
Commun. Math. Phys. 145, 85-121 (1992) Communications in 
Mathematical 

�9 Springer-Verlag 1992 

Complete Classification of Simple Current 
Modular Invariants for RCFT's with a Center (Zp) k 

B. Gato-Rivera* and A. N. Schellekens 

CERN, 1211 Geneva 23, Switzerland 

Received May 29, 1991; in revised form September 15, 1991 

Abstract. Simple currents have been used previously to construct various examples 
of modular invariant partition functions for given rational conformal field theories. 
In this paper we present for a large class of such theories (namely those with a 
center that decomposes into factors Zp, p prime) the complete set of modular 
invariants that can be obtained with simple currents. In addition to the fusion 
rule automorphisms classified previously for any center, this includes all possible 
left-right combinations of all possible extensions of the chiral algebra that can be 
obtained with simple currents, for all possible current-current  monodromies. 
Formulas for the number of invariants of each kind are derived. Although the 
number of invariants in each of these subsets depends on the current-current  
monodromies, the total number of invariants depends rather surprisingly only on 
p and the number of Zp factors. 

I. Introduction 

As part of the program to classify all rational conformal field theories (RCFT's) - 
which is difficult and still far from being completed one would like to classify 
all modular invariant partition functions of a given conformal field theory. This 
too has turned out to be a very hard problem, which so far has been solved completely 
only for a few special cases. In addition to some "free" theories, those include the 
SU(2) K a c - M o o d y  algebras at arbitrary level [1] and some coset theories based 
on them. Furthermore one can always solve the problem by explicit computation 
if the number of primary fields is not too large. So far such computations have 
not provided much insight into the general solution to the problem. 

There is however a subclass of modular invariants that should be more manage- 
able, namely the class of invariants that can be obtained with simple currents [2] 
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(to be defined below). For example, in the special case of SU(2) Kac-Moody  
algebras these invariants reproduce the so-called A- and D-series. For other Kac-  
Moody algebras, these invariants can also be written down rather easily, reproducing 
the results described in [3-7]. Although in the absence of a complete classification 
of all invariants we cannot be certain how many of them are covered by simple 
currents, experience suggests that simple currents can be used to produce most of 
them (though unfortunately in general not all). This is even more likely to be the 
case for tensor products of RCFT's, where the number of simple current invariants 
grows very rapidly with the number of factors. It is certainly true that nearly the 
entire literature on the construction of modular invariants yielding various kinds 
of string theories can be understood in terms of simple currents. For this reason 
we believe that it is important to try to achieve a complete classification of modular 
invariant partition functions that can be obtained with simple currents. 

This classification becomes especially non-trivial if the center of the RCFT (the 
abelian group generated by the fusion of the simple currents) consists of several 
ZN factors. Examples of such theories can easily be obtained by tensoring Kac-  
Moody algebras or coset theories, but there is no need to be specific. The advantage 
of simple currents is precisely that one can solve the problem for generic classes 
of RCFT's, without having to specify in detail their modular transformation 
matrices S and T. 

A first step towards classification was made in [8], where all fusion rule auto- 
morphisms that can be obtained with simple currents in any RCFT were derived. 
The possibility of extending the chiral algebra was not considered in [8"], and this 
is the main goal of the present paper. Combining the results of [8] with all possible 
extensions of the algebra we obtain a classification of all simple current invariants 
for generic RCFT's. So far we have only succeeded in completing this last step for 
those RCFT's that have a center (Zp) k, p prime. Our results also apply when the 
center is a product of factors ZN1 x ... x ZNk, as long as each Ni is a product of 
single primes. In that case one simply decomposes the center into factors (Zp) Np, 
and applies our construction to each factor separately. In the following we will 
therefore only consider centers (Zp) k. 

Let us begin by reviewing a few basic facts about simple currents. Simple 
currents are primary fields whose fusion rules with any other field yield only one 
term. For unitary theories these have the property that Sos/Soo = 1 [9], whereas 
non-unitary theories may, in principle, have fields for which this quantity is - 1, 
which also have simple current fusion rules. Although we will allow non-unitary 
RCFT's, we will not take into account such fields. Furthermore we discard currents 
that do not satisfy the condition ph(J)sZ, where h(J) is the conformal weight of 
the current. (This condition can be violated only if p = 2, in which case 2h(J) can 
be half-integer. For example, SU(2)k has a simple current violating it if k is odd. 
Such currents cannot yield any new modular invariants [8].) The remaining simple 
currents generate under fusion a discrete group ZNI x ... x ZNk, which is called 
the effective center of the RCFT. The word "effective" (which we will omit in the 
following) refers to the omission of currents with ph(J)r 

In addition to the group structure (Z,) k due to the fusion rules, the set of simple 
currents is characterized by the current-current monodromies. The monodromy 
of any field a with respect to a simple current J is called the charge of tha t  field, 
and is given by Qs(a)= h(a)+ h(J)- h(Ja). It is defined modulo integers. If one 
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chooses a basis of k currents J1 . . . . .  Jk, the charges of any field with respect to 
this basis form a vector Q(a), with Qi(a) - Qj,(a). The current-current  monodromies 
are then completely given by a symmetric k • k matrix Rij = Qi(Jj) = Qj(Ji). Since 

all charges are multiples of -1 it is convenient to define also a matrix fo = pRij ,  
defined modulo p. P 

The conformal weights of the currents can be expressed in terms of a matrix 
r, whose diagonal elements are defined mod  2p and whose off-diagonal elements 
are defined mod p: 

1 
h([Y]) = - - -  ~ a~r i~.  (1.1) 

2p gj 

Here the notation is as in [-8]: [Y] denotes a current J ] '  ...j~,k. The diagonal 
elements of r are even. This is a matter  of choice if p is odd, and a consequence 
of the condition 2h(J)~Z if p = 2. The matrix r is closely related to ?, namely 
fi~ = r i imodp- Thus r is equivalent to f as far as monodromies are concerned, but 
only the matrix r yields the correct conformal weights. Hence we may drop ~ from 
now on. 

Although there appear  to be pr possible choices for the symmetric 
matrix r, the actual number of distinct possibilities is much smaller, since we have the 
freedom to choose different current bases. For  p ~ 2 the matrix can be diagonalized, 
and furthermore the entries on the diagonal can be simplified. For  p = 2 there are 
also many simplifications. We will discuss this in Appendix B. 

A RCFT bas a finite number  of genus-one characters ~r,(z). They transform 
into each other under the basic one-loop modular  transformations 

1 
S: z--* - - -  T' 

T: z ~ z +  1. 

On the characters, these transformations are represented by matrices S~b and Tab 
satisfying the defining conditions for the modular  group: (ST) 3 = S z = C, where C 
is the charge conjugation matrix. 

In terms of characters ~r  and X* of the left-moving sector and the right- 
moving sector respectively, modular  invariant partition functions have the form 

~r~(r)M~b~r~(~). The * indicates that the left-moving and right-moving characters, 
a,b 

regarded as functions of z, may be different, as long as their modular  transformation 
matrices S and T are the same (so that there is a diagonal invariant M~b = ~b)" 

In general, the matrix M must satisfy the following conditions: 

1. Integrality: Mab~Z.  
2. Positivity: M.b >= O. 
3. Non-degeneracy of the vacuum: Moo = 1. 
4. Modular invariance: [M,  S] = [M,  7"] = 0. 
5. Closure: If M.b # 0 and Mcd ~ 0 there must be at least one M~j. ~ 0 so that the 
field e appears in the fusion of a and f in the fusion of b and d. 

All of these requirements are clearly necessary for M to have a chance of 
representing a well-defined conformal field theory. The last condition ensures that 



88 B. Gato-Rivera and A. N. Schellekens 

in the operator product of two fields Cab(z, 5) and Cod(Z, Z) there is at least one 
operator allowed to appear on the right-hand side. 

Ultimately one would like to have a list of all matrices M satisfying these 
conditions for any conformal field theory. At present, the best we can do is to give 
a complete classification of modular invariants satisfying one more condition: 

6. Simple current invariant: M,, b = 0 if there is no simple current J with a = Jb. 
Finally one has to check that S satisfies a certain regularity condition, needed 

to rule out certain pathological theories. Most of these pathologies are directly or 
indirectly related to the presence of fixed-point fields (fields f which satisfy J f  = f 
for some simple current J). It is difficult to formulate conditions for the validity 
of our results that are not only sufficient, but also necessary. A rather simple 
sufficient condition, adopted in this paper is: 

7. Regularity: For  every allowed charge Q there should be a field a with charge 
that is not a fixed point of any simple current, and whose matrix elements S~c 

are all non-zero, except for zeroes due to fixed points. 
The latter qualification is necessary because S,b = 0 if there exists a simple 

current J with Qj(a) r 0 and Jb = b or vice-versa. Note that unlike all the foregoing 
ones, this condition is a restriction of the RCFT's we consider, and not a condition 
on the matrix M. 

The regularity condition is used for several purposes. First of all it is needed 
to constrain the fusion rule automorphisms. The classification of fusion rule auto- 
morphisms of [8] is only valid if the action of such an automorphism on a field 
is completely determined by the charge of that field. Roughly speaking, there 
should not exist any sets of fields that "decouple," i.e. that are not sufficiently 
strongly linked by S to a complete set of charges in the rest of the theory. If the 
regularity condition holds the action of an automorphism on any field a is fully 
determined by its action on any set ~, consisting of fields that are not fixed points 
and whose charges are linearly independent and span the complete set of allowed 
charges. Since the fields in �9 are not fixed points every distinct solution to the 
equations of [8] yields a distinct fusion rule automorphism on ~, which in turn 
implies a unique and distinct fusion rule automorphism on the entire theory. 

The regularity condition is also used to make sure that in theories with extended 
chiral algebras the fixed points are well-behaved. This means that a row (or column) 
of Mab for a fixed-point field a can be obtained in the obvious way from that of 
a non-fixed point with the same charges: one simply "folds up" the latter row, 
adding the matrix elements of M in the identified columns. This is proved in 
Appendix D, to which we defer as much as possible all problems associated with 
fixed points. 

For  a given center and monodromy matrix r there are many different conformal 
field theories, most of which satisfy the regularity condition. We will sometimes 
refer to such theories as "generic" RCFT's. If the regularity condition is not satisfied 
this may have several consequences. Sometimes a theory satisfies a weaker form 
of regularity that is still sufficient. In other cases there are fewer invariants than 
our construction produces, since some generically distinct invariants become 
identical if their difference cannot manifest itself because certain charges appear 
only for fixed-point fields. There are also cases where our classification is incomplete, 
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even though the extra modular invariants are rather unusual, and are unlikely to 
correspond to sensible conformal field theories. However, even if the regularity 
condition is not satisfied all matrices M in our classification yield valid one-loop 
modular invariant partition functions. Some classes of theories where the regularity 
condition is satisfied, as well as some exceptions, are discussed at the end of 
Appendix D. 

In the next section we will discuss the possible extensions of the chiral algebra, 
and the possible left-right combinations in which these extensions can appear. In 
Sect. 3 we will apply the general results to theories with a center (Zp) 2. For  any 
monodromy matrix r we compute all modular invariants M. Remarkably, the total 
number of invariants is always the same (equal to 2(p + 1)), independent of r, even 
though the individual solutions for M depend strongly on r (as well as on the 
value of p modulo 4). In Sect. 4 we show that this phenomenon generalizes to (Zp) k 

k--1  

for any k. The total number of invariants is equal to YI (1 + pi), for any p and r. 
i=O 

We prove this by explicit computation of the number of invariants of any type. 
Appendix A summarizes some results on number theory that are used in Sects. 3 

and 4. In Appendix B we show how to simplify the matrix r, and we classify all 
inequivalent possibilities. In Appendix C formulas for the number of currents of 
a given spin are derived for any r. Finally, in Appendix D we discuss some technical 
issues related to fixed points. 

2. Integer Spin lnvariants 

In this section we will show how to construct modular invariant matrices with 
Mbo ~ 0 for at least one b ~ 0. Such matrices give rise to extensions of the left 
algebra (and, as we will see, also to extensions of the right algebra; in the following, 
left indices of M refer to the left-moving sector). We begin with a derivation of 
the possible extensions of the algebra and their representations. Then we discuss 
the possible left-right pairings of the representations if the left and right algebras 
are the same. In Subsect. 2.3 we discuss the possible left-right pairings of different 
extensions. The results in this section are valid for a center (Zp)*, but some have 
a more general validity. 

2.1. Algebras and Representations. Consider a matrix M satisfying all conditions 
described in the introduction. From the commutation relation S M = MS  we derive 

E ma,[Y]a e2niy'O'(c)= E e2~iTO(a)m[7]c,c �9 (2.1) 
[~'] [7] 

Here we use the notation [Y]a  for the action of the current [~ ]  on the field labelled 
a. To derive (2.1) we used [2, 10] 

S[u = e2 rtii'Q(C) S ao (2.2) 

and assumed that Sac # 0. This is certainly true ifc -- 0. In that case we thus find that 

E e2~iT"Ota)M[y],o~Z+, (2.3) 
[7] 
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where Z + denotes the non-negative integers. This must be true for all possible 
charges Q(a). It is easy to show [11] that in any RCFT with simple currents, fields 
exist with any allowed value of the charge. 

The closure condition implies that if Mjl,o r 0 and Mj2,o r 0, then Mj,j2,o r 0. 
In other words, the set of currents J with Ms,o ~ 0 closes under fusion, and forms 
a subgroup of the center. 

Furthermore, if 7 denotes an integer spin combination of currents with 
M[71, o v ~ 0, and if Mab 7 ~ O, then the closure condition implies that M[gla,b :i ~ O. The 
conformal weight of the field [ 7 ] a  is 

h ( [7 ]a )  = h(a) + h ( [ 7 ] ) -  7"Q(a). 

Because of T-invariance we must require that h(b) = h(a) = h([7] a) rood 1. It follows 
that M,b can only be non-zero if 7"Q(a)=  0 for all currents [ 7 ]  in the algebral 
In other words, all fields with non-zero charge with respect to the left algebra are 
projected out. 

From (2.1) we learn furthermore that all fields a whose charges with respect 
to all the currents in the left algebra are zero, must satisfy 

M,,t~-l, = ~, Mtr'l,o = EL, (2.4) 
[~'1 [71 

where EL is the number of fields in the left algebra. 1 Hence all such fields must 
appear in the theory. In the following we will denote the condition of vanishing 
charge with respect to the left algebra as d L ' Q ( a ) =  0. 

Now we would like to determine the values of the non-vanishing matrix 
elements MtTl, o. Consider the relation Moo = SoaM,bSbo. When written in terms 
of orbits this takes the form 

Moo-= E E_ (Soa)2Ma,[u a, 
[~'] a w i t h  d L ' Q ( a )  = 0 

where we have used (2.2). Using (2.4) we get now 

Moo = E L ~, ( S o a )  2 .  
awi th  ~ L ' Q ( a )  = 0 

On the other hand, for every integer spinsubgroup of the center we can always 
construct a modular invariant M so that Mbo = 1 exactly when b is a current in 
that subgroup. This can be achieved by multiplying matrices M(JI) . . .  M(J~), each 
obtained by means of the orbifold inspired procedure of [2]. Each such matrix 
M(J) yields an invariant with an identical left and right chiral algebra consisting 
of the current J and its powers. All fields that are non-local with respect to d are 
projected out, and all other fields are grouped into multiplets by the action of J, 
and paired diagonally. The currents J~ are mutually local, and are therefore not 
projected out by each other. In this way we can always construct a matrix Mbo = 1 
if and only if Mbo r 0. Although M need not be identical to M, both matrices 

Note that Mi71, o may in principle be larger than one, in which case there would be more than 
one field in the chiral algebra corresponding to the current [~']. We will prove that this cannot 
happen for simple current invariants. There are, however, exceptional invariants with Mbo = 2 [2] 
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satisfy Mab = A~rab = 0 if a has a non-zero charge with respect to one of the currents 
in the algebra. Hence for M we get 

Moo -- NL ~ (So.) 2, 
a w i t h  ~r Q(a)  = 0 

where N L is the order of the subgroup of the center defined by the left algebra. 
Because Moo = Moo = 1, we conclude that EL = NL, and therefore MtTj, o = 1 for 
every current [-~] in the left algebra. Thus for every simple current invariant we find 

Mob = 0 if dL'Q(a)  ~ 0, 

M,,b = N L otherwise. 
b 

In particular the number of currents in the right algebra, NR = ~ Mob, is equal 
b 

to NL. From now on we will denote this number simply by N. Now all the previous 
arguments can be repeated for the right algebra dR. Note that the left and right 
algebras need not be identical. 

The closure condition tells us furthermore something about the values of M 
on other orbits. If J is a field in the right algebra (Mos ~ 0), then M~b ~ 0 implies 
that also Ma,sb V~ O. If b is not a fixed point of any current in dR this defines for 
each a precisely N non-vanishing matrix elements. Since we know that ~ Mab = N 

b 
it follows that each of these matrix elements must be equal to 1. Thus given one 
matrix element on each row, one also knows all the others. The same is true for 
the columns of M. 

This argument does not hold if b is a fixed point of one of the currents of the 
right algebra. In that case ~' Mab should still be equal to N, but the closure condition 

b 

does not force us to distribute this sum over N different matrix elements. In 
Appendix D we show that the sum should be distributed equally over all fixed 
points. Thus if the action of the left or right algebra on a fixed point f produces 
only N I different fields, where N s is (necessarily) a divisor of N, then all the matrix 
elements of M in the row or column of f are equal to N/N I. 

The fields in the left- and right-moving sector with zero charges with respect 
to the left and right algebras are thus organized into representations of those 
algebras. Each representation consists of a number of representations of the original 
conformal field theory, combined by the action of d L  or dR. The modular invariant 
partition function is now specified completely by a one-to-one map taking the 
representations of the right algebra to those of the left algebra. This mapping must 
be one-to-one since this is the only way to respect the rule that ~ M,b is equal to 

b 

N for all fields a that are local with respect to ~'R. The matrix M consists thus 
of blocks, whose internal structure is determined completely by the action of d L  
and dR. Since our interest is only in simple current invariants, the mapping between 
the representations of the left and right algebras must be achieved by simple 
currents. 

2.2. Identical Left and Right Extensions. Consider now first the invariants with 
d L =  dR ------ d .  In this case there is always at least a block-diagonal invariant, for 
which the mapping from the right to the left sector is the identity. Any other 
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mapping corresponds t" a fusion rule automorphism of the new theory that is 
obtained by extending the algebra. It is natural to suspect that for simple current 
invariants these automorphisms are generated by the simple currents of the new 
theory. There are two potential problems with this conjecture. First of all one may 
worry that simple currents that are projected out could still play a non-trivial r61e, 
and generate extra automorphisms not taken into account in [8]. This is not true 
for the following reason. Suppose J is a current in d ,  and K any other current. 
Suppose Ma,Ka :/: O. Then also Ma,sK, ~ O. Hence h(Ka) = h(JKa) = h(Ka) + h(J) - 
Qs(K) - Qs(a) mod 1. Because h(J) = Qs(a) = 0 mod 1 it follows that Qs(K) = O. 
Hence only currents K that are themselves in representations of d have to be 
considered. 

The second potential problem has to do with fixed points. To make this precise, 
we go to a new basis in which only the representations of d occur. To define this 
basis we choose one orbit representative a in each d - o r b i t  of fields with zero 
charge, and we define new "characters" 

/NN N~ 
57a ~--- 4 ~.  [~.~d ,~[ ~']a, (2.5) 

where ~r denote the original characters. Here the sum is over all distinct fields on 
the orbit. Note that the new characters 5? may have non-integral coefficients if 
the number of distinct fields in the orbit, Na, is not equal to the number of currents 
in d ,  N (this happens when there are fixed points). The normalization in (2.5) is 
such that this basis transformation can be extended to an orthogonal transformation 

U on the set of characters, up to an overall factor w/N (the matrix U is defined 
more carefully in Appendix D). 1 

It is easy to compute the matrix S that performs the transformation v ~ - 

on the new characters 5?. This matrix is equal to USU t restricted to the invariant 
subspace spanned by the characters 5?,. The result is 

~b=~Sab, 
where ~ ~ �9 + 1 is represented by T,b = Tab. For  the fusion coefficients one finds 

~ ,bc= ~ ~ (2.6) 
NaN tT~.~ N[y]a'~ 

where the sum is over all N a different fields generated from a by the algebra. In 
general these fusion coefficients are not integers. The origin of this problem is the 
same as that of the non-integer coefficients in the characters, and the solution is 
known (see e.g. [12, 9, 13, 14]) in principle: the fixed-point fields have to be resolved 
into several distinct fields. 

Although in many cases it is known how to do this explicitly [14], there is no 
general and mathematically rigorous formula for the correct matrix S. Furtunately, 
we can avoid it. Although in the presence of fixed points S is not the modular 
transformation matrix of the new theory, it is good enough for our purposes since 
it satisfies the requirements needed for the validity of the classification of auto- 
morphisms of Ref. [8] (see also the conditions specified in [15]). Namely, S is 
unitary and symmetric, it satisfies ( ~ ) 3  = ~2, and although not all of its fusion 
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coefficients are integers, the ones that matter are: it is easy to show that all simple 
currents have correct fusion rules. 

In the new basis any modular invariant partition function with chiral algebra 
~r takes the form 

a,b a,b orbits 

Here the first sum is over all zero-charge fields, and the second only over the 
distinct orbits. The matrix A~t is equal to UMU ~, restricted to the subspace spanned 
by the characters ~a. This subspace is an invariant subspace of M provided that 
the fixed-point entries of M are well-behaved. In fact, M has then non-zero entries 
only on this invariant subspace. 

This transformation has the effect of collapsing the blocks of M into single 
entries, whose values are either zero or N, for non-fixed points as well as for fixed 
points. Clearly [M, S] = [M, T] = 0, since the unhatted matrices had that property. 
Furthermore, there is precisely one non-zero entry per row or column of M. 
Therefore this matrix is N times a fusion rule automorphism of the fusion rules 
defined by S. 

This completes the classification of all modular invariants with the same left 
and right algebra. The algebras themselves are simply all possible subgroups of 
the center formed entirely by integer spin currents. The diagonal theory with this 
particular extension of the algebra can be obtained by multiplying matrices M(J~), 
so that the currents J~ span ~ .  All other theories with ~'~. = dR = ~ can be obtained 
by applying the construction of all simple current fusion rule automorphisms 
presented in [8], using the matrix S defined above. This conclusion is valid for 
any set of simple currents, and not restricted to centers (Zp) k. 

The results obtained in the foregoing two sub-sections are in agreement with, 
and partly contained in those obtained in [12] using the "polynomial equations." 
However, our starting point is somewhat different. Unlike the authors of [12] we 
are only imposing conditions on the matrix M, and not on properties of the 
conformal blocks. Nevertheless we obtain a more tightly constrained general form 
of M than that of [12] because of the additional restriction to simple current 
invariants. 

2.3. Different Left and Right Extensions. Now we have to deal with modular invariant 
partition functions with different left and right algebras. Our starting point is the 
following 

Theorem. Consider a RCFT with center (Zp) k. Consider an integer spin current K. 
Then a modular invariant partition function satisfying all previous conditions, with 
left and right algebras d L and d R  such that K ~ d L  but KCdR,  can exist only if 
there exists a simple current which is non-local with respect to K. Furthermore, a 
modular invariant partition function in which the integer spin currents K and K', 
generating different Zp subgroups of the center, appear as left and right extensions, 
does indeed exist if both K and K' are each non-local with respect to at least one 
simple current in the theory. 

Proof. Suppose first that K is local with respect to any simple current in the 
theory, and that K ~ d L .  Consider any field a that has zero charge with respect to 
~'L, and in particular with respect to K. Then if M,b r O, b = Ja for some simple 
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current J. For  any field b that may appear, we find thus QK(b)= QK(J)+ Qr(a). 
Hence K is local with respect to all representations of ~r It is then easy to show 
that K must be in dR  [16]. This proves the first part  of the theorem. 

Suppose now that K is non-local with respect to some other simple current, 
and analogously for K'.  If  the two currents K and K '  are non-local with respect 
to each other, the modular  invariant promised in the theorem can be constructed 
by simply multiplying the matrices M(K)M(K'). It  is easy to show that in this 
product K is in the left algebra but not in the right one, and vice versa. Let us 
thus assume that K and K '  are local with respect to each other. If J is non-local 
w.r.t. K and J '  w.r.t. K' ,  then either J or J '  is non-local with respect to both K 
and K',  or their product is. So we may assume that there is a single current J that 
is non-local with respect to both K and K'. Furthermore, by replacing K and K'  
by powers of themselves (which generate the same orbit as K and K'), we can 

1 
arrange that QK(J) = QK,(J) = - .  The 3 x 3 monodromy matrix ru(- pQi(Jj)) of 

P 
these three currents K, K'  and J is thus 

l! 0 r =  0 , 

1 2m 

for some integer m. 
Now we use the results of [8] to construct an automorphism in this system 

of three currents. As explained in that paper, any automorphism is characterized 
by a matrix ~t satisfying the equations 

(#+#T +l~r#r)ij=Omod p, i#j,  
1 r T) (# + 3# kt ii 0 mod p. (2.7) 

It  is easy to check that the following matrix # is a solution 

# = m m - 1 . (2.8) 

- 1  - 1  0 

I t  is also easy to check that the corresponding fusion rule automorphism M(#) 
has the property that M(la)M(K') is a modular  invariant partition function with 
K ' ~ d R  (as is already manifest) and K~dc. 

The extension of this result to larger left and right algebras is straightforward. 
It is clear from the foregoing discussion that we have to distinguish two types of 
simple currents: 

Type A: Currents that are local with respect to all simple currents in the theory 
(including themselves). 

Type B: Currents that are non-local with respect to at least one simple current 
in the theory. 

Note that type A currents can have either integer or half-integer spin, since 
currents with any other spin are non-local with respect to themselves, and thus 
necessarily of type B. Type B currents can have any spin. 
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It follows from the foregoing theorem that if any type A current appears in 
the left algebra, it must appear also in the right algebra, and vice versa. On the 
other hand, extensions by type B currents can be done independently in the left- and 
right-moving sectors. For  a single Zp factor this conclusion is already contained 
in the theorem. To understand why it is true for any number of extensions, we 
should first discuss how the center changes upon extension of the algebra. 

If one extends the algebra by means of a type A current the center is reduced 
from (Zp) k to (Zp) k- 1. No currents are projected out, but the current J disappears 
into the identity character of the new theory, and is not a separate primary field 
anymore. If one extends the algebra with a type B current J, the center reduces 
from (Zp) k to (Zp) k- 2. The current J disappears for the same reason as before, and 
in addition one current J '  and its powers disappears because it is not local with 
respect to J (any other current J" can always be made local w.r.t. J by multiplying 
it with a suitable power of J'). 

Suppose we wish to construct an invariant with a left and a right algebra, both 
isomorphic to (Zp) q, so that neither the left nor the right algebra contains any 
type A current (apart from the identity). It follows that there must be at least q 
independent currents that are non-local w.r.t, alL. If there were fewer, then some 
linear combination of the currents in ~r is local w.r.t, all currents, and hence is 
of type A, in contradiction to the assumption. The same is true for Sgn. We can 
now build the desired invariant in steps, each time adding a factor Zp to the algebra 
on the left and the right. We are completely free in the choice of the Zp factor we 
add on either side. After each step, the center in the left as well as the right sector 
is reduced by Zz: one factor has disappeared into the chiral algebra we are building, 
and one factor disappears from the set of q independent currents that was non-local 
w.r.t, the algebra. Therefore after k steps there is still an q - k dimensional space 
of such currents available, enough to continue the process until k = q. 

Note that we have shown previously that the left and right extensions must 
be equal in size. If the center is (Zp) k, this completely fixes the group structure of 
the currents in the algebra up to isomorphism, since all equal size subgroups of 
(Zp) k are isomorphic. Within this restriction all left-right combinations are allowed 
except those involving different type A orbits, explicitly forbidden by the theorem. 
The foregoing construction gives us at least one example of a modular invariant 
partition function for any possible combination of left and right chiral algebras. 

How do we find all such examples? Suppose the modular invariant Mo has 
different left and right chiral algebras, d L r s~r R. Suppose that M 1 is a different 
matrix, but also with left algebra d L  and right algebra dR. Consider now the 

1 MoMr and 1MoMr, where N is the number of currents in dL  and matrices 

~r It is easy to check that both matrices have integer coefficients, multiplicity 1 
for the identity, and commute with S and T. Furthermore both have left and right 
chiral algebras that are equal to each other and to alL. Finally, it is also obvious 

1 
that the two products are different. The matrix ~MoM~ is in fact the diagonal 

invariant of the theory with extended algebra alL, and 1MoMr must therefore 

be an automorphism of that theory. Clearly any further modular invariant Mi 
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with algebras dL and dR can be used to build a new and different fusion rule 
automorphism of the left theory. 

Conversely, any fusion rule automorphism of the left theory can be used to 
change M 0 to a different matrix M o with left and right algebras dL  and dR. Hence 
the set of solutions with this combination of algebras is in one-to-one corres- 
pondence with the set of fusion rule automorphisms of the theory with algebra 
alL, which we know explicitly using the results of [8]. 

This completes the classification of all modular invariants with different left 
and right algebras. An obvious extension of the previous arguments should still 
be pointed out. Clearly the entire argumentation used above applies equally well 
to dR (by using M~Mo instead of MoM~). Hence the set of invariants is also in 
one-to-one correspondence with the fusion rule automorphism of the right theory. 
This implies that the fusion rule automorphisms of the left and the right theory 
are isomorphic to each other. 

More interestingly, it follows that all extensions involving the same type A 
currents and the same number of type B currents are isomorphic to each other, 
since for any two such extensions there exists a matrix Mab that maps the representa- 
tions into each other in such a way that the fusion rules are preserved. An obvious 
consequence is that all new RCFT's obtained by extending the algebra of a given 
RCFT with the same type A currents and the same number of type B currents 
have isomorphic centers, and the same monodromy matrices r up to basis trans- 
formations. 

This concludes the classification of all modular invariants. The only centers 
for which our classification is still incomplete are those that contain factors Zp,, n > 2. 
In this case we do not yet know in general which left algebra can be combined 
with which right algebra. 

3. zp• 

In this section we will illustrate the results of the previous section and those of 
[8] for generic RCFT's with a center Z v x Zp, p prime, generated by two simple 
currents J1 and J2. Our aim is to analyze the different modular invariant partition 
functions corresponding to any monodromy matrix r. For p = 2 this problem has 
already been solved in [11]. Here we will therefore focus on p odd. We recommend 
reading first Appendix A which contains several number-theoretic results that will 
be used frequently throughout this paper. 

As explained in Appendix B, the monodromy matrix r can have the following 
inequivalent values: for p odd 

(~ ~176 o) ,31, 
where n is a non-square modulo p (i.e. a fixed representative of {n}), and for p = 2 

00),(0 ~ 0)(0 ;) 
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Consider  first the solutions of the matrices Mab that  are permutat ions and 
define au tomorphisms  of the fusion rules [8], 

Mo,[~- ] = ~,[~.], ~ Ma,[~-], = 1. (3.3) 
[Y] 

This kind of  solutions, analyzed in Ref. [8] for a general center ZN1 x ... x ZN,, 
can be characterized by an integer valued matrix #ii (i,j  = O, 1 , . . . ,  l) (defined mod  p) 
that satisfy Eqs. (2.7). This matrix "measures," for any field a, the distance of the 
only non-vanishing element Ma,[~,)], = 1 from the diagonal  (the current [~(a ) ]  is 
constructed out of  the matrix #~j and the charge Q(a), see Ref. [8]). 

For  a center Zp,#~j reduces to a single parameter  # that satisfies 
1 2 # + 3# r = 0 mod  p. If r = 0 the only solution is # = 0 corresponding to the diagonal  

invariant. If r r 0 there is an additional solution z # = - - 2 m o d  p, a non-trivial 
r 

automorphism.  For  a center Zp x Zp the number  of  solutions of (2.7) depends on 
r and p in a rather intricate way. For  odd p the different possibilities are as follows. 

(a) For  r = diag(0,0) Eqs. (2.7) reduce to #12 = - # 2 1 ,  #11 = # 1 2  = 0 .  Therefore 
there are p solutions. 

(b) For  r = diag (0, 2) the solutions of Eqs. (2.7) are determined by all p possible 
values of #12 and two possible values of #22 (#22 -- 0 and #22 = - 1 rood p), a total 
of 2p solutions. The same number  of  solutions is obtained for r = diag (0, 2n), as 
can be easily unders tood because Eqs. (3.4) are invariant under the simultaneous 
t ransformat ion (defined m od  p) r ~ nr, # --. #In. 

(c) For  r = diag (2, 2) the equat ion #~2 = -#11 (1  + #11) has one solution for every 
value of  the integer ratio q = (#12/#11)mod p, with #11 r 0, except for the values 
that  satisfy q2 = _ 1 rood p. There are two such values of  q if p = 4m + 1 and none 
if p = 4m - 1. Since q takes all values including 0, this equat ion has p - 2 solutions 
with #11 ~ 0 if p = 4m + 1 and p if p = 4 m -  1. In  addit ion there is the trivial 
solution #11=#12=0. Therefore the pair  (#11,#12) has p + l  solutions for 
p = 4m - 1 and p - 1 solutions for p = 4m + 1. The same results apply obviously 
to the pair  (#22,#z1) satisfying the equat ion #21 = -#21 (1  + #~-2). Finally there 
are two possibilities for coupling both  pairs: (#22=#11,#21 = --#12) and 
(#22 = - 1 - #11, #21 = #11), SO that  the total number  of  au tomorphisms  is 2(p + 1) 
for p = 4m - 1 and 2(p - 1) for p = 4m + 1. 

(d) For  r = diag (2, 2n) one finds, in a similar way as in the previous case, that  the 
pairs (#11,#x2) and (#22,#21) have p + 1 solutions if no integer l exists such that  

- l z = n mod  p. If such an integer exists the number  of  solutions reduces to p - 1. 
Since n is by definition a non-square,  one deduces that  such integer l only exists 
for p = 4m - 1. As before, there are two ways to couple the pairs of solutions, so 
that the final number  of au tomorph isms  is 2(p - 1) for p = 4m - 1 and 2(p + 1) for 
p = 4 m +  1. 

2 By 1 modp we mean here and in the following the integer s modp such that sr = 1 modp. This 
r 

number is well-defined and unique, modulo p, if r 4= 0 
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Now let us analyze the solutions for the matrices Mab that provide extensions 
of the chiral algebra 

MLTL].o = Mo.tTRl = 1, (3.4) 

where the integer spin simple currents [7/~] and [TR] are organized in subgroups 
of the center and extend the left and right chiral algebras respectively. 

For  a center Zp the only possible extension of the chiral algebra is given by 
the center Zp itself, provided r = 0 since h(J ~) = - � 89  1. In this case, all 
fields with non-vanishing charge are projected out. For  a center Zp x Zp there are 
a variety of different possibilities for extending the chiral algebra depending on r 
and p, in an analogous and in some sense complementary way as for the 
automorphisms. Let us analyze the different possibilities for p odd. 

(a) For  r = diag (0, 0) the left and right algebras must be the same, d L =  ~R, since 
all the simple currents are local to each other. All of them have integer spin, so 
that there are p + 2 possible extensions of the chiral algebra corresponding to 
p + 1 Zp subgroups (generated by J1 and J i J 2 ,  o~ = O, 1 . . . .  p -  1) and to Zp • Zp 
itself. The modular invariants constructed out of these extensions are just the block- 
diagonal ones. The reason is that for every Zp extension the center reduces to the 
other Zp left, and this last one cannot produce new modular invariants since its 
currents have integer spin. 

(b) For r = diag (0, 2) there is only one subgroup of integer spin currents: the Zp 
subgroup generated by J1, that is local with respect to any other simple current. 
Therefore there is only one possible extension of the chiral algebra, with ~1~ = dR. 
Since the left-over center Z ,  is formed by currents with fractional spin 
( h ( J 2 ) = - l / p ) ,  it will generate a non-trivial automorphism ( # - - - l m o d p )  in 
addition to the trivial one. As a result there are two different modular invariants 
associated to the unique extension of the chiral algebra: the block-diagonal one 
and one permutation of the corresponding blocks. Similar results apply for the 
case r = diag (0, 2n). 

(c) For  r=d iag(2 ,2 )  the condition on J~lJ~ for having integer spin is 
~ 2  = __ f12 mod p. Therefore, this condition will be satisfied only for p = 4m + 1, the 

solution being f12= ~ t mod p. Since p is prime, the integer spin 

subgroups must contain currents with all possible values of ~ and fl, from 0 to 
p -  1. In particular ~ = 1 must appear once in every subgroup. This implies that 
there are two integer spin Zp subgroups corresponding to the two solutions 
/ / ~ X  Y 

( ~ =  1,f l= + ( ~ - ) [ m o d p ) f o r  p = 4 m +  l, and no integer spin currents for 
\ \ - - 1  / 

p = 4 m -  1. In the former case, the currents generating the two subgroups are 
non-local with respect to each other. Therefore one can extend the left or right 
chiral algebras independently by any of them. Thus for p = 4m + 1 there are four 
possible extensions giving rise to four different modular invariants (the center 
remaining after these extensions is trivial, as explained in Sect. 2). 

(d) For  r=d iag(2 ,2n)  the condition for J~lJ~ to have integer spin is 
f12 n = _ ~2 mod p. Thus, a non-square has to be equal to a negative square modulo 
p, a condition that gives two solutions for ~ = 1 if p = 4m - 1 and no solution if 
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Table 1. 
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r p (prime) # of automorphisms # of extensions total # 

diag (0, 0) odd p p + 2 2p + 2 
diag (0, 2) odd 2p 2 2p + 2 
diag (0, 2n) odd 2p 2 2p + 2 
diag (2, 2) .( 4m + 1 2p - 2 4 2p + 2 

1.4m - 1 2p + 2 0 2p + 2 
diag (2, 2n) f4rn + 1 2p + 2 0 2p + 2 

t4m - 1 2p - 2 4 2p + 2 
diag (0, 0) 2 2 4 2p + 2 
diag (0, 2) 2 3 3 2p + 2 

p = 4m + 1. As before, the currents generating the two integer spin Zp subgroups 
are non-local  with respect to each other. As a result there will be four different 
modular  invariants corresponding to the four possible extensions of  the chiral 
algebra, for p = 4m - 1, and no extensions for p = 4m + 1. 

All these results are summarized in Table 1. Observe that  the total number  of 
modular  invariants, pure au tomorphisms  plus extensions of the ehiral algebra, is 
a constant  equal to 2(p + 1) independently of the matrix r (for Zp this number  is 2). 
It seems that  there is some sort of  conservat ion rule or  complementar i ty  that  
interchanges pure au tomorphisms  and extensions of the chiral algebra, a l though 
the pat tern of this mechanism is very r-dependent.  However,  for the cases 
r = diag (2, 2) and r = diag (2, 2n) it turns out to be the same. As a mat ter  of fact, 
between these two values of r there is a total symmetry  of results under the 
interchange p = 4m + 1 ~-~ p = 4m - 1. 

For  p = 2 a total of  six modular  invariants was found in [11], following the 
same rule as for p odd. 

N o w  it is natural  to conjecture that  in general, for (Zp) k, the total number  of 
modular  invariants will depend only on p and k, but  not  on the m o n o d r o m y  
matrix r. We will see in the next section that  this is indeed the case. 

4. (Z~) k 

In  this section we will analyze a generic R C F T  with simple currents generating a 
center (Zp) k, p prime. We will determine, for a given matrix r, the number  of modular  
invariants of  pure au tomorph i sm type and the number  corresponding to extensions 
of the chiral algebra. Finally, we will prove our  conjecture that  the total number  
of modular  invariants is independent  of r and depends only on p and k in a 
universal way, i.e. is given by the same formula for p = 2 and p = 4m _ 1. 

As explained in Appendix B, the m o n o d r o m y  matrices r can be characterized 
in the following way. If  p is odd r can be diagonalized, and the different equivalent 
matrices are given by three numbers  (no, na, n,): the number  of diagonal  elements 
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r u such that ru is equal to 0, 1 and n respectively, where n is a non-square (a fixed 
2 

representative of {n}). Furthermore n, can only be zero or one. If p = 2 the 
monodromy matrices cannot always be diagonalized and are described by the 

(01 1 ) ( 2  ; ) respect ively ,  and the numbers no ' numbers hA, nB of 2 X 2 blocks 0 1 

nt of diagonal elements equal to 0 and 2, as before. The possible choices for the 
four numbers (no, nl, hA, riB) are (no, 0, hA, 0), (no, 0, hA, 1) and (no, 1, hA, 0). 

4.1. p odd 

The Total Number of  Automorphisms. Let us start with the computation of 
A(no, nl, n,), the number of (pure) automorphisms corresponding to a monodromy 
matrix given by (no, nl, n,), for p odd. The direct analysis of (2.7) is too complicated 
for the general (Zp) k center (unmanageable already for k -- 3). Instead we will use 
the recipe formulated in [8] to compute A(no, n l ,n , )  recursively. We refer the 
reader to Appendices A and C that contain some definitions and results used in 
the discussion which follows. 

Suppose we are given a theory with center (Zp) k, p odd prime, and monodromy 
matrix r described by (no, n~,n,). If an extra current is added with diagonal 
r-element r (k+l ) (k+l )  , denoted as 2r ( r = 0 ,  1 or n), the equation satisfied by the 
corresponding diagonal/~-element #~k+l)(k+ ~), denoted as #, is from (2.7) 

1 k 
# "k- rkt 2 n t- 2j~=1 [2 ( k+ l )T j j # ( k+ l ) J  = 0 mod p. (4.1) 

Now one has to find the solutions to this equation for all possible values of 
#lk+ ~)j, from 0 to p -- 1. But this is equivalent to finding the solutions to the equation 

la + r# 2 + g(J) = 0 mod p (4.2) 

for the whole set of simple currents J of the original theory, since g(J) = - ph(J) = 

~j= ~ ajrj~aj and aj runs from 0 to p - 1. 

One encounters the following cases. For  r = 0 one has # = - g ( J ) m o d p ,  so 
that there is one solution for every J. Since the total number of simple currents 
is f o  +,, + % the recursion relation for the number of automorphisms is in this case 

A(n o + 1, nl, n.) = pnO+n, +.,A(no ' nx, n,). (4.3) 

For  r ~ 0 the formal solution is given by 3 

1 
# = ~ [ -  1 4- ,,/1 - 4rg(J)] modp. (4.4) 

a Here x//-amodp is defined to be the integer b so that b 2= amodp. There are precisely two 
solutions for b if a is a square (modp) (and p is a prime!), one solution if it is zero, and no 

solutions if it is a non-square (mod p). The meaning of ~ mod p is explained in Sect. 3. 
2r 
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The number  of solutions depends on whether (1 - 4rg(J)) is a square, a non-  
square or  zero. For  any current with 9(J)= 0, Eq. (4.4) has two solutions. Since 
there are Io(no, ni,nn) simple currents with g ( J ) = 0 ,  the contr ibut ion to the 
recursion factor of  the number  of  au tomorphisms  is 2Io(no, ni, nn). 

For  g(J) v ~ 0 several cases have to be distinguished by combining the following 
possibilities: r = 1 or  r = n, p = 4m + 1 or p = 4m - 1 and g(J)e{1} or g(J)e{n}. 

Let us compute  in some detail the total contr ibut ion to the recursion factor 
for the case r = 1, p = 4m + 1. If  g(J)e{1} then 4rg(J)~{l} and - 4 r g ( J ) e { 1 }  as 

well. In  the complete set of  simple currents, g(J) takes all p - 1 different values of  
2 

{1} a number  of  times equal to 11(no, nl,nn). The addit ion of 1 to every complete 

set {1} gives: 1 element equal to 0, p - 5 elements of  {1} and p - 1 elements of 

{n}. Thus there are 1 + 2 p -  5 4 4 solutions for every complete set g(J)6{1}. The 
4 p - 3  

contr ibut ion to the recursion factor is therefore I~(no, ni, n,). Ifg(J)s{n} then 
2 

4rg(J)e{n} and -4rg(J)e{n}. Adding 1 to every complete set {n} gives P - 1  
4 

elements of {1} and p - 1 elements of {n}. Since 9(J) takes all p - 1 different values 
4 2 

in {n} a number  of  times In(no, n~, n,), the contr ibut ion to the recursion factor is 
p - I  
- - l n ( n o ,  nx,nn). Summing up the contributions corresponding to g ( J ) = 0 ,  

2 
g(J)e { 1} and g(J)e {n}, and taking into account  that  the total number  of currents 
satisfies 

p - 1  
pn~ nl ,n,)+ p -  lll(no, n i , n n ) + ~ - I n ( n o ,  nl,n,) (4.5) 

2 
one finally obtains 

A(no, nl + 1, nn)= [Io(no, nl ,nn)-I i (no,  nl,nn)+ pn~ ni,nn) (4.6) 

with p = 4m + 1. The recursion relations for the other cases can be easily computed  
by repeating similar arguments.  For  the case r = 1, p = 4m - 1 one finds 

A(no, n I + 1, n,) = [lo(no, nl, nn) - In(no, nl, nn) + pnO+nl +n,]A(no, nl ' nn). (4.7) 

For  r = n the recursion factors turn out to be symmetric to those of  r = 1 under  
the interchange p = 4m + 1 ~--~p = 4m - 1. 

To obtain the final expression for A(no, nl, nn) it is convenient to proceed in 
two steps. First one computes  the solution for A(0, nl, nn) applying the recursion 
relations above, and then one uses Eq. (4.3) to get the complete answer. For  the 
first step, using the results of  Appendix C for the quantities I,(0, na, n,), a = 0, 1, n, 
one gets 

A(O, n I + 1, nn) = [pN + ( _  1),,IptN/2I]A(O ' nl ' nn), 

A(0, nl, nn + 1) = [pN + (_  1)n.pEN/2]]A(O, nl, nn), 
for p = 4m + 1, and 

A(O, nl + 1, n,) = [pN + (_  1)n.(__p)tN/21]A(0 ' hi, nn), 

A(0, ni, nn + 1) = [pN + (_  1),1( _p)tN/2I]A(O ' nl, n,), 

(4.8) 
(4.9) 

(4.10) 

(4.11) 
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f o r p = 4 m - l ,  w h e r e N = n l + n ,  a n d [ 2 1 i s t h e i n t e g e r p a r t o f 2 .  Sincethese 

results depend on N being odd or even, a double recursion is convenient. For  N 
odd one finds the recursion factor pN(pN+l__ 1), for p = 4m + 1 as well as for 
p = 4m - 1, by increasing nl or n, by two units and also by increasing nl and n. 
one unit each. Thus for N odd 

(N-  1)/2 

A(O, nl ,n,)=2 I] p21-1(p2t_ 1), (4.12) 
l = 1  

where use has been made of A(0,1, 0) = A(0, 0,1) = 2. For  N even the double 
recursion is more complicated that for N odd, but A(0, nl, n,) can be computed 
easily by increasing nl or n, by one unit in Eq. (4.12), using the recursion relations 
(4.8)-(4.11). One obtains, for p = 4m + j  (j = _+ 1), 

(N/2) - 1 

A(O, na,n,)=2[pN-I--jN/E(--1)"'P (N-2)/2] I] P21-1(PZl--1)" (4.13) 
/=1  

Now by using Eq. (4.3) one gets the recursion for the first argument 
no -  1 

A(no, nl,n,) = I-I PN+ZA(O, nl,n,) �9 (4.14) 
/ = 0  

Thus one obtains finally, for N odd 

A(no ' n l  ' tin) = 2p(1/2)k(k- 1)+(1/4)(1 - N  2) 

for N even, N ~ 0, 

(N-  1)/2 

1-[ (p2t_ 1), (4.15) 
/=1  

A(no, nl, n,) = 2p (1/2)k(k- 1)-(1/4)NZ[p N/2 __jN/2(_ 1)nl ]  
(N/2)- 1 

1-[ ( p 2 t  1), ( 4 . 1 6 )  
/=1  

where k = n o + N, and for N = 0, 

A(no, 0, 0) = pO/2)no(no - 1). (4.17) 

The Total Number of Modular Invariants. Now we will compute the number of 
modular invariants that provide extensions of the chiral algebra, for a given 
monodromy matrix r. By summing over all possible extensions (including the 
trivial one) and including for each extension all possible automorphisms, we obtain 
the total number of invariants T(r,p, k). Our conjecture is that T(r, k,p) is 
independent of r and depends on p and k in the following universal way: 

k - 1  

T(r,k,p) = T(k,p)= l-I (1 + if). (4.18) 
l=O 

We will calculate the number of invariants for any number of extensions of 
the algebra recursively. If one extends the algebra by l simple current orbits, one 
obtains a new theory with a new center and new monodromies. We have to know 
this information for two reasons: first of all to compute the number of fusion rule 
automorphisms of the new theory using the results of the previous subsection, and 
secondly to compute the number of single extensions, in order to go from I to l + 1. 
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The new center has already been determined in Sect. 2. If we extend the chiral 
algebra with a set of type B currents generating a (Zp) t subgroup of the center 
(Zp) k, the latter reduces to (Zp) k-  2( If we extend the algebra with type A currents 
(which exist if and only if n o ~ 0) generating a (Zp) l subgroup, the center (Zp) k 
reduces to (Zp) k- i. 

Now we determine the new matrix r. If we extend the algebra with a type A 
current, only that current itself will disappear, and no is reduced by 1. The result 
of extensions by type B currents can be derived by making use of the isomorphism 
between such extensions which was discussed at the end of Sect. 2.3. In particular 
it was shown that the resulting r-matrices are all equal up to a choice of basis, 
and hence we can use any extension to compute the new r-matrix. 

If r has just one non-vanishing entry on the diagonal there are no type B 
currents. If there are two non-vanishing entries there may or may not be a type B 
current, depending on p, as was discussed in detail in Sect. 3. If  there is one, both 
non-vanishing entries disappear when the algebra is extended. Suppose therefore 
that there are at least three non-vanishing diagonal entries of r, labelled i, 2 and 
3. These entries may be assumed to be either equal to 2~2{1} or 2n~2{n}. 
Furthermore we may choose a basis so that r 11 = r22 = 2 (in fact, we can choose 
a basis so that n, is either 1 or 0). 

We wish to extend the algebra with a linear combination of J1 and J2. If 
p = 4m + 1 there is an integer spin current of this type precisely if r ~  = r2z = 2 
(see Sect. 3). In the new theory both J~ and J2 disappear: one linear combination 
is part  of the algebra, and the other one is projected out. Hence the new r-matrix 
has two entries "2" fewer, i.e. nl is reduced by 2. 

Consider now p = 4m - 1. In this case there is an integer spin linear combination 
of J1 and J2 only if r l l  = 2 and rzz = 2n (or vice versa). We can bring r always to 
this form by means of the basis transformations discussed in Appendix B. If r33 = 2n 
we simply interchange the labels 2 and 3, and if r33 = 2 we can change r33 and 
r22 simultaneously to the value 2n. The extension of the algebra removes then one 
diagonal entry 2 and one diagonal entry 2n from r. Thus nl and nn are both 
reduced by 1 (ifn, = 0 one may equivalently reduce nl by 3 and increase n, by 1). 

Let us analyze first the case no = 0. It  is convenient to introduce the notation 
A(N,  e,j) = A(O, nl ,  n,) and Io(N, e,j) = Io(0, nl,  n,), where N = nl + n,, e = ( -  1)"" 
a n d j  = + 1 corresponding to p = 4m + j  (as we have seen, the dependence of these 
quantities on e a n d j  only exists for N even). Note that e is invariant under changes 
of basis, which allow us to decrease n~ by an even number, while increasing n, 
simultaneously by the same amount.  According to the foregoing discussion, ~ does 
not change upon extension of the algebra if p = 4m + 1, but it changes sign for 
each single extension by a type B current if p = 4m - 1. Thus after l extensions, 
the invariant parameters that determine r are modified from (N, e) to (N - 21, el). 

Define Bz(N, e,j) as the number of modular  invariants with (Zp) t extensions of 
the chiral algebra, not including automorphisms, and T~(N, e,j)  as the number  of 
such invariants including automorphisms, i.e. 

Tt(N, e,j)  = Bt (N , e , j ) A ( N  - 21, eft,j). (4.19) 

Given BI(N,e , j  ) one can obtain Bz+I(N, e,j) by combining all algebras with 
one extra integer spin orbit from the reduced center (Zp)N-2( The number  of such 
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orbits is 

Io(N - 2l, ejt,j) - 1 
(4.20) 

p - 1  

Each orbit can be added independently on the left and on the right, as discussed 
in Sect. 2. However, on both the left and the right one gets any given extension 
many times, namely as many times as the number of Zp subgroups of (Zp) z + 1, this 

number being equal to ~ pa. The recursion relation is thus 
a = 0  

B z + l ( N , ~ , j ) = [ ! o ( N _  21,~jl,j)_ l 2 ~ u  ] Bt(N,~,j), (4.21) 

where, for N odd 

Io(N - 21, el , j )  = Io(N - 2l) = pN- 2t-1, (4.22) 

for N even 

Io(N - 21, el,  j )  = pN- 21-1 + (p _ 1) jN/2ep((N- 21)/2-1), (4.23) 

l 

and we have used (p - 1) ~ pa = pl+ 1 _ 1. Taking into account that Bo(N, e,j) = 1, 
one obtains obviously a=o 

[ l-  1 Io(N - 2m, :j ,j) - 1. (4.24) 
Bt(N' s'J) = m:ol-[ ~ 7  ~ -- -1 

The number of modular invariants with (Zp) l extensions of the chiral algebra 
TI(N,~,j), Eq. (4.19), can now be computed straightforwardly using the results 
(4.12), (4.13) and (4.22)-(4.24). 

The total number of modular invariants T(r, k,p) corresponding to a center 
(Zp) k and a monodromy matrix r given by (0, nl, n,) is then 

[N/2] 

T ( r , k , p ) = T ( N , e , j ) =  ~ TI(N,~,j) 
l = O  

[N/2] 

= ~ Bt(N,a,j)  A ( N -  21,af, j). (4.25) 
/ = 0  

In the case at hand our conjecture (4.18) takes the form 
N - 1  

T(N,e , j )  = T(N,p)  = 1--[ (1 + pt). (4.26) 
/ = 0  

To prove this we compute the quantity 

T(N + 2, e,j) - (1 + pN+ 1)( 1 + pN)T(N ' e,j) (4.27) 

for N odd as well as for N even. This expression has to vanish if our conjecture 
turns out to be correct. 

The direct computation of (4.27) using Eqs. (4.25), (4.12), (4.13) and (4.22)-(4.24) 
is rather difficult. Instead one can proceed as follows. One introduces some quantities 
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R, such that (we omit ~ and j in the arguments for clarity) 

R o A(N) = A(N + 2), (4.28) 

Rt + 1Bt + I (N)A(N-  2(/+ 1)) = [R~Bt(N) + B~ + 1 (N + 2)-- YB~(N)] A ( N -  2l), (4.29) 

with Y = (1 + pN+ 1)( 1 + pU). In this way the quantity (4.27), containing the sums 
given by (4.25), reduces to 

2[(R(N- 1)/2 -- Y)B(u- 1)/2(N) + B(N+ 1)/2( N + 2)] (4.30) 

for N odd, where we have used A(1) = 2, and to 

A(2) [(R(u_ 2)/2 - -  Y)B(N- 2)/2(N) + BN/2(N + 2)] + B(N + 2)/2(N + 2) -- YBN/2(N ) (4.31) 

for N even, with A(2) = 2(p - ej N/2) and A(0) = 1. Remarkably, the recursion relation 
(4.29) has a very simple solution, for N odd 

R~ = pN(pN+ a + 1 -- 2p -t) (4.32) 

and for N even 

Rl = pN(pN+ 1 + 1 -- 2p -l + ejN/Zp (N/z)-t(p __ 1)). (4.33) 

Using these expressions and Eqs. (4.22)-(4.24) it is easy to verify that the 
quantities (4.30) and (4.31) vanish. 

Therefore we have proved that our conjecture (4.18) is true for theories with no 
zero eigenvalues in the monodromy matrix, in the case p odd. 

When the monodromy matrix r contains no diagonal elements equal to zero 
in addition to N non-vanishing ones, one can distinguish three kinds of integer 
simple currents: (p,O _ 1) currents corresponding to the "zero" part of r, fro(N) - 1) 
currents corresponding to the "non-zero" part of r, and (p,O_ 1)(Io(N)- 1) 
combined "zero-non-zero" currents (observe that the identity has been subtracted). 
Here Io(N) = Io(N, e,j). As before we will omit e and j in what follows. 

The extension of the chiral algebra by one Zp leads to a reduced center (Zp) k- 1 
in the first case, and to (Zp) k-2 in the other two cases. The number of modular 
invariants with one Z v extension, including automorphisms, is thus 

-- . .  [-p"~ ) -  1)]2A(no, U _ 2 ) .  
( ~ ) A ( n ~  L ~---1 (4.34) 

Observe that the number of possible orbits on the left term is not squared. The 
reason is that for these extensions the left and right chiral algebras must be the 
same, since the corresponding currents are of type A. 

Taking into account overcounting factors for further extensions, one arrives 
easily at the following expression for the total number of modular invariants 
corresponding to a general monodromy matrix r=diag(0"~ with 
N = r l  1 +r/n: 

no ( N - - 1 ) / 2  bill (p,o-a[Io(N ~ 2m)_ 1 ] ) 2 A ( n o _ a , N _  Zb) ' 
T(no, N) = ~ Qa(no) ~, 

a=0 b=0 • 2 0 \  pro+l-- 1 

(4.35) 

where Q,,(no) is the number of subgroups (Zp) a contained in (Zp) "~ This number 
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can be expressed in two equivalent ways: 

Qa(no)= y o  ~rp~Ti~ - ~, p {i--E'*'}. (4.36) 
{kl ,k2 ... . .  ka} 

0 <-_ka<-ka- 1 <'" "kl <= (no-a) 

By applying Eq. (4.14) one can factorize T(no, N) in the form 

T(n o, N) = F(no, N)T(N), (4.37) 

where T(N) is given by (4.25) and (4.26), and 
NO 

F(no, N) = ~ Qa(no)p {{"~176 1). (4.38) 
a=O 

Then using 

Q a ( n o  -t- 1) ---- paQa(rlo) -t- Q a -  l ( n o )  (4.39) 
one finds the recursion relation 

F(no + 1, N) = (1 + p"~ N) (4.40) 

with F(0, N ) =  1, so that 
n o + N - 1  

F(no, N) --- I-I (1 + p'). (4..41) 
l=N 

The total number of modular invariants is thus 
no+N-  1 

T(no, N) = l~ (1 + p'). (4.42) 
/ = 0  

Since n o + N = k, we conclude that our conjecture (4.18) is true for a general 
monodromy matrix, in the case p odd. 

4.2. p even 

The Total Number of Automorphisms. The computations for p even are similar to 
those for p odd apart from one extra complication, which is due to the fact that 
r cannot be fully diagonalized. In deriving recursion relations we are forced to 
add 2 x 2 blocks to r. Consider first the recursion relation for A(no, nl, nA + 1, riB). 
Define N = no + nl '+ 2ha + 2riB. We write the r-matrix in a basis labelled by 
i = 1, 2, 3 . . . .  , N + 2, where the additional 2 • 2 block is in the first two components. 
The number of automorphisms /~ij in the last N components of the basis (i.e. 
#lj  = #2j = #il = #i2 = 0) is equal to A(no, nl, nA, nn). First we add, following the 
prescription of [8], all allowed second rows of the form #2j = mj, with ml = 0. 
They are obtained by considering all 2 N possibilities for m j, j > 3, and solving the 
equation 

I N + 2  

m2 +L ~ mirijmjmod 2 
21=3 

for m 2. Because r22 = 0 this equation is linear in m2, and has always one solution. 
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Thus in this first step the number  of automorphisms is increased by a factor 2 u. 
Now we add all allowed first rows, #aj = lj. The equation for ll is 

1 N + 2  

11(1 +/2) + - ~ l iri j l jmod2. 
2 i=3  

The lal 2 term is due to the off-diagonal term in r. The number of solutions for ll 
N + 2  

depends on the value of (1,1) =- ~ lirijlj 
i = 3  

(l, 1) Iz 

0 0 

0 1 

2 0 

2 1 

and the value of 12: 

ll 

0 

0,1 

1 

none. 

Now we have to consider the second condition of [8], namely the existence of 
an auxiliary vector ~" (which was called ~ in [8]). This condition is only required 
if 11 = 0, and trivially satisfied for diagonal r-matrices, which explains we did not 
encounter it before. The vector ~" satisfy vl :~ 0 and 

v 1 + vzl 1 + vll 2 + (1 , v )  r 0mod2 .  

This second term vanishes because we only need to consider 11 = 0. Furthermore 
only off-diagonal entries of r contribute to ( l, v) ,  since the diagonal ones are even 
integers. This equation has solutions unless 12 = 1 and l~ = 0 for all i > 3 for which 
r has an off-diagonal entry. 

The resulting factor in the recursion relation can now be computed as follows. 
If we ignore the existence of the auxiliary vector, one gets three solutions if 
( l, l )  = 0 mod 4 and one if ( 1, l )  = 2 rood 4. Hence the enhancement factor would 
then be 3Io(no, nl, ha, riB) + Ii(no, nl, ha, riB). However, there does not exist an 
auxiliary vector for 11 = 0, 12 = 1, I i = 0 if i belongs to one of the blocks of type A 
or B. The number  of values of t for which there is no auxiliary vector, Io(no, nl, O, 0), 
has to be subtracted from the enhancement factor. For  the recursion relation we 
find then finally 

A(no, nl, na + 1, nB) = [3Io(no, nl, hA, nn) + Ii(no, nl, ha, riB) -- Io(no, nl, O, 0)] 

"A(no, nl, ha, nn). 

In the rest of the discussion we distinguish two cases. If n 1 ~ 0 we may choose 
a basis so that nn = 0 and n~ = 1. By recursion in na we find then 

h A - -  1 

A(no, 1,na,0) = 2 r176 l ]  2zt[ 221+2 - 1]A(no, 1,O,0). 
1=0 

Recursion in no is completely straightforward, and in no essential way different 
for p = 2 and p odd. The result is 

n A - -  1 

A(no, l ' n a ' 0 ) =  2(1/2)n~176176 l--I 221[ 22t+2 -- 1]. (4.43) 
/ = 0  
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If nl = 0 we have to distinguish again two cases, nB= 0 and nB = i. If nB= 0 
we perform exactly the same calculation as above, except that a different formula 
for I o and 11 has to be used (see Appendix C). One easily derives now 

ha-- 1 
A(no, O, na, O) =2(l/2)n~176176 l~ [ 22/+1 +21-- 1] 22t. (4.44) 

I = 0  

To obtain A(no, O, na, 1) we add one block of the form (21 12) to r. The computa- 

tion of this recursion step is essentially the same as that for adding a block (~  10), 
discussed in detail above. Now we find 

A(no, 0, ha, 1) = [3Io(no, 0, ha, O) + Ii(n o, O, n a, O) - ll(no, O, O, 0)] A(no, 0, ha, 0). 

(Note that Ix(no, 0, 0, 0) vanishes, so that the auxiliary vector always exists in this 
case.) This yields, after substituting A(no, O, hA, 0) and the results for Io and 11 from 
Appendix C, 

A(no, O, hA, 1) = 22hA + 2n~176 (x/2)n~176 1)(2"* + 1 ..{_ 1)(2,a + 1) 
hA-- X 

�9 I-I 22t( 22l+x +2 t - -  1). (4.45) 
1 = 0  

The Total Number of Modular Invariants. The derivation of the total number of 
invariants is now very similar to the one for odd p. The proof of conjecture (4.18) 
is analogous to the one for p even, and therefore we will only give details where 
there are differences. We begin with the cases n o = nl = nB= 0. First of all we need 
to know what happens to the matrix r if we extend the algebra with one current�9 
As for p odd, it is sufficient to compute the new r-matrix for just one of the possible 
extensions, since all currents are of type B. Choose for example the current Jx. If 
the algebra is extended by the current Jx, the current J2 is projected out, and Jx 
becomes part of the identity. Hence one 2 • 2 block of type A disappears, and n A 
is reduced by 1. 

We can now immediately write down a formula for the total number of invariants: 
nA 

T(O, O, hA, O) = Z BI(O, O, rlA, 0 ) h ( 0 ,  0 ,  rl A - -  l, 0), 
1 = 0  

where 

,A-1 (io(O,O, na--m,O)--  1) 2 
B,(O,O, na, O)= k -1 

is the total number of extensions by I + 1 orbits. Just as for p odd we consider now 

T(0, 0, na + 1,0) -- (1 + 22ha + 1)(1 + 22hA)T(0, 0, nA,O ), (4.46) 

a quantity that we expect to be zero. Now one defines R~ as in (4.28) and (4.29) 
(with N = 2n A, T(N) =- T(O, O, ha, 0) and analogously for Bt) and solves the recursion 
for RI. In this case the solution is 

RI = 22"a[22nA+l + 2 "A-/+ 1 - 21-1]. (4.47) 
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After substituting the recursion (4.29) repeatedly into (4.46), we are finally left with 

R , a - ( 1  +22"A+1)(1 +22"A)B,A(O,O, nA,O)+B,~+l(O,O, nA+ 1,0), (4.48) 

which vanishes if one substitutes (4.47). 
We repeat this computat ion for no = nl = 0, n B = 1. Again the effect of extending 

the chiral algebra is to reduce na by 1, so that there can be at most nA extensions. 
The rest of the argument is exactly as before. We will just write down the solution 
to the recursion for R~, 

Rl = 22,~ + 2 [22,A + 3 _ 2,~+1 -l  + 1 -- 21 -l].  

One may substitute this in the rest term, which has exactly the same form as (4.48) 
except for the fact that the last argument of B is 1 instead of 0. 

To deal with the case no = 0, nl = 1, nB= 0 we repeat this entire computat ion 
once more. Again, the only essential difference is in the solution to the recursion 
relation for R,, which is now 

Rl _~_ 24na+3 + [22-I(2t- 1 _ 1)]22na. 

Finally we have to allow non-zero values for no. This can be done in exactly 
the same way as for p odd (see Eqs. (4.34)-(4.41)). In this computat ion it is important  
that the formula for the number of automorphisms has the following universal 
dependence on no: 

A(no, nl,  hA, n~) = 2"~ tl/2)"~176 1)A(0, nl, hA, nn) , 

where N = nl + 2hA + 2riB. This formula may be verified in the explicit expressions 
(4.43), (4.44) and (4.45), but more directly it follows from (4.14), which holds for any p. 

In all cases the rest term vanishes. This proves that our conjecture (4.18) holds 
for any prime number  p. 

5. Conclusions 

We have classified all modular  invariant partition functions that can be obtained 
with simple currents in any generic RCFT, except when the center contains sub- 
groups Zp,, n > 2. 

A remarkable result that has emerged from our analysis of (Zp) k is that the 
total number  of invariants does not depend on the monodromy matrix r. It  depends 
only on p and k in a universal way, despite the fact that the individual invariants 
are very r-dependent, and different for p = 4m + 1, p = 4m - 1 and p = 2, as well 
as for k odd and k even. It  would be extremely interesting to know if this result 
is valid for any center, and what the generalization of formula (4.18) is. Unfortunately 
we do not have any insight in the origin of this universality. Our  proof is based 
on detailed computations in which we had to distinguish many separate cases, 
and does not provide any deeper understanding of this phenomenon. 

Applied to string theory, this result is a step towards the classification of all 
modular  invariant partition functions of a given RCFT, and is a small part  of a 
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program to classify all string theories. Our results may be used for the systematic 
enumeration of subclasses of theories. For example in [ 17] and [18] partial listings 
of all simple current invariants of tensor products of N = 2 minimal models were 
produced. We are now able to complete these lists (except for factors Zp,, n > 2) 
and be certain that nothing is missed, apart from "exceptional" invariants. The 
latter are, by definition, modular invariants in which some matrix elements of Mab 
are non-vanishing even though a and b do not lie on the same orbit of any simple 
current. 

It is clear from (4.18) that the number of modular invariants grows very rapidly 
with the number of Zp factors of the center. In practical applications this may be 
somewhat unrealistic, since (4.18) is based on the assumption that all factors Zp 
are distinct. If in fact they come from identical factors in a tensor product there 
will be many modular invariants that, though formally different, yield identical 
spectra. It would be quite useful to have a procedure to generate all distinct invariants 
modulo such interchange symmetries. 

Our results apply to any center ZN, • -.. • ZNk as long as there are no subgroups 
Zp,, with n > 2. In the latter case our classification is incomplete, and we are faced 
with several additional technical problems: the monodromy matrix cannot always 
be diagonalized, not even for p odd, more classes for the conformal weights of the 
currents have to be distinguished, and, most importantly, we do not yet know in 
general which left-moving algebras can be combined with which right-moving 
ones. A related problem is that the group structure of subgroups of the center is 
no longer uniquely determined by the order of the subgroup. Nevertheless, we 
hope to complete this analysis in the future for any possible center. 

Appendix A. Some Number Theoretic Results 

Most of the results in this Appendix can be found in any good textbook on number 
theory, see for example [19]. 

The integer numbers modulo a prime number p fall into three classes: 0, 1 ~ ( p -  1) 
l p  numbers that are squares modulo p (quadratic residues), and ~( - l) numbers 

that are not squares (quadratic non-residues). We will call these sets of numbers 
{0}, {1) and {n} respectively, and we will often refer to the numbers in the last 
two sets as "squares" and "non-squares" (note that 0 is not referred to as a square). 
A universal representative of the squares is 1. The non-squares, however, do not 
have a universal representative (for p = 2 they do not even exist). For example, 2 
is a square for p = 8m + 1 and p = 8m + 7, but it is a non-square for p = 8m + 3 
and p = 8m + 5. 

The product of two squares is a square, the product of two non-squares is a 
square, and the product of a square and a non-square is a non-square. Moreover, 
the product of the whole set of squares by a square (a non-square) yields the whole 
set of squares (non-squares). 

For  p = 4m + 1, - {1} = {1} (the set of negative squares coincide with the set 
of squares), while for p = 4m - l, - { 1} = {n}. This is a non-trivial result first proved 
by Fermat. Many other proofs have been found since. 
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Defining the "addition" of two sets, {a} * {b}, as the addition of all the elements 
of {a} with all the elements of {b}, one finds the following "addition" rules: 

(a) F o r p = 4 m + l  

{O}*{a} = {a}, for any set {a), 

{ 1 } * { 1 } = P ~ { o } + ~ 5  {1}+P4~I {n }, 

{ 1 } * { n } - - ~ P ~ { 1 } + P 4 1 { n  }, 

{,},{,} = +  2{1} + P@ 

(b) F o r p = 4 m - 1  

{0}* {a) = {a), for any set {a}, 

p + l  
{ 1 } * { 1 } = ~ 4 3 { 1 } +  4-{n},  

p + l  + ~ 3  {n},{n} {n). 

Appendix B. Simplification of Monodromy Matrices 

In this appendix we try to bring the monodromy matrix r in the simplest possible 
form by exploiting the freedom to choose the basic currents. We will only consider 
the case (Zp) k, with p prime. 

(A) p > 2. In this case r can be diagonalized by fairly standard methods. Start with 
the first row andcolumn. We have to distinguish two cases. 

(i) If r l l  r  we can remove any non-zero entry rl~(=rit) in the first row 
b I ~ . . . .  t ! (and column) by replacing J~ y ,/~ = J~Jl', obtaining the new matrix % = pga, (J~). 

/ �9 J . 

We can always choose ~ so that rlz = rl~ + ~irll = 0modp.  This transformation 
is obviously invertible. 
(ii) If r l ~ - - 0 m o d p  we begin by defining J'  1 = JxJ~-, where j is the first column 
with r~  # 0 mod p (if there is no such column the problem is already solved). Then 

/11 = 2~rlJ + ~ " 
If p > 2 this takes at least two different values, obtained by choosing c~ = 1 and 

= - 1. Hence there exists a choice for c~ so that r'l ~ ~ 0 mod p. Now we proceed 
as in case (i). 
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Obviously this process can be repeated for the other rows since the necessary 
transformations in dealing with the f h  row do not affect the zeroes on the previous 
rows. Thus we finally get a diagonal matrix r (we omit the primes from now on). 

We may be able to simplify the matrix further by replacing, for some i, Ji by 
(Ji)~. This transformation is invertible if 2 :~ 0 s o d  p. The effect of this transformation 
is to replace ru by 2Zru. 

For 2 =  1 . . . . .  p -  1,22 takes 1 ~ ( p -  1) different values modulo p. To see why, 
suppose 21 = (2') 2 s o d  p. Then (2 - 2')(2 + 2') = 0 s o d  p. Since p is prime the only 
solutions are 2 = 4' s o d  p and 2 = - 4' s o d  p. Thus the squares of the first x ~(p- 1) 
values of 2 all are different and they are repeated for the second �89 - 1)2-values. 

The non-zero values of r ,  (which are always even) can be written as two times 
a square or two times a non-square. In either case we can choose a value for 2 
such that 22ru is equal to two times a fixed representative of the class {1} or {n} 
(see Appendix A). Thus the matrix r is characterized by three numbers: the number 
of values 1 of Uu belonging to {0}, {1} and {n} respectively. (Note that this is the 
Zp-equivalent of reducing a metric over the real numbers to a diagonal matrix 
with diagonal elements 0, 1 or - 1.) 

There is still one further simplification possible: two non-squares can be changed 
simultaneously to two squares, or vice versa. Suppose we replace two basis currents 
J1 and J2 by J'~ = JtJ~2 and J2 = J1J~2, with c~ r fl so that this basis-transformation 
is invertible. To preserve diagonality we have to require 

r '12 = r l  1 -I- r 2 2 ~  fl  = 0 s o d  p. (B1) 

The new diagonal matrix elements are 

! 
r 1 1 = r 1 1 - t - r 2 2  ~ 2 ,  

! rzz = r l l  --k r2zfl 2. 

If �89 } and l r2 /e{1 } we may assume that both are equal to 1. There must 
exist an element e2 of {1} so that 1 + e2E{n}, since otherwise it would follow that 
all 1 g ( p -  1) squares are consecutive numbers, with the last one equal to p -  1 (if 
the largest number were l < p - i, l + 1 would be a non-square). However, this set 

1 , to be a non-square. would not include the number 1. Thus we can arrange 5r l t  
Then (B1) can always be satisfied for some value of fl, satisfying fie = - 1. Then 
(1 + ~2)(1 + flz) = (e _ fl)ZE{s}" Since by construction the first factor is not a square, 

1 t the second factor cannot be a square either. Hence grzz~{n }. 
There is only one remaining concern, and that is the condition c~ :~ ft. However, 

if e = f l  then c d = -  l m o d p ,  so that ~2+ 1 =0r in contradiction with the 
above. 

Hence we can convert any pair of squares into a pair of non-squares and vice- 
versa (by inverting this transformation). Thus the inequivalent matrices r are 
characterized by the number  no of diagonal elements equal to 0, the number  nl 
of diagonal elements equal to 2 (e2{1}), and a number n,, which is either zero or 
one, and which indicates the number of eigenvalues equal to some fixed representative 
2ns2{n}. By counting the number of currents of integer and fractional spin one 
can demonstrate that these matrices are indeed all inequivalent. 

The set of simple currents divides into type A and B in the following way: all 
currents that lie entirely within the subspace with eigenvalue zero of r are of type 
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A, and all others are of type B. Examples of RCFT's for any of the allowed mono- 
dromy matrices can easily be constructed by tensoring S U(p) K a c - M o o d y  algebras. 

(B) p = 2. The r-matrices for p = 2 have even integers defined modulo 4 on the 
diagonal, and off-diagonal elements equal to 0 or 1 (mod 2). 

It is easy to check explicitly that if J1 and J~ have r~ = 1, then no basis change 
within this system will remove this off-diagonal matrix element. Thus in general 
the r-matrix cannot be diagonalized. 

However, suppose there is a third current Jj with rl~ = r~ = 1. Then define 
J} = J jJ] J~. One finds 

r'lj= rl j  + flrli, 

r'ij = ri j  + ~rll. 

Thus by choosing fl = 1 and ~ = % we can decouple J) from the doublet Jr, Ji. 
Proceeding in this way, we can combine all currents into doublets, by pairing 

each current that has not been paired yet with the first current that is non-local 
with respect to it. Any other current can be transformed to a current that is local 
with respect to the doublet. Thus the matrix r block-diagonalizes into 2 x 2 blocks, 
plus some diagonal entries corresponding to currents that are local with respect 
to all other currents. One can furthermore derive a basis transformation between 
the matrices 

( 0  1 0 ) a n d  (01 ; ) .  

Thus any matrix is characterized by the multiplicities of the following 2 x 2 and 
1 x 1 blocks: 

n 0 A:(1 
n 2 

n l: (2) 

/~0: (0). 

Further simplifications are possible. First of all, one may use 

(J2 = J1J2) to reduce nl to zero or one. Secondly, one may use the equivalence 

2 0 ,,~ 1 0 

0 2 0 0 

(J'l = J1J3 and J~ = JzJ3) to reduce nB to zero if nl = 1. Finally, one can replace 
an even number of blocks of type B by the same number of blocks of type A using 
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the equivalence 

0 1 
1 0 
0 0 

0 0 

2 1 0 0 1  1 2 0 0 
0 0 2  1 

0 0 1 2 

a basis obtained with transformation J'l = J i J 3 ;  
J'4 = J1J2J3J4"  Thus nn can be reduced to zero or 

Thus the possible choices for the four numbers 
(no, 0, ha, 1) and (no, 1, hA, 0). 

0 0 , 

0 

1 

! r 
J2  = J z J 3 ;  J3  --- J1J2J4 a n d  

one. 
(no, nl, na, nB) are (no, 0, hA, 0), 

The type A currents are those that lie entirely within the subspace labelled by 
no and nl. All others are of type B. Explicit realizations for any of these monodromy 
matrices can be obtained for example by tensoring A ~ and D, Kac-Moody  algebras 
with various levels. 

Appendix C. Formulas for the Number of Currents of Given Spin 

Here we compute the quantities Ia(no, nl, n.), a = 0, 1, n and the analogous quantities 
for p = 2 .  

Let us start with p odd, and consider a general monodromy matrix 

r = diag(0 "~ 2"', (2n)""). 

For each current [Y] define 

?'ij g([~']) = - -ph([~ ' ] )= L- -~ /~ j ,  (e l )  
u 2 

where h([Y]) is the conformal weight of [~']. Observe that for any current [2Y] 
in the orbit of [Y], one has 9([2Y])= j,29([~']). Since 2 runs over all integers 
mod p, and the product by a square does not change the square or non-square 
character of a number, the values of 9(2[Y]) in an orbit will form either the set 
p{0} or the set {0} + 2{s}, or {0} + 2{n}. This implies that the complete set {G} 
of values of 9([Y]) for all simple currents can be divided into complete sets {0}, {1} 
and {n}. Therefore we can write 

{G} =Io(no, nl,n,){O} + I~(no, n~,n.){1} + I,(no,nl,n,){n},  (C2) 

where Ia(no, nl, n,) denote the multiplicity of the set {a) among the values ofg([Y]). 
These quantities can be computed using the following recursion method. 

Suppose that the matrix r is enlarged with the addition of one zero on the 
diagonal. The new set of values of 9([Y]) is obtained by "adding" to the previous 
set the new p sets {0), using the "*" operation defined in Appendix A. The result is 

plo(no, n~,n,)(O) + pI~(no, n~,n,){1} + pI,(no,n~,n.){n} (C3) 

so that one obtains the recursion relation 

Ia(no + 1, hi, %) = pI~(no, nl, n,), a = O, 1, n. (C4) 



Classification of Simple Current Modular Invariants for RCFT's 115 

Similarly, by enlarging r with one 2 (or 2n) on the diagonal,  the new set of 
values of  g ( [ ~ ' ] ) i s  obta ined by "adding"  '{0} + 2{1} (or {0) + 2{n}) to the previous 
set. In this way one gets straightforwardly the recursion relations for I,(no, nl + 1, n.) 
and I ,(no,  n l ,  n,  + 1), a = 0, 1, n. These relations are mos t  easily solvable when two 
a rguments  are set to zero, giving the results: 

(a) Fo r  n odd 

(b) Fo r  n even 

I0(0, n, O) = Io(0 , O, n) = pn-  1, 

11(0 , n, O) = I.(0,  O, n) = p " -  ~ + j (" -  D/2p(n- 1)/2, 

I .(0,  n, O) = 11 (0, O, n) = p" -  ~ -- j ( " -  1)/2 p ( , -  1)/2 

Io(0, n, O) = Io(0, O, n) = p" -  1 +jn /2p(n /2 ) -  l ( p  __ 1), 
11(0, n, O) = 11(0, O, n) = p " -  1 __jn/Zp(n/2)- 1, 

I .(0,  n, O) = I.(0,  O, n) = p " -  1 _ j . /Zp(./2)- 1, 

where j = + 1, cor responding  to p = 4m + j .  
To  obtain  I~(0, n 1, n.) one simply computes  

[Io(0, nl,  0){0} + 11(0, nl,  0){ 1} + I,(0, nl, 0){n}] 

* [Io(0, 0, n.) {0} + 11 (0, 0, n.) { 1 } + I.(0, 0, n.) {n} ]. 

Using the results (C5) and (C6) one obtains,  with e = ( - 1 ) " ' :  

(a) Fo r  N = nl + n, odd, 

Io(0, n l ,  n,) = pN-  1, 

11(0, nl ,  n,)  = pN-  1 _ j (N-  1)/2ep(N- 1)/2, 
In(O, n 1, n.) = pN-  1 + j (N-  1)/2ep(N- 1)/2 

(b) Fo r  N even, 

(c5) 

(C6) 

(C7) 

I0(0, n l ,  n,)  = pN-  1 + jN/2e( p _ 1)p(N/2)- I, 

11(0, nl  , n,) = pN-  1 _ jN/2 ~p(N/2)-  1, 

I , (0,  nl , nn) = pN-  1 __ jN/2 ep(N/2)- 1. (C8) 

Finally, applying the recursion relat ion for the first a rgument ,  Eq. (C4), one gets 

I , (n  o, n 1, n.)  = p"~ nl ,  n.), a = O, t, n. (C9) 

Fo r  p = 2 we have to repeat  these computa t ions .  There  are no subtleties wor th  
ment ioning,  and  we simply list the results. F o r  n 1 ~ 0 we get 

Io(no, nl, ha, nQ = Ia(no, ha, nA, nB)= 2 k- 1, 

where k = n o + n 1 + 2nA + 2nB. If  nl = 0 the answer  is slightly more  complicated,  

Io(no, O, na, n~) = 2"~ 1122("A +"") + ( -  1)"~2"A +"~'], 

I i (no ,  O, ha, nn) = 2 n~ 1 [22(hA +n,) __ ( __ 1),~,2,A +.~,]. 
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Appendix D. Fixed Points 

In this appendix we discuss a variety of problems that arise when simple currents 
with fixed points are present. We begin with a useful result that rules out fixed 
points in some cases. 

Theorem. Only type A currents can have f i xed  points. 

Proof. Suppose f is a fixed point of a simple current J, J f  = f .  Let K be any other 
simple current in the theory. Then K f  = 9, and Jg = J K f  = K J f  = K f  = 9, so 
that 9 is also a fixed point of J. The charge of a fixed-point field satisfies h( f )  = 
h ( J f )  = h ( f )  + h(J) - Qs(f) mod 1, so that Q j ( / )  = h(J) mod  1. Hence Q j ( f )  = 
QJ(9) = h(J) mod 1. This implies that Q s ( f )  = Q s ( K f )  = Qs(K) + Qs ( f )  mod 1, or 
QK(J) = 0 mod 1. 

Remarkably, for K a c - M o o d y  algebras the correspondence between type A 
currents and the presence of fixed points is in fact one-to-one: every type A current 
has fixed points. All simple currents of these theories have been classified in [20]. 
All their fixed points have been classified in [15]. By inspection, every type A 
simple current in these theories has a fixed point. It is not clear, however, whether 
this is a general property of type A currents in any conformal field theory. 

According to the theorem proved in Sect. 2, a current that is local with respect 
to any other current must appear in both the left and the right algebra (or in 
neither). Hence if b is a fixed point with respect to one or more currents in d R ,  
and if M,b ~ O, then a (which differs from b only by the action of some simple 
currents) is a fixed point with respect to the same currents in alL. 

The Mat r i x  U. Now we will give the precise definition of the matrix U mentioned 
in Sect. 2. Consider the complete set of simple current monodromy charges 2. For  
each set of integer spin simple currents d that closes under fusion we can define 
an equivalence relation among the elements ~" of ~:-~1 ~ q 2  if d ' q ' l  = d ' ~ 2  mod 1 
(as in Sect. 2 this means that this equality should hold for all currents in d . )  If 
d has a group structure (Zp) ~ there are pZ equivalence classes, characterized by a 

ql ql set of charges , . . . , - - ,  0 =< qi < P with respect to a current basis J1 , . . . ,  J~. In each 
P P 

of these classes we choose a set of representatives ~(d) .  
Now consider a chiral algebra d and field a. We can define an equivalence 

relation among the currents Ji in d in the following way: J~ ,-~ J 2  if J l a  = Jza. 
One can choose representatives of the resulting equivalence classes in such a way 
that they form a closed set d ,  under fusion. This can be done as follows. For  the 
identity class (whose elements satisfy Ja = a) one chooses the identity as a repre- 
sentative. If there are other equivalence classes, choose one of them, and choose 
an arbitrary representative J~. The orbit of this representative fixes the choice of 
representative (J1)" of the corresponding equivalence classes. Then choose an 
arbitrary representative J2 in one of the remaining classes (if any). In theories with 
a center (Zp) k the products (J1)n(J2) m, 0 ~ n, m < p are all different and fix a choice 
of representatives in the corresponding classes. One can continue this process until 
all representatives have been fixed. By construction the set of representatives closes 
under fusion. Obviously the choice of representatives is not unique. 
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For  each such set d a  there is a corresponding subset of charges ~(d,) .  This 
set of charges has precisely as many elements as there are distinct fields in the 
orbit of a. The matrix U is now defined as follows 

_ 1 n2a.i~, d ~ (D1) u ( ~ ' ,  [ a ' ] ) . b  - ~ o v.b,  
x / N .  

where [-f l iEd, ,  ~ e ~ ( d , ) ,  a and b label different d orbits, and N, is the number 
of fields in the d - o r b i t  of a. This matrix is essentially independent of the choices 
of class representatives. The choice of ~ is irrelevant since different choices yield 
by defnit ion the same phases in (D1) (up to integers), and any choice of the 
representatives of d ,  leads to isomorphic subgroups of the center, which produces 
the same set of charges, up to permutation. 

The characters Y" defined in (2.5) can be obtained by means of the "Fourier 
transformation" 

Nb 

b ~d 

By restricting to the subspace with ~ = 0 and to fields a that are local with respect 
to the algebra d one obtains the new characters (note that ~ should not be 
confused with the charge of the field a). 

Fixed-Point  Entries o f  M.  Now we will prove that the non-vanishing matrix 
elements of M must all have the same value on each orbit generated by the left 
and right algebras, even on fixed-point orbits. For fields that are not fixed points 
it was shown in Sect. 2 that M,b can only be zero or one. The argument was based 
on the observation that for any field a with d L ' Q ( a ) =  0 the sum ~ M , b  must be 

b 
equal to the number of currents N in the algebra, whereas on the other hand the 
number of non-zero entries on the a th row must also be equal to the number of 
currents because of the closure condition. 

This argument does not hold if b is a fixed point of one of the currents of the 
right algebra. In that case the sum over the corresponding row and column must 
still be equal to N, but the number of entries that is required to be non-zero is 
smaller (and equal to a divisor of N). This leaves two possibilities open which we 
would like to rule out. First of all a row (or a column) of N could contain entries 
related by a simple current outside the right (or left) algebra. For  example, suppose 
one has a theory with a center Z z x Z 2 and integer spin currents J1 and J2- 
Suppose J1 has two fixed points a and b connected by J2: J1 a = a, Jab = b, J2 a = b, 
J2 b = a. If we extend the algebra with J1, the "standard" form of M on the subspace 

of the fields a and b is (~  02). However, the rules derived in Sect. 2 would also 

allow the solution (11 1)  on this subspace. 
1 

The second possibility we wish to rule out is that N is distributed unevenly 
over the entries of M for fields that are fixed points of only a subset of the currents 
in the algebra. In the foregoing example, suppose we extend the algebra by both 
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J~ and J2. The standard form of M on the same subspace is now ( 2  2 22), but 

the arguments of Sect. 2 would also allow ( 31 ~ ) o r ( 1 3  31)" 

We will first show that the sum ~ M,b must be distributed within the right 
algebra, i.e. b 

Theorem. I f  a is a fixed point w.r.t, one or more currents in alL, with Mab ~ 0 and 
Ma,Kb V 6 0 for some simple current K, then K ~ d  R. 

Proof. According to the regularity condition formulated in the introduction, for 
any charge Q there exists a field c that is not a fixed point of any integer spin 
current. Thus in particular there exists such a field for all charges Q(c) satisfying 
dR'Q(c) = 0, i.e. all charges of representations of d R. Since c is not a fixed point, 
the corresponding column of M is given by the results of Sect. 2. Now we may 
use (2.1) to get 

L Ma,[7]a eerie" ~.(c) = Z e2~iV" O'(a)M[7]c,c 
[~] [7] 

= e2~i7o .~(a) 2 M[7o+V~]c,e 

= eE~iVo �9 O.(a)NL" (D2) 

Here 70 is an overall shift of the orbit corresponding to a possible fusion rule 
automorphism. We see thus that the absolute value of the left-hand side of (D2) must 
be equal to N L. This is only possible if all terms in the sum on the right-hand side 
of (D2) add coherently, since we know that ~ Mab = NL, and any relative phases 

b 
can only lower the absolute value of the sum. Thus all phases must be the same, 
and hence Yl.Q(c)= Y2"Q(c) mod 1 if Ma,LT,la 5 0  and Ma,r~21 a ~ O. Hence the 
current [Yl - Y 2 ]  is local with respect to all fields in the right-moving sector, and 
therefore it belongs to dR. 

Note that we only have equations like (D2) if S,c r 0. The regularity condition 
guarantees that we get sufficiently many equations to constrain Yl - Y2. It implies 
that there exist fields c with S,c ~ 0, except when a is a fixed point w.r.t, some 
current, and c has a charge with respect to that current. If a is a fixed point of 
some current J, the charges of the fields c with Sot r 0 cannot span the entire set 
of allowed charges, and hence the difference cq -c~ 2 is not restricted to lie within 
dR. However, it can move outside of dR only by multiples of currents J that fix 
a, which is clearly irrelevant. 

Finally we prove: 

Theorem. Suppose d R has N R = N L simple currents, and generates an orbit of N a 
different fields when actin9 on some field a. Then the non-vanishing matrix elements 

Ng 
Mab must be equal to - - .  

Na 

Proof. According to the previous theorem, the non-vanishing matrix elements Mab 
occur only for b's of the form b = [~o + ~']a, with [Y] ~ ' g ,  where ~o is some fixed 
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vector that depends on a. The complete set of conditions on the matrix elements is 
N a  

~Vt ,,2~,~o + ~).~(c) eZ~i%.O.~.)N (D3) 
~ '~  a , [ ~ ' o  + ~ ' l a  ~ = L '  

if ~r = 0 (this condition follows from (D2)), and 
Na 

m .  tT0 + ~-1. e z~i(~'~ + ~') ~(c) = 0, (D4) 
[ ~ ' ] e J n  

if dR'Q(c):~ 0 and S.c 4: 0. The upper limit N. on the sums indicates that one 
should only sum over the distinct fields generated by ~r i.e. the action of currents 
for which a is a fixed point must be omitted. Earlier in this appendix, in the 
description of the matrix U, we have shown that one can choose the N. currents 
[el  in such a way that they form a set ~4R,. that closes under fusion, Since Y'Q(c) = 0 
in condition (D3), the overall phases must be the same: ~ 'o 'Q(c)=~o'Q(a)mod 1. 

The two conditions (D3) and (D4) can now be combined as follows 

~, Ma,[u e2niy'O-(c)-~ NL(~(~CR'-Q(C)), for all c with S~ ~0 ,  (D5) 

where 6(da.Q(e) )= 1 if the argument vanishes for all currents in dR,  and equal 
to zero otherwise. 

This yields an equation for the N a unknown quantities M.,E~o+~1 a for each 
value of Q(c) for which one can find a field with S.~ :~ 0. Obviously not all these 
equations are independent. The maximal set of independent ones is precisely 
characterized by the N a charges in the set ~(~r The regularity condition 
guarantees that there exists at least one equation for each such charge. Hence we 
may write (D5) as 

M.,tTo+~-1..,fN.U(~,Y).. = Nr6(dR'-~), ~e~(dR, . ) ,  (D6) 

using one block of the matrix U defined above. Note that 6 (dR '~)  = 1 if ~' = 0 
and vanishes otherwise. On the left-hand side M is transformed by a unitary 
N. • N. matrix, and hence the equations have a unique solution: 

NL (D7) Ma't~~ N." 

The Reyularity Condition. Here we would like to identify some theories that satisfy 
the regularity condition described in the introduction. There is a large class of 
theories where this condition is automatically satisfied, namely all theories that do 
not have currents of type A. Type B currents cannot have fixed points, and 
furthermore they have charges with respect to themselves and/or each other. The 
analysis of the monodromy matrices in Appendix B shows that these currents, J, 
provide a complete set of charges. Furthermore their matrix elements Sjo with a 
field a are always equal, up to a phase, to So., which never vanishes. Hence the 
type B currents themselves can play the r61e of the fields referred to in the regularity 
condition. 

A second important fact is that the regularity condition is not affected by 
tensoring or by extending the chiral algebra by integer spin simple currents. The 
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former is obvious, and the latter is true because after extension of the algebra all 
fields of a given charge are either projected out, or absorbed into representations 
of the extended algebra, between which S has the same matrix elements up to 
normalization. Furthermore fields that were not fixed points of any current before 
extension cannot become fixed points after extension of the algebra. An immediate 
consequence is that the regularity condition holds for coset theories if it holds for 
the Kac -Moody  algebras used in the construction of these coset theories: coset 
theories with field identifications can be thought of, for purposes related to modular 
invariance and the fusion algebra, as tensor products with an extension of the 
algebra. 4 

Hence a very large set of theories is automatically included if we verify the 
regularity condition for K a c - M o o d y  algebras (of course only those with type A 
currents have to be examined). It is straightforward to verify whether for any 
charge there is a field that is not a fixed point, but analyzing the matrix elements 
of S is harder. By inspection, we found that it holds for all K a c - M o o d y  algebras 
of sufficiently low rank and level, except B, level 1 and D2, level 2. The number 
of fields that satisfy the regularity condition grows rapidly with the rank and the 
level, so that it is unlikely that any pathologies have been overlooked. 

The theories that do not satisfy the regularity condition do indeed display 
some irregular behavior. First of all one finds that some invariants expected to 
be distinct are in fact identical. More importantly, some of these theories have 
additional invariants not included in our classification (however, these invariants 
are unlikely to correspond to meaningful conformal field theories). 

This shows that the regularity condition cannot be dropped altogether. 
However, it can certainly be weakened without affecting the results. For  example, 
it is not necessary that all matrix elements of S mentioned in it are non-zero. It 
is sufficient that for every complete set of charges there exists a set of fields q~o 
which are not fixed points, and with the property that the series q~o c ~1 ~ "'" 
c 0~ i c ... converges to the complete set of fields. Here ~ is defined recursively: 
q~+ 1 consists of all fields in q~, plus all fields b that are linked by non-vanishing 
matrix elements of S to a complete set of charges in ~0~ (if b is a fixed point of 
some currents, it has to be linked to the maximally allowed subspace of the charges). 
The regularity condition corresponds to the much stronger requirement that 
already ~ is equal to the complete set of fields. Obviously also with the weaker 
condition the action of the currents on the fields in q~o determine the action on 
the rest of the theory completely. Although we have not encountered situations 
where the weaker condition is satisfied, and the stronger one is not, it might be 
useful to keep it in mind. The requirement that for every charge there should be 
a field that is not a fixed point can presumably be weakened as well, but attempts 
in that direction tend to lead to very complicated conditions. 
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4 Here we only consider simple currents that originate from those of the KM-algebra. In rare 
cases there may be extra simple currents coming from resolved fixed points, which require a 
separate discussion 
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