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Abstract. We develop a new analysis of the order-disorder transition in 
ferromagnetic Potts models for large number q of spin states. We use the 
Pirogov-Sinai  theory which we adapt to the Fortuin-Kasteleyn representation of 
the models. This theory applies in a rather direct way in our approach and leads 
to a system of non-interacting contours with small activities. As a consequence, 
simpler and more natural techniques are found, allowing us to recover previous 
results on the bulk properties of the model (which then extend to non-integer 
values of q) and to deal with non-translation invariant boundary conditions. This 
will be applied in a second part of this work to study the behaviour of the interfaces 
at the transition point. 

1. Introduction 

When we consider three phases, a, b and c, in thermal equilibrium, the situation 
may arise in which a layer of the phase c is developed at the boundary between 
the a and b phases in order to lower the surface tension (i.e. the free energy). Then 
two interfaces appear: one between a and c, the other between c and b. The 
interaction between these two interfaces leads to a large variety of physical 
phenomena. 

A theoretical example of this situation is provided by the ferromagnetic q-state 
Potts model in dimension d > 2. This model exhibits q ordered phases at low 
temperature and one disordered phase at high temperature. When the order-  
disorder transition isfirst order, which is the case when q is large enough, all phases 
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remain distinct a t  the transition temperature and the situation described above 
appears: a, b, and c being respectively two ordered and the disordered phase. 

Our purpose here is to develop appropriate mathematical techniques for 
analyzing the behaviour of the Potts model at the transition point. The main result 
will be the description of the model as a gas of polymers (contours) and from it 
the derivation of a cluster or "low temperature" expansion in powers of q-1/~ 
which converges for q large enough. An application of these techniques to the 
problem of three coexisting phases will be discussed in a forthcoming paper. 

In the Potts model [1] spin variables tr i which take values on a discrete set 
{1, 2 . . . . .  q} are associated with each site i of the lattice. Two adjacent spins ai and 
aj interact with interaction energy -J6(a~,trj), where J > 0 for ferromagnetic 
systems and 6 is the Kroeneker symbol. Therefore, the total energy is 
H = - J ~  fi(tr/, tri) and the partition function is 

where the sum runs over all configurations inside a box V and B = J/kT. A first 
order phase transition when ~ varies is expected for q > 5 in d = 2 and for q > 3 
in d = 3 [2]. This has been proved from the exact solution in the case d = 2 [3] 
and, provided that q is large enough, in any dimension d > 2 [4-8].  

It was shown by Fortuin and Kasteleyn [9] that the partition function Z is 
equal to 

Z( V) = ~ (e ~ - 1)lXlq Nvtx~, (1.2) 
X 

where the summation is over all graphs X (subsets of bonds) which can be drawn 
inside the box V, containing LXI bonds and Nv(X)  connected components 
(regarding an isolated point as a component). Note that q need not be an integer, 
we can allow it to be any positive number. 

Our approach is based on the theory of Pirogov and Sinai [10, 11] which we 
adapt to the Fortuin-Kasteleyn representation of the model. With respect to 
precedent works dealing also with the large q case [4-8],  let us mention that the 
Pirogov and Sinai results apply in this approach in a rather direct way, without 
introducing new concepts or generalizations, and lead to a system of non-interact- 
ing contours. The following observations explain the reason why these results apply 
to the considered system. 

Let us consider the d-dimensional cubic lattice Z n and denote by ~ the set of 
bonds (pairs of nearest neighbours), the subsets X c ~ of occupied bonds describe 
then the configurations of the system. One says that two configurations X and Y 
are equal almost everywhere (X = Y a.e.) if they differ only a finite set of bonds, 
i.e. if there exist a finite V c ~ such that X n  W = Yn  V c, where V c = ~ \V.  We 
denote by S(X) the set of sites which belong to some bond in X and by C(X) the 
number of connected subsets, single sites are not included. Given two configurations 
X, Y such that X = Y a.e., we define their relative energy by 

n ( S l  Y) = - ln(e p - 1)(IXl - I YI) - l n q ( - I S ( S ) l  + IS(Y)[ + C(X) - C(Y)), 

according to the Boltzmann weight which appears in the Fortuin-Kasteleyn 
representation. Hereafter I EI denotes the cardinality of the set E. 
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A configuration Y is a ground configuration if H(X[Y) > 0 for all X such that 
X = Y a.e. It  is not difficult to see that the empty set ~ and the full set ~ ,  which 
we shall also call (following [12]) the free and the wired configurations, are ground 
configurations for some values of fl and q. In fact, X = ~ a.e. and X = ~ a.e. 
respectively mean that X and X c are finite sets. In the first case we have 

H(X[ ~ )  = - In (e p - 1)[XI - In q(- IS(X)[  + C(X)), 

and in the second ease 

H(X]~)  = ln(e t~ - 1)lXCl - In q(lS~(X~)l + C(X) - 1), 

where St(X) is the subset of S(X) such that any element is the endpoint of 2d 
bonds of X. If ln(e p - 1) __< (1/d)lnq and X = ~ a.e., then 

H(X[ ~ )  >= In q([S(X)[ - (1/d)lX[ - C(X)) > 0, 

and if ln(e ~ - 1)> (1/d)lnq and X = ~ a.e., then 

H ( X I ~ )  ~ In q ( -  IS,(XC) l + (1/d) lX~l - C(X) + 1) (1.3) 

= In q([ S(X) I - (1/d) bXI - C(X) + 1) > 0. (1.4) 

We note that in order to make the difference [S(X) I - (1/d)[XI in (1.4) well defined, 
one has to go from the lattice 7Z d to the discrete torus ~ of size N (then 
IS(X)[-(1/d) lX[  does not depend on N for N large). The positivity of the last 
two expressions (1.3) and (1.4) is proven by easy geometrical arguments (see the 
Lemma of Sect. 2 and use the remark that each finite connected subset of X must 
be surrounded by more than 2d elements of XC). This says that the free and wired 
configurations are ground configurations if fl < In (ql/n + 1) and fl > In (qX/d + l) 
respectively. The same arguments show that both expressions have a uniform lower 
bound proportional  to the number of elements of the boundary of X. (Since the 
set S(X)c~ S(X ~) contains the sites where the configuration X looks different from 
the two ground configurations we may take it as a definition of the boundary.) 
This means that the Peierls condition needed in the Pirogov-Sina'i  approach is 
satisfied. 

The precise statements which follow from the approach described above are 
discussed in Sect. 2. In Sect. 3 some consequences of these results are explained. 

2. Main Results 

2.1. Notations and Definitions. Two bonds are adjacent if they have an endpoint 
in common. Two bonds are co-adjacent if a d-cell exists containing these two bonds 
(d-cells are plaquettes for d = 2, cubes for d = 3, etc.). 

A set of bonds, X, is connected (respectively co-connected) if for any b and b' 
in X, there is a sequence of bonds in X, b = ba,b 2 . . . . .  b, = b' such that b i and bi+ 1 
are adjacent (respectively co-adjacent) for all i = 1 . . . . .  n - 1. We note that to any 
p-cell in Z n we can associate the orthogonal (d-p)-cell of the dual lattice (Z + 1/2) n 
which intersects it. The co-connectedness of a set of bonds means that its dual is 
a connected set of R d (with the usual topology). 
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For  any set of bonds X c ~ ,  we define the boundary t3X as the set of bonds 
which belong to X and are co-connected to the complementary XC= ~ \ X .  We 
define the co-boundary fiX as the set of bonds which belong to X c and are connected 
to X. Then, fiX = 6 iX  w6zX,  where 

6 t X  = {beX~/lS(b)c~S(X)l = 1}, 

6 2 x  = {bEX~/IS(b) c~ S(X) I = 2}. 

and the following geometrical property holds 

Lemma. 

1 
IS(X)l - ~lXl = ~ 1-161XI + 216~XI] (2.1) 

The proof  follows from the corresponding definitions and the fact that 2d bonds 
meet at every point of the lattice. 

We introduce the partition functions with free and wired boundary conditions: 

Z:(V) = ~ (e tJ-  1)lXlqm'(X), (2.2) 
X ~ V ; X ~ V  c =  

Zw(V) = ~., (e # - 1)lXlqN"(X), (2.3) 
X ~V;X DaV 

where X c ~ and Nv(X) = C(X) + ]St(V)\S(X)I. The following limits (independent 
of the boundary conditions) 

f(fl) = lim (1/1V[)In Z:(V) = lim (1/I V[)In Zw(V) (2.4) 
VT~ VT~ 

exist a n d -  (1/fl)f(fl) gives the free energy per bond. 

2.2. Contours. The co-boundary of a set of bonds split into co-connected 
components which we shall call contours. Our  aim is to express the partition 
functions Z w and Z :  in terms of two contour models associated with the functionals 
~bw and q~: defined respectively on the set of w-contours and on the set off-contours.  

A co-connected subset 7 of ~ is called a contour if it is the co-boundary of 
some set X c ~ ,  such that either X or X ~ is a finite set. In the first case we say 
that 7 is a contour of the free class, or a f-contour ,  in the second case we say that 
7 is a contour of the wired class, or a w-contour. The unique infinite component  
of :~\7 is denoted by Ext 7 and we define also the sets V(7)= ~ \ E x t  7, and 
Int 7 = V(7)\7 and the length of the contour 

11711 = 1611ntTI + 2162 IntT[, i f7 is a f-contour,  

II 7 II = 161 Ext 71 + 2162 Ext 71, if 7 is a w-contour. 

Two non-intersecting contours 71,72 are called mutually compatible. Two 
contours of the same class are called mutually compatible external contours if 
V(71)cExt72 and V(72)cExt71.  If  0 =  {7~,72 . . . . .  7,} is a family of mutually 
compatible external contours we denote: V(O)= U v(Ti), Int  0 = V(O)\O, Ext 0 = 
~\V(O), and Extv0 = V n E x t 0 .  i 

Let X c ~ and assume that X c is a finite set. Denote by X| the unique infinite 
connected component  of X. Then the co-boundary 6X~ of X~o split into 
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co-connected components Yx . . . . .  7,, which are mutually compatible external 
contours of the wired class and will be called the external contours of X. 

Let X c 2~ and assume that X is a finite set. Denote by X~ the unique infinite 
co-connected component of X c. Then the co-boundary of ~\X~o split into 
co-connected components 7x . . . . .  y,, which are mutually compatible external 
contours of the free class and will be called the external contours of X. 

With these definitions we obtain the following inductive expressions for the 
partition functions: 

Zw(V)= ~ qC<V)(e#-1)text"~ (2.5) 
0 w c V  

where the sum runs over the families 0w of mutually compatible external w-contours 
included in V such that 7nOV = ~ ,  which we hereafter denote by 0w c V, and 

Z f (V) = E qlS'tV\lntSs)lzw( Int  Of), (2.6) 
Of cV 

where the sum runs over the families O: of mutually compatible external f-contours 
ir~cluded in V. 

2.3. Contour Models. The partition function, in a volume V(V ~ ~), of a contour 
model ~ with contour weights ~(~) is given by 

~r(VIq~)= ~ I-Iq~(~), (2.7) 

where the sum is over all admissible families 0 of contours in V: this will mean 
that the ~w's are included in V and such that ~wc~OV= (~ for families 0w of 
compatible w-contours and that the y:'s are included in V for families O: of 
compatible f-contours. 

The partition function of a contour model ~ with a parameter b is defined by 

~e(vl~ p, b) = ~ I-I eblV~l~b(7)~( Int ~10), (2.8) 
0 ~ V yr 

where the sum runs over families 0 of mutually external contours. 
To have a good control on partition functions of contour models one relies 

on their "z-functionality"; ~ is called a z-functional if for some fixed number z > 0 
and every V, it satisfies the estimates 

14~(~)1 < e -~M. 

This ensures, in particular, 

which is the free energy per 
work. 

the existence of the limit 

1 
f(<~) = lim In :~(V[ ~b), 

vT~IVI 

(2.9) 

(2.10) 

bond. We may now state the main result of the present 

Theorem. Assume that q is large enough and d > 2. Then for every fl there exist 
non-negative parameters bw, b f and associated z-functionals bw dpw , c~bf: such that: 

b w + l n ( e # - l ) +  f((abwW)=b:+~lnq+f(qb~s)=f(fl), (2.11) 
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Zw(V) = qqV)(e# -- 1) Ivl ~e(V[ ~b~w; bw), (2.12) 

zS(v) = qSXV~Lr(VI ~b~; bs). (2.13) 

There exists a unique inverse temperature fit = fit(q, d) such that 

bw=O and b s = O  f o r f l = f i t ,  

bw=O and b s > O  f o r f l > f i t ,  (2.4) 

b ~ > 0  and b s = 0  f o r f i < f i  r 

The contour functionals (ab~ w and (a~: are defined inductively by: 

~bbw(Yw)Lr(Int 7~ I~b~ w) = e-bwlVt~w)l(elJ -- 1)-IV(~)lzf (V(yw)), 

q~:(Ys)~(lnt yS I q~ s) = e-  b:lvtrs) lq-ISllnt r,)Izw (Int ]'s), (2.15) 

and satisfy the estimates: 

~b~(Tw) < q-(1/2d) II ) 'w II exp {9q-1/2a [I ~w I1 }, 

~b~S(yS) < q -(1/2d)IlYf II + C(Int),y)exp {6q -tta- 1)/(4d- 2)d] II 7 f  II }. (2.16) 

The proof of the theorem is given in the Appendix. Let us notice that the 
inductive expression (2.15) of contour functionals immediately yields relations (2.12) 
and (2.13) of the theorem, taking into account the inductive expressions (2.5) and 
(2.6) of Z ~ and Z s and the definition (2.8) of the partition function ~e(v{ ~b, b) of 
a contour model with a parameter. The statement (2.11) also follows from (2.15) 
by taking the logarithms, provided q~bw~ and q~: are indeed contour functionals. 
Because S(X)/IXl ~ 1/d when X T ~  we have the term (1/d)lnq in (2.11). 

We get then, the following expression for the transition temperature 

In (e #~ - 1) = (l/d)In q + f(4'~) - f(~b~ (2.17) 

where the free energies f(tk ~ and f(~b~) are given for large q by 

f(qbo) = q - 1in + O(q- 2In), 

f(dpoy) = q-ta- 1)/d + O(q- 2td- 1)/a). (2.18) 

Indeed this may be seen from the convergent contours expansions of the theorem, 
taking into account the fact that the first terms in the expansions come from the 
smallest contours. In the wired case the smallest contour has length 2 and the 
other ones have length at least 4. In the free case the smallest contour has length 
4d - 2 with one component for its interior and the other ones have length at least 
6d - 4. 

Notice that for d = 2, the duality relation (which in the considered representation 
corresponds to the exact symmetry of the model 1-3, 13] under the transforma- 
tion X ~  V \ X )  implies f ( f i * )=  In [(e # -  1)q -t/2] + f(fi), where fi* is such that 
In [(e #* - 1)q- ~/2] = _ In 1-(e a - 1)q- ~/2]. From the theorem the transition point fit 
is unique, therefore fi* = fir if d = 2, which gives t 

In (e a' - 1) = (1/2) In q. 
In dimensional d _>_ 3 we have 

ln(e #' - 1) = (1/d)lnq + q-:/a + O(q- 2/a), 
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as a consequence of (2.17) and (2.18). 
The theorem above shows, as was mentioned in the Introduction, that the 

Fortuin-Kasteleyn version of the Potts model may equivalently be described as 
a system of non-interacting compatible contours. If q is large enough the associated 
activities are small and decay exponentially in the contour length. This allows a 
good control on the behaviour of the system at any temperature. 

3. Concluding Remarks 

The expressions in terms of contours of the partition functions under free and wired 
boundary conditions are given by the theorem above. We introduce also the Gibbs 
states ( .  >w and ( ->:  associated to these boundary conditions. For a fixed bond b of 
the lattice, let n b be the occupation number: nb(X)  = 1 if b belongs to X and 0 other- 
wise. For fl = fit and if q is large enough we have ( n b ) : <  O(q-(d-1)/d), because a 
bond is occupied only if there is a contour 7 surrounding it, I ck~(~)l is an upper 
bound on the probability of the contour and the shortest f-contour has length 
II ~ II = 2(2d - 1). Similarly <1 - rib) w < O ( q -  x/d) because the shortest w-contour has 
l eng th  II ~' II = 2, therefore <nb) w - <rib): >= 1 -- O ( q -  1/a). Since the internal energy 
is given by E(fl)  = - d f / d f l  = - e#(e # - 1)- 1 <nb), this shows the existence of a jump 

A E  = E( /3 ,  - O) - t~(/3, + O) > O, 

at/3,, and shows that the system undergoes a first order phase transition, with a 
latent heat A E ,  when the inverse temperature/3 is varied. 

More generally, one can apply the results about cluster expansions of polymer 
systems (the situation for large q is quite similar to that of ferromagnetic Ising 
model at low temperature and the methods of [14, 15] may be used, see also [16]), 
to the contour models defined in the theorem. We get then, provided that q is 
large enough, convergent expansions in powers of q-1/d,  of the logarithm of the 
p~trtition functions and the correlation function under free and wired boundary 
conditions. Moreover, we may also consider general boundary conditions (although 
they give rise to "long contours") because the partition functions in finite volumes 
(these volumes correspond to the different regions separated by the "long contours" 
and present a free or a wired boundary) can also be written as a convergent 
expansion. These expansions, together with known arguments from the low 
temperature analysis of lattice systems [14, 17], allow us to recover (and extend 
to non-integer values of q) the following results of [4-8] and 1-18]. 

If/3 # fit, there is only one translation invariant Gibbs state. It describes, for 
/3 >/3t, the ordered phase and for /3 </3 ,  the disordered phase (for q going to 
infinity these states approach the wired ground state if/3 > fit, i.e. the Dirac delta 
measure whose support is the wired ground configuration, and the free ground 
state if/3 </3t). At /3 =/3t there are two pure phases, the ordered (. >~ and the 
disordered ( .> :  states. Every translation invariant Gibbs state is then a convex 
linear combination of these two extremal states. Moreover, the truncated 
correlation functions associated to the pure phases decay exponentially and there 
is a strictly positive surface tension at/3t between the ordered and the disordered 
phases. 

Finally, let us point out that we are lead to introduce also mixed wired boundary 
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conditions, which, in the usual version of the Potts model, correspond to fix the 
spin value 1, 2 . . . .  or q, at each site on the boundary. This may be done by restricting 
the allowed configurations of bonds to those which do not connect some given 
subsets of the boundary. Notice that these subsets can be given arbitrary, in a 
number independent of the value of q. On the other hand, by adding these 
non-connectedness conditions to the usual boundary conditions, we may extend 
the notion of Gibbs states and introduce a surface tension between two equivalent 
but distinct ordered phases. The above results concerning the number of pure 
phases in equilibrium remain true also for this extended notion of Gibbs states. 
Moreover for all fl > fit the ordered-ordered surface tension is strictly positive. 

Appendix  

In this appendix we prove the theorem stated in Sect. 2. We use the inductive 
approach of [19] and closely follow Sect. 2.5 of [7] to which we refer the reader 
for more details. 

First Step. We shall construct the contour functionals $~ and ~b: following the 
inductive procedure of [19]. First of all one observes that for every aw, oc: > 0 one 
may define, by induction in I V(?~)I and I V(7:)l, the contour functionals $~w, ~b)~ 
using the inductive relations of Theorem 1 with b~ = a~ and b: = a:. Let us 
artificially transform these functionals into z-functionals by defining 

6~w(~,) = min ($~w(y), e - ~  II~ it), 

6~@) = min (r e - '~  tl~ tl). 

Define further 

bw = sup {ct w[~, + In (e # 1) -~'~ --  + f (~b~)__<f ( f l ) } ,  

b:=sup{a:tot:+~lnq+ f(~,,)< f(fl)}. 

We show that 

bw + in (e # - 1) + f ( t ~  w) = bf + ~ in q + f ( ~ s )  = f(fl), 

by proving that f(6~w) and f(6):) are continuous in ~w and ~:. This follows from 
the fact that (1/I VI) l o g ~ ( V i ~  ~) is Lipschitz continuous uniformly in V as may 
be seen by computing and bounding its derivative with respect to �9 (see [17]). 

Second Step. We shall show by induction in ] V(7~)l and ]V(?:)t that t#~ w and ~b} s 
are actually z-functionals, i.e., that t ~  w -- ~b~bw and ~b[ = ~b~.:. Suppose that this is 
known for all ~9~ with J V(~gw) i < k and all ~9: with ]V(~:)i < k + 1 and consider a 
contour ?~ with i V(?w) i < k + 1. Notice first that from the induction hypothesis 

(Int yw lr '~) = ~( In t  ?~ t ~'~)) = exp (f(~b'~) I Int ?~ i + tT(Int ?~ I t ~  w)), 

where 

a(vI r = In ~(vI  d ' ) -  I vI f(~). 
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Observing that for any contour  ~s contributing to :Z(V(Tw) I ~ / )  one has ~s c V(yw), 
one gets, using again the induction hypothesis, 

s I ~}s) = :Z(V(yw)I ~s  r ) = exp ( f ( ~ t )  I V(yw) I + a(V(y~) I ~'~)). 

Starting from the definition, referring to (2.13), to the first step, to the above 
observations and to the obvious  inequality 

~(V(~w) I ~ ' ;  b s) ~ exp (bsl V(yw) [) ~(V(yw) 14~'), 
we get 

~b~w(Tw) = e-bwlV<~w~l(e p _ 1)-IV~yw)l ZS(V(Yw)) 
~ ( I n t  y~14~ w ) 

e-bwlV~rwJl(e p 1 -IV<~w)l IS,~V<~w))l ~(V(vw)I~b~;bs) = - )  q 
.Z(Int ~,wl 4~ w ) 

< exp {I V(7w) l [ - b~ - In (e p - 1) - f ( ~ ' ~ )  + b s + f ( ~ ) ]  } 

�9 exp {f(~'~)I 7w I + a [ V(7~) I ~ / ]  - a [Int  7~ I ~ '~ ]  } qS(Int ~'w) 

= q ]S( ln t  yw) l - l / d  l int  ywl - l / d ] y w  I 

�9 exp { f ( ~ w ) l  y w I + cr [ V(?w) I ~ / 1  - r  7w I ~ w l  }- 

Then, by taking into account  the lemma, we use 

1 
IS(Int ~w)l-  1/d lint ~ w l -  1/d I~'wl = - I S ( E x t  ~,w)l + 1/d IExt ywl = - ~ll~'wll, 

to get 

~b~(y~) < q -<l/Zd>ilrwII exp { f (~w)I  ?w[ + tr[V(~,~)l ~ / ]  -- tr[Int ~wl ~b~] }. 

Similarly for )'s with I V(Ts) I < k + 2, from the induction hypothesis we have 

~ ( I n t  ?sl ~b~s) = .~(Int  7s ] ~ s ) )  = exp ( f ( ~ )  I Int 7sl + e(Int  7 s l ~  ~)), 

Lr(Int 7sl ~b~ ~) = ~ ( I n t  7~1 ~ ) )  = exp ( f ( ~ w )  I Int 7sl + tr(Int ?s I q~ w)), 

so that 

$~(7s) = e-bslV(~s)lq-IS(Int vs)l Z~(Int 7s) 
~ ( I n t  7sl ~b.~s) 

< q-~lS0nt ~S)I-(X/n)l~-t ~Sl +C~,,rS)~ exp { o'[Int 7sl ~ w ]  -- ~ 7sl ~ ~] } 

<= q-(x/2a] II ~s II + C(Int vl)exp {tr l in t  ~sl ~wl - o[ In t  ?s I ~/1 } 

< q-[ca- x)/t4a- 2>a] II ~, II exp {tr [Int  7s I ~b~] - tr l in t  7 s l ~ / ]  }, 

where we used C(Int 7I) --< [1/(4d - 2)] II 7~ [] in the last inequality. 
We take zw = (1/2d)In q - In K and ~y = [(d - 1)/(4d - 2)d] In q - In K, evaluate 

I/(~b~)[ < e -~W, use that  (of. [11]): Itr(VI ~ ) l  < It3VI e- 'w and Itx(Vl~/)l < IOVle TM, 
to get tlae estimates o! tlae theorem (obtained with K = 3) and also the equality of 
free energies stated there, which actually is identical with that stated in the first 
step since -~w _- ~w ~b~'~ and ~ = ~b~ for q-Ud-~)/~4d-2)a] => (3K/ln K). 
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Third Step. Next  we prove that  min (b, ,  b l ) =  0~ If we suppose that  min (b, ,  bl) 
> 0  then, referring to the fact that  the Lipschitz constants off(qS bW) a n d f ( f ~  s) are 

at most  1/2, one would prove that  there exists e > 0 and parameters  b , ,  b I such 
that  

+ In (e p - 1) + f(qSg~ w) = b j- + ~ln q + f(qSg/) = f(/~) - 5. 

Using this equality of free energies instead of that  stated in the theorem (where 
e = 0) one might show in the same way as above that  ~ '~  and ~g /a re  x-functionals 
and thus 

+ In (e p - 1) + f(~gw) = ~y + ~ln q +f(qSg/) < f(/~), 

in contradict ion with 

f(/~) < b ,  + ln(e p - 1) + f(~g~), 

which follows from 

Z'(V) = q(e p -  1)lvtLr(VI gw. qb, ,b,) < q(e a 1)lVlegwlVl~(vlq~w). 

Therefore min (bw, by) = 0. 

Fourth Step. Finally we prove that  for a fixed q, there exists a unique /~t for 
which b ,  = by = 0. We notice that  at such a point  necessarily ln(e a - 1) + f(q9 ~ = 
(1/d)lnq +f($~). Thus our  aim is to prove that  the two corresponding curves 
intersect in a single point. At the point/~o, solution of the equat ion e a - 1 = ql /~,  
the slope of the tangent to the graph of l n ( e a - 1 )  is l + q  -l/d, and differs 
significantly from zero, the slope of the line (l/d) In q. Taking into account  that 
[f(~b~ and If(~b~)l as well as I(d/dfl)f(~~ and I(d/dH)f((a~)[ may be bounded  by 
e -~, one shows that ln(e p -  1)+f(tp~ and (1/d)lnq+f(c~) are respectively 
contained in a tiny strip a round  In (e a - 1) and ( i /d)In  q, and have entirely different 
slopes. Thus one may conclude that  they intersect in a single point  fit near / /o .  
The bounds on I(d/d~)f(q~~ and I(d/d~)f(c~-)l are shown as in the proof  of the 
Lipshitz continuity in the first step. We again use the inductive relation with 
~ ,  = ~y = 0 and evaluate I(d/dfl) In Z(V(7) I tP~ and ](d/aft) In Z(Int  71 tp~)[ in terms 
of the mean energies in the ensembles corresponding to the wired and the free 
part i t ion functions. This ends the proof  of the theorem. 
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