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Abstract. The geodesic approximation to vortex dynamics in the critically coupled 
abelian Higgs model is studied. The metric on vortex moduli space is shown to be 
Kfihler and a scheme for its numerical computation described. The scheme is applied 
to the 2-vortex system and the geodesic scattering compared with previous simulations 
of the full field theory. The quantum scattering is also analysed. 

1. Introduction 

Describing the dynamics of field theory solitons is in general a difficult problem. 
Classically, it requires that one solve the initial value problem for a set of non- 
linear hyperbolic partial differential equations. Although there are some very special 
(exactly-integrable) systems for which explicit time-dependent multisoliton solutions 
can be constructed - for instance, the sine-Gordon model - no such systems enjoying 
Lorentz-invariance have been found in more than one space dimension. In more 
physically interesting cases one must resort to numerical simulation or work within 
some kind of approximation scheme. 

One possibility, at low energies, is that most of the degrees of freedom of the fields 
remain unexcited and the field theory can be well approximated by a finite-dimensional 
system. Truncating the field theory in this way is usual in the collective coordinate de- 
scription of a single soliton. That it might be appropriate to the description of several 
strongly interacting solitons was first proposed by Manton [1] in connection with the 
scattering of Bogomol'nyi-Prasad-Sommerfield (BPS) monopoles. This theory is one 
of a class admitting static multisoliton solutions corresponding to arbitrary configura- 
tions of solitons at rest. The existence of the solutions may be understood physically 
as due to the absence of static forces between separated solitons. Mathematically, the 
essential property appears to be that they saturate a topological lower bound on the 
field energy and as a consequence satisfy a first order field equation (Bogomol'nyi 
equation) [2]. Manton's idea is that in such theories the low energy dynamics of 
several solitons may - just as for a single soliton - be approximated by motion on 
the space of the corresponding static solutions. 
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Let ~ be the field configuration space of the theory, and L = T - V its La- 
grangian, with T and V the kinetic and potential energies respectively. The n-soliton 
static solutions form a submanifold Mn (the moduli space) of ~ on which (in the 
charge-n sector) V takes its absolute minimum. Now consider intitial conditions cor- 
responding to a slow motion tangent to Mn. Imparting small velocities to n widely 
separated solitons would, for instance, be described by such conditions. In the sub- 
sequent evolution, the trajectory of the system will be constrained by V to lie close 
to Mn. V will thus remain approximately constant, and the field evolution described 
by a geodesic motion on M~, the metric being that induced by the kinetic energy T. 
The problem of describing the soliton dynamics is thus reduced to finding the metric 
and solving the ordinary differential geodesic equations on Mn. One may also obtain 
an approximate quantization by considering wavefunctions over M~, and taking a 
Hamiltonian equal to (minus) the covariant Laplacian. A proposal to generalize the 
prescription to the case where a Bogomol'nyi bound is only approximately attained 
and there are weak forces between the solitons has been made in [3]. 

In general, to find the metric one must calculate the zero modes about each of 
the static solutions and evaluate the kinetic energy functional T on them. Perhaps 
the best studied example is the theory of BPS monopoles. Here, in principle, one 
may construct the static multisoliton solutions explicitly. However, to calculate the 
metric directly from the zero modes would in practice be very difficult. Instead, the 
2-monopole metric has been found indirectly by Atiyah and Hitchin [4]. They showed 
that the metric on the n-monopole space is hyper-K~ihler. When n = 2, this property 
of the metric, together with its symmetries and the requirement that it be complete, 
determines it uniquely. This has allowed the low energy dynamics of two monopoles, 
both classical and quantum mechanical, to be studied in some detail [4-6]. 

In some other cases where explicit multisoliton solutions are known, a direct cal- 
culation of the metric has proved possible. Examples include Kaluza-Klein monopoles 
[7], maximally-charged black holes [8], and the "lumps" of the CP1 sigma model in 
(2 § 1) dimensions [9]. In the last case the metric on the moduli space is (formally) 
K~ihler, and this result has been generalized to CPN models with N > 1 [10], and 
also to sigma models with arbitrary K~ihler target [11]. The scattering of lumps has 
been studied in both the geodesic approximation [12] and in the full field theory, 
but numerical difficulties in the latter case have prevented a proper comparison from 
being made (reported in [12]). A final example is that of vortices in the critically 
coupled abelian Higgs model in hyperbolic 2-space, studied in [13]. When the hyper- 
bolic space has special curvature exact solutions are available - the SO(3)-invariant 
instantons - and the metric is again found to be K~ihler. 

Here we are concemed with the solitons of another model in (2 + 1)-dimensions 
for which, by contrast, no explicit construction has been found. These are the vortex 
solitons of the critical coupled abelian Higgs model in flat space. The geodesic ap- 
proximation was first applied to vortex scattering in [14]. The 2-vortex metric was 
determined, on grounds of symmetry, up to two unknown functions, and it was shown 
that two vortices in head-on collision scatter through 90 ~ . Some understanding of the 
vortex metric was obtained in [15, 16], though not enough to further specify its form. 
There have also been numerical simulations of the true scattering, governed by the 
full equations of motion [17, 18]. These confirmed the 90 ~ scattering, which persists 
up to high energies. In [17] the scattering data was found to be roughly velocity 
independent at low energies, as the geodesic picture would predict, and this data was 
used to make an approximate determination of the functions in the 2-vortex metric. 

Here the problem is studied further. The work is presented as follows. 
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In Sect. 2 the abelian Higgs model and its static solutions at critical coupling are 
reviewed. 

In Sect. 3 we review the geodesic description of low energy vortex scattering, and 
discuss the non-singularity of the metric on moduli space. 

In Sect. 4 the form of the metric is investigated. It is shown to be K~Jaler in a similar 
way to Strachan in [13], and a scheme for computing it in terms of the properties 
of the static solutions is presented. The centre of mass motion is also discussed. A 
different way of showing the K~hler property, due to Ruback, is sketched in Appendix 
B 1 . 

In Sect. 5 these ideas are applied to the 2-vortex system. The metric is shown to 
depend on a single function of the vortex separation, and an integral constraint on this 
function obtained. The metric, and the geodesic motion in this metric, are computed 
numerically. The geodesic scattering is compared with previous simulations of the 
true scattering of vortices, and good agreement is found, even for quite high impact 
speeds. 

In Sect. 6 we try to unerstand the integral constraint on the 2-vortex metric from 
a more general point of view. 

In Sect. 7 the 2-vortex quantum scattering problem is examined and the cross- 
section in the long-wavelength limit found explicitly. 

Some of this work has appeared in a less developed form in a previous publication 
by the author [19]. 

2. Vortices in the Abel ian  Higgs  Mode l  

2.1.  B a c k g r o u n d  

The abelian Higgs model [20] is one of the simplest theories exhibiting the Higgs 
mechanism. As well as its interest in the general context of field theory, it has rele- 
vance to the study of cosmic strings [21] and to the phenomenological description of 
superconducting materials [22]. In (3 + 1) dimensions it admits topologically stable 
soliton solutions in which the energy density of the fields is concentrated in tubes of 
definite width. The tubes are threaded by magnetic flux, quantized, together with the 
energy per unit length, in integer multiples of a basic unit. The dynamics of these 
flux tubes is in general rather complicated; its study has relied largely on computer 
simulations [23]. A simpler special case, which nevertheless exhibits interesting dy- 
namics, is obtained by imposing translational symmetry along a particular direction. 
The flux tubes, or "vortices," are then all parallel to this direction and the problem is 
essentially (2 + 1)-dimensional. This is the case of interest here. 

The model comprises a complex scalar Higgs field r = r + ir coupled to a 
U(1) gauge field Au, together with a symmetry breaking potential. The Lagrangian 
density is 

= 1 D u r 1 6 2  - 1 F u ~ , F ~ ,  _ ~ A(Ir 2 _ 1)2, (2.1) 

where D#r  = ( 0  u - iAu)r Fu~, = O u A ~  - O u A ~  (#, u : 0, 1,2), and the metric is 
taken to have signature (1, - 1 ,  -1 ) .  As a result of symmetry breaking the gauge field 
acquires a mass. Units have been chosen so that this mass, and also the gauge field 
coupling, are both equal to one. The free parameter A which remains is the (square 
of the) Higgs mass. 

1 I am very grateful to Peter Ruback for allowing me to reproduce his argument here 
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The value of A determines the relative strengths of the attractive scalar force and 
repulsive magnetostatic force between vortices. Since the fields are massive, these 
forces are short range. Roughly speaking, when A < 1, the scalar forces prevail 
and the only static solutions are those representing coincident vortices. Conversely, 
when A > 1, the vortices repel each other; again only coincident solutions exist, but 
these are now unstable. In the Ginzburg-Landau theory of superconductivity these two 
cases correspond to Type I and Type II materials respectively. At the critical value 
A = 1, the forces exactly cancel, and static solutions exist corresponding to arbitrary 
configurations of vortices. We now describe the vortex solutions in this case. 

2.2. Vortex Solutions 

It is convenient to work in the gauge A0 = 0. The equation of motion associated with 
A0 must be imposed as a constraint (Gauss' law), 

OiAi + q~aeabCb = 0 (2.2) 

and the Lagrangian is then L = T - V, where T and V are the kinetic and potential 
energies respectively: 

1 T = ~ f d2x(r + A~Ao (i = 1,2), (2.3) 

Y = �89 f d2x(D~r162 + F22 + �88 ([r - 1 ) 2 ) .  (2.4) 

The total conserved energy is E = T + V. Finiteness of E implies the boundary 
conditions 

[ r  as Ix I ~ o e  (2.5) 
DiO "-+ 0 

so that on the circle at infinity r is a pure phase. It follows that the space of all finite 
energy fields decomposes into topologically distinct sectors labelled by the winding 
number n of the map 

r " $ 1  ---+ U(1). (2.6) 

In the n th sector the total magnetic flux through the plane is (using Stokes' theorem) 

f d2xF12 = 2rrn. (2.7) 

Note that if n r 0, then by continuity r must have zeros somewhere in the plane. 
Now consider static fields, Ai = 0, q~ = 0. Gauss' law (2.2) is then satisfied and 

the kinetic energy T vanishes. The static energy E = V may be written as follows: 

E =  gl f d2x[(D1 -4- iD2)r 4- iD2)r + {/'12 ~: �89 ([r _ 1)} 2 

-4- i{02(r - 01(qSD205)} 4- F12]. (2.8) 

The boundary conditions (2.5) ensure that the total derivative terms vanish. Hence, 
using (2.7), 

E _> 7tin I (2.9) 

with equality if and only if 

(D1 -4- iD2)r = 0, (2.10) 

F12 4- �89 (]r 2 - 1) = 0. (2.11) 
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Equat ions  (2.10) and (2.11) are ca l led  the B o g o m o l ' n y i  equat ions.  The  upper  and 
lower  signs cor respond  to n > 0 and n < 0 respect ive ly .  Thei r  solut ions min imise  the 
static energy,  so au tomat ica l ly  sat isfy the full  second order  static equat ions  fo l lowing  
f rom (2.4). In fact, it has been  shown that  all  solut ions of  the full  static equat ions  are 
solut ions of  (2.10), (2.11) [24]. Hence  to s tudy the static theory it suffices to cons ider  
jus t  these first order  equat ions.  In all  the work  which  fo l lows we assume n > 0 and 
take the upper  signs. In this case  the solut ions are ca l led  vort ices;  for  n < 0 they are 
ca l led  ant i -vort ices .  

It is s t ra ight forward to find ro ta t ional ly  symmet r i c  solut ions of  (2.10), (2.11). In 
po la r  coordina tes  (r,  0), the ansatz 

r = e i n ~  (2.12) 
A ~  = O, A o  = n a ( r )  

gives the equat ions  

do  
r ~ r r - n ( 1 - a ) o = O ,  

2 n  d a  
- -  - -  @ ( 0  2 - -  1) = O, 

r d r  

(2.13) 

where  the appropr ia te  boundary  condi t ions  are Q(O) = a(O) = O, Q(oc) = a ( e c )  = 1. 
The asympto t ic  behav iour  of  Q is g iven  by  

~ A r  n r --~ O, 
(2.14) 

~ 1 - B K o ( r )  r --~ ~ ,  

where  K0 is the zero th order  modi f ied  Besse l  function.  These  solut ions are in terpreted 
as descr ib ing  n coinc ident  vort ices.  The  profi le  for  the s ingle  vor tex  (n = 1) is shown 
in Fig.  1; in this case  A ~- 0.603. 
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The coincident vortices where the first solutions obtained [25]. Subsequently a 
numerical analysis of the 2-vortex case indicated that the forces between critically 
coupled vortices vanish [26]. Furthermore, an index theorem argument of Weinberg 
showed that about any solution of charge n there are 2n (square integrable) zero 
modes [27]. These results suggested the existence of a 2n-parameter family of n- 
vortex solutions, finally established with the rigorous work of Taubes [24]. 

In the n th topological sector the space of smooth solutions (modulo gauge trans- 
formations) is a 2n-dimensional manifold Mn. Each solution is uniquely specified by 
choosing n unordered points (counted with multiplicity) in 1~ 2, where the Higgs field 
is zero (though it should be noted that no explicit form for the solutions is known). It 
is useful to make the identification ~2 ~_ C and write the position of a point (xl, X2) 
in R 2 as z = Xl +ix2. We shall denote the positions of the zeros by z~ (r = 1, . . . ,  n). 
The {z~} provide good local coordinates on most of M~ but, because they assume an 
ordering, break down on the (2n - 2)-dimensional subspace An, where two or more 
zeros coincide. Good global coordinates on M,~ are provided by the coefficients of 
the complex polynomial with roots z~ [15]: 

Pn(z)  =-- Wo + w l z  + . . .  + Wn-1 zn-1 "~ Z n 
n 

: _ l - I ( z - z r ) .  (2.15) 
r = l  

Thus M,~ is the topologically trivial space C '~ = {wk}, inheriting a natural complex 
structure from the complex structure on the plane. Note that the space of ordered 
points, C '~ = {z~}, is a branched covering of Mn. 

Taubes' general results also relate the properties of the solutions closely to the 
positions of the zeros. It follows from the first Bogomol'nyi equation (2.10) that in a 
neighbourhood of a zero at z~ of multiplicity n~ 

r = (z - z~)n~hr(x),  (2.16) 

where h~ is a smooth, non-vanishing function of x. Away from the zeros, the fields, 
being massive, rapidly approach their asymptotic values. In particular, the Higgs field 
has the following decay property: for any (5 > 0 there exists a M(6)  > 0 such that 

0 < 1 - Ir 2 < M(8)e -(1-6)lxl. (2.17) 

The rapid decay means that solutions corresponding to well-separated vortices are 
approximated by a superposition of 1-vortex solutions with errors only exponentially 
small in the separations (see Appendix A). The positions of the zeros then correspond 
to the locations of the vortices - i.e. to where the energy density (and magnetic flux) 
of the fields is concentrated - and we may regard the vortices as independent particles 
of mass ~r carrying flux 2~r. On the other hand, when the vortices are close together, 
it is no longer proper to think of them as distinct objects, and the zeros of the Higgs 
no longer correspond in a direct way to the energy distribution of the fields. 

This completes our review of the static vortex solutions. We now turn to the 
consideration of the low energy scattering. 

3. Geodesic Description of Low Energy Scattering 

3.1. The Geodesic Approximation 

To motivate the geodesic approximation of low energy vortex scattering we reinterpret 
equations (2.2), (2.3), (2.4) in terms of the true configuration space of the theory, 
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following [1, 14]. Let J g  be the space of  finite energy fields a = (Ai, r and .~ the 
group of  gauge transformations over 11{ 2 . The true configuration space is the quotient 

= J g / . ~  obtained by identifying gauge equivalent fields 2. There is a natural metric 
h on J g  given by the standard L2-norm 

h(i~, i~) = �89 f dZx(A~A~ + CaCa). (3.1) 

The inner product of  a with an infinitesimal gauge transformation )~ = (OiA, iAr is 
then 

h(i~, ~) = 1 f d2x(AiOiA _ CaAeabOb) 
1 = -- ~ f d2x(OiAi 4- CaeabCb)A (3.2) 

Thus Gauss'  law (2.2) is just the condition that & be orthogonal to the gauge 
orbits through a. If  we represent tangent vectors d on ~ by tangent vectors & on 
satisfying Gauss, then the metric h is well-defined on ~ - it is just the kinetic energy 
(2.3). Furthermore, the potential energy (2.4) is gauge-invariant so automatically well- 
defined on ~ .  We may therefore interpret the dynamics following from (2.1) as motion 
on ~ with metric defined by T, and potential energy function V. See [14] for a 
presentation via the Hamiltonian formalism. 

In the geodesic approximation of the low energy scattering the theory is truncated 
to Mn, and the evolution given by geodesic motion with respect to the metric induced 
by T. The approximation will be good provided the amount of energy transferred to 
field oscillations orthogonal to Mn remains small. No rigorous field theory analysis of  
the problem exists. However, since there are no massless fields, the frequency of the 
transverse oscillations is bounded below by a positive constant COo ~ 1. Investigations 
of  finite dimensional systems suggest that the energy transfer in a scattering process 

1 
should then be of  order e -~ ,  where v is a typical vortex speed, and so rather strongly 
suppressed [29]. Indeed, in the numerical simulations in [17, 18], the energy transfer 
in a head-on collision of  two vortices is found to be negligible up to impact speeds 
of  0.4 (of the speed of  light). We would thus expect the approximation to be rather 
robust. We shall test it directly in Sect. 6. 

3.2. The Metric on Moduli Space 

The metric on M~ is the restriction of  (3.1) to vectors a = (Ai, r satisfying both 
Gauss'  law and the linearization of  the Bogomol 'nyi  equations. The result of  Weinberg 
mentioned in Sect. 2.2 - that at each static solution the space of  square-integrable zero 
modes is 2n-dimensional - means (assuming it can be made rigorous) that this metric 
is well-defined (i.e. finite) everywhere. It is worth remarking that Weinberg did not 
use Gauss'  law to fix the gauge, but rather OiAi = 0. However, projecting his vectors 
so that they are orthogonal to gauge orbits can only reduce their length (in the metric 
h), so the space of  vectors ~ of  finite length (i.e. finite kinetic energy) is also 2n- 
dimensional. 

If  the metric is everywhere well-defined, the map at each point of  M,~ between 
the space of  vectors ~ of  finite length, and the tangent space at the corresponding 

2 Note that for ~ to be a manifold, ~ must be restricted to gauge transformations which act freely 
on Jg [27]. In particular, the gauge transformations must tend to the identity at infinity, otherwise 

will have a singularity at the point a = 0 
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point of  C '~ = {wk}, is non-singular. It is instructive to try to understand this a little 
more explicitly. This work may be regarded as a generalization of Ruback 's  analysis 
in [14] of  the 2-vortex system. 

Consider z ~ zr (all r)  so that r ~ 0. The first Bogomol 'nyi  equation (2.10) may 
then be rewritten as 

A = iOz in q3, (3.3) 

1 (A1 - i A 2 ) .  Linearising (3.3) where we have introduced the complex notation A = 
gives 

f t  = iOz(?, (3.4) 

where ~? is defined by 
6 = Co. (3.5) 

These equations may be used to eliminate A from the second Bogomol 'nyi  equation 
(2.11) and Gauss '  law (2.2). Writing f = In [r 2 the second Bogomol 'nyi  equation 
becomes 

• 2 f  -I- 1 - e y = 0 (3.6) 

and Gauss '  law 
V 2 Im ~7 - e I Im r 1 = 0.  (3.7) 

Linearising (3.6), and noting f = 2 Re r/, we have 

V z Re r / -  e f Re rl = 0,  (3.8) 

and so, for z r zr, 
V 2 r / -  eft] = 0 .  (3.9) 

Turning now to the boundary conditions on f and ~/, we note that finiteness of  the 
static energy requires 

f ~ 0 as Ixl - - ,  ~ .  (3.10) 

Indeed, we know from (2.17) that f falls off exponentially fast. For ~ to be finite in 
the metric h, we require 

r ] ~ 0  as I x ] ~ o c ,  (3.11) 

where, by (3.9, 3.10), the decay is again exponential. 
Solutions of  (3.9, 3.11) give the vectors ~ via (3.4, 3.5). Since - V  a + e y is a 

positive operator, non-trivial solutions must have singularities at one or more of the 
zeros z~. Furthermore, finiteness of  ~ implies that the singularities must be of  the 
form 

r I N ( z  - z r )  -~  0,, = 1, . . .  , n~ (3.12) 

where, as in (2.16), nr  is the multiplicity of  the zero z~. There are n zeros (counted 
with multiplicity), so we have 2n linearly independent solutions, as expected. 

In the neighbourhood of z~, the linear perturbation of r corresponding to (3.12) 
is (recalling (2.16)), 

r + ~ r  = ( z  - z r )  n~-~ [(z - z r )  ~ + ~]hr (x) .  (3.13) 

I f  we now consider the extension to the whole plane, then r has the form 

r = P n ( z ) h ( x ) ,  (3.14) 

where h ( x )  is a smooth, non-vanishing function of x, and P,~(z)  is the polynomial 
(2.15). Since it is clear that each perturbation (3.13) corresponds to an independent 



Vortex Scattering 157 

O(A) perturbation in the coefficients wk of P~(z), the result follows. Note that while 
the perturbation of  the wk is smooth, that of  the zeros zr (if & > 1) is not: (3.13) 
shows that the zero of multiplicity nr  at zr splits into a zero of multiplicity (n~ - 0r), 
and 0r simple zeros displaced from zr by the Qr th roots of -X .  

That the metric is well-defined everywhere on M,~ determines the qualitative fea- 
tures of  vortex scattering. For example consider the 2-vortex system, with the vortices 
placed symmetrically about the origin. Such a configuration is described by 

P2(z) = w - z 2 . (3.15) 

The zeros of  the Higgs lie at z = =kv~.  Now consider, for instance, w real and 
decreasing through zero. This is a smooth motion on M2 in which the zeros of the 
Higgs approach along the xl-axis and separate along the x2-axis. In essence, this is 
the remarkable 90 ~ scattering behaviour found in [14]. It is straightforward to consider 
the local behaviour of  higher-n collisions in the same way. 

Finally, let us compare the vortices with a system of particles. One may imagine 
shrinking the vortices to zero size, to obtain identical point particles at the positions 
z~. The resulting metric is flat. It is well-defined on the covering space C '~ = {zr}, 
but unlike the vortex metric, is not well-defined everywhere on Mn, having conical 
singularities on the set of  points A n . Since the interactions between vortices are 
short-range, the two metrics will agree asymptotically, as shown explicitly later on. 
We shall often find it useful to regard the vortex metric as a smoothed version of  the 
metric describing the particles. 

4. Investigation of the Metric 

We now turn to an investigation of  the form of the vortex metric. We shall work on 
the subspace M n \ A ~ ,  where the zr are distinct and constitute good local coordinates. 
Our results will extend by continuity to all points of  Mn. We aim to express the metric 
in terms of the zr: 

ds 2 = ~ (arsdzrdzs + brsdzrd2~ + ~r~dSrd2~) (4.1) 
r~S=l 

the metric coefficients depending on the zr through gauge-invariant properties of  the 
static solutions. 

4.1. Coordinates and Fields 

To begin, we make the dependence of the fields on the zr as explicit as possible by 
extending the equations for f and 7, derived above for z =~ zr, to the whole plane. 

We have assumed that the zeros zr are distinct, so all have multiplicity one. In a 
neighbourhood of  Zr, (2.16) implies that 

f = in Ir = In ]z - zrl 2 + smooth (4.2) 

and (together with the discussion in 2.2) that 

--Zr 
r / -  - -  + smooth. (4.3) 

Z - -  Z r  
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Noting that in two dimensions 

V 2 In [z - z~.] 2 = 4rrS(x - x r ) ,  

we see that (3.6) and (3.9), extended to all points of IR 2, become 

V e f  + 1 - e y = 4re ~ 5 ( x -  x~) 
r=l 

and 

(4.4) 

(4.5) 

•2T] - -  e f  rl = - 4re ~_, 2~0,5(x - x~) (4.6) 
r=l 

respectively. Note that (4.5) is the equation analysed by Taubes in his proof of the 
existence of vortex solutions. 

The solutions of (4.5) and (4.6) may be related in a simple way. Differentiating 
(4.5) with respect to Zr gives 

V2 Of  ey Of  _ 4 r r O , 5 ( x - x ~ ) .  (4.7) 
- Ozr 

Thus by the linearity of.(4.6), and noting the boundary conditions (3.10, 3.11), 

Of  (4.8) 
~] = 2r Oz---7 r=l 

4.2. Form of  the Metric 

Now consider the kinetic energy (2.3), which in terms of A and r is 

T -- �89 f dZx(4AA + q~q~). (4.9) 

Recalling the assumption that the zeros zr are all distinct, let St be a set of non- 
overlapping small discs of radius e centred at the z~, and divide the integral into two 
parts: 

/ : / + /  
R2 R2\& & 

We evaluate each part and the let e --+ 0. Since the integrand is smooth the second 
part is O(ne2), which vanishes as e + 0. The first part, using (3.4) and (3.5), becomes 

d2x(4Oz~Oerl + efgF/). (4.11) 

R2\Sr 

Note that this expression is manifestly real. Since in N2\S~, ~ is smooth, we are free 
to rewrite it as 

1 2 f d2xOz(~O2rl) + ~ f dZx~(-V2r/+ efr]). (4.12) 
d , 2  

R2\& R2\& 
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The second integral vanishes by virtue of (4.6), leaving only the contributions from 
the neighbourhoods of the zeros St: 

T = - i  [ d2flOer l. (4.13) 
. J  

OSe 

Using successively (4.3) and (4.8), and neglecting terms of O(e), 

2rr 2rr 

T = dOs~'sOerl = dOsOe ~ 2~2~, (4.14) 
s = l  0 r,s=l 0 

where for each s the integration is around the circle Iz - zsl = e. Now, near zs, a 
Taylor expansion of the smooth part of  f in (4.2) gives 3 

f = In [z - zsl 2 + as + �89 {bs(z - zs) + b~(2 - 28)} 

+ cs(z - z , )  2 + d~(z - zs) (2 - 2s) + es(2 - 2s) 2 + O(e3),  
(4.15) 

3 Were the zero of multiplicity ns, the first term would be ns in [z - Zsl 2 

where to satisfy (4.5) we require 

1 (4 .16)  ds - -  4 

H e n c e  for z near but not equal to zs, it follows that 

Of 1 0 b s  1 
Oe Ozr -- 2 0 z r  + 4 5rs + O(r (4.17) 

Substituting into (4.14) and taking the limit e ~ 0 we obtain finally 

T = ~ 7r &s + 2 0 z r ]  ~2s .  (4.18) 

Since we began with a manifestly real expression for T, (4.18) must be real for 
arbitrary 2r. Consequently 

Obs Ob~ 
Ozr = 02s"  (4.19) 

It follows immediately that the metric 

ds2 = 5 5rs + 2 -~z~ J dz~d2s (4.20) 
r~s=l 

is Hermitian. Physically, this means that the kinetic energy of a system of vortices is 
unchanged by a (fixed) rotation of all their velocity vectors. Note that we have chosen 
to normalise the metric relative to T by dividing by the vortex mass 7r. 

The K~ihler form associated with (4.20) is 

w = -~ 6~s + 2 0 z r ]  dzr A d28. (4.21) 
r , s = l  
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Taking the exterior derivative we find 

i ~-~ F O2bs 02bs 1 I-a-----a--, dzt A dzr A dG + ~ d2t A dzT. A d2s = O, (4.22) dw = ~ L~176 

where the second term in the square brackets vanishes by virtue of (4.19). Thus w 
is closed and the metric is Kahler. These results have been derived on M,~\A,~, but 
extend to all of M~ by continuity. The analysis is similar to that of Strachan in [13]; a 
different way of showing the Kfihler property, due to Ruback, is described in Appendix 
B. We also remark that it is straightforward to generalize the analysis to vortices 
residing in a background 2-space with arbitrary metric. Provided the considerations of 
Sect. 2.2 still apply and the modified Bogomol'nyi equations admit a 2n-dimensionai 
manifold of solutions, the analysis is much the same and the metric on the moduli 
space is K~ihler as before. 

For a single vortex (n = 1), f is rotationally symmetric and the coefficient bl 
of the linear term in (4.15) vanishes. The metric then reduces to that describing a 
single free particle of mass 7r. When there is more than one vortex, the bT. are non- 
zero; they describe the leading local change in the fields at each vortex due to the 
presence of the rest. Since (see Appendix A) a system of well-separated vortices is 
approximated by the superposition of 1-vortex solutions (i.e. of the functions f )  with 
an error exponentially small in the separation, the bT. will then be small of the same 
order, and the metric given approximately by 

1 ~ dzT.d27. ds 2 -~ 
7"=1 

(4.23) 

This makes more precise the comments at the end of Sect. 3.2. The metric ds g is flat 
everywhere (except on An). It describes the motion of n non-interacting identical 
point-particles of mass 7r. The second term in the full metric (4.2) may be thought of 
as an "interaction" piece which has the effect of smoothing out the singularities of 
the particle metric on the set of coincident points A,~. 

4.3. Centre of Mass Motion 

The vortex metric inherits the translational and rotational symmetries of the parent 
field theory (2.1). This is manifest from (4.20) since the bT. depend only on the relative 
positions of the vortices and are unaffected by rigid motions of the complete system. 
The associated conserved quantities, corresponding to the total linear and angular 
momentum, may be obtained from (4.18) in the usual way. Noting 

OZr s=l s = l  02s --O, 
(4.24) 

which follows from (4.19) and translational invariance, one obtains for the linear 
momentum P~, 

P1 + iP2 = ~ ~ 2r. (4.25) 
r = l  
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Thus the total momentum is equal to that of  n point particles of  mass 7v located at 
the zeros of the Higgs field. An immediate consequence is that the centre of  mass of 
the vortex system is 

Z = - z~. (4.26) 
f~ 

r = l  

We may now define relative coordinates 

These satisfy 

~ r = z r - Z ,  r =  1 , . . . , n .  (4.27) 

~ r  = 0 .  
r = l  

Substituting into (4.20), and using (4.24), we find 

ds 2= ndZdZ + ~ 5~ + 2 0z~ } 
r,s=l 

Thus Mn decomposes as an isometric product 

M ~ = C x M  ~ , 

where Mn ~ is the space of  n-vortices with fixed centre. 

(4.28) 

(4.29) 

(4.30) 

4.4. A Computational Scheme 

Equation (4.20) expresses the metric in terms of  gauge invariant properties of the 
static solutions - or more precisely, in terms of  the local behaviour of  Ir in the 
neighbourhood of its zeros. If  one can compute all the static solutions then one can 
find the metric. Specifically, one must solve (4.5) for f for arbitrary configurations 
of vortices, extract the quantities br as functions of the zs, and then substitute into 
(4.20). 

Stated in this way, this procedure is not suitable for numerical work, since f 
has singularities. To remedy this, we define a smooth function �9 by moving all the 
singularities of  f out to infinity: 

= f - ~ in Iz - z~[ 2 . (4.31) 
r = l  

satisfies 

+ 1 - Iz  - z r l  2 = 0 

r=l t (4.32) 
- - - ~ l n l z - z ~ l  2 as I z l ~ .  

r = l  

To obtain the bs in terms of  ~b we differentiate (4.15) with respect to z and evaluate 
it at zs. This gives 

bs = 2 E - - 1  + {~ , (4.33) 
r~s Zs Zr 
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where 
bs = 20z~(zs) (4.34) 

is smooth in the z~. Finally, substituting (4.33) into (4.20) gives the result 

1 ~ 6rs ds 2 : ~ + 2 -d-d-~ J az~e2s. (4.35) 
t-, ~ r  / 

r , s = l  

Equations (4.32), (4.34), and (4.35) provide a method of  computing the n-vortex 
metric. For general n one must solve a (2n - 3)-dimensional family of  non-linear 
elliptic partial differential equations ( 2 n - 3  rather than 2n because of  translational and 
rotational symmetry). It would be very interesting if all this work could be obviated in 
some way. In the case of monopoles the hyper-K~hler property is sufficiently strong to 
determine (together with the symmetries of  the moduli space) the 2-monopole metric. 
Unfortunately the K~ihler condition is much weaker; indeed, it is trivial in the 2-vortex 
case (though as we shall see, there is a non-trivial global residue). 

It is possible that the ideas of  Hitchin described in [15], and developed further 
by Ruback in [16], might allow further analytical progress to be made. There it is 
concluded that Mn ~ is the fixed point set of an isometric circle action in a (4n - 4)- 
dimensional hyper-K~ihler manifold, M.  Unfortunately, the behaviour of  M away 
from M ~ is not known (i.e. whether its metric is smooth), so it is not clear what 
constraints on the metric this information provides. 

5. The 2-Vortex Metric 

We now apply our general results to the simplest case, that of two vortices. The 
metric is found to depend on a single function of the vortex separation, and an 
integral constraint on this function obtained. We describe a numerical computation 
of  the metric, using the method of Sect. 4.4. The geodesic prediction for the classical 
scattering is computed and compared with numerical simulations of the true scattering. 
Good agreement is found, even for quite large impact speeds. 

5.1. Form of the Metric 

When there are just two vortices the moduli space decomposes into two 2-dimensional 
spaces 

M2 = C x M ~ . (5.1) 

The centre of mass and relative coordinates are 

1 Z = 5 (zl + z2) (5.2) 

and 
41 = - 42 = ~ - �89 ( z l  - z2)  ( 5 . 3 )  

respectively. For fixed Z, 4 and - 4  label the same point in moduli space and should 
be identified. 4 is only a good local coordinate on M ~ for 4 7 ~ O. As discussed in 
Sect. 2.2, a good global coordinate is w, where 

w - 42 = O. (5.4) 
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From the symmetry of f under z - z ~ - ( z  - Z)  we have [see also the remark 
following Eq. (6.8) below] 

bl = - b2. (5.5) 

The expression for the metric (4.29) then reduces to 

: d Z d 2  + (1  + 20bl"~ dr (5.6) ds 2 
or ] 

It is convenient to introduce the polar coordinates (0-, tg) defined by 

= 0- e {~ (5.7) 

where, by the remarks above, the range of 0 is 7r. Rotation and parity symmetry then 
imply (see (4.15)) 

bl =b (o - ) e  - i~  with b(0-) real (5.8) 

and the metric describing the relative motion is 

dsr2el = F2(o -) (do -2 q- o-2d02), (5.9) 

where 
1 d 

F2(o -) = 1 + - (fib) (5.10) 
0 - ~  �9 

We remark that symmetry under rotations and parity alone implies that 

dsrZel = F2(o-)d0- 2 + G2(0-)d02 (5.11) 

as found in [14]. The reduction to just one unknown function F(0-) is a consequence 
of the Hermiticity of the metric. The Kahler property, as we remarked before, is trivial 
for a 2-manifold. 

For a << 1, b(0-) has the form 

1 1 
b(a) - 0- + O(a3) .  (5.12) 

0- 2 

The singular term in (5.12) follows from (4.33), and does not contribute to the metric. 
The remaining terms are fixed by the requirement that the metric be non-singular when 
expressed in terms of the coordinate w. i.e. 

dsr2el _ F2(iwl 1/2) d w d ~  
Iwl 

= O ( 1 ) d w d ~  for Iwl << 1 (5.13) 

which is equivalent to 
F2(o ") = 0(0  "2) for 0- << 1. (5.14) 

An explicit calculation of the linear perturbation to the coincident 2-vortex configu- 
ration (given in Appendix C) confirms that the form (5.12) is indeed correct and our 
scheme consistent. 

For 0- >> 1, the Higgs field at one vortex is perturbed by the exponential tail of  
the field produced by the other and one has (see Appendix A) 

b(0-) = O(e - 2 ( 1 - ~ )  any ~ > 0,  (5.15) 

giving 
F2(0-) = 1 - O(e-2(1-6)cr). (5.16) 
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Fig. 2. A sketch of the smoothed cone representing M ~ as an embedding in N3, and the singular 
cone C2 to which it is asymptotic. The difference in the areas of the cones is 7r. Also shown is a 
geodesic describing vortices in head-on collision 

These results determine the qualitative form of ds2rep A convenient way to represent 
this metric is by isometrically embedding M ~ as a surface of revolution in R 3 [14]. 
The surface is asymptotic to the (singular) cone of  deficit angle ~r, C2 = C / { + I }  (see 
Fig. 2). Geodesics on C2 describe the motion of  a pair of  identical non-interacting 
point particles. In accordance with our general picture, M ~ is a smoothed version of  
this cone in which the singularity at the vertex is removed. As pointed out in [14], 
the geodesics passing over the top (or = 0) of  the smoothed cone describe the 90 ~ 
scattering of vortices in head-on collision. 

Finally, we note that (5.10) and (5.12), together with the fast fall-off of  b, imply 
the constraint 

f daa[1 - F2(o-)] = 1. (5.17) 

0 

This expression, multiplied by 7r, has a simple geometrical meaning: it says that the 
difference between the areas of  the cones C2 and M ~ is 7r. In Sect. 6, we will try 
to understand this integral from a more general point of  view. We shall also see 
that it appears naturally in the quantum mechanical scattering problem in the long- 
wavelength limit. 

5.2. Numerical Computation of the Metric 

Let the two zeros of  the Higgs field lie on the xl-axis at (• 0). The procedure 
described in Sect. 4.4 reduces to the solution of  a one-parameter family of  non-linear 
partial differential equations: 

V2~ + 1 - R2+ R 2 _ e ~ = 0 "[ 
(5.18) ~P~-lnR~_R 2 as I x[--+c~f' 

where 

b(~r) is then given by 

R•  = ~/(xl  =1= a)2 + x~. (5.19) 

b(~r) 1 + ~(~r) (5.20) 
O- 
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Fig. 3a and b. The magnitude of the Higgs field [~b[ in the first quadrant, for two vortices at positions 
( •  0): acr  = 1.0; b ~r = 3.5 
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with 
b(o-) = 01~1~(o -, 0 ) .  (5.21) 

To solve (5.18) numerically a simultaneous over-relaxation method was used [30]. 
Since �9 is symmetric under reflection in the Zl and z2-axes one only need work in the 
first quadrant, requiring that the normal derivative of  ~ vanish on the boundary. The 
domain taken was 0 < xi _< 10, 0 _< z2 _< 7, discretized with a square grid of  spacing 
0.1. The initial configuration ~0 to be relaxed was taken to be the superposition of 
1-vortex solutions 

~0 = In ~2(R+)~a(R_) - in R a + R  2 - (5.22) 

with the 1-vortex profile O(r) approximated by tanh(0.6r). The values of  ~ on Xl = 10 
and z2 = 7 (which are very close to unity) were then left unchanged in the subsequent 
relaxation, which was repeated until the norm of the residual dropped below 10 -4. 
This required about 600 sweeps of  the grid. Presumably more sophisticated techniques 
could speed up the rate of  convergence, though since the equation to be solved is 
non-linear, obtaining convergence at all could be a delicate matter. The solution was 
obtained for cr ranging from 0 to 3.5 in steps of  0.05. Figure 3 shows a contour map of  
the magnitude of  the Higgs field at two different separations. The domain appears 
to be sufficiently large to avoid significant boundary effects. 

0.0 

-0.1 

-e.2 

-0.3 

-~  .4 

-0.5 

. . . .  I . . . .  I . . . .  t . . . .  I . . . .  I . . . .  I . . . .  

s I 

ss SS 
. . . .  J . . . .  I . . . .  L . . . .  t . . . .  t . . . .  J . . . .  

e.5 1.8 1.5 2.~ 2.5 3.~ 3.5 e.0 

O" 
Fig. 4. The function 1)(a) (solid line), and the asymptotic forms -a/2(cr ~ 0) and -1/cr(a ~ c~) 
(dashed lines) 

The next step, that of  calculating b(e) from (5.21), requires a differentiation of  
at the point (or, 0). To ensure an accurate determination, the values of  the solution on 
the 15 • 15 sub-grid centred at (cr, 0) were fitted by a fourth order surface using a 
least-squares algorithm, and b(cr) obtained algebraically from this fit. When the sub- 
grid overlapped the edge of  the domain the values of  ~ on the overlap were obtained 
by reflection symmetry. The result is shown in Fig. 4. For small and large a, b(cr) 
agrees with the analytical results (5.12), (5.15), as indicated by the broken lines in 
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Fig. 5. The profile F(~)  of the medic dsr~ 1. The slope at the origin is about 0.658 
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the graph. One may also check that there is good agreement with the size of  the 
exponential decay in (5.15). 

Finally, the profile F ( a )  was calculated from (5.10) (where we may replace b 
by b) using a standard 5-point differentiation formula. Note that since b has the 
right asymptotic behaviour, the profile automatically satisfies the constraint (5.17). 
At separations cr of  the same order as the grid spacing one would expect the results 
to be less reliable. Indeed, the slope of  the profile obtained was not very smooth at 
these small separations (cr < 0.2). The profile was therefore smoothed by making a 
weighted polynomial fit for 0 < ~r < 1.5. The final result is shown in Fig. 5; the slope 
of  F(~r) at the origin is about 0.658. One may check numerically that this profile 
gives rise to a metric with positive curvature 

i d ( F  dF) 
n - -  o-F 2 do- ~ > 0.  (5.23) 

5.3. Classical 2-Vortex Scattering 

It is straightforward to compute the geodesics of the metric dsr21. The corresponding 
trajectories of  the zeros of the Higgs in N 2 are shown in Fig. 6 for various impact 
parameters (see also Fig. 7). In Fig. 8, the deflection angle O is plotted against the 
impact parameter a, here defined to be the perpendicular distance of  each vortex from 
the zl-axis at large separation. Since there is no orbiting, O is always equal to the 
observation angle tg. Note also that it is a monotonically decreasing function of  a; 
this is a consequence of  the positive curvature of the cone M~ [4], and is important 
in the quantum scattering. The classical differential cross-section 

do'cs dO -1 
dO -- ~ (5.24) 

is shown in Fig. 9. 
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Fig. 6. Trajectories of the zeros of the Higgs field in the geodesic approximation 

r ) a 
1 

O 
Fig. 7. The geometry of scattering. This diagram may be regarded as representing either the upper- 
half of N2 = {(xl, x2)}, or, identifying ~ = 0 and 7r, the smooth cone M ~ 

It is very interesting to compare these results with the true scattering of vortices, 
governed by the full equations of motion, investigated numerically in [17] and [18]. 
The scattering data obtained at various impact speeds are displayed together with 
the geodesic prediction in Fig. 8. We see that the geodesic description is remarkably 
robust. It holds to a good approximation up to speeds of at least 0.4 (at this speed the 
Lorentz factor is 0.92); only the numerical data for the very high impact speed 0.85 
show a significant deviation 4. This accords with the remarks made in Sect. 3.1. 

4 We assume that the anomalous point at impact parameter 2.5 for speed 0.16 results from inaccu- 
racies in the simulation of [17] 
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Fig. 8. The deflection angle as a function of impact parameter. The solid line is the geodesic pre- 
diction. The data points are from the numerical simulation of the full scattering problem at various 
impact speeds v: v = 0.16 (zx), v = 0.4 (V), v = 0.85 (<5) (from [17]); v = 0.5 ([Z) (from [18]). For 
estimates of the errors in some of these data points see [17] 
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Fig. 9. The classical differential cross-section in the geodesic approximation 
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6. Integrals of the K~ihler Form 

In Sect. 5.1 we obtained an integral constraint (5.17) on the 2-vortex metric. We shall 
now try to understand this integral from a more general point of view. 

Consider the decomposition of  the Kfihler form (4.21) on Mn into "free" and 
"interacting" parts 

60 = 600 "~ 031 (6.1) 

with 

600 = -~ dz~ A d2~ , (6.2) 
r = l  

i 
60l = ~ 0b,  (6.3) 

where we have introduced the (1,0)-form 

b = ~ bsdz~, (6.4) 
s = l  

and where 0 is the standard holomorphic exterior derivative. The 2-form 6Ol measures 
the difference between the geometry of  the vortex space and that of  the corresponding 
point particles. Now, let D be a 2-dimensional submanifold of Mn without boundary, 
and consider the integral 

I ( D )  1 f = - 601. (6.5) 
71" 

D 

601 is closed, so this integral is invariant under local deformations of D. In fact, 601 
is singular on An,  so not closed there, but the singularities do not contribute to I ( D )  
(see the footnote below). 

We shall see that (5.17) is an example of  an integral of  the type (6.5). To evaluate 
it in the general case we first show that we may replace the 0 in (6.3) by the full 
exterior derivative d = 0 + 0. The condition (4.19) means that 

Ot) = - Ob . (6.6) 

It follows that the (2, 0)-form Ob is annihilated by both 0 and 0, and hence Ob = Oa 
where a is a (1,0)-form satisfying 0 a  = 0. The components of  a are therefore 
holomorphic functions on M ~ \ B n .  Furthermore, since b decays exponentially fast at 
large vortex separation, so does 0c~. Thus 0 a  is in fact identically zero and we have 

Ob = O. 

Locally on M,~\A,~ we may therefore write 

i 
a~l = ~ d g .  

(6.7) 

(6.8) 

We remark incidentally that (6.7) also implies b = OK, i.e. br = OK/Ozr ,  with E- 

real by (6.6). Translation invariance then gives the interesting relation ~ br -= O. 
r = l  

If  D is compact then I ( D )  is zero, so we take it to be non-compact, and in 
particular, to be topologically a plane on which b is asymptotically zero. (This means 
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that traversing the circle at infinity on D corresponds to the motion of infinitely 
separated vortices.) We assume also that D is generic, in the sense that it intersects 
A n transversely in a finite number of points, and denote by D f the space obtained by 
removing from D small discs centred at these points 5. Letting the radii of these discs 
tend to zero we have 

I (D)  - fTr db - 2- b . . . .  N E Z ,  (6.9) 
71" 2 s - -  2 r 

T ) S = ]  
D # OD'  rT~S OD t 

where in the third equality we have used (6.4) and (4.33). The integer N is determined 
by the intersection of D with An. It counts the number of times the zeros z~ wind 
round each other as one traverses a closed path F on D encircling D n An. More 
precisely, since on F no two z~ coincide, it defines a braid. N is the oriented crossing 
number of this braid, with the assignment 

i t  I I 

+ 1  for ~ and - 1  for ~ . 
a i i i 

Let us consider two examples. 
(i) D is the surface given by fixing all the z~ but one -z~ say. Then 

i(D)=_i~--,f_ _ _ d 2 1  - 2 ( n  - 1). (6.10) 
7t" rL'=~ J '~1 - -  ~ ' r  

OD ~ 

(ii) D is the surface given by 

P(z )  = zn-k(Z  k -- W), W E C.  (6.11) 

Note that this surface is not generic, but lies within An; we should really consider a 

perturbation of it, e . g .  

P(z )  = (z n-k  - e) (z k - w), w E C. (6.12) 

Denote by ( one of the k th roots of w. Then the zeros (arbitrarily ordered) are 

2rcir 
z r = ~ e x p  k ' r =  1 , . . . , k ,  

z r = O ,  r = k + l , . . . , n .  

The integral over D becomes 

(6.13) 

s..~l f ~ k ( d~ I (6.14) 
71" = r = k + i  r r ~ s  1 ~ i-exp -~ ) j  

where the integration is around C = 0 (in the positive sense). Since 

I d ~  l / d @  27ri 
- -  1r w - -  k ( 6 . 1 5 )  

5 The contribution to I(D) from such a disc of proper radius e is O(e), and so vanishes in the limit 
6--~0 
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1 1 t=l 1 -- exp 2~ri 2n - k - 1. (6.16) 

k J  

If  n = 2 and k = 2 then 

Noting that for n = 2 

I (D)  = 1. (6.17) 

CO 1 = - -  (1 - F2(o))adcr A dO, (6.18) 

we see that (6.17) is precisely the constraint (5.17) on the 2-vortex metric obtained 
in Sect. 5.1. 

7. Quantum Scattering 

We have seen that at low (and not so low) energies vortex scattering is well approxi- 
mated by geodesic motion on the vortex moduli space. We now consider the quantum 
scattering problem. As mentioned in the Introduction, an approximate quantization is 
obtained by considering a wave function k~ on Mrs, obeying the Schr6dinger equation 

0g'  h 2 
-- V~P (7.1) ih Ot 7v ' 

where V~ is the covariant Laplacian on M~. The factor 7r results from our choice 
of  normalization of  the metric, and corresponds to a reduced mass of  7r/2 for the 
2-vortex system. The centre of  mass motion may be split off via 

~P = e-iPX/h~b (7.2) 

and in a stationary state we obtain 

(7.3) 

where ~2 is the covariant Laplacian on M ~ and E is the energy of  the relative motion. 
As in the description of  the classical motion we neglect excitations of  field modes 

orthogonal to Mn. Since the fields are now subject to quantum fluctuations, it is not 
clear that this will still give such a good approximation to the true dynamics. Indeed, 
it is probable that quantizing these modes leads to an effective potential on M,~. 
Nevertheless, we shall ignore this possibility and just consider the simple problem of 
free motion (7.3), confining the discussion to the 2-vortex case. This prescription was 
employed to quantize the 2-monopole system in [5]. 
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7.1. Quantum 2-Vortex Scattering 

When n = 2 the problem reduces to quantum scattering on the smoothed cone M ~ 
Recalling the metric (5.9), the wave function on M ~ ~ = ~(o,  0), satisfies 

0 ( 0 @ )  02~ 
o ~ o ~ ~- ~ -  ~- k2o-2F2(o)@ = 0,  (7.4) 

where we have set 
h 2 k  2 

E -- (7.5) 
7[ 

The angular coordinate 0 has the range 7[. We therefore impose the periodic boundary 
condition 

~(o,  0) = r  7[). (7.6) 

For large 0, M2 ~ is asymptotic to C2, i.e. locally flat. The appropriate boundary 
condition for the scattering problem is thus 

eiko " 
~b(o, O) "~ e ika cos o + e- ik~ cos o + ~ -  f (O)  o --+ oc ,  (7.7) 

and the differential cross-section is given by 

do-cs 
d0 - I f ( 0 ) 1 2 "  (7.8) 

It is straightforward to adapt the usual partial wave analysis to the present case. 
The partial wave decomposition of r is 

r  O) = ~ un(o)  e ~n~ , (7.9) 
n 

where, owing to (7.6), only the even waves will contribute. Denoting differentiation 
by c~ by a prime, the equation for Un is 

O(OUtn) ' + (kZ02F 2 -- n2)un = 0.  (7.10) 

For large o this reduces to Bessel 's  equation 

o(o-Utn) ' + (k2o 2 - n2)un)O , (7.11) 

hence the asymptotic behaviour 

un(o)  ~ anJn(kO-) + b~Nn(ko)  

cncos  k o -  n +  ~ + ~ n  , (7.12) 

where an --- cn cos 6n, b~ ---- - cn sin ~n. Using 

eik~176 = Z in J ~ ( k ~  e i ~  (7.13) 
n 

6 We note that the scattering problem on a singular cone of arbitrary deficit angle has recently been 
studied in connection with cosmic strings, and also 2-dimensional quantum gravity [31] 
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and comparing with (7.7) with (7.12) we obtain 

f (# )  = Z fn(k) e ino, 
n e v e n  

where 

(7.14) 

~ - ~  i6n f~(k) = V ~ e sin 5n. (7.15) 

It is useful to relate the phase shifts to the metric in the following way [32]. We 
compare (7.10) with the free equation (7.11) whose regular solution (normalized for 
later convenience) is 

fzn(o) = anJn (ka ) .  (7.16) 

One obtains a standard form by writing Un = v n / x / ~  and Un = ' O n / V / ~ .  Then (7.10) 
becomes 

{ ( vn + k2 F2 _ 1 n 2 - v~ = 0 (7.17) 

and similarly for (7.11). The Wronskian then satisfies 

/ - t 
(Vn~JIn - -  V n V n  ) = k 2 ( 1  - -  F Z ) v n � 9  . ( 7 . 1 8 )  

Integrating from (r = 0 to oc and employing (7.12) and (7.16), we obtain 

, f  tan6~ = - ~ 7rk 2 &r cr(1 - F 2) u___~ Jn(ka) .  (7.19) 
a n  

0 

To describe the quantum scattering at a general k, one must sum the contribu- 
tions of  partial waves up to at least order n ~ k. We consider just the large and 
small wavelength limits, where it is possible to obtain some results without lengthy 
computation. 

7.2. Large and Small Wavelength Limits 

In our units the size of  a vortex, and thus the length scale in the scattering problem, 
is O(1). We consider the scattering in the two limits k << 1 and k >> 1. In terms of  
the classical velocity v ~ hk we require v << h and h << v << 1 respectively. 

First consider k << 1. When ~r >> 1, Eqs. (7.10) and (7.11) agree; when ~r ,-~ 1 
they differ by O(k2). Thus with corrections of  the same order, we have Un TM ~2n. 
Substituting into (7.19) we obtain (the first Born approximation) 

, j  tan ~n = - ~ k 27r &r or(1 - F2)Jn(k~r) a . (7.20) 

Further, since for ra > 0 

J• ,-.o 

it follows that 

(:t=l)~x m 

2ram! 
as x ---+ 0 (7.21) 

~n  = O(k21n[+2)  . (7.22) 
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Thus, when k << 1, the lowest partial wave dominates the scattering and, noting 
(7.14) and (7.15), the scattering amplitude is 

with 

f ( O ) =  8~8~60 (7.23) 

1 7 60 = - ~ k27r da o(1 - F2).  (7.24) 

0 

The quantity appearing here is precisely the area deficit between M ~ and C2 discussed 
in Sect. 5.1. Thus, using (5.17), the differential cross section for vortex scattering at 
small k is 

dacs -- 2rrk 3 , (7.25) 
dO 

and the total cross-section 
~rcs = 2rc2k 3 . (7.26) 

Now consider k >> 1; this is the semiclassical limit of the quantum scattering. 
Using (7.17), the semiclassical phase shift, as modified by Langer, is found to be 

6n = j~  do. [ (k2F2 'rb2) 1/2 ] 1 
- ~ - k  - k ~ r 0 + ~ n T r ,  (7.27) 

o" 0 

where or0 is the classical distance of closest approach - the zero of the function in 
round brackets [33]. In the case of the lowest partial wave, we have ~r0 = 0 and 

6o = - k f &r(1 - F ) .  (7.28) 
, /  
0 

The quantity appearing here is now the length deficit between the two cones M2 ~ and 
C2, i.e. the difference in the geodesic distances to the apex in each case. 

Semiclassically, of course, the n = 0 phase shift has little significance. At a given 
angle 0, the dominant contribution to the scattering amplitude is from waves with 
n ~ li(O)/h, where the li(0) are the angular momenta of classical paths i scattering 
to O. The sum over waves may be replaced by an integral, and at generic O, evaluated 
by the method of stationary phase, though in certain special regions (in the "forward" 
scattering region 0 ~ 0, 7r, and also where dO/da = 0) one has to be more careful 
[33]. Away from these regions one obtains 

( d O ( g / )  ~ i /2  

f(O) = z---" \ ~ - ' .  da J exp 2iS(ai) /h , (7.29) 
z 

where S(a) is the classical action associated with the path with impact parameter a. 
In our problem, the deflection angle depends monotonically on the impact parameter, 
so for every scattering angle there is just one contributing classical path. This means 
that the only semiclassical effects in the quantum scattering amplitude are in the 
region 0 ~ 0, 7r, where there is a "forward diffraction peak." Outside this region the 
semiclassical differential cross-section is just the classical expression (5.24). 
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Appendix A: Well-Separated Vortices 

We show without rigour that a solution corresponding to well-separated vortices is 
the superposition of single vortex solutions, up to corrections exponentially small in 
the separation. 

Recall that the quantity f -- In Ir satisfies 

V 2 f  + 1 - e I = 47r ~ 6(x - x~) 
r = l  

(A.1) 

with 

f = O(e -(i-6)lxl) as Ix I ~ oo. (A.2) 

Denote the solution for a single vortex at the origin by fo(x) and write fr(x)  = 
fo(x - xr). For n well-separated vortices we expect a solution of the form 

f =  f~+g,  
r= l  

(A.3) 

where the smooth function 9 is small. Substituting into (A.1) gives 

V29+l-n+~-~eY~-egexp~-'~f~=O 
r= l  r= l  

(A.4) 

with 

9 - -+0  as I x l ~ o o .  (A.5) 

Let the minimum separation between any two xr be 2R, with R >> 1, and consider 
the domain D = {x: Ix - X l ]  < R}. In the limit R ---+ oc the 1-vortex problem is 
recovered, and g -= 0. We treat the problem with R >> 1 as a perturbation of this case. 
Thus, retaining only first order terms in g, and noting that in D, f r  = O(e -(1-6)R) 
for r ~ 1, (1.4) gives 

V2g + (1 - e fl) Z f r  - g exp Z f r  = O(e-2(1-6)R) �9 (A.6) 
r ~ l  r= i  

Now, the second, inhomogeneous term in this equation is also O(e-2(1-6)R). Thus 

( - - V 2 + e x p ~ - ~ f r )  g=O(e-20-6)R), (1.7) 

r = l  

and since this equation is symmetrical in the index r, it holds throughout 1R 2. Noting 
the boundary condition (A.5) we conclude that 

g = O(e-2(a-6)n). (A.8) 
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Appendix B: A Different Way of Showing Kiihler 

We briefly sketch the formal steps of an argument due to Ruback [34] which shows 
in a different way that the metric on Mr, is K~ihler. The reasoning is similar to that 
of Atiyah and Hitchin in [4], in their proof that the monopole metric is hyper-K~hler. 

The linearized Bogomol'nyi equations, and Gauss' law may be written 

A = iOz(~/r (B.1) 

40eA = i ~ r  (B.2) 

(The imaginary part of (B.2) is the linearized second Bogomol'nyi equation, and the 
real part is Gauss' law.) The map I given by 

I: (.A, r ~ (- iA,  ir (B.3) 

leaves (B.1) and (B.2) invariant and satisfies 12 = - 1, so defines an almost complex 
structure on Mn. Further, recalling (4.8) 

G 0 lnlr 2 (B.4) 
7 = , r = l  

we see that under I ,  2~ --~ i~ ,  so I coincides with the complex structure defined by 
the coordinates zr on Mn. Thus I is truly a complex structure on Mn, and not just 
an almost complex one. The metric on the space of all fields ~ ,  

h(•, b) = �89 f d:x(4AB + 4AB + r + r (B.5) 

is invariant under I ,  and provided Gauss' law is satisfied, well-defined on Mn. Thus 
the induced metric on Mn, g say, is also invariant under I ,  i.e. it is Hermitian. 

To show K~ihler one must show that the Kahler form co defined by 

w(d, b) = g(Id, b) (B.6) 

is closed. We define a K~hler form on ~ by 

i f d2x(4A h _ 4AB - r  + ~ ) .  (n7) ~(a ,  b) = 

If A is an infinitesimal gauge transformation (OzA, iAr then after an integration by 
parts, and using (the imaginary part of) (B.2), we find &(d, )0 = 0, so & is well- 
defined on M,~ and reduces to co there. & is constant on ~ ,  so closed. Pulling back 
to any set of solutions of the Bogomol'nyi equations we obtain a closed form there. 
Hence the result. 

Appendix C: Perturbing the Coincident 2-Vortex 

To check the expression (5.12) for b(a) at small a we consider the linear perturbation 
which splits the coincident 2-vortex. We may suppose that the zeros of the Higgs are 
perturbed to (q-or, 0) and restrict our attention to the xl-axis. 

In the neighbourhood of the unperturbed 2-vortex, the function f = In lr z is 

1 f = 2 in x~ + const - ~ x 2 + O(x4). (C. 1) 
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The relevant perturbation is given by (1 § Arl)q~ with 

1 + O(x~). (C.2) 
~1-- x2 

f is then perturbed to 

ln(x~ - A + O(Az2)) 2 + const - �88 z~ + 0(z41). (C.3) 

Thus 
A = 0 -2 -t- O(0-4) , (C.4) 

and the higher, O(),2), corrections to f are only 0(0-4). 
b(0-) is the coefficient of  the linear term in the expansion of  f about the zero at 

zl  = 0-. Writing zl  = 0- + s with s << 0- and retaining only terms up to O(s)  we find 

s 1 
f = in 82 -~- - -~- const - 0-s -[- 0(0-38) (C.5) 

and thus 
b(0-) 1 1 - 0- + 0(0-3).  (C.6) 

0- 2 
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Note added in proof. E. Myers, C. Rebbi, and R. Strilka have now performed further simulations 
of the full equations of motion for the two vortex system [Phys. Rev. D, 45 (4) to appear]. They also 
carry out a computation of the 2-vortex metric, using a different method from that employed here. 


