", qu-1 ) .  Both 
(1.12), (1.13) are Hamiltonian. In case of (1.12) the Hamiltonian is given by 

H ( q ) =  ~h ~ I q , + l - q n l 2 - 1 h ~ l q n [  p (1.14) 

and one defines a statistical ensemble by normalizing the density e -BH(q) on a 1] 
suitable ball Iq,12) ~ in 112 N. 

Up to some technical difficulties due to replacement of the circle ~ by the cyclic 
group ZN, the estimates from [BI] carry over to the discrete case (with regularity 
bounds independent of N)  and on finite time intervals the Cauchy problem (1.1), 
(1.2) is essentially the limit of (1.12) for N --* e~. In the case p > 4, the invari- 
ance considerations are exploited on the discrete level to improve on the existence 
results of  [B1] for individual functions. Passing to the limit for N --~ oc in a proper 
way (using the Fourier transform) yields both global solutions almost surely in the 
statistical ensemble and an invariant measure. 

In carrying out this program, we will rather follow the method used by Zhidkov 
(See [Zh2]) that will avoid harmonic analysis on cyclic groups. Fix N and define 

where fl > 0 is a parameter. In order to make this measure normalizable, one 
imposes a bound on the L2-norm of qS, i.e. 

exp[-flH(q~)] 1-I d O ( x ) ,  (1.10) 
xCg 
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P N r  ~_,r 2~i"x , (1.15) 
Pnl <N 

the N th partial sum operator in the trigonometric system. Consider the equation 

{ NI N~P -2~ N ' + ' P N ~ u  [U [ -~-0, iut ~ + Uxx (1.16) 

where U N has the form 

uN(x, t )  = ~ an(t)e 2~i~x . (1.17) 
Inl <N 

We identify b/N and ~i = (an)l,,l<=N through (1.17). Equation (1.16) is Hamiltonian 

since it may be written as ( ~  denoting the 0- differential of the functional) 

da_ 
dt  i H ,  (1.18) 

where 

H(a)  = 2rfl ~ nelan[ e -  1 . (1.19) 
Inl <N n <__N 

Thus (1.16) will be our finite dimensional models. Zhidkov uses this technique 
for nonlinear wave equations bltt - -  blxx -~- f ( x ,  hi) = O, where f is real continuously 
differentiable with size estimates 

If(x, u)l 
(1 +u2)V 2 + IOuf(x,u)l < A .  (1.20) 

In fact, it is observed in [Zh2] that the NLSE may be treated as well by this method, 
up to a sufficient knowledge of the Cauchy problem. For p = 4, this information 
is given by Theorem 1 above. For 4 < p < 6, the space L2(rc) has to be replaced 
by HS(rc) for some s > 0, there is the difficulty that Theorem 2 only yields local 
solutions. The main steps in what follows may be summarized as 

(i) The Cauchy problem for Eq.(1.6) (with bounds independent of N) and the 
convergence of solutions of (1.16) to solutions of (1.1). 

(ii) Construction of invariant measures for (1.16). Use of the invariant measure 
to piece local solutions to global solutions on large subsets of the statistical 
ensemble corresponding to (1.16). 

(iii) Global wellposedness of (1.1) for almost all data r in the Wiener space with 
suitable L 2 cutoff. 

(iv) lnvariance of the limit measure. 

As in [L-R-S], this limit measure is just a certain density on the space of periodic 
Wiener paths. The method of [131] is very flexible and pemaits us to deal with 
other nonlinearities than those appearing in (1.1), including a nonlocal nonlinear 
expression PN (ulul p-2) appearing in (1.16). There is essentially no change in the 
argument. 

We mention also preprints by H. McKean and K. Vaninsky ([MeK-V1,2) where 
invariant measures are constructed by purely probabilistic techniques. 
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2. Estimates Related to the Cauehy Problem 

In this section we will summarize the 1-dimensional results from [B1] and elaborate 
on certain aspects needed later on. We will indicate the main ideas for proofs which 
appear in detail in [B1]. 

Consider a NLSE 
iu, + uxx + r ( u )  = 0,  (2.1) 

where u is a space periodic function of x and F(u) a function of u (with not 
necessarily local dependence). For proving local wellposedness results, replace (2.1) 
by the equivalent integral equation 

t 

u(x, t) = S(t)(o + i f S(t - s)F(u)(s)ds , (2.2) 
0 

where u(x, 0) = qS(x) and S(t) is the unitary group associated to the linear equation. 
Thus 

S(t)O(x ) = ~O"(n)e i('~-nzO (2.3) 
ncZ 

is the solution to 
iut q- Uxx = 0 (2.4) 

u(x, o)  = ~ (x  ) . 

The method consists in applying Picard'~ fixpoint theorem to obtain a local solu- 
tion to (2.2), choosing the time interval t C [0, z] sufficiently small depending on 
the size of the data. The loss of integrability due to the nonlinear term F(u) is 
compensated by certain "regularizing" effects of S(t) (as in the IR-case, where one 
uses Strichartz's inequality). 

There is an La-inequality 

Ils(t)4,llL4(~• ~ < cII4'11L2(~ (2.5) 

and also 

f d2a(n,2)e i(nx+'~O <_ c ( ~ f d 2 ( 1  + 12 +n2[)31a(n,2)12) �89 (2.6) 
L4(r~ X [0,l]) 

One has the "almost" L6-inequality 

Ils(t)OllLr(~• << N'IIOIIL2(~) (2.7) 

if suppff C [ -N,N] .  3 
In previous inequalities x E z, t E [0, 1] (they are local in time). The (necessary) 

presence of the N~-factor in (2.7) is one of the differences between the periodic 
and N-case. Rewriting the integral in (2.2) using Fourier transform, one gets 

. e i2 t  _ e - - i n 2 t  

~fd2r(u)(n,2)e 'nx -:----s . (2.8) 
n Z + n  

3 The symbol "<<" has the usual meaning: For each e > 0, there is a constant C~ for which the 
inequality holds. It would be very interesting to decide whether the bound is logarithmic in N. 
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There is no problem with possible smallness of  the denominator 2 + n z because 
t E [0, 1]. Consider the case of  a cubic nonlinearity, i.e. 

F(u) = ulu[ 2 (as in Theoreml) (2.9) 

o r  

F(u) = PN(U]Ul 2) (cf.(1.16) with p = 4 ) .  (2.10) 

We u s e  L4(7c X [0, 1]) o r  L4(7C • [0, 'C])  to perform the fixpoint argument. Inequality 
2.5) takes care of  the S(t)~p term. For the integral term (2.8), there are essentially 
the contributions 

f d 2  r(u)(n'  )Oei(nx+'~t) (2.11) 
n 12+n2l> 1 2 + n  2 

and 

a~ ~#~2" j e" " (2.12) 

which are estimated using (2.6) and the dual inequality. Thus 
1 

ll(2.11)[Iz4(~• < C 

1 

< c Z;fda r (u )O,x )  
k" 1 +l;t+nZlZ 

< Clip(u), (2.13) 
= L4 (~x[0,1]) 

and by H61der's inequality 
1 

f d 2  r(u)(n,  2) 
ll(2.12)NL4(=x[0,1]) < c k a 1 + 12 + n2l [ 

1 

(~fd21 P . ~ f f ) ( n , 2 )  e 2 I1~ 
____ c < clip(u) . (2.14) 

+ IZ+n21~ = 

Since PN is bounded on Le(~)(1 < p < co, independently of N), in both cases 
(2.9), (2.10) there is the estimate IIP(u)ll4 < CIlun]. 

In fact, from the extra saving on the power of the denominator 2 + n 2, o n e  may 
obtain a bound C �9 z a �9 Ilu1134 replacing the time interval [0, 1] by a small interval 
[0, 1]. Here 6 > 0 is some constant. Similarly, one shows that 

l i  t s)F(v)(s)ds S(t  - s)F(u)(s)ds - f S ( t  - 
0 L4(rcX [0,1]) 

< C �9 za(llull4 + Ilvll4)2ll u - vii4. (2.15) 
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1 small enough, the contraction principle is easily Hence, for z = ,(tlqSIls) < (ll~ll,)-------- T 

verified. Observe from the preceding that we have bounded 

IlulILwL~ ------11~112 + fd'~l+l~.+n2l] 
-<- ll~ll2 + Cllull 3 , 

and in fact shown that u E C([O, ~]; L2(rO). 
I f  u, v are the local 

1 

(2.16) 

solutions corresponding to data 4~, ~b, one has for t c [0, z], 

Ilu(t) - v(t)lkz(~) ~ 211q~ - 011L2~=>, (2.17) 

which is the regularity property. The discussion of  the cubic case for H s, s > O, 
instead of  L 2 is similar. One just introduces an extra Ox (s) in the preceding. The time 
interval [0,z] however  only depends on i1~112, conserved under the flow. From this 
conservation, the local wellposedness theorem leads to a global result. One has the 
regularity estimate 

[[u(t) - v(t)Hllns(~ ) <= C Itl I[qb - O[Im(~), (2.18) 

where C = C(][~bl[2, [[~PI[2). 
The analysis for p > 4 in Theorem 2 or (1.16) is more complicated, mainly 

due to the presence of  a factor N ~ in (2.7). Here we are unable to deal with general 
L2-data. The local result requires q~ E Ha(To). Any s > 0 will do for p < 6. The 
norm used to apply a contraction principle is expressed using Fourier transform 

1 

Hlu[lls = sup(1 + K ) � 8 9  (1 + ]nl) z* f I~(n,2)l 2 , (2.19) 
K K <  12+n2[ < 2 K + l  

where we let K take dyadic values. We consider functions u on rr x [0, r] given by 
a Fourier series 

u(x, t) = ~ f d 2  ~(n, 2)e i(nx+2t) (2.20) 
n 

on 7z • [0, z]. There is no uniqueness and (2.19) is obtained as infimum over rep- 
resentations (2.20). To make estimates on (2.8), one considers a Lit t lewood-Paley 
decomposition of  u w.r.t, the x-variable, thus 

u =  ~ UM;UM=PMu--PMu,  (2.21) 
M dyadic 2 

and writes the nonlinearity u[ulp-2 as 

ulutP-2= ~ ~tMI~tMzH(PIoM2 U) (2.22) 
zal >~2 

dyadic 

with t~ = u or t7 = fT. I f  p = even integer, for instance p = 6, this is purely al- 
gebraic. For other values o f  p,  one uses the fact that z[zlP-2 is sufficiently dif- 
ferentiable. The main idea is that the first factor uM1 takes care of  the M ~ factor 



8 J. Bourgain 

appearing in the definition of the norm (2.19) and the M f  ~ associated with the sec- 
ond factor UMz takes care of N~-factors appearing when estimating the norm (2.19) 
of the summants in (2.22) using (2.7). See [B1] for details. 

If r E HS(n), s > 0, one gets a local solution for p < 6. The time interval 
of existence depends on s and IIr o n  that interval [0,z], the solution u is in 
C([0, T]; H s n ) ) .  If u, v are the solutions with data r if, there is the regularity 
estimate 

Ilu(t) - v(t)l[Hs, < 211r - 4'llHs, for all s l ,  (2.23) 

provided t < z =- z(s0, IIr + IIr for some So > 0. 
It is of importance to notice that the size z of the time interval depends on the 

I1 IIs-size of the data as a power. More precisely, if p < 6 one has 

1 
z > C ( p , s ) (  1 (2.24) 

+ I1r c(p~ ' 

and for p = 6 
C(s) 

"c > (2.25) 
( I  + I I r  cr " 

The problem to build global solutions from this local result is that Ilu(t)l[s is not 
conserved under the flow of the NLSE and there is no apriori bound for 0 < s < 1. 
We will show in this paper how the invariant measure yields a substitute for a 
conservation law, considering the IVP for a set of data rather than a single function. 

Equation (1.16) corresponds to a vector valued ODE in (an)lnl< N. From the 
apriori bound (1.18), the solution has to remain bounded and hence is defined for 
all time. On the other hand, the same argument mentioned above for the NLSE (1.1) 
permits to prove a local wellposedness theorem for (1.16) with bounds independent 
of N, for an initial data bounded in some H s, s > 0, thus 

1 

(1 + Inl)2Sla.(O) < c ,  
In_ 

(2.26) 

where the size of the time interval [0, z] depends on (2.24). Using the invariant 
measure argument, we will improve on this statement for certain data. The next 
problem is then to compare solutions of (1.16) and (1.1). The main result is given 
by 

L e m m a  2.27. Let  p :< 6, s > 0,~p E HS(7c), [[ olls < A and N a large integer. As- 
sume the solution o f  

ivt + vx, +PN(v  �9 [Vf -2) = 0 

v(x,O) = ~ ~(n)e 2~/nx 
I,I <N 

(2.27) 

(we denote bl N in (1.16) by v) satisfies 

]lv(t)Hs < A  for t < T .  
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Then the IVP (1.1) 

iut q- Uxx q- ulul ~-2  = o 
(2.28) 

u(x,  o )  = ~o(x) 

is wellposed on [0, T] and there is the approximation for  t < T and 0 < sl < s, 

I lu(t)  - v(t) l ls ,  < exp [C(p,s)(1 + A)  Cl(p's) �9 T] �9 N sl-s , (2.29) 

provided the expression on the right in (2.29) remains < 1. The constant C l (p , s )  
does not depend on s for  p < 6. 

Proof  The proof follows the methods of  [B1]. Fix 0 < S 1 < S and denote z the 
time interval given by (2.24), (2.25) for a data bounded by A + 1 in H sl -norm. The 
information on [0, T] will be obtained by piecing together estimates on intervals of  
length z. One has the bound 

1 

Ilu(0)-  v(O)lls, = ~ Inl zsll~(n)l 2 < N sl-sA (2.30) 
\lnl>N 

from assumption. Assume for t < to we obtained 

Ilu(t)-v(t)llsl < & < I .  (2 .31)  

Thus  Ilu(to)lls~ < IIv(to)ils, + ~ < A + 1. F rom the local regularity theorem for the 
NLSE, the IVP 

iut -~ Uxx q- ulul p - 2  = 0 (2.32) 

data U(to) at t = to 

�9 ! I I I p--2 ~ ~ut + u~x + u lu [ = o 
(2.33) 

[ u'(to) = v(to) 

are wellposed for t E [to, to + z]. Moreover, from the regularity, there is the approx- 
imation for t _<_ to + z, 

Ilu(t)- u'(t)lls~ <= 2llU(to) - u'(to)l]sl < 2& (2.34) 

by (2.31). Next, we need to compare u'(t) and v(t) on [to, to + z]. Since the initial 
conditions are the same, the integral equation (2.2) gives 

t 

u ' ( t )  - v ( t )  = i f s ( t  - r ) r ( ~ ) d z ,  where  r = u'lu'l  p -2  -- PN(V lv IP-2 )  . (2.35) 
0 

Split the expression F as 

1" = u'lu'l p-= -PN(UtlU'l p-2)  + PN(u'Iu'I p-2 -- vlvlP-2) . (2.36) 

Denote Ill [lls~ the Fourier restriction norm given by (2.19) relative to the interval 

[to, to + z]. We estimate Hlu' - rills ~ from the right side of  (2.35). 
From the estimates of, [B1], the first term of  (2.36) contributes essentially as 

t t p - 2  
c .  ~ l l l u ' - P N ,  u Ills, lllu Ills, , (2.37) 
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where N1 ~ N. For the second term in (2.36), one gets 

Cr~lll u'  - vlll~l(lllu'lll~l + IIIvltl~)P-2. (2.38) 

From the local theorem one has 

Illu'lll~, =< Cllu'(to)[lxl = Cllv(to)ll~l < C A ,  

IIIvllls~ < C[Iv(to)llxx < C A ,  (2.39) 

and the choice of r yields 

tllu' - vlll~l < [llu' - t%u ' l l l~  �9 (2.40) 

Considering s > Sl rather than sl, the local result also implies 

Illu'llls ____ Cl[u'(to)lls = Cllv(t0)lls < CA (2.41) 

from the assumption in the theorem. From (2.41) and definition (2.19), it follows 
that 

Iltu, _ p~c~u, llls' <= C A N 1  ~-~ = C A N ~ - s  . (2.42) 

For t E [to, to + r], estimate (cf. (2.16)) 

1 

Illut(t)-v(t)ll[sl =< C (~'n[ 251 fl [?(/7' '~)l~_ 1,~ -[- n21d22) 7 

<= C(I[lu t -  rills ' + Il iu'--  PNlUt[lls,) < C A N  s l - s  (2.43) 

applying (2.40), (2.42). Combined with (2.34), this yields 

Ilu(t) - v(t)ll,~ < 2~ + C A N  sl-" . (2.44) 

Break the interval [0, T] up in subintervals of length r. For tj = j r ,  j = 0 . . . . .  r u 
one gets by (2.30), (2.44), 

[lu(t s )  - vCtj)l[ - 65+1 < 23j + C A N ~  - s  (2.45) 
3o < N s l - s A  

hence 
6j < c J + 1 A N  ~1-~ . (2.46) 

Here J < ~, where v > C(p,s)o+A)~q~p,~),  according to (2.24), (2.25). Estimate 

(2.29) follows, provided this quantity in l-bounded. This proves the lemma. 

R e m a r k .  
(i) Of course in the main application of (2.29), the parameters p , s , A ,  T will be 

fixed and N --+ cx~ so that the precise form on the inequality is not important 
there. 

(ii) A similar result (with the appropriate interpretation) may be shown when com- 
paring solutions of the ODE (1.12) and solutions of (1.1). 
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3. Invariant Measure for the Modified Equation (1.16) 

11 

Recall ( 1 . 1 6 )  

where 

There is a conservaion of 

and 

iu t  + Uxx + PN(ulul p-a) = O ,  (3.1) 

u(x, t) = ~ an(t)e 2~inx . (3.2) 
Inl<N 

1 

Inl < N  ] 
(3.3) 

ane2ninx P 
H(a)  = 2rC21nl ~<=Nnzla"[2 - Pl f n <=N dx . (3.4) 

Equation (3.1) has the advantage on the original NLSE (1A) that the phase space 
is finite dimensional (I~ 2N+l or ]R 2(2N+1)) and the flow is defined for all time. Since 
(3.1) is equivalent with the Hamiltonian equation 

aH 
= - i - -  (3.5) ~ ' 

the flow preserves the Lebesgue measure on the phase space IR 2(2N+t) ~- G2N+l in 
which coordinates are the real and complex parts of a = (an)N<__N- 

Let B be a cutoff in L z (to be specified) and consider the ball ti? 2N+1, 

(2 = QN, B = a n ) l n l 6 N  I a~l 2 < B , (3 .6 )  

invariant under the flow. 
F 1 

Let p = PN be the measure on C 2N = with normalized density 
1 n*O .J 

e -2~2y]  Inl <N, n * 0 n2 [an 12 
(3.7) f ~Ne-2g2En2ian12 

This measure is also the image measure on C 2N under the map 

~ g.(w)  N, nOeO } (3.8) ;hi  < 

where the {9n} are independent equidistributed complex Gaussian random variables. 
The statistical ensemble will be the measure space obtained by endowing f2 with 
the measure 4 

1 I" ~'~ 2rcinx P 'x  
dl t = dl.t N = e-~Snlz~ane a . (duo | PN) (3.9) 

which, by construction, is invariant under the flow. 

4 Alternatively, one may redefine the equation replacing - A  by - A  + 6,6 > O to avoid the prob- 
lem with the zero Fourier mode. 



12 J. Bourgain 

Thus #, is a weighted Wiener measure restricted to ON. The density satisfies 
uniform L l(dpN)-estimates for p < 6 and if p = 6 provided the cutoff B is suffi- 
ciently small. The proof of this last fact appears in [L-R-S]. We give another proof 
here which may be easily adjusted to other densities. 

Lemma 3.10. The function e [l~"*~176 n IIpy 1 is in L l (dok) for  

p < 6 and B arbitrary and for  p = 6, B sufficiently small. 

(We won't go into finer details concerning best possible value of B if p = 6 here). 

Proo f  We estimate the probability 

[ n n-2 J i ] 
On(Ok) 2~inx ( ~  Ign(ok)[ 2 ~ 7 

IP o) I E e p > 2 ,  < B  . (3.11) 

Split the trigonometric system into dyadic blocks. From the second restriction and 
the obvious estimate 

1 1 
ane inx < M~--p ~ a n e  inx 2 

n~M p 

the property ~---U-~ lip > 2 yields some 

1 

M >  Mo = - ~-~ 

such that 

(2 < p <  c~), 

(3.12) 

n~Mgn(ok)einX P > a u M 2  . (3.13) 

Here (CrM)M>M0 is a sequence of positive numbers satisfying 

aM < 1. (3.14) 
M>M o 

M dyadic 

To estimate the contribution for individual M, consider the subspace [einXln ~ M]p 
of LP(Tz) generated by the characters (einX)nNM and a norming set 5 of functions 
q~ ~ r such that 

ma~ [(f, q~)l >-- 2 Ilfl[p for all f E [e inx [ n ~ M] and 

1 1 
II~I12 < M~-~  for ~p ~ ~, (3.1s) 

log 131 < CM.  (3.16) 

5 Given a M-dimensional subspace S of a normed space X, one may always find a subset ~ of 
the unit of the dual X* of cardinality [~ < cM such that rnaxl(f,~o)l > lllf[ I, for all f E S. In 

the present situation, replace r by its orthogonal projection Ps ~ on S, for which (3.15) clearly 
holds, by the Hausdorff-Young inequality. 
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1 1 
If ~ 9 , e  inx > crMM2, then 1 ~ "  t o g a ~ l  > aMM~-~2  for some ~0 E ~ (by ~n~ Jlk01hl 

n ~ M  p 

(3.16)) and this event has probability at most 

2 1+ 2 
e x p  ( _ c ~ r h M  p ~ 2 ) .  (3.17) 

Summing over different M > M0, (3.10) is the most (2 > 1) 

e-cMo ~2 e CM-camM ~ < , (3.18) 
M>Mo 

1 

letting O'm = M - ~  + for M > Mo. Here 340 is given by (3.13). The inte- 

grability of the function considered in the lemma requires thus that 

2 2 I+-- 1+ -  
- -  P P + 2  

1 1 l 1 
,~P < CB 7-7  2~--~ (3.19) 

for ): large enough. I f  p < 6, this is satisfied for all B and for p = 6 if B is 
sufficiently small. 

Remarks. (i) The previous argument permits to reformulate the lemma with L2(dog) 
(or any other finite moment) instead of Ll(d~)  as well. This permits us to ensure 
that small sets for the Wiener measure are small for #N also. 

(ii) In the preceding we discussed the nomaalization of e-H(a)Hda. One may 
instead have considered e-~H(a)Hda for some fl > 0. 
For 0 < s < ~1 and K > 1, consider following subset of I2 = f2NS: 

~,K={a~ot ~a.e"X __<K}. 
1[I nl--<N Ilw(=) 

(3.20) 

Since clearly 

one has 

IP co I \ o(1 +n2) l - s /  > K_[ < 

pN(f2\f2 s'K) < e -cK2 and #N(f2\gU 'K) < e -cK2 

(3.21) 

(3.22) 

by previous remark. 
We now come back to Eq. (3.1). If  p = 4, there is a regularity theorem wrt the 

L2-nonn (independent of  N).  For 4 < p < 6, one has a uniform regularity result 
for data ~0 ~ H s, s > 0 on a interval [0,z] with z = K - c  for [l~011HS 5-- K. This local 
property may be combined with the invariance of/IN to get wellposedness on large 
time intervals [0, z] for data in large subsets of f2. This is the main idea in this 
paper. We proceed as follows. The map a ~-+ a(z) defined by the flow, thus 

u ( x , z ) =  ~ an(z)e z~x 
lnl _-<N 
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where u solves the IVP 

iut + Uxx + PN(UIU[ p - 2 )  ---- 0 

u(x, O) = ~ane  inx 

is a measure preserving transformation on 12, # which we denote by S. Let fp,K be 
as above and consider the subset 01 of f2 defined by 

~"~1 = (~-~s,K) f-] s - l (~ '~s ,K)  N " " N s - [ T ] ( s s ' K  ) . (3.23) 

Obviously, for a E I2~, there is wellposedness (with bounds independent of N) on 
each subinterval [ j L ( j  + 1)~] of [0, T] with corresponding data u(j-c), since by 
construction Ilu(jv)ll~ _-< g .  In particular, for a E f21, the corresponding solution u 
of (3.1) satisfies 

[lu(t)[ls < 2K for t < T. 
Furthermore, the measure 

~N(~*"2\~'~I) ~ T ~(  ~'2 \ ~'2 s'K ) "~ TKC e -cx2 (3.24) 

by (3.23) and S measure preserving. Fixing T, (3.24) is small for K ~ c~. We 
proved 

Lemma 3.25. Let 0 < s < 1, p < 6, T < c~,6 > 0. There is a subset f2x of  f2 
such that I~((2\f21) < 3 and for ~ c 121, the solution u of  the IVP 

iut + Uxx + PN(U[U[ p-2) = 0 

u(x, 0 ) =  ~ a,e 2~i'~x (3.26) 
]nl<U 

satisfies for Itl < T 

V - - 7 "  
Ilu(t)llHS =< CVlog 6 . (3.27) 

I fa ,  b E f21, the corresponding solutions satisfy for Itl < T and any sl 

Ilu(t) - v(t)lls, _-__ C ( p , s )  �9 Z �9 log Ilu(0) - v ( 0 ) l l S l ,  (3 .28)  

where Ct(p,s)  is independent o r s  for p < 6. 
Estimate (3.28) is a consequence of (3.27) and the regularity results from [B1] 

mentioned in Sect. 2 (cf. (2.23)-(2.25)). 
In fact, from (3.27) one has by interpolation with the L2-bound 

Ilu(t)ll2 = Ilu(O)ll2 (3.29) 
an improvement 

( Ilu(t)lls _-< c log for any ~ > s (3.30) 

_1_ 6 (interpolating between L 2 and H2 ). For p < 6, the inequality (3.29) may be 
replaced by 

Ilu(t) - v(t)ll~ <-_ exp C(p,r  �9 T .  log-g I[u(0) - v(0)[lsl (3.31) 



Periodic Nonlinear Schrfdinger Equation and Invariant Measures 15 

for a, b E/21, u(0) = y~, ane inx, v(O) = ~ bne inx. 
Considering an increasing sequence of  times Ty = 2J and intersecting sets fal,j 

obtained in (3.26) with measure #(fa\f21,]) < 2-J6,  for which (3.27) holds when 
t < Tj one gets 

1 L e m m a  3.32. Let 0 < s < ~, p < 6 and 6 > O. There is a subset 01 of  fa such 
that # ( 0 \ 0 1 )  < 6 and for a c f21, the solution of  the 1VP 

iut + U~x + PN(uIuIp-2) = 0 

u(x, 0 ) =  ~ a.e 2ainx 
In[<U 

satisfies for all t ~ IR 

Ilu(t)lls < c log 

( s+  denotes any number > s). 

(3.33) 

4. Flow and Invariant Measure for the N L S  (1.1) 

We consider the limits p and # of  the measures PN,#N defined in Sect. 3 for 
N --+ oo. Thus p is the image measure under the map 

o~ ~ ~ g"(c~ (4 . l )  
n+o 2rcn 

"q"(~~ is almost surely in H~(r 0 for all Since the random Fourier series ~ n * 0  z-if,, 
s < �89 we may  view p as a measure on any H~(Tr),s < 1; Define # by 

(e}  II~II; Z[II~II2 =<.]) d# = �9 (dao | dp) , (4.2) 

where B is the L2-cutoff (arbitrary for p < 6 and specific if  p : 6) and a0 =@0) .  

Thus, f rom Lemma  3.10, aa~p is in Ll(dp)  (or L2(dp)). 

Denote E N : [eZ=':'=llnl <= N]. I f  U is an open set in HS, s < �89 one has (cf. 
[Zh2]) 6 

p(U)  = lim pu(U n E N )  , 
B - " *  C X )  

#(U)  : l i2~ #~(U r EN).  (4.3) 

The NLSE (1.1) is globally wellposed #-almost everywhere. More precisely 

L e m m a  4.4 For p < 6, 6 > O, the IVP 

Jut § Uxx § ulu]P-2 = 0 

u(x, o) = 4J(x ) 

For the first statement, use (4.1) and the almost sure convergence of the series in H" for all 
s < �89 which makes the role of the tale negligible. For the second statement, use (42), where the 
density factor is an integrable function of the co-variable. 
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is 9lobally wellposed and 

( ~ y +  1 
Ilu(t)ll~ < c log for all s < 

for  a set o f  data (9 E �9 where/z(~b c) < a. 
1 The set �9 may be taken compact in H*(rc), for all s < $. 

Proof We combine Lemma 3.32 and the approximation Lemma 2.27. Fix first 0 < 
Sl < s < �89 T < c~ and 51 > 0. Clearly for appropriate C(s) the set ~1 defined 
by ~5 E ~ if 

II,~llw -5_ C(s) log (4.5) 

satisfies/z(~{) < 51. Choose N large and apply Lemma 3.32, giving a set f2' with 
/zN(f2N\f2') < 5~ and such that the solution v of 

ivt + Vxx + PN(Vlvl p-2) = 0 

v(x, O) = ~lnt <N ane2=inx 
(4.6) 

where (an)tnl<=N in f2' satisfies for all t 

1 

{, 1 + [tl'~ ~ 
II~(t)LI, < c ~log-----~l ) (4.7) 

Define ~2 = [~91(~9(/"/))]n[<N E ~t]. Then (dao OP)[II~II2 ~ B,~o ~ ~21 
(dao | < B,a ~ f2'] < /ZN(Qu\f2') < 62. Hence, since we assumed the 
density in (4.2) in LZ(dao @ dp), also # ( ~ )  < 61. Consequently, except for a set 
of/z-measure at most 61, we may ensure (4.5) and the bound (4.7) for the IVP 
(4.6) with data ~lnl <=u ~o(n)e 2~i'x. 

1 ( Applying Lemma 2.27 with A = C log , it follows that for those q~ the IVP 

iut + Uxx + ulul p-2 : o 

u(x, o) = 4~ 

is wellposed on [0, T] and (2.29) holds, hence 

1 

Ilu(t)[I,, < 2A = C log 

for Itl < T, provided the right side of (2.29) is < 1, which happens by choosing 
N large. 

Intersecting for an increasing sequence of times, one gets 

1 

[lu(t)llsa < G, l o g - - - ~ l  .] (4.9) 
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for data u ( 0 ) =  (p outside a set of /t-measure at most 61. Finally, one inter- 
1 

x This yields the lemma with bound Cs log sects for a sequence s < 3" 

The improved bound is obtained as in (3.32), interpolating with the L 2- estimate 
[lu(t)[[2 = u(O)112 < B.  

Observe that from the (local) regularity theorem (Th. 2), one may replace ~' by 
its closure in H s, for any s > 0. 

Theorem The measure /t is invariant under the flow of  the NLSE (1.1) (4 < 
p= < 6) .  

Proof We already showed that the NLSE is globally wellposed on a Ko-set fl (in 
H s, for any s < �89 of full /t-measure. This set is simply the union of the compact 
sets for 8 > 0,A < ee, 

xa,A = [~ol ll~oll2 < B and Ilu(t)lls 

( 1 ; I t [ )  s+ 11 < ACs l o g -  for all t E lR, s < , (4.10) 

where u is the solution of (1.1) with u(0) = q). 
The flow maps f2 to itself. We show the invariance o f / t  on f2. Denote S the 

time shift (p = u(0) H u(t) for some time t and let K be a compact in (2. Fix some 
0 < s < �89 and denote B~ the r ball in H s. Denote SN the flow on f2N, B C EN 
considered in Sect. 3, given by Eq. (1.16) thus 

iu ff + u N + PN (uNIuN[ p-2) = 0 (4.11) 

for the same time shift uN(O) ~ uN(t). Fix c > 0. From the regularity of SN in 
H s (independently of N)  and the approximation property (2.27) for S and SN, one 
gets for some c > 0 and N > No, 

SN((K q- Be )AEN)  C SN(PN(K)) + Bel/2 C S(K) q- Bel , (4.12) 

thus by (4.3), (4.12), 

/ t (S(K) -~ B~l ) = l i ~  /tn((S(X) ~- Or ) ("1EN) ~ lira ~N(Su((K + Be) n Eu)  ) . 
N---+ oo 

(4.13) 
But since /tU is invariant under SN, 

/ t (S (K)+ B q )  > lim/tN((K + B ~ ) N E N ) =  /t(K + Be) > / t (K).  (4.14) 

Hence/ t (S(K))  >= /t(K). Since the flow is reversible, we conclude 

/t(x) =/t(s(x)), 

proving the theorem. 

Remarks. (I) It follows from Lemma 4.4 that the Cauchy problem for p < 6 

iut + uxx + ulul p - 2  = 0 

U(X, O) = ao -t- ~ ~ e2Uinx =-- Oao,o~ 2~n 
n~O 

(4.15) 
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is globally wellposed for almost all a0 and co, subject to the restriction 

1 

I . o 1 : + ~ 0  4--V-~ ~ ] ____e (4.16) 

for a certain constant B, in case p = 6 (for p < 6, the L2-cutoff is arbitrary and 
hence may be ignored in this statement). 

The factor in front of g,(co) may b e  changed, considering the measure 
n 

e-BH(r162 ) for other values of ft. 
Assume p < 6. Then the previous almost sure result also holds after condition- 

ing 
PNo(~ao,to) = 1//(X) = ~ ~ ( n ) r  2rcinx , (4.17) 

Inl <No 

where ~ is an arbitrary trigonometric polynomial. This follows from the precise 
regularity statment (see(3.31)). Consider 7 > 0 and the set 

~ 1  = [(a0, W) I IIPYo(r - ~'ItH' < v] (4.18) 

of measure > c(t)) �9 ~] 4 # 0 + 2  = 3. From Lemma 4.4, there is an (ao, co) E O1 such 
that the solution u of (4.15) satisfies for s < �89 

1 )s+ f, l+ltl,~,+ 
Hu(t)Hs < C log ;[t_.___fi < C ( O ) ~ , o g - - - ~ )  �9 (4.19) 

Consider the initial data 

r = ~, + (r - eN0(r (4.20) 

satisfying 
P~or = ~, 

and 
I1r -- Ca0,~ll-, < ~. (4.30) 

The Cauchy problem (4.15) for u(x,O)= qS(x) will be wellposed on [0, T] as long 
as, say 

T 
7" exp-- < 1, (4.31) "c 

( T) C(p)(s+) 
where z is the local regularity interval thus z-1 = C(p , s )  log ,s > O. 

Thus letting s be small enough, (4. 31) may be realized for 7 ~ 0. This argument 
easily yields an almost sure property subject to conditioning (4.17), on any finite 
interval, from whence the claim. 

(II) The existence of the invariant measure for the NLSE (1.1), p = 6 yields a weak 
form of the Ferrni-Pasta-Ulam recurrence phenomenon. The method foUlowed here 
applies equally well to other Hamiltonian NLSE's provided the nonlinearity does not 
exceed the critical power (roughly speaking). On the other hand, results obtained 
in [132] (section) pennit to show that in this generality for smooth nonlinearity and 
smooth data, this recurrence property may not hold in higher derivatives, which 
may be unbounded in time (unlike the integrable case Jut + Ux~ + ulu[ 2 --- 0). 



Periodic Nonlinear SchrSdinger Equation and Invariant Measures 19 

(III)  In the 1D-defocusing case, the i f -cutoff  and the restriction p < 6 may be 
dropped in the invariant measure construction, as mentioned earlier. 

(IV) The results in [B1] for one and higher dimensional NLSE do not cover nega- 
tive Sobolev indices, which would be necessary to deal with the invariant measure 
problems in dimesions > 2. 7 

Appendix. Invariant Measures and Korteweg de Vries Equations 

The method described in what precedes permits us to treat certain other equations, 
such as the KdV equation 

ut + Uxxx + UUx = 0 (1)  

and modified KdV equation 

ut + Uxx~ 4- U2Ux = 0 (2) 

(u is real and again space periodic). In general for the equation 

bl t q- Uxx x "[- blkUx : 0 (3) 

there is a hamiltonian 

1 t 2  ) 7= 1 f o~k+2 
( k +  1)(k + 2) J T  = H ( r  (4) 

and (3) is equivalent to 

0x OH 
ut = 0u ' (5) 

We consider the cases k = 1,2 (which are in fact the integrable ones). For k = 1, 
there is an L2-global wellposedness theorem and for k = 2 a local wellposedness 
theorem in H 1/2 (see [B2]). Up to a slight adjustment for k = 2, this regularity the- 
ory enables us to repeat the argument used for NLSE to get the invariant measure 
and, for k = 2, the regularity of  the flow almost everywhere on the statistical ensem- 
ble. For k > 2, I only dispose presently of  an HI-theorem, which is insufficient in 

4- 1 f #.k+2 
this discussion. The Gibbs measure e -H(o) = e ~ J ~ '  �9 e-�89 
is under some L2-eutoff (L 2 is a conserved quantity) normalizable for k = 1, 2 and 
the normalized measure is again essentially the Wiener measure with some weight. 
For k -- 2 and - sign in (3), no L2-cutoff is needed. Thus one needs at least local 
wellposedness results for data in HS(TY), for some s < 1, to make previous method 
work. 

Fix again a large positive integer N and consider the finite dimensional model 

ut + Uxxx + PN(UU k)  = 0 (6) 

with 
IN+ = E r e"x 

In I < N  

7 The author has recently extended the results to the cubic 2D-defocusing NLS iut + Au = u[ul 2 - 
2(flulZ)u obtained by Wick ordering of the nonlinearity. The Gibbs measure constructed from the 
Wick ordered kbl4-Hamiltonian is invariant under the (well-defined) flow of the equation [B3]. 
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and 
u = ~ an(t)e 2~inx, an =-a-n.  (7) 

Inl _-_N 

Again the technique from [B 1] permits for k = 1, say, to obtain uniform regularity 
estimates for (6) and approximation of the solution of the IVP 

ut + U~x + UUx = 0 
u(0,x) = (8) 

from the solutions of 
vt + Vxxx + PN(VVx) = 0 

v(O,x) = PNr (9) 

when N ~ c~, assuming r E HS,s > 0. See [B1], Sect. 7. 
In the model (6), the phase space is 2N + 1 dimensional and the invariance 

of the measure follows from Liouville's theorem (the reader may find a systematic 
expression of these matters in a more general context in [Bid]). Thus for k = l, 
the situation is analogous to the cubic Schrrdinger equation and there is essentially 
no extra work. For k = 2, there is the problem again that the regularity theory is 
local and moreover in H1/2(see [B1], Proposition 8.45), which is borderline for the 
Wiener space. 

The pmlmse of what follows is to indicate how to rework the arguement leading 
to Proposition 8.45 in order to gain on the 1-Sobolev exponent. We repeat some 
steps from [B2], Sect. 8. Thus we consider the IVP 

{ ~t u + (~3xU "q- U2t~x u = 0 
(10) 

u ( O , x )  = 

Define 

u periodic in x. 

c = f r  

and consider the linear equation 

•tu + 83u + COxU = O. 

The solution for initial data u(x, 0) = ~(x) may be written as 

u(x, t) = St~b(x) -- ~ ~(n)e  i('~+(n3-~ . 
nE2~ 

Consider the integral equation 

t 

u(t) = Stc~ + f s ( t  - r )w(z)d~,  
0 

Where 

(11) 

(12) 

(13) 

(14) 

w =  [-u2 + fu2(x' t)dx] (15) 

The IVP (10) is equivalent to the fixpoint problem naturally arising from (14), (15). 
Written in fourier transform, one has 
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A e i2t - -  ei(n3--cn) t 
irlX A u ( x , t )  = E c ~ ( n ) e  i('=+(n3-cn)t) + E e  f w ( n , 2 )  -~ - ~ 7 - ~ n  d ) ` ,  (16) 

l'l n 

where 

1 
~ ( n , ) ` )  = - E nf ' f f (nl , ) ` l ) 'u(nz,)`z)u(n3,  2 - -  ) ` 1  - -  2z)d2 ,d22  (17) 

3 n=n I + n 2 + n  3 
n 1 +n2  4: 0 ,n2+n  3 4: 0, n 3 +n  I 4:0 

- nf ' f f (n,  21 )~(n, 22)~(-n, 2 - 21 - )`2)d21d22 . (18) 

1 Fix indices 0 < sl < ~ < sz < 1 and consider following replacement of the norm 
(8.26) in [B2]: 

=lltulll,,,,2 
= ~ (1 + Inl 2~')fd2(1 + 12 - n 3 + cnl )l~(n, )` )[ 2 (19) 

nE2~ 

+ ~ ( 1  + lnl ~*,) (ft~(~, g)td~) 2 (20) 
n 

+ sup(l + In[ 2.=) [fd)`(1 + I)`- n3 + cnl)l'~(n,)`)l 2 + (fl'd(n,)`)ld)`) 2] d 

(21) 

The contribution of the first term of (16) to this norm is 

II~IIH~,T + sup(l + Inl ~=) [~(n)l �9 (22) 

~ ' ~  9n ( tO ) ~ i n x  Observe that for elements of our statistical ensemble, i.e. of the form z_,--7-, ~ , 
{9n}n>O independent complex Gaussian random variables, g-n  =-gn, the choice of 
s l , s2  implies that (22) is almost surely finite, more precisely (22)< K except on a 

set of measure < e -eK2 (as in the discussion of the NLSE). 
For the second term in (16), there are following contributions to the norm: 

[~(n, 2)12 (23) 
(19) ~ ~fd2(1,, + Inl 2~) 1 + 12 - n 3 + cnl ' 

( I ~ ( n , ; O I ) 2  
(20) ~ X-~(1,, + [nl2St ) f 1 + I~ - n 3 + cn( d2  (24) 

( 2 1 ) ~ ( 1  § 2'=) f d21+ ]2 _ n3 + cn I + f l + -~--n-~-+ cnl 

The key arithmetical fact underlying the estimates is the identity 

( n t + n 2 + n 3 ) 3 - - n ~ - - n 3 - - n ~ = 3 ( n l + n e ) ( n 2 + n 3 ) ( n 3 + n l )  (26) 

implying in particular that for 2 = 21 + 22 + ),3, n = nl + n2 + n3, 

max( I ) , -n  3 + c n l , [ 2 i - n  3 +cn;l(1 < i <- 3)) > In~ +n2lln2 +n3l In3 + n t [ .  
(27) 

If  none of ttle sums ni + nz, nz + n3,n3 + ni vanishes, there ~re following possibil- 
ities: 
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(27) > [nil + Inzl + In31. 

We will make use of following L6-estimate (cf. (8.37) in [B1]) 

< E .  +Nane2Zi(nx+(n3_cn)t << Ne (~la,  lZ)1/2 
I 

NO L6(TZ) 

J. Bourgain 

At least 2 factors in (27) are ,~ max(Inl I + n21 + In3]) and hence 

(27) >= ( [n l l+  In21 + In31) 2 , (28) 

In~l ~ In21 ~ [m and at least 1 factor in (27) is ~ max(Inll,n21, In31), hence 
(29) 

(30) 

Proof of  (30). Writing nx + (n 3 - cn)t = n(x - ct) + n3t and making a change of 
variable, this is clearly equivalent to 

E a,e i(~+'3t) ] <<N ~ (ElanlZ) '/2 . (31) 
No <n <No+N 

= Ilf 112 , one needs to bound the number of integer solutions of the Writing Ilfll6 3 1/3 
system 

x + y + z  = a -  3N0 - al (32) 

(No + x) 3 + (No + y)3 + (No + Z) 3 = b 

for given a,b and restricting x ,y , z  to {0, t . . . .  ,N}. This gives following equation 
in x, y: 

-3xy (x  + y) + 6No(x 2 + y2 + x y )  + 3al(x + y)2 _ (6N0al + 3a~)(x + y)  = bl 
(33) 

with 
bx = b - 3N~ - 3N~al + 3a~No - a~ . 

Denote 

and rewrite (33) as 

X = x + y (34) 
x .  y 

1 
-XY + (al + 2No))( 2 - 2NoY - al(2N0 + al)X + ~bl �9 (35) 

Multipy both members with al + 2N0 and put X1 = (al + 2N0)X to get 

- X 1 Y + X ~  - 2No(al + 2 N o ) Y - a l ( a l  + 2No)X1 = lbl(al  +2No) (36) 

which easily reduces to the fonrl 

- = A (37) 

by one more change of variable. If logNo ~< logN, one has logA < logN and 
log N N e counting divisors gives a bound exp ~ << on the number of pairs (X2, Y2), 

hence (x,y)  satisfying (33). If logNo >> logN, it easily follows from (33) that 



Periodic Nonlinear Schr6dinger Equation and Invariant Measures 23 

6(x 2 + y2 + xy)  -- 6al(x + y) (38) 

b-l- + O ( N 3 )  ~ + O(1), hence may only take 1 value. In this case, the equals NO \ . ~00 = N o  
problem clearly reduces to lattice point counting on the oval X 2 + 3 y2 = A with 
A < N 2, from where again the N e bound on the number of pairs (x, y). Conse- 
quently (32) has only << N e integer solutions, proving the lemma. 

We now return to the expression (23), (24), (25), with ~ given by (17)-(18). 
consider first the contribution of (17) to ~(n, 2). 

Estimate (23) by duality. Thus {d(n, 2)} satisfies 

d(n,2)  > 0  and ~ f d ( n , 2 ) Z d 2  < 1 (39) 
nE2~ 

and we consider the expression (s = sl ) 

(1 + In1 + ~ + n31)l+~f,t2,,t2za2~ 
nl,n2,n3 

nl+n2 4:0..-. 

d(nl + n2 + n3, 21 + 22 + 23) 
1 -~-[/~1 + 2 2  + 2 3  --  (/'/1 + n 2  + n 3 )  3 -- c(/'/l -[-/'/2 -]-/'/3)11/2 

c(nb 21 ) c(n2, 22) c(n3, 23) (40) 
121 - n31 + cna[1/z 122 - n39 + cn2[1/2 123 - n~ + cn3[ 1/2 

denoting 

Thus from (19) 

c(n, 2) = (1 + 12-  n 3 + cnl)~nfff(n, 2)[. (41) 

q V2 
fnl2S)c(n, 2)21 ~ Illulll. (42) 

as in [B1], Sect. 7, one of the 4 denominators 
+ Inel + In3l, the remaining (Inlt + ln:I +n3t)  s 

[  fd2(1 + 

Assume (28) holds. Proceeding 
in (40) takes care of a factor Intl 
is multiplied with c(ni, 2i) if  Inil = max(In1 t, In21, In3 ])- The new expression (40) is 
then formulated as the (x, t)-integral of 4 functions, belonging to L2,L6,L6,L 6. This 
requires a cutting up of the x-Fourier transforms in intervals of appropriate length 
and the use of (30). It is the same reasoning as applied in [B1] for the NLSE in 
dim 1 say, when p = 6 and hence the L6-bound just fails. Thus at this stage, we 
only need Sl > 0. 

Assume (29) holds. Then In1 ~ lnz l  N In3[ and one of the 4 denominators 
in (40) i s  at least (nl + In2 + n31) I/2. The remaining ([ni l+ [n2l + In3l)l/Z+s 

1 s 1 s Inll~+~ [n21~+g In3l-~+~ is multiplied with the c(ni, 2i) factors. The L 2 - L 6 - L 6 - L 6 
1 ~ hence sl > 1 In this case, in- estimate is thus applicable provided st > g + 3, ~" 

equality (30) may be used directly, without interval partitioning, since nil ~ n21 "~ 
In31. 

To estimate (24), consider a system {d(n)}nez 

d(n) > 0 ~ d ( n )  2 < 1 (43) 

and replace in (40) the first factor by 

d(n) (44) 
1+12-n 3+cn[  " 
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Proceeding as in [B1] one can essentially perform the same estimates as for (40), 
since a denominator I,~ - n 3 - enl l/z could in fact be replaced by 12 - n 3 - cnl ~/2-~ 
(where z > 0 depends on s l )  in the L6-estimate. 

We consider next the contribution of  (17) to (25). Assume lnll = max(Init; i = 
I, 2, 3). If  Inll ~ max(In21, n31), the previous analysis is already conclusive, since in 
case (28), the value s in (40) may be taken to be 2sl - e and in case (29) provided 
12 + s < 3sl. Hence, letting s~ => 9 ,  a value of  s2 > 4 is obtained. Consequently, 
assume Inll >> max(lnEI, In3l). 

Consider a system {d(2)}, d(2)  > 0, fd (2)2d2  < 1 and estimate the square root 
of  the first term of  (25) by 

(1 + 1n11) l+sz ~ fdXld)~2d23 
n I +n2+n 3 =n 

d(2)  c (nb21)  c(n2,22) c(n3,23) 

1 + 12 - n 3 + cn[ 1/2 1 + 121 - n 3 +cnl l  ~/2 122 - n32 + cn~l v~ - + cn~l~/~ 
(45) 

where 2 = 21 + 22 + 23. Since we have case (28), one of  the denominators is at 
least [nl [In2 + n3l 1/2. 

Case (i): 12 - n 3 + cn{ 1/2 >= [nil In2 +n3[ 1/2. 
Write (45) as 

fd)qd22d23 {d (2 )  . (l  + lni[)s2f'ff(nl,2,)l ['d(n2,22)ll'ff(n3,23)l } (46) 
nl+n2+n3=n 1 + In2 + n311/2 ' 

where {(1 +ln, l)s21~(nl,A1)l} is controlled in E~L l taking into account the n 1 21 , 
second term in (21), ((l+ln=l")l '~(nz,,~z)l} and ((1+ln31~,)l~(n3,,~3)l) 

2 1  { } provided are in fnL~ by (20). Consequently I~'(n~,2~)l l~(na,2a)l is in f l  L 1 
l + [ n 2 + n 3 1 1 / 2  �9 n2n3  4243 

1 is in ge2 which is the case for sL > ~. 
~U311"2-"311/2 .2,.3>0 "2"3' 

Case (ii): 121 - n 3 + cna] 1/2 > Inll In2 + n311/= 
Write (45) as 

fd2 ,d22d23 d(2)  ,~,+.z+.3=. 1 + t2 --s enl,/z( 1 + ]nil) ~2c(nl'2~))~(nz' 
22)1 23)1 

1 -F In2 + n311/2 

(47) 

Here again { (ff(~2, 22 )11~'(~3, 23 )1 } is in E' L a �9 for fixed 22, 23, {d(21 + 22 + 23)} is 
l+]n2+n 3 ] 1/2 ~ �9 n 2 n  3 ,q,223, 

oo I in L~ and (I + [nll)S2e(nl, 21) in L~1 and /~176  and thus the product in E~ L2~ t~ n 1 21 

Case (iii): ]22 - n 3 + cn2 [1/2 > ]nl ] In2 + n3 [1/2. 
Write (45) as 

fd,~1d,~2d23.1 d(),) 
nl+nz+n3=n + 12 -- n3 + on] 1/2 

c(n2, ,h) ~(n 
(1 + [nl[)~21~(nl.21)ll +-1~2~311/2 t 3,)-3)1. (48) 



Periodic Nonlinear Schr6dinger Equation and Invariant Measures 25 

where {(1 + [nl[s2)[~(nx,21[) is in ~~176 ~,~ ~1,{(1 + [nz, l~l)c(ne,2z)} in ~ 2  t2 
n 2 zJ)~ 2 , 

{(1 + I + In31 sl )l~((n3, 23)1} in ~n3L~3. Again is in For In 2]sl In 3 [Sl [n2+n311/2 n2n3" 

fixed 21,23, {d(21 + 22 + 23)} is in L]2. 
This completes the analysis of the contribution of (17) to the first term in 

(25). Clearly the preceding yields also the estimate on the second term, since the 
denominator 12-  n3+ cn[ was not used except in case (i) above where d(2) is 
replaced by 1 < 1. 

l +12_n3 +cn[1/2 -~- 
Next analyse the contribution of (18) to ~(n, 2). It is clear that (23), (24), (25) 

are bounded by (~n(1 + Inl)2~2fd,~l~(n,,~)12) xn, hence, from (18), by 

InlH-~zl~(~,~,)l I~(n,~2)l I~ ( -n ,~  - ~, - ~2)1 (49) 

in ,2re.1 The factors {Ini~l[~(n,~)l),{[nl~=l~(n,~z)l),(Inl~=l~(-n,~)l) are re- o n~,2J- ,2122.  
2 1 cx~ 1 oo  2 spectively in (~L~, (~ L h, E n La, by (20), (21). Hence, it suffices to ensure that 

sl + 2s2 > 1 + s2, hence S1 -~-$2 > 1 . (50) 

4 (cf. above) this is clearly satisfied. With sl = 9,s2 = 3 
From the preceding, it follows that the transformation 

t 

u ~ S(t)O + f s ( t  - z )w(z)dz;w = [ -u  2 + fu2dx] Oxu, (51) 
0 

~b with small (22)-norm, maps a ball in HI [[[~l,~z-sP ace into itself and acts as a 
contraction there (proving the contractive property is a straightforward variant of the 

i previous argument), for certain 0 < Sl < 7 < s2 < 1. To deal with general data 
(without) smallness assumption, one exploits small time intervals [0, z], to gain an 
extra factor z a, for some ~ > 0, on the second term in (51). This is possible, since 
in fact, as a consequense of (30), there is for ~ > 0 some p(z) > 6 satisfying 

NO < n <~No + N einx f d )~ei;~t'u( n' ); ) 
LPo')LfOo~) ]1j2 

CN ~ fd2(1 + [2 - n  3 + cn])]'ff(n,2)] 2 (52) 

This is easily derived from (30) if log(1 + [ 2 -  n 3 +on[)~< logN, breaking up 
in level sets [ 2 - n  3 + c n - k  I < 1. If l o g [ 2 - n  3+cn[>>logN,  simply use a 
Hausdorff-Young inequality. 

Details on these matters appear in [BI] in the discusision of the NLSE. This 
yields us a local wellposedness result for periodic modified KdV (10) with data q5 
satisfying 

I[~llsl,~= = II~ll~sl(T) + sup(1 + InVz)l~(n)l < ~ (53) 
?/ 

1 for certain 0 < sl < ~ < s2 < 1. The time interval [0, z] depends again on the 
size II~l/sl,s2 of the data in a polynomial way. As mentioned earlier, II~llSl,S2 < K 
on a subset (2~1,~2,x of the Wiener space with complementary measure < e -~x2. 
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This discussion yields all elements to carry out the scheme of proof used for the 
NLSE with p > 4 in the case of modified KdV, with the same conclusion. 

Theorem 2. The Gibbs measure for K d V  and modified KdV on the statistical en- 
semble (with some L2-cutoff i f  necessary) is invariant under the flow. The equations 
are wellposed (globally) almost everywhere on the ensemble. 
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