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Abstract. A general approach is adopted to the construction of integrable hierar- 
chies of partial differential equations. A series of hierarchies associated to untwisted 
Kac-Moody algebras, and conjugacy classes of the Weyl group of the underlying 
finite Lie algebra, is obtained. The generalized KdV hierarchies of V.G. Drinfel'd 
and V.V. Sokolov are obtained as the special case for the Coxeter element. Various 
examples of the general formalism are treated in some detail; including the fractional 
KdV hierarchies. 

1. Introduction 

It is only comparatively recently that some degree of mastery of non-linear equations 
has been achieved, and in this regard it is the notion of integrability that has 
proved one of the most useful concepts. Prior to the discovery of the Korteweg 
de Vries (KdV) and Nonlinear Schr6dinger (NLS) equations, there were very few 
known integrable systems, examples being the harmonic oscillator and rigid body 
motion. (There was also the exactly solvable Ising model of Statistical Mechanics, 
the only such system with an infinite number of degrees of freedom.) In the 1960's 
the KdV equation was shown to have an infinite number of conservation laws 
and in fact to be integrable (see [1] for a nice discussion of the history of these and 
subsequent developments). The existence of solitons solutions of the KdV equation, 
which is a hallmark of integrable systems, is the result of an apparently delicate 
interplay between dispersion on the one hand and nonlinearity on the other - the 
latter causing a steepening of the wave-front. Despite the seemingly delicate nature 
of the interplay required, the KdV equation finds a wide application in physics. Five 
years after the efforts required to demonstrate the integrability of this equation, 
Zakharov and Shabat found the Lax pair formulation of the NLS equation, and 
shortly thereafter the sine-Gordon equation was similarly treated (these equations 
too are widespread). Subsequent to the successful treatment of the above three 
equation, all sorts of generalizations were obtained [1]. 
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In the work of Drinfel'd and Sokolov [2] many disparate threads were pulled 
together in an elegant manner�9 What they did was to proceed roughly along the 
following lines. If the following definition is made 

k-1 d 
L = O k -k E uiDi,  D a --= Vi Di, (1.1) 

i=O ~ dxx~ i=O 

then the scalar Lax equation is given by 

dL 
- -  = [ A ,  L ] ,  (1 .2 )  
dt 

where if the u~ are given, the vi are determined by requiring that the evolution 
equation is a consistent equation�9 A matrix Lax pair formulation of the above can 
be given without much difficulty, by choosing 

0 
�9 �9 - , 

L = ~ x + q + A = ~ x +  0 ... 0 + (1.3) 

U 1 " "  U n Z 

with z a spectral parameter, in which case (1.2) becomes the matrix Lax equation: 

aL [~, L], 
dt 

where the differential operator A, of order m, becomes a matrix A of the form A = 

z'~i. However, it was by no means clear to how to generalize this construction. 
i = O  

One could for example consider a more general q, allowing it to be a lower 
triangular matrix, but then the matrix A whose commutator with L would give 
the evolution equation of the hierarchy at a certain order, is not uniquely defined. 
However, introducing the following notion of gauge-equivalence 

L-, L'= NLN-' 

with N a lower-triangular matrix with l's on the diagonal, this indeterminacy in 
can be circumvented (in a manner which will be explained) and effectively the 

situation is that considered initially in Eqs. (l.1) and (1.2). The benefit, though, of 
proceeding in this manner is that whereas the q in Eq. (1.3) has no group-theoretic 
interpretation, the lower-triangular q can be considered elements of the Borel sub- 
algebra, while the N can be considered an exponentiated subalgebra. This inter- 
pretation allows a natural generalization, and so in fact KdV type equations can 
be defined for arbitrary Kac-Moody algebras (the actual construction required the 
principal and homogeneous gradations which we shall come to). Similar results 
were obtained in [3], though the association here was made between mKdV equa- 
tions and untwisted affine Lie algebras. In this same work a suggestion was made 
concerning the proper setting in which these developments were to be viewed and 
it was this suggestion that provided the impetus for the present work. 

Apart from the intrinsic interest of the generalizations considered here, they 
being in some cases new integrable systems and in others familiar systems with a 
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novel interpretation, there are other motivations connected with the attempt to 
understand quantum gravity in two dimensions. In the one-matrix model it was 
shown that the partition function can be written as the square-root of the z-function, 
subject to an extra constraint, namely the strin9 equation, and hence the specific 
heat can be considered as a potential u = u(x, tl,t 2 . . . .  ) which satisfies the KdV 
hierarchy of equations [4]. More general matrix-models are similarly connected 
with the SL(N)-KdV hierarchies of [2]. On the other hand it has recently been 

3k 
shown that twisted N = 2 super-conformal models of the minimal e - - -  series, 

(k + 2) 
if coupled to topological gravity, give correlation functions which obey relations 
similar to those encountered in k + 1-matrix models (the minimal models are 

SU(k + 1) SU(2) 
obtained by considering cosets at level one, and so describes 

SU(k) x U(1) C(1) 
the one-matrix model which in turn corresponds to pure gravity). It is desirable 
to understand this connexion better and in addition to consider what happens 
when we replace the above cosets by the non-minimal N = 2 coset models of [5] 
based on Hermitian symmetric spaces G/H, where G is simply laced and has K ac -  
Moody level equal to one. What, for example, are the matrix models to which 
this corresponds? 

Another motivation concerns the generalized W-algebras and the fractional 
KdV hierarchies. In [6] Polyakov demonstrated a relationship between Ws-algebras 
and a constrained SL(N) current algebra. A similar structure emerges in the 
Drinfel 'd-Sokolov picture, where the classical commutation relations of the WN- 
algebra constitute one of the two Hamiltonian structures of the SL(N)-KdV 
hierarchies. In [7] generalizations of the above W-algebras were introduced, namely 
W~-algebras, where I runs from 1 to N -  1 and the W~-algebra is the standard 
Ws-algebra. In [15] fractional KdV hierarchies were introduced, where these now 
bear the same relation to the W~-algebras as the earlier SL(N)-KdV equations 
bear to the WN-algebras. 

An outline of the paper is as follows. We restrict our attention to the untwisted 
algebras, which have a nice realization in terms of an underlying finite Lie algebra 
g. We introduce the notion of a gradation of a K a c - M o o d y  algebra, that is to 
say a decomposition of the algebra 0 = @Oi such that [Oi, O~] =Oi+j. We then 

i 

discuss the classification of maximally commuting subalgebras with central extens- 
ion of the given K a c - M o o d y  algebra, which are known as Heisenberg subalgebras. 
An important element of this classification will be the Weyl group of the finite 
Lie algebra 9, generated by reflection in the hyperplanes normal to the vectors of 
the root-system and which is a normal subgroup of the group Aut(q)0) , the auto- 
morphism group of the root system ofg. We then proceed to show how generalized 
hierarchies can be defined and discuss various examples, including the fractional 
KdV hierarchy mentioned above. Finally we present our conclusions. 

2. Kac-Moody Algebras 

In this section some of the formalism of K a c - M o o d y  algebras will be introduced, 
but only the bare minimum necessary to understand the construction in the following 
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sections. A thorough review of the theory may be found in the excellent book by 
Kac [8]. The section is organized as follows. First of all, we introduce the untwisted 
Kac-Moody  algebras as central extensions of loop algebras. The algebra is 
naturally equipped with a Z-gradation, conventionally known as the homogeneous 
gradation. We then use a theorem of Kac to classify all the Z-gradations of the 
algebra. Of special importance, from our point of view, are the subset of these 
gradations induced by elements of the Weyl group of the underlying finite Lie 
algebra. In these gradations there exist Heisenberg subalgebras whose elements 
have well defined grade. In fact, this leads to the crucial result that the inequivalent 
Heisenberg subalgebras, up to conjugation, are in one-to-one correspondence with 
conjugacy classes of the Weyl group. We point out that there is a natural notion 
of partial ordering on the space of Z-gradations. A few trivial lemmas are also 
proved, which play an important r61e in later sections. 

2.1. Untwisted Kac-Moody Algebras and Gradations. We will restrict our discussion 
to the untwisted Kac-Moody  algebras, (g~l) in the notation of Kac), which can 
be realized as central extensions of the loop algebra of a finite Lie algebra g: 

O =(g |  d. 

If we write a typical element of 0 as a, =-(a| where aeg and neZ, then the 
algebra may be written as 

[a,,br,] = [a, b],+~ + (a,b)c6,+,,,o , 
[d, a.] = na,, 

[d, d] = [c, d] = [c, c] = [c, a.] = 0, 

where (a, b) is the Killing form of the finite Lie algebra g and [a, b] is the Lie-bracket 
in g. c is the central element of 0, and d is the derivation which naturally induces 
a Z-gradation of 0: 

i~Z 

where [d, 0i] = i0i. This distinguished Z-gradation is known as the homogeneous 
gradation. 

At this time we point out the existence of a natural Heisenberg subalgebra of 
0. Introducing the triangular decomposition of the finite Lie algebra g = n_ 03 h ~) n +, 
allows us to define the homogeneous Heisenberg subalgebra as the algebra spanned 
by the elements {h | z n, c}: 

[an, bin] = (a,b)c6,+,.,o a,b~h. 

This is a maximal commuting subalgebra of 0, with central extension. Clearly, a 
different choice of h in g will give an equivalent Heisenberg subalgebra, up to 
conjugation. One of the main purposes of Sect. 2.2 is to find all the inequivalent 
Heisenberg subalgebras of 0. 

The classification of Z-gradations of 0 turns out to be equivalent to the problem 
of classifying all finite order inner automorphisms of g. 

Theorem 2.1. (Kac [8, 9]). Classification of all finite order inner automorphisms of 
9. Let g be a (simple) Lie algebra of rankr, and s = (So, Sl,S2 .... ,st) be a sequence 
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of non-negative relatively prime integers. Set 

N = ~ kisi, 
i = 0  

where k i are the Kac labels (that specify the decomposition of the highest root 0 of 

g in terms of the simple roots, that is 0--  - ~ ki~ i and k o = 1). We then define the 
i=l 

finite order inner automorphism a of g, in some Cartan-Weyl  basis, by a: g ~ g such 
that 

h~-~H, E~--~e2~i~'~E~, (2.1) 

where,5 1 ~ ( 2 ~  = -  _5 sic~ and o~ i are the fundamental weights (these are the duals 
N i=l \o~i / 

of the co-roots ~ '  = 2a~/~2). Such automorphisms exhaust the finite order inner 
automorphisms of g up to con]ugacy. 

An inner automorphism of g can be used to define a new Z-gradation of 9 in 
the following way. Under a, g has an eigenspace decomposition 

g = @ g , ( a ) ,  
i 

where a:gk~-~ea~k/Ng k and N is the order of a. Consider the centrally extended 
loop algebra 

where the element a |  i+"N, for aegi(a), of 0~ has grade i+  nN with respect to 
the derivation d'. 

Theorem 2.2. The algebra O~ is isomorphic to ~ with a new derivation d~. 

Proof. Theorem 2.1 implies that there exists a Cartan-Weyl basis for g such that 
the inner automorphism acts as in (2.1). In this case 

go(a) = h u  {E~[a'6 = 0}, 

gi(a)={E~[a 'b=i /N} i#O,  

In order to exhibit the isomorphism we have to find a new derivation d~, of 0 such 
that 

[d~,a,] = (i + nN)a, Vaegi(a). 

The required expression is d~ = N(d + 6.H), where 6 is the vector of Theorem 2.1, 
and the isomorphism is, in this basis, (a|  z")eO ~-(a | for aegi(a). 

So we are led, following Kac [8,9], to define the gradation of type s. 

Definition 2.1. A Z-gradation of  type s of ~ is defined in terms of a sequence of 
r + 1 non-negative relatively prime integers s = (s o, s~,. . . ,  s,), by a derivation 

ds=(NdJf-~(~i)si(J)i'O ) 1 
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Under d~: 

0 = QO,(s), 
i~z 

where [ds, 0i(s)] = i0i(s). 

The homogeneous gradation is given by s = (1, 0, 0 . . . . . .  0), in which case 6 = 0. 
Another gradation of note is the principle gradation for which si = IV/. 

The si's are canonically associated to the nodes of the Dynkin diagram of 0 
(the extended Dynkin diagram of g). There is a simple algorithm for determining 
the horizontal subalgebra, 0o(S), in a gradation of type s. It is simply the algebra 
whose Dynkin diagram is found by removing nodes from the Dynkin diagram of 
0 corresponding to non-zero si, and adding enough abelian factors to preserve the 
rank. So for the homogeneous gradation the horizontal algebra is g, whilst for the 
principle gradation it is the abelian algebra h. 

Remark. Two gradations s and s' are equivalent, up to trivial isomorphism, if there 
exists some symmetry of the Dynkin diagram of 0 that takes s ~ s'. 

We will use the terminology "minimal gradation" to describe a gradation for 
which, for some k, sk = 1 and s i = 0Vj # k. Clearly the number of "minimal grada- 
tions" is equal to r + 1, the number of nodes of the Dynkin diagram of 0; however, 
in view of the above remark not all such gradations are inequivalent if there exists 
some symmetry of the diagram. For example, the A(, 1) Dynkin diagram has a cyclic 
symmetry under which all nodes are equivalent, and so there is only one inequivalent 

(1) "minimal gradation" of A n . 

2.2. Heisenberg Subalgebras and the W e f t  Group. In this subsection we shall show 
how to classify all inequivalent Heisenberg subalgebras of 0. A Heisenberg sub- 
algebra of 0 is a maximal nilpotent subalgebra (with central extension). The precise 
definition may be found in [10]. 

We have already established a connexion between inner automorphisms of g 
and Z-gradations of 0. There exists a certain gradation which is naturally associated 
to each Heisenberg subalgebra of 0, in the sense that elements of that Heisenberg 
subalgebra belong to the eigenspace of the derivation defining the gradation. 

To this end, we are led to consider inner automorphisms of g which fix a 
Caftan subalgebra h'. Such automorphisms have the following action on the algebra 
~: g ~ g (with ~: h'-~ h'), so that in some Cartan-Weyl basis 

H't---*p(H'), E' ~-~k,E'p~,). 

To avoid confusion later, we have used a prime to denote this Cartan-Weyl basis 
in order to distinguish it from the basis in (2.1). In the above p is an automorphism 
of the root system q)o of g, and/~ = (p, ~b) is its lift into the algebra g. The auto- 
morphism group of q~o, Aut(q~o) is a semi-direct product of the Weyl group of 
g, W0, and the group of symmetries of the Dynkin diagram. We now restrict our 
attention to the Weyl group, the normal subgroup of Aut(q~o); the diagram sym- 
metries led to outer automorphisms of g and we shall not discuss them further. 
So for every element we W o we have an inner automorphism of g given by W: g--. g 
such that 

H%-*w(H'), p '  ~-.,I, t;' (2.2) 



Generalized Hierarchies 63 

Notice that an element of the Weyl group acts naturally on the Cartan subalgebra. 
The phases ~b, generate a projective representation of the root system with a factor 
set determined by the structure constants of g: 

- ip~+p, ~ p _ ~ =  1. 
Nw(,),w(#) 

The lift k is actually unique up to trivial automorphisms. The important point 
to notice about these inner automorphisms is that they fix the Caftan subalgebra 
of g, and it is because of this that they lead to classification of Heisenberg sub- 
algebras of 9. 

T h e o r e m  2.3 (Kac and Peterson [10]). The lift ~ has order N equal to n or 2n, 
where n is the order o f  w. When w has no unit eigenvalues then N = n. 

Remark. For  the simply-laced algebras there is a rather simple way to determine 
whether the order of ~ is twice that of w, or not. It was shown in [12] that it is 
possible to find a basis for the phases such that the element (~)" acting on a step 
generator is 

(~)"E~(-)~~E~, 

where c7 = ~ wP(~). It follows that ~ has order n or 2n depending on whether 
p = l  

a '~2ZV~Eq~  0, or not. (Notice that if w has no unit eigenvalues, then ~ = 0 W ~ b  0 
and so N = n as claimed.) 

Under ~, g has the following eigenspace decomposition 

g = O g i ,  
i 

where W(gk) = e2~ik/N(gk). In particular, the Cartan suhalgebra h' has an eigenspace 
decomposition ( ~  h'i, where IEw] is a set of r = rank(g) integers, such that the 

i~I[w] 

eigenvalues of w are exp(2~ik/N),  for k~I  [to]. This set of numbers will be important 
in the following section and so we repeat its definition. 

Def in i t ion  2.2. 

I[w] = {k~Z]0 < k < N, Eigenvalues of w a r e  e2niklN}.  

Since ~ is an inner automorphism of g there exists some different Car tan-  
Weyl basis (the unprimed basis) in which it acts as in (2.1). So for each element 
of the Weyl group there exists a unique, up to conjugation, inner automorphism 
of the form (2.1), and hence a Z-gradation of 0- We will denote the gradation 
corresponding to we W 9 as s[w]. The gradation is unique (up to diagram symmetries) 
for conjugate elements of the Weyl group. Finding the gradation s[w] for a given 
conjugacy class of the Weyl group is not a straightforward task. Algorithms were 
suggested in [12], where they were used to find the gradations corresponding the 
112 conjugacy classes of the Weyl group of E a. (These results have been extended 
to other algebras in [13].) 

The conjugacy classes of the Weyl group of all simple Lie algebras are given 
in a uniform way by Carter E11]. For  each conjugacy class he gives a corresponding 
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diagram, rather like a Dynkin diagram. Each node of the diagram corresponds 
to a root, not necessarily simple, whilst the number of lines joining two nodes 
equals 4 cos 2 O, where 6) is the angle between the two roots. This gives two sorts 
of diagrams, some of which look exactly like Dynkin diagrams as well as a few 
exceptional diagrams that require their own notation. The element in the Weyl 
group represented by a given diagram is found by dividing the nodes into two 
sets J1 and J2 each containing mutually orthogonal roots and then performing 
Weyl reflections in all the roots in one set followed by Weyl reflections in each of 
the roots in the other. So if Ra represents the Weyl reflection in the root/~ then 

where the actual ordering in each set is irrelevant because in each set the roots 
are orthogonal. In particular, for the Coxeter element wc of W o, the Carter diagram 
is the Dynkin diagram of g. For the A, algebras the Weyl group is isomorphic to 
the symmetric group on n + 1 objects, S,+ 1, and representatives of the conjugacy 
classes are found from the Carter diagrams which are simply the Dynkin diagrams 
for the subalgebras 

P 

A G A . 2 G . . . O A , p  suchthat ~ , ( n i + l ) = n + l ,  
i=1 

where Ao is taken to mean the empty set. 
The important property of the gradations s[w], induced from conjugacy classes 

of the Weyl group, is that each of them has an associated Heisenberg subalgebra 
which is inequivalent, up to conjugacy, and moreover, these Heisenberg subalgebras 
completely exhaust the set of inequivalent Heisenberg subalgebras of 0. 

Definition 2.3. The Heisenber 9 subalgebra off[w] of O, corresponding to the 
representative w of a conjugacy class of the Weyl group, is, in the basis for which 
v~ acts as in (2.2), simply the elements of 0 whose restriction to g lies in the Cartan 
subalgebra h'. 

The important point is that elements of off[w] are homogeneous with respect 
to the gradation dsN. That is, off[w] has an eigenspace decomposition in s[w]- 
gradation: 

offEw] = OoffiEw],  
ieZ 

where off j[w] = (25 if j(~l[w] rood N. 

Remark. In the case when c = 0, off[w] is a maximal commutative subalgebra of 0. 

2.3. Partial Ordering of Gradations. In the construction which follows, it is important 
to be able to define a notion of partial ordering on the set of gradations. At this 
point we introduce some convenient notation. 

0 > i(s) = (~  Ok(S), (2.3) 
k>i  

and similarly for 0 < i(s), 0 _< i(s) and 0 _>_ i(s). 
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Proposition 2.1. There exists a partial ordering on the set of 9radations {s} of 0 
such that s ~ s '  if si ~ 0 whenever s' i ~ 0. 

For what follows we shall need the following lemmas relating to two gradations 
such that s' _~ s. 

Lemma 2.1. For s' _~ s: 

Lemma 2.2. For s' ~ s: 

Lemma 2.3. For s' _~ s: 

^ r C ^ g o ( s  ) - go(s) .  

~j(s) ~ ~0>o(S' ) j > 0  
/.0<o(S') j < 0. 

~0 >o(S) j > 0  
0j(s')= (0~o(S) j<0. 

The proof of the lemmas is trivial. Lemma 2.1 follows because when s' ~ s the 
Dynkin diagram of 0o(S') is a sub-diagram of the Dynkin diagram of go(S), by the 
removal of nodes. Lemma 2.2 follows because if ~.6 s > 0, or <0, respectively, 
where 6s is the vector of Theorem 2.1 associated to s, then this implies c~-6~, > 0, 
or <0, respectively. While Lemma 2.3 follows because if c~.6~, >0 ,  or <0, res- 
pectively, then this only implies ct. 6~ > 0, or < 0, respectively. 

3. Generalized Hierarchies 

In this section we define a series of hierarchies of equations based on an untwisted 
Kac-Moody  algebra with zero centre. The rather abstract construction will be 
made more concrete in the following section, where the usual Drinfel's-Sokolov 
hierarchies will be recovered as special cases. The method of defining the hierarchies 
and exhibiting the flows is just a generalization of the Drinfel'd-Sokolov matrix 
Lax representation approach [2], which itself extended earlier work [14-]. As stated 
before, our approach is closely related to that of Wilson [3], in fact that reference 
contains the germ of idea that allows us to generalize the Drinfel'd-Sokolov 
hierarchies: that is, to consider more general automorphisms of the underlying Lie 
algebra. It will be clear that most of our arguments are direct generalizations of 
those of [2]. Throughout the rest of the paper we are considering ~ to have zero 
centre c = 0. 

3.1. Type I Hierarchies. We begin by defining a differential operator L, associated 
to the data (A,w,s), in the space C~(R,0), where 0 is an untwisted Kac-Moody  
algebra: 

L =  c3~ + q + A. 

In the above we require: 

(1). A to be a constant regular element of ~ i [ w ]  with i > 0 in the gradation s[w] 
ofO. w is some element of Wg, and conjugate elements of Wg will lead to isomorphic 
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hierarchies. By constant we mean ~xA = 0, and by regular we mean that Ker(ad A) = 
3(#[w] (i.e. in its restriction to g, Ker(ad A 1o) is a Cartan subalgebra). This will not 
be the case if A lies in a wall, that is a hyperplane perpendicular to some root. 
In such a case [A, E~] = 0, for the particular root ~, and so the Ker(ad Aho) would 
be larger than h. We shall refer to the hierarchies which satisfy this constraint as 
type-I hierarchies. For  type-II hierarchies A is no longer regular, however, one 
can still construct an infinite hierarchy of integrable equations. We shall, for the 
moment, concentrate on type-I hierarchies, we shall discuss type-II hierarchies 
briefly in Sect. 3.3. 

(2). The potential q e C ~(R, Q), where Q is defined to be the following subspace of 0: 

Q = 0 > o(S) C~O <i(s[w]), 

using the notation of (2.3). It is convenient to define 

Q(J) = 0 >= o (s) a 0 < j(s [w] ), (3.1) 

and so Q =-Q(0. In the above, s is some other gradation of 0 such that s__Ms[w]. 

P r o p o s i t i o n  3.1. There exist an infinite number of commuting flows of the form 

OL 
- -  = [A(b) ,  L] ,  (3.2) 
~tb 

where b is a constant element of • + [ w ] ,  the subspace of 9f[w]  with positive 
s[w]-grade, and A(b)~C~176 O) will be defined below. 

The fact that the flows commute means that it makes sense to define q as a 
function of all the flows: q(x,..., t b .... ). (Following the philosophy of [2] we shall 
treat the tb'S in the calculations below as parameters and temporally "forget" that 
the potentials A(b) and q depend on them.) 

The elucidation of Proposition 3.1 will require a couple of lemmas which we 
now establish. 

p p '  
t oo ^ Definition3.1. Given some M =  ~ mj= ~ ms, where mjeC (R, gj(s)) and 

j = - o o  j : - o o  

m'fiC~176 Oj(s[w])) are the expansion coefficients in the two gradations, we shall 
p p '  

! ! ! 
define M+ = ~ mj, M_ = M - M + , M +  = ~ mj and M ;  = M - M + .  

j=o j=o 

Lemma 3.1. I f  [M,L] = O, where M has the form of Definition 3.1, then 

[M+, LJ e C~(R, Q), 

and 

(3.3) 

[M'+, L] e C ~176 Q). (3.4) 

Proof. The proof proceeds by equating the grades on the left- and right-hand sides 
of the equalities [ M + , L ]  = - - [ M _ , L ]  and [M'+,L] = - [M'_,L]. At worst, the 
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grades of the various terms are: 

67 

L 
M+ 
M _  
M '  
M ,+ 

s s[w] 

O t o  oo - - o o t o i  
O to  oo - -oo to oo 
- o o  to - 1  - o o  to - 1  
0 to oo 0 to oo 
--oo to 0 --oo to --1 

where use was made of Lemmas 2.1, 2.2, and 2.3, which apply because s [ w] ~ s .  
So, for example, - [M_,  L] has s-grade in the range ( -  oo to oo) and s[w]-grade 
in the range ( -  oe to i -  1), whilst [M+,L]  has s-grade in the range (0 to oo) and 
s[w]-grade in the range ( -  oo to oo). Since these two expressions must have the 
same grade, the actual grade of both expressions lies in the intersection, which 
proves (3.3). Similarly one proves (3.4). 

Definition 3.2. There exists a formal action of the Kac-Moody group (~ on L, 
which we call a gauge transformation. The action is defined by the exponentiated 
adjoint action: 

L o = exp(ad T)(L), T~C~(R,O), 

where the exponentiated adjoint action is defined by its power series expansion, i.e. 

1 1 
exp(ad(T))(a) = a + IT, a] + ~ [T, [T, a]] + ~ IT, IT, [T, a ] ] ]  + - . . .  

Proposition 3.2. There exists a (non-unique) gauge transformation of the form given 
above, where T~C~(R,g<o(s[w])), such that L o has the form 

Lo = Ox + A + ~ Hi, (3.5) 
j< i  

where H ~C~(R,  o~j[w]). 

Proof. Essentially one equates terms of the same s[w]-grade in the expression .L o = 
exp(ad(T))(L), to get a recursion relation of the form 

Hj + [a ,  Tj_ ~] = , ,  (3.6) 

where Tj is the component of T of srw]-grade j, and * denotes terms of grade j 
which depend on Hk, for k >j, Tk, for k > j - i ,  and q. The proof proceeds by 
induction. The first equation of the series states that 

H,_ a + [a, T_ 1] = q,-1, (3.7) 

where q~_ 1 is the component ofq of s[w]-grade i - 1. We now appeal to the fact that 
A is a regular element. This implies that 0 has the decomposition 0 = Ker(ad A) 
Im(ad A), where Ker(ad A)= o'/g[w]. Hence, we can solve (3.7) uniquely for H,_ a, 
and for T_ 1, up to an element of Ker(ad A). We can fix the freedom in the Tjs 
by demanding that T~EIm(adA). The same decomposition means that we can 
solve (3.6) iteratively. 
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Proof of Proposition 3.1. We have to find A's such that the right-hand side of (3.2) 
is in C~ Q). By Lemma 3.1 if we can find M such that [M, L-I = 0, then suitable 
expressions for A are M+ or M'+. Using the fact that exp(adT)[M,L]= 
[exp(ad T)M, Lo], where T was found in Proposition 3.2, we can find M's which 
commute with L by using the fact that Lo consists of a derivative and terms in 
~ [ w ] .  So we get the two sets of flows 

0L 
- [ ( e x p ( -  ad T)(b)) +, L], (3.8) 

& 

0L 
- -  = [ ( e x p ( -  ad T)(b))+, L]. (3.9) 
0t' 

for a constant element b e ~ +  [w]. 

Now we introduce the concept of a gauge symmetry of the system of equations. 
If s ~ s[w] them the form of L is preserved under certain gauge transformations. 
In this case one can define a reduced set of flows which preserve some consistent 
slice of the orbits of the symmetry. 

Proposition 3.3. The form of L is preserved under certain gauge transformations. In 
fact the most general such gauge transformation, E = exp(ad S)(L), has S~COO(R, P), 
where 

P = 9o (s) n 0 < o (s [w] ). (3.10) 

Under this action: 

q~--*exp(ad S)(O~ + q + A) - ~ - A. 

Proof. Consider an infinitesimal gauge transformation. Under such a transformation 

6q = - OrS + [S, q + A]. 

Requiring that 6qECoo(R, Q) implies that S has to have s[w]-grade < 0 and s-grade 
>0 ,  and so SeCOO(R,P). 

Furthermore, exp(ad S) acts freely owing to the fact that the map ad A: P ~ Q 
is injective. (This follows because it is easily shown that P contains no elements 
in Ker(ad A).) It is therefore possible to fix the gauge freedom by choosing some 
consistent gauge slice of C~(R, Q)/Coo(R, P), say C~176 4). The dimension of 4 is 
easy to calculate 

dim(Q) = dim(Q) - dim(P) 

= dim( O ~o(S)n(i@~oOJ(s[w]) ) ) 

i - ~  ])) 
= dim(j__@o0J(s[w , 

by Lemma 2.3. Notice that the dimension of 4 is independent of the gradation s. 
We can now write consistent flows for the gauge fixed operator L, by choosing 

qeC~( R, 4). However, if we do this then there is no guarantee that (3.8) and (3.9) 
will preserve the gauge slice chosen. To compensate for this it will be necessary 
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to modify (3.8) and (3.9) by infinitesimal gauge transformations: 

- -  = [ (exp(-  ad T)(b))+ + 0, ~,], (3.11) 
Ot 

t - -  = [ exp( -  ad T)(b))'+ + 0 ,L], (3.12) 
dt' 

for some O,O'eC~ 

Proposition 3.4. (3.11) and (3.12) lead to identical equations for ~1. 

Proof. Consider M an element of g- M+ - M ' +  clearly has s[w]-grade less than 
zero, by Lemmas 2.1 and 2.3, and moreover by Lemma 2.2 it has s-grade equal 
to zero. Hence, M + - M ' + s P .  Applying this result, we see that the difference 
(exp(-  ad T)(b))+ - (exp(-  ad T)(b))'+ is an element of C~(R, P), but neither (3.11) 
nor (3.12) evolves L out of the gauge slice Q, therefore neither can their difference. 
This implies that 

(exp(-  ad T)(b))+ - (exp(-  ad T)(b))'+ + 0 - O' = O, 

and therefore the difference of the right-hand sides of (3.11) and (3.12) is identically 
zero, and so t -  t'. 

Definition 3.3. I f  we introduce a basis ~,, a = 1 . . . . .  dim(Q ) for C~ Q), and a basis 
for W+[w] consisting of Aj,n~3ff j+nn[w], with j d [ w ]  and n~Z >=0, then we call 
the hierarchy of flows of (3.11) (or (3.12)) with b = Aj,,, which can be written in 
the form 

~3~a _ f~,n,(~b, 2 a~b,a,r b . . . .  ) j e I [w] ,  n e Z > O ,  
~ t j,n 

the (A,s[w],s)-hierarchy, with a particular choice of gauge, associated to O. The 
hierarchies corresponding to conjugate elements of Wg are isomorphic. 

In the following couple of propositions we establish that the flows defined by 
(3.2) commute. We also find the conserved densities of the hierarchy, and show 
that some components ofq are constant under all the flows and may be consistently 
set to zero. 

Proposition 3.5. The quantities H j , j ~ I m o d N Z  < i, of (3.5) are the conserved 
densities for the hierarchy. 

Proof. Since 0 is a loop algebra we shall consider a particular faithful matrix 
representation of g. Recall that there exists a gauge transformation T such that 
Lo = exp(ad(T))(L), has the form: 

L o = 0 ~ + A + ~ H j ,  
j< i  

where Hj~C~(R, Wj[w]). Now that we have a definite matrix representation in 
mind, the gauge transformations may then be written as L o = ~ L ~ - 1 ,  where 
is a matrix with an expansion of the form 4~ = I + ~ ~j, where q~ has s[w]-grade 

j<O 

j. The q~fs are polynomials of the Tfs of Proposition 3.2. Each flow of the hierarchy 
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can be written in the form 

where for each flow 
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[ 8 , -  A, Lo] = 0, (3.13) 

= (8t@)@-1 + @ A @ - I  (3.14) 

It  is easy to see that  (3.13) requires the componen t  Aj~C~ ~'~j[w]), and so (3.13) 
has the form of a conservat ion equat ion 

8~H~ + 8xAj = 0. 

Proposition 3.6. The finite set of H j' s with i > j > 0 are constant along all the flows 
(recall that i is defined by the fact that A e W i [ w ] ) ,  i.e. for any flow 

8tH3 = 0 i>j>=O. 

Proof. Consider  (3.14) and the fact that  the explicit expression for A is 

A = (@ - lb@)'+ + 0'. 

This can be rewritten as 

A = @ - lb@ - (@ - lb@') _ + 0', 

and so 

,4 = (at@)@ -1 + b - @((@ - l b @ ) '  - 0')@ - 1  

The only term in the above with s [w]-grade  > 0 is b, which is a constant  element 
of Yf+ [w], and therefore 8xA j = 0Vj > 0. 

This result means that  some components  of  q can be eliminated, since they are 
constant  under the flows. For  example, (3.7) implies that 

Hi - 1 = qi- 1 c~ C~(R, J r [ w ]  ), 

and so by Proposi t ion  3.6 we can consistently set 

q~-i c~ C~176 9if[w]) = 0. (3.15) 

Indeed one can show directly that  8,q~_ a = [A, T_ 1]. 

Proposition 3.7. The flows defined by (3.2) commute for different elements b and 
b'eJcf + [w]. 

Proof. It  will be sufficient for us to show that  the flows on L before gauge fixing 
commute.  The condit ion that  the flows commute:  

[ --~ • l L = 0  (3.16) 
St' & ' J  ' 

will be satisfied if 

8,A(b') + - 8,,A(b) + + [A(b') +, A(b) + ] = 0, (3.17) 

where A(b) = @ -  lb@. In  Propos i t ion3 .5  we showed that  A, defined in Eq. (3.14), 
is an element of 3tf[w], and so [8 t - A(b), b'] = 0, since b' is a constant  element of 
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~ [ w ] ,  and similarly [c~ , -  A(b'), b] = 0. By conjugating these with �9 we deduce 

OtA(b') = [A(b)+, A(b')], O'tA(b ) = [A(b')+, A(b)], 

and so 0tA(b')+ = [A(b)+, A (b')] +, and similarly for 0r, A(b)+. Substituting into the 
left-hand side of (3.17), we find 

[A(b')+, A(b)] + - [A(b)+, A(b')] + + [A(b)+, A(b')+ ]. 

But [A(b')+,A(b)]+ = [A(b),A(b')_]+ = [A(b)+,A(b')_]+ and so (3.16) is zero. 

Proposition 3.8. The (gauge-fixed)flows (3.11) (or (3.12)) have the form 

aL 
- [ A j , . ,  L3,  

0t j,. 

where A j,. = A j,. + q j,., A j,. is the same as in definition 3.3 and q j,. ~ C~176 (R, Q(.N + j)), 
where Q(k) was defined in (3.1). 

Proof. A j,. has the form 

Aj,. = (exp - ad T(Aj,.))+ + 0 
t = (exp - ad T(Aj,.))  + + 0'. 

By considering the grades of the two expressions, one deduces that A~,. has 
s[w]-grade < j  + nN and s-grade __> 0. But the component  of A j,. with s]-w]-grade 
equal to j + nN is A j,. and therefore the rest of A j,., that is q j,., has grades lying 
in the intersection 0 > o(S) c~ 0 < j +,~(s [w]). 

As a consequence of Proposition 3.8 we see that the hierarchy has a rather 
uniform description. If we define 

Lj,, = Ot~,,- q j , , -  At," jEI[w] ,  n ~ Z  > O, 

where the original L-operator  is L = -- Lk,m, with x = - tk,m, q = qk,,, and A = Ak,,,, 
for some fixed k and m, such that k + m N  = i, the grade of A. In the above, 
A j , , s ~ j + , N [ w ]  and constant, and the potential qj,,~C~176 Qti+,m). The equations 
of the hierarchy, after suitable gauge fixing, lead to the zero-curvature conditions 

ILk, m, Lj,,] = 0. (3.18) 

3.2. Generalized Miura Maps. We now consider the spectrum of hierarchies for 
fixed w and Asd r  + [w]. The spectrum results from varying the gradation s __< s[w]. 
For s = s[w], where by "equals" we mean as vectors, then it is apparent from (3.10) 
that there is no gauge invariance and so we have a generalization of the Drinfel 'd-  
Sokolov modified-KdV hierarchies. On the contrary, when s is as "small" as it can 
be, i.e. a "minimal gradation," the gauge invariance is maximal, then we have a 
generalization of the Drinfel 'd-Sokolov KdV hierarchies. Choosing a gradation s 
between these two extremes leads to what we will call a partially modified KdV 
hierarchy (pmKdV). We will show that there exist generalized Miura maps 
connecting some of these hierarchies in the spectrum. 

Proposition 3.9. For the hierarchies of  f ixed w and A, the two hierarchies defined 
by L 1 and L 2 corresponding to gradations sl and sz, respectively, with s[w] ~ Sl >" s2, 
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are related by the fact that La can be obtained by appropriately restricting the 
potential of L2. 

( 

Proof. First of all Q1 c Q2- This follows from Lemmas 2.1 and 2.3, which apply 
because sl >-s2. Let us denote the complement X:Q2 = Q 1 0 X .  It follows from 
Lemmas 2.1 and 2.3 that 

x = 0 o ( S 2 ) ~ 0 < o ( S l ) .  

We now restrict L2 by imposing q 2 n C ~ ( R , X ) =  0, and.so L2---->L a. 
Proposition 3.9 allows us to introduce the concept of a generalized Miura 

transform. If we have a solution of the (A, w, s0-hierarchy, then we can translate 
this into a solution of any (A, w, s2)-hierarchy by a suitable gauge transformation, 
where sl >-s2. 

3.3. Type II  Hierarchies. Type II hierarchies are defined by the fact that A, the 
constant element of ~ +  [w], is not regular. As has already been pointed out, this 
will occur if, in the basis of (2.2), where A =/~ 'H'  for some #,# lies in some walls 
{W~} (these are the hyperplanes orthogonal to a given a t  ~0)" If this does occur 
then Ker(ad A) is now larger than ~,~[w]. 

It is rather obvious how to modify the construction of the type I hierarchies 
to that of type II hierarchies. Following the same steps, the conserved densities 
H i in (3.5) are now elements of Ker(ad A), and a set of commuting flows can be 
constructed of the form (3.2), but now b is constrained to lie in the centre of 
Ker(ad A), a point discussed in ref. [31. 

4. Examples 

In this section, a number of examples of the preceding formalism will be developed. 
Our examples will be restricted to type I hierarchies. 

4.1. The Drienfel'd-Sokolov Hierarchies. The hierarchies defined in ref. [2] can 
be recovered from a (A, w, s)-hierarchy by choosing w to be Coxeter element Wc 
of Wg, and A to be the (unique) element of 0x(s[wc]). The Coxeter element of 
Wg was discussed in Sect. 2.2. Recall that l[wc] = {Exponents of g} and the order 
of w~ is the Coxeter number h of g. For  this element of Wo the lift ~ also has 
order h, because Wc has no unit eigenvalues. The gradation associated to we is the 
principle gradation for which s[wc] = (1, 1 . . . . .  1). For  this choice of gradation the 
whole of ~r is regular, and so the hierarchies are of type I, in this case 
0 = Ker(ad A ) � 9  Im(ad A). In order to make contact with [2] we shall write down 
the expression for the L-operator in the basis in which the Coxeter automorphism 
is the adjoint action of an element of the Cartan subalgebra. This is the basis of 
(2.1). 01 is spanned by the r + 1 elements ei, i =  0 . . . . .  r, where 

ei = E,,, e o = zE_'o, 

where the ~ are the sample roots of g and ~o is the extended root. The spectrum 
of the Heisenberg algebra is 

~[w3 = @ ~[Wc]. 
j ~ I [ w c ]  rood hZ  
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The unique element of the Heisenberg algebra in 01 [wc] is 

A = ~, el. (4.1) 
i=O 

For fixed, g we have a spectrum of hierarchies by varying the gradation s ~ s[wc]. 
The usual generalized mKdV hierarchy is recovered choosing s = s[wc], in which 
case 

L = S x + q + A ,  

where A is (4.1) and q~ C~~ g0(s[wc]) - h). The usual generalized KdV hierarchy 
is recovered by choosing s to be a "minimal gradation," i.e. Sk = 1 and s t = 0Vj # k, 
for some k. So there is a KdV hierarchy for each node of the extended Dynkin 
diagram, up to symmetries of the diagram. In this case qEC~ Q) where 

(2 = 0o(S) ~ 0 ~ o(sl-w~]). 

The gauge freedom corresponds to C~ where 

P = Oo(S)C~O~o(S[Wj). 

Using the Drinfel'd Sokolov formalism one can construct the flows tj.., labelled 
by j~ I[w~]  ==- {Exponents} and n~Z > 0. R e f e r e n c e  [ 2 ]  d i s c u s s e s  a rather natural 
way to gauge fix the KdV hierarchies�9 For  an arbitrary, "non-minimal gradation" 
s ~ s[wc], the hierarchies are partially modified. 

For  the g = A. hierarchies, which include the usual mKdV and KdV hierarchies 
when n = 1, we can write down the L-operator explicitly in the n + 1-dimensional 
representation�9 In this representation, E - =  el+ li, (the matrix with a 1 in the ith 
row and i +  1 th column, and zeros elsewhere), and so 

/i 0 il �9 � 9 1 4 9  1 � 9 1 4 9 1 4 9  

A ~  � 9 1 4 9 1 4 9  � 9  �9 

0 

The Heisenberg subalgebra is spanned by elements which can be written in block 
form as 

ALm=Zm ( 0 |n+l j \  - )~ufj+,,,h[w~], j = 1 , 2  . . . . .  n, m ~ Z ,  (4�9 
\ z l j  0 

where Ii is the i • i unit matrix. The mKdV L-operator is 

v i l l  L = c~ x + v2 (4�9 
" .  + 1 ' 

Vn+ 1 Z 
n+l 

where vj = 0. The usual choice of gauge fixing leads to an L-operator for the 
j=l  
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generalized A,-KdV of the form 

O .�9 

L = 0 x +  0 .,. 

U 1 . . .  

Solutions of (4.3) and (4.4) are 
map{v,}~-~{u,}. 

4.2. Fractional KdV-Hierarchies. 

0 0 

+ 
0 0 

u. 0 

connected 

1 "-. 

1 

z 

by the usual 

(4.4) 

generalized Miura 

Recently, a new series of integrable hierarchies 
has been proposed [15], called the fractional KdV hierarchies (FKdV). Their 
structure evolved from a generalization of W-algebra proposed in [7]�9 (These 
algebras are related to the Hamiltonian structure of the hierarchies�9 The idea is 
to generalize the Drinfel'd-Sokolov construction, for the case g = An, to L-operators 
of the form 

L = ~ + q + Ai,o, 

where Ai,o is given in (4�9149 From our point of view this is nothing but the (A, we, s)- 
hierarchy, where in contrast to the usual case A is chosen to be the unique element 
of the Heisenberg algebra in Oi[wc], where 1 < i <  n. In fact, one could consider 
more general situations in which A was any of the elements in (4�9 with m > 0. 
Such a generalization is possible even for the standard SL(2)-KdV hierarchy, a 
direction which will be pursued elsewhere. 

For  the case of A z the proposed form of L is [7, 15] 

L = ~ x +  G § - ~ U  + z 0 , (4�9 

T G-  flU 0 z 

where 7 and/3 are arbitrary constant numbers, and U, G +- and T are the potentials�9 

Proposition 4.1. From the point of view of our general construction (4�9 is nothing 
but a possible gauge fixing of the hierarchy corresponding to (A2, o, we, s = (1, 0, 0)), 
for A 2. 

Proof. The proof amounts to showing that (4.5) is a consistent gauge choice. The 
set Q is in this example 

Q=hw{E_~,_~2, E-,,,E-~2, E,,,E,~,zE-,,-,~}, 

whilst P, the gauge freedom, is 

P={E-~,-~2, E-,,,E-~2}. 

Therefore, we can write the (unifixed) potential as 

Yl c 0 

q =  e Y2 d 

a+ bz f Y3 

The gauge transformations which preserve the form of q can be written 

q~r -1 + r A)~ - l - A ,  
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where 

(1 oi) �9 = A 1 . 

B C 

Notice that the gauge freedom is exactly the same as for the Az-Drinfel 'd-Sokolov 
hierarchy, which is a general feature in the sense that the subspace P only depends 
on s[w] and s, and not on the choice of A~Jg+ [w]. The proof proceeds by showing 
that there exists a gauge transformation which brings q into the form 

~ =  G + - ~ U  +q~ 0 0 . (4.6) 

T G -  f lU z 0 

It is not difficult to construct the required gauge transformation, one finds that 

A = �89 + c - 2d), 

C = �89 - b - d), 

B =  - 2 3 - d C -  fl-(Ac -.[- y2 - dC - CA),  
o~ 

and (a = (b + c + d)/3. Having established the form (4.6), we now appeal to 
Proposition 3.6, (and the discussion following it), which states that the time 
evolution of the component of q in ~ i -  1 [w] is zero. In our case, i = 2 and 01 (s[wc]) 
is spanned by { E , , , E , 2 , z E _ , , _ , 2  }, and there is an element of this vector space 
which is in ~ - l [ w ] :  it is precisely Al,o, the matrix multiplying ~b in (4.6). The 
proposition implies that we can consistently impose ~b = 0, and hence recover the 
L-operator defined in (4.5). 

We now construct the first flow of the hierarchy: 

~L 
- [A1, o, L].  (4.7) 

~tl,o 

Proposition 3.8 implies that A1, o has the general form 

A1, o = s a 2 1 , 

z + v  t a 3 

3 

for functions s, t and a~, with ~ a~ = 0. One can then solve the recursion relations 
i=1 

that follow from (4.7) to obtain 

A1, 0 

0 1 

- (~ + f l ) u  o 

z + ( 1 - f l c z ) G - + f i G  ( - - 2 ~ +  f l)U 

0 

1 

0 
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and the equat ions of the flow 

Ot,,o G+ = (c~ + fl)U' - (~ + fl)(Ze - fl)U 2 + T, 

c~,,,oG- = (2c~ - fl)U' + (7 + fl)(2cx - fl)U = - T, 

t?,,,o U = _ _I(G- _ G+), 

(4.8) 

where pr ime denotes 8 z. To  compare  with ref. [15] set ~ - 2fl = 1 and put  x ~ - x. 
Not ice  that  the first flow can be writ ten as 

8Ll,o _ [g/+ A2,o ' Ll ,o] ,  (4.9) 

where Lz o = Ot, o - A. It  is apparen t  that  (4.9) is nothing but  the second flow of 
, , . . v  . . . . .  

the A2 Drlnfel d - S o k o l o v  K d V  hierarchy, with the identifications x -~  --t2,o and 
tl,o ~ - -x .  In fact, if we choose fl + ~ - - 0  then L1,0 becomes 

( 0 0 0)(010  
Ll,o=t?r l ,  o -  0 0 0 - 0 0 1 . (4.10) 

2 G - - G  + - 3 ~ U  0 z 0 0 

This is precisely the convent ional  form of gauge-fixed L-opera to r  for the 
A2-Dr in fe l ' d -Soko lov  hierarchy. This leads us to propose  the following: 

Proposition 4.2. Any solution of  a (Ai, ., w, s)-hierarchy gives a solution of  a (A j,,,, w, s)- 
hierarchy, where Ai,n~,~rt~i+nN[W], Aj,rn~t~ (We are assuming that both 
hierarchies are of  type I.) 

Proof. The first hierarchy is defined by the zero curvature  equat ions [L~,,, Lk,p] = 
0, where L~,, = - - L  and the Lj,m are defined in (3.18). However ,  the equat ions of 
the hierarchy also implied the more  general s ta tement  that  ILk,p, Lz,q] = 0. A similar 
picture emerges for the second hierarchy. The  impor tan t  point  to notice is that  
for bo th  hierarchies the potentials  qk,p~C~(R, Qk+PN). Fur thermore ,  bo th  the 
hierarchies have the same gauge invariance. Having  a solution of a hierarchy 
implies that  we know q~,p = qk,p(t,q). Clearly, a solution of the first hierarchy is 
also a solut ion of the second hierarchy, and vice-versa. So the space of solutions 
of hierarchies can be m a p p e d  to each other. 

Let  us illustrate how this works  for the fractional K d V  hierarchy that  we are 
considering. Let us take ct + fl = 0 and so the first flow has the form (4.10). If  we 
have a solut ion of the K d V  hierarchy, that  is u~(x, t2,o, tLz , tz ,~ , t l ,3 , . . . )  and 
Uz(X, t2,o, t1,1, t2,1, t l ,3, . . . )  then a solution of the fractional KdV hierarchy is given 
relabelling x ~ - tLo and t2,o ~ - x and the following relations, where for clarity 
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we have indicated the dependence only on the relevant variables: 

1 
u ( h , o ,  x) = - ~ u 2 ( -  h ,o ,  - x), 

G+(tl,0, x) = u l ( -  tl,0, - x) - 20,1,oU2(- tl, o, - x), 

6 - ( t l , 0 ,  X) = U l ( - -  t l , 0 ,  -- X) -- lOt,,obl2(-- t l , 0 ,  - -  X), 

T( t l , 0 ,  x ) = O t  l o u l ( - t l  O , - X )  - 2  2 , g 0 t , , o U 2 ( - -  t l , 0 ,  - -  X). 

Conversely, if we have a solution of the fractional KdV hierarchy, that is G+, U 
and T as functions of (t 1,o, x, t 1,1, t2,1, t 1,3,--.), then a solution of the KdV hierarchy 
is obtained by relabelling x--* - t 2 , o  and tl,o + - x  and 

ul(x, t2,o) = 2 G - ( -  x, - t2,o) - G+( - x, - t2,o), 

U2(X , t2 ,o)  = - -  3 0 ~ U ( - -  x ,  - -  t2 ,o) .  

Proposition 4.3. I f  we call these two maps between the two solution spaces 
~ 1 :  KdV ~ FKdV and Y2: FKdV ~ KdV, then ~1  ~  and ~ 2  ~  are both the 
identity. 

The proof of this is straightforward, and uses the equations of the first flow 
(4.8). In summary, the following picture has emerged. For any choice of w and s 
one can define a sequence of hierarchies by choosing for A each (regular) element 
of the Heisenberg subalgebra ~ +  [w]. Each of these hierarchies has the same 
gauge invariance and after gauge fixing the solution spaces of each hierarchy are 
isomorphic. The only difference between the hierarchies is in the identification of 
the defining variable x; in this sense there is a complete democracy between the 
flows. One might expect, therefore, that these hierarchies will lead to different 
Hamiltonian structures as claimed in [15] for A 2. 

4.3. Homogeneous Hierarchies. In this section we consider hierarchies for which 
w = 1, the identity element of W o. So in this case s[1] is the homogeneous gradation. 
For these hierarchies there is only an analogue of the mKdV hierarchy, since there 
is no lower gradation in the partial ordering. The simplest such type I hierarchy has 

L = O x + q +  A, 

where A = z#.H, for some #. In order that the hierarchy be of type ! we require 
that # ' H  be regular, and so c~.# #0Vee4~g, the root system of g. Following the 
general construction of Sect. 3.1 qsC~(R,g). In components 

q = f . H +  ~ q~E~, 
ets q~ g 

for functions f and q~. Using the arguments following Proposition 3.6 we see that 
f is constant along the flows, and so we set it to zero. 

The Heisenberg algebra ~ff[1] is spanned by the elements z"v.H, and so at 
each level there is a vector space, of dimension r, of elements of ~ [ 1 ] .  Therefore, 
at each level we can define a vector space of flows. For  example the flows with 
n = 1 are given by 

0L 
- [a o + zv'H, L], 

0tv,1 
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which gives the following equation for ao: 

and the flow 

Solving (4.11) we find 

[v'H,q] + [ao,lt 'H ] = 0, 

- O.a o + [ a o , q ] .  

_ / v . ~ \  "E 
ao= ~ I - - ] q  ~, 

(4.11) 

and so the first vector space of flows is 

v. + E ~+~=~( ) N~'~q~q~ , 

where Np,~, for fl + 7sq~ o, are the structure constants of g. 
The second vector space of flows is 

( ~  ~2 q~ _ _  N ~,,~?~( q~q,) 
Otv,2 

E 2 ~ ( p ~ )  2'~ ,t ,1 p+~=,(#.fl) N~,y(~?~qt~)q ~ 

, '  ) 
+ ~ Np,~N~,,~,q~'q~'q ~ . 

~+~=~ (~'3)(~'fl') /~'+~'=/~ 

When g = A1, the construction above is the non-linear Schr6dinger hierarchy, 
associated to the L operator 

0 1 

So it is natural to view the homogeneous hierarchies as generalization of the non- 
linear Schr6dinger hierarchy. We have only considered the case where A is regular, 
i.e. type I hierarchies. In general there are many other possibilities [16]. 

4.4. Hierarchy Associated to w = R,,  in A2. The Weyl group of A 2 has three 
conjugacy classes corresponding to the following Carter diagrams: A2, correspond- 
ing to the Coxeter element, A1, corresponding to the conjugacy class {R,,, R,2, 
R~I R,2R,~ }, and ~ ,  corresponding to the identity. We have already dealt with the 
hierarchies that can be constructed from the Coxeter element, which leads to the 
conventional generalized KdV and its fractional generalizations, and the identity 
element, which leads to the "homogeneous hierarchy" of Sect. 4.3. In this section 
we consider the hierarchies associated to the third conjugacy class. 

We take w = R,~ R~R~, as the representative of the conjugacy class this corres- 
ponds to the Weyl reflection in the root eo = - c q  - a 2 ,  under which: 

~IF--~ - -  0~2 

~2 b''~ - - ~ 1 "  
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Obviously, w has order 2, W 2 =  1. The lift ff:A2--~A 2 such that 

H'w-~w(H'), E'F--~E'(~), 
has the property 

~2(E') = ( - -  1 ~'~E' ~ = ~ + w(~), 

so the order doubles and become 4 ( f f E ( E '  1,2 ) = - E'~I.2 ). The result follows because 
A 2 is simply-laced (see the remark following Theorem 2.3). 

Since ff is an inner automorphism of A 2 ,  w e  may realize it in the "shifted 
picture" of (2.1). In this basis, 

v~:H~-+H, E~l---~eZ~i~'~E~, 

where the shift vector, in this case, is 6 = 1 ~(col + c02) ((si) = (2, 1, 1)). In this basis, 
A 2 decomposes into the following eigenspaces under ~, (~9i :  

i 

9o= {H1,H2}; g1= {E~,,E,2}; gz={E,,+~2} 

g _ l =  g-2 = 

which defines a new gradation of the loop algebra/]2 given by the derivation d~t~l, 
of Definition 2.1: 

[dsN, a | z"] = (i + 4n)(a | z"), a~gl. 

The Heisenberg subalgebra, 24e[w], corresponding to this element of the Weyl 
group is 

~ [ w ]  = O ( ( c q  - ~2).H | G ((E~, +,~ | 1 + E_s, _ ~ | 1 7 4  
n~Z m~Z 

Q G 
neZ meZ 

Obviously, we can write 

~ [ w ]  = @ (hi|  
j~l[w] 

neZ 

where for this element of the Weyl group I[w] = {0,2}, and 

ho = (~i - c~2)'H = - 2  
0 (00 ) 

h 2 = E ~ , + ~ | 1 7 4  0 0 , 

z 0 

in the three-dimensional representation of A 2. 
Let us now construct the gene~lized hierarchies associated to w. We define 

the operator L in the space C~(R, A2) 

L = O x + A + q ,  

A is a constant "regular" element of ~ +  [w], and so the hierarchy is of type I. 
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We shall take A = h a, which is obviously regular. Given some other gradation 
of ,42, s __< s[w], the potential q is an element of the following space: 

q e C ~ ( R , Q ) ,  Q = O>=o(S)C~O<i(s[w]). 

Such a operator is invariant under gauge transformations L' = exp(ad S)(L), with 

SeC~176 P = O>=o(S)nO<o(S[W]). 

If we choose s to be the homogeneous gradation, then the hierarchy has maximal 
gauge invariance, and 

q =  �9 , S =  0 . 

Conversely, if we choose s to be the same as s[w], then the hierarchy has no gauge 
freedom at all and the potential is 

q = qo + ql = 0 - - 2 R  (-) q(2) , 

0 0 --u (+) + u (-) 

where u (+-) parametrize qo, and q(1,2) parametrize qx. Let us work out this (gauge 
fixed) case, which leads to a generalized modified hierarchy. 

Following the steps of  Sect. 3.1, first we have to "diagonalize" L 

exp(ad T)(L) = Lo = Ox + h2 + ~ H -  2i. 
j=o 

Proposition 3.6 implies that the HiE C~(R, ~4~j[wJ) will be the conserved densities 
of this hierarchy. In the matrix representation we are using, 

L o = @ L q ~ - l ,  O = 1 +  ~ •_j, 
/=1 

and we obtain a series of recursion relations 

[ A , ~ - I ] + H I = q l ,  

[A, qg_z]+Ho=qo+~ l q 1  - -  H I ~ - I ,  

j + l  

[ A , ~ _ j _ 2 J + H _ j = ~ _ j q o + ~ - j - l q l - q g ' _ j  - ~ H k - j ~ - k ,  j = l  . . . .  , ~ ,  
k = l  

from which the HSs and the 4)_fs, up to pieces in Ker(adA),  can be obtained. 
Given that ~(s l-w])  lives in a subspace of 0 of even grade, the first equation implies 
that ql Mm(ad A), which is already the case. Solving for the first few terms 

(I)_ 1 = q(t) E-~z -- q(2)E-~, 

~ - 2  = �89 u (+ ) -  �89 

H o = (u (-) + l~(1).~(2)~h ~ /  ~/ } O, 
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where 

q)- 3 = [ - -OxqO)+ (�89 ( + ) -  3u (-) - -3  qm q(2))q(1)]E~l | z -1 

+ [ _  Oxq(2) + (u(+) + 3u (-) + qO)q(2))q(2)]E~2| 1, 

19 (~(1)~(2)~ (3xU(+) _ u(+)q(1)q(2) + 3u(-)q(t)q(2) q~ ,,=�88 + g  ~Lt Cl j - -  
+ (qmq(2))2] (h + | z -  1), 

H - 2  = [ - -  ka(2)cq2 "/ ~x~/n(l"l "~ L ( u ( + ) ) 2 - - h q ( t ) q ( 2 ) u ( - ) - - l ( q O ) q ( 2 ) ) 2 ] h 2 @ z - l , 2  2 

(i~ (i h + =  0 , i f =  0 0 . 

0 1 0 0 

Once @ has been obtained, the flows are found from (3.8), 

OL 
_ _  = [ ( ~ -  l b ~ ) + ,  L ] ,  
Oti,, 

for each b G J t a i + 4 n [ w ] ,  with i = 0, 2 and i + 4n > 0. The first one, (2, 0), corresponds 
to b = h=eJt~ 

0U( + ) 
- -  _ OxU( + ), 

0 t 2 , o  

Ou (-) 1 
-- Ox(q(1)q(2)), 

&2 o 2 

60q (1) - -  Oxq(~)_g(u( - )+~q(1)q(2) )q(1) ,  

c~t2,o 

(3q (2) _ O : , q ( 2 ) + a ( u ( - ) + ~ q ( 1 ) q ( 2 ) ) q ( 2 ) .  

8t2,o 

This flow implies that the conserved density H0 is, in fact, a constant, 

(3Ho = (?(u (-) 1 (1) (2) 
+~q  q )=0 .  

0t2,o  ~t2,o 

Notice that this is just a consequence of Proposition 3.6. So we can put Ho = 0, 
which reduces by one the number of independent potentials (degrees of freedom) 
and then the flow simply identifies x and t2,o: 

~ u  ( + ) Ou ( - ) 

- -  O x u ( + ) ,  _ _  = _ O x u ( - ) ,  

&2,o c~t2,o 
Oq(1) Oq(2) 
_ _  ~_ __ O x q ( i ) ,  - -  = - -  (3xq(2)" 
Otz,o " &2.o 

Of course, one is redundant. 
The second flow, (0,1), corresponds to b = h o @ z e ~ f ~  . H o is also constant 
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under this flow. 

0u (+) 3 

Oto.1 2 

Ou ~ - ) 3 

Oto.1 2 
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t~ x(t~x(q(1) q (2)) -- 2ut + ) q~X) qtZ)), 

c~x(qt2)~3xqt a) _ qtl)Oxqt2) _ (qtl)qtZ))2), 

0to,1 

+ 3 ( ( u ~ + ' +  ~,t1"~1'"'2"~c~,J j x,~"'x'-(q~')2Oxq~2) ( ( u , + , ) e + ] ( q ~ , q , 2 , ) 2 ) q ~ , ) ,  

 ,O,l 
1 (1) (2)  ~ (2) 

o 

The first non-trivial conserved density is 

H _  2 = _ �89 + �89 + ~(qll~q(2))2. 

5. Discussion and Conclusions 

In the preceding sections we have described a way of generalizing the approach 
adopted by Drinfel'd and Sokolov towards constructing integrable hierarchies of 
partial differential equations. The main protagonists were Kac-Moody algebras 
and their maximal Heisenberg subalgebras. Although for simplicity's sake we only 
considered the untwisted Kac-Moody algebras, there is no reason why similar 
constructions might not be undertaken with the twisted Kac-Moody algebras 
(Drinfel'd and Sokolov considered both twisted and untwisted algebras). 

Our main result was that for each positive element of the Heisenberg subatgebra 
of an (untwisted) Kac-Moody algebra, we could define a collection of hierarchies 
consisting of generalized KdV's, a modified KdV, and various partially modified 
KdV's. The various hierarchies in the collection for fixed A are related by generalized 
Miura maps. So up to the equivalence under Miura maps, the inequivalent hier- 
archies are given by the inequivalent Heisenberg subalgebras of the Kac-Moody 
algebra. These, in turn, are in one-to-one correspondence with conjugacy classes 
of the Weyl group of the finite Lie algebra. So loosely speaking, there is a hierarchy 
for each conjugacy class of the Weyl group. 

The so-called "fractional" KdV hierarchies of [15] are naturally contained in 
our framework, and result from taking A to be an element of ~ +  [w] of arbitrary 
grade. We showed that the solution spaces of such hierarchies are identical, differing 
only in the choice of the variable x from amongst the flow variables. It is well-known 
that the modified KdV hierarchies of Drinfel'd and Sokolov admit a single local 
Hamiltonian structure, whereas their KdV hierarchies admit two distinct Hamiltonian 
structures, a fact that has been known for some time for the original KdV hierarchy. 
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The second Hamil tonian  structure of the Dr infe l 'd -Sokolov  KdV hierarchies are 
the classical W-algebras, so it is natural  to ask whether more  general classical 
W-algebras appear  from the hierarchies int roduced above, as it appears they do 
[15]. There is also the question of  whether the different hierarchies corresponding 
to different Weyl conjugacy classes, can be written in a Hamil tonian  form. We 
will address these questions elsewhere. 

It  is an interesting issue as to whether the hierarchies that we have constructed 
are related to the "tau-function" approach  to integrable structures. In [10], to 
each Heisenberg subalgebra of  a simply-laced untwisted K a c - M o o d y  algebra, a 
realization of the basic representations (level 1) were found. Using each of these 
"vertex opera tor"  representations, Kac  and W a k i m o t o  [17] have constructed an 
integrable hierarchy. It  is natural  to ask whether these hierarchies are related to 
the ones that  have been considered here. Indeed in the formalism of [17], the usual 
Dr infe l 'd -Sokolov  K d V  is obtained from the vertex construct ion associated to the 
Coxeter  element of W o. For  more  general conjugacy classes of  Wg it is not  known 
whether the two construct ions lead to the same hierarchy. For  the case of the 
K d V  hierarchy, where g = A1, a direct connexion between the tau-function and 
zero-curvature formalisms has been established by Wilson [18], employing the 
dressing procedure [14]. It  would be interesting to try and extend this work to 
the more  general hierarchies. 
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