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Abstract. We give explicit integral representations for conformal blocks of minimal 
models on arbitrary compact Riemann surfaces. 

1. Introduction 

Rational conformal field theory on the Riemann sphere S can be formulated in 
terms of a pair ~ • 6r of identical Virasoro algebras ~ with assigned rational 
central charge c. If L(h, c) denotes the irreducible highest weight ~-module  of 
highest weight h, the Hilbert space of the theory decomposes as @ L(h, c)| L(h', c), 

h,h'  

with h and h' ranging in some finite set of rational values. Correlation functions 
of local fields at point P1 . . . . .  P, on S admit an analogous decomposition into the 
so-called left (respectively right) conformal blocks, which depend holomorphically 
(respectively antiholomorphically) on the local coordinates z(P~) defined about the 
Pi. 

Under certain consistency requirements, the theory can be generalized to 
Riemann surfaces X of positive genus. The main argument for this lies in a formal- 
ization of the surgery operations ('"sewing") through which X can be obtained 
from a set of three-punctured spheres. General formulations of conformal field 
theory on Riemann surfaces have been outlined by Segal and by Gawedzki. They 
can be roughly summarized as follows: The holomorphic part of a conformal field 
theory is specified by assignments ,S~B(,S,) of objects B to Riemann surfaces. If 
Z has m+n punctures at points Pi, the B(Z): @ L(hi, c)~ @ L(hi, c) 

l < i < m  m +  l < i < _ m + n  

are trace class operators depending holomorphically on z(P~) and having specified 
properties under conformal diffeomorphisms. Moreover, the assignment B from 
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Riemann surfaces and a set of surgery operations to operators and trace operations 
has functorial properties ("sewing axioms"); the "functor" B is therefore specified 
by the assignments of trilinear operators B(X) to three-punctured spheres X. 

In this paper, we present a calculation of B for the minimal models Mp,p, of 
Belavin, Polyakov and Zamolodchikov. These are the conformal field theories 
constructed upon the irreducible highest weight modules of 5e with central charge 
c = 1 - 6(p - p,)2/pp, parametrized by two positive and relatively prime integers p 
and p'. 

In the first step (see Sect. 2), we use the fact that the relevant irreducible modules 
L(h, c) are isomorphic to the cohomologies of certain complexes ~ of Fock spaces 
("BRST cohomology"). This identification allows us to make use of free field 
techniques. 

In a second step we construct the trilinear operators B(X). These are the dual 
objects of a complex trilinear form C (the "three-point vertex") defined on the 
product of three irreducible modules and associated with the sphere with three 
punctures. C is, in principle, determined up to a normalization constant by the 
conformal Ward identities. In Sect. 3, C will be constructed as the trilinear form 
induced on BRST cohomology by a trilinear form ~ defined on the product of 
Fock complexes. Such "U can be given an explicit representation in terms of 
integrals of conformal blocks of free fields along suitable twisted cycles. The 
construction of C is then reduced to the calculation of certain twisted homology 
groups. Although the calculation is not completely rigorous, owing to technical 
difficulties related to support conditions in locally finite homology, it gives a very 
consistent picture. In particular, the fusion rules appear, when one considers the 
space of homology cycles giving rise to three-point vertices which are well-defined 
on BRST cohomology, modulo the space of homology cycles giving rise to three- 
point vertices which vanish on BRST cohomology. 

In a third step we construct integral representations for general conformal 
blocks by the sewing procedure: the Riemann surface is represented as the result 
of sewing three-holed spheres, and conformal blocks are labeled by all possible 
assignments of triples of highest weight modules to the three-holed spheres, such 
that the modules associated to the holes to be sewn together are one the dual of 
the other. Conformal blocks are the result of the contraction of the corresponding 
trilinear forms. It is believed (although no complete mathematical proof exists to 
our knowledge) that this construction of the vector space of conformal blocks is 
independent of the choice of the sewing pattern, provided one has two consistency 
conditions which can be checked in genus zero and one, and have indeed been 
checked for these models. 

Our results for general conformal blocks are complete for minimal models 
Mpp, with p' = 2 or p = 2, i.e. the models where only one type of screening charge 
is present. In the general case the integral expressions for conformal blocks have 
an integrable singularity at the points in the integration domain where screening 
charges of the two different types coincide. At these points one has in general a 
local violation of Ward identities. We conjecture that a suitable regularization 
procedure at those points should give conformal blocks obeying the Ward identities. 
We have checked that there is such a regularization for three-point vertices in 
which only one screening charge of each type appears, but do not have a general 
proof. 
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Techniques analogous to the ones employed in this paper have recently been 
used in [DaJMM, FeiSV, L, Ma, ScV] to compute solutions to the Knizhnik- 
Zamolodchikov equation. 

2. Representations of the Kac Discrete Series 

We consider the Virasoro algebra ~ over II;, with generators en(neZ) and 
commutation relations 

C 3 
Ee,., en] = (m -- n)em+ n + ~ ( m  -- m)6m,-n, 

where the central charge c = c(//o) = 1 - 12//2 is a t-number parametrized by//oE~. 
Let us recall a few well-known properties of the representations of ~ .  The 

Verma module V(h, c) of weight h is the left ~-module  provided with a highest 
weight vector w, with properties: eow(h)= hw(h); ekW(h ) = 0, k > 0. It is spanned 
by the vectors e-k1 ""e-krW(h)(1 < kl < "'" < kr, r = 0, 1 . . . .  ). In particular, we will 
consider the set of weights 

hnn,  1 2 __ =g(n 1)/~2+ -�89 1)+l (n  ' z -  1)//2, (2.1) 

where n, n 'eZ and/ /+  =//o -+ x /~ / /2o .  The module V(hnn,, c) with weight in (2.1) 
is irreducible if nn' < O. If nn' > 0, then V(hnn,, c) is reducible and the irreducible 
highest weight module L(hnn,, c) with weight hnn, is realized as the quotient of 
V(hnn', c) by its maximal proper submodule. 

A resolution of the irreducible modules L(hnn,, c) in terms of Verma modules 
was given by Feigin and Fuchs [FeiFu]. If//2/2 = p'/p is a positive rational number, 
the central charge c = 1 - 6(p - p,)2/pp, is rational and lower than one. The corres- 
ponding irreducible modules L(hnn,, c) form the so-called Kac discrete series. The 
associated conformal field theory is the one of minimal models [BPZ]. 

Let ~r be the Heisenberg algebra over rE, with generators an(ne2g) and relations 
[am, an] = m6m,-n. The generators of s can be obtained by a deformation of the 
Sugawara construction: 

Ln=!E an-kak--//o(n + 1)a., n ~ 0, 
2 k~Z 

~, 1 2 
Lo = ,.., a-kak+~ao-- / /oao.  

k = l  

The Fock space F(fl, flo) of charge fl is the left &~ built upon a highest 
weight vector v(fl) (having properties: aov(fl) = flv(fl); akV(fl) = 0, k > 0) with weight 
h(fl) = �89 flofl. We have the canonical homomorphism qSp: V(h(fl), c)~F(fl ,  flo) 
between s defined by c~t3w(h(fl))= v(fl) and ~bce, = L,q~p for n~Z. Note 
that ~ba is an isomorphism only if V(h(3), c) is irreducible. The relation between 
Verma and Fock modules was analyzed in [Fel 1] in the case V(h(fl), c) is reducible. 
The result says, in words, that the irreducible modules L(hnn,, c) with weights in 
(2.1) are realized as cohomologies of suitably defined complexes of Fock spaces 
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F(fl..,, flo) with charges 

ft.., = �89 - n)fl+ + �89 - n')fl_, n, n 'eZ,  (2.2) 

and highest weights h(fl . . , )=h.. , .  The construction of such complexes (see 
Theorem 1) requires some preliminaries. 

Let b 0 be an extra-element appended to the Heisenberg algebra, with 
[b o, a,] = i6o, ~. Thus e/'b~ maps F(fl, flo) to F(fl + ~, flo). For every ~, fl~C, the 
vertex operator V~(z) is an element of Homr flo), F(fl + or, flo)) defined as the 
formal power series 

V•(z) ~- gi~tb~176 exp ~ z" exp -- ct ~ z-" . (2.3) 
n = l  ?~=1 

We introduce the ~-module  F(fl, flo) v dual to F(fl, flo). It is the space of covectors 
r defined by the requirement that </_,,co, 4> = <co, L_,~> for all ~6F(fl), with the 
normalization convention < v(fl)v, v(fl)> = 1 between highest weight vectors v(fl)v 
and v(fl). It follows that v(fl) v has the same weight h(fl) as v(fl). It can be easily 
shown that F(fl, fl)v is also a Fock space and that it is isomorphic to F(2flo - fl, flo). 
With this notion of dual Fock modules, the vertex operator V,(z) may also be 
viewed as an infinite matrix with elements <co, V,(z)~>, where the vectors ~ = a_kl "" 
a-kV(fl)(1 < kl < " "  < k,; r = 0, 1,...) are the elements of a basis for F(fl, flo) and 
the covectors ~o~F(fl + ~, flo)v are the dual of the elements of an analogously chosen 
basis for F(fl + ~, flo). These matrix elements are multivalued analytic functions of 
z ~ r  {0}. 

Similarly, the product of vertex operators V,,(zi)(i = 1 . . . . .  n) has well defined 

matrix elements between bases of F(fl, flo) and F fl + ~ c~i, flo . We compute 
i 

its value around a point e o s Z ( n )  = ( C -  { O } r -  U {z~ = z j}, where the arguments 
i < j  

are ordered as ]z~l > "" > Iz.l: 

V, , ( zO '"  V,.(z.) = H ( z i -  z y " J e x p  z~_,~ibo z i 
i < j  \ i / i 

( ~ . ~ z ~ ' ) e x p ( - ~ .  ~ a. _ '~ �9 e x p  . = j. 
At every other point P~Z(n)  its value is then determined, for each homotopy class 
[7] of paths in Z(n) going from Po to P, by analytic continuation along any path 
~[~]. 

We define the weight h(~) of the vertex operator V~(z) by the commutation 
relations 

ILk, V,(z)] \ dz + h(~)(k + 1)z k V~(z). 

We have h(~) = ~a 2 _ flo~. Vertex operators satisfying the above relations are said 
primary. In particular, Vp+(z) and V~_(z) (screening operators) have weight 
h(fl +) -- 1, and their commutators with Lk are equal to the derivatives of z k + 1 Vp + (z). 
More in general, the (matrix elements of the) operators mapping F(fl, flo) to 
F(fl + raft+, flo), defined as 

co., = V~+ ( z l ) . . .  V~+ (z , , )dz ,  ^ ... ^ dz,, ,  
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are multivalued holomorphic m-forms on the quotient space Z(m)/S(m), with S(m) 
the permutation group of m elements, and satisfy [Lk, co.,] = dq, where r/is a holo- 
morphic ( m -  1)-form having the same monodromy as o9,.. Thus 

Q,. = S o9" (2.4) 
a(") 

commutes with the Virasoro algebra if d(m) has no boundary. As we will see in a 
more general case in Sect. 3, d(m) is an m-cycle for the homology of Z(m)/S(m) 
with coefficients in a local system associated with the monodromy of COm. Since in 
this case the homology is one-dimensional, the integral Qr" is determined up to a 
multiplicative factor. 

Henceforth f12/2 = (//2_/2)- 1 = p,/p, with p and p' two positive integers chosen 
to have no common divisor. In this case note that the charges (2.2) are not all 
distinct; we have in fact ft.,, = fl.+p,,,+p, for all n' ,neZ.  It is in virtue of these 
relations that one can define the sequence at point (i) of the following theorem. 

Theorem 1 [Fel 1]. I f  f12 /2 = p'/p, let (m, m') be a pair in the Kac table D = {(m, m') 
J 1211 < m < p - 1, 1 < m' < p' - 1 }. Let ~mr"' = r ~  . ~  be the Z-graded ~-module 

jeZ 
defined by --~tJ),.m, = F(fl,.t~7,m't~7' flo) with (m[j], m ' [ j ] ) =  (m, m' + jp') for j even and 
(m[j], m'[ j ])  = (p - m, m' +jp') for j odd. Then: 

(i) There exists a sequence of homomorphisms 

�9 Q(-2)) ~7(mml' ) Q(-1)) 'if" "m r~7. (0) Q ~  ~(mlm) , Q(1) ) , . .  

between Virasoro modules defined by Qr ~ = Q"r for j even and Q~J) ~ = Q,-m~ for 
j odd. 

eiTr#2+ l 
(ii) Let the cycle definin9 Q" be d(m)= f i  

1 
- - - - -  din, where dm= {(z1(01) . . . . .  

t= 1 ei~P~+ - 1 
zm(Om))~ TmlO < O1 < "" < Or. < 7r} and T is a circle centered at z = 0 parametrized 
by 0~[0, zr]. Then QtJ)Qr 0 for all j~Tl, and ~mm" is a complex. 
(iii) The cohomolooy #roups HJ(~mm,)=KerQr vanish if j ~ O  and 
H~ ,) is isomorphic to the irreducible highest weight module L(hm",,c). (The 
isomorphism ~bmr ., is the canonical one mappin9 hiohest weight vector to hiohest 
weioht vector.) 

Note that the normalization of the cycle d(m) has been chosen such to give a 
coboundary operator, i.e. such that QmQp-m = 0 = Qp-mQ". One usually refers to 
Q as to the BRST operator. 

Note that, for f l2/2=p' /p,  2flo-- f lm m, =f lp-" ,p ' -m'"  Hence, the complex 
~,,r",~ ~ = ,,~(~ ~(J)mm, ~ dual to ~"m" is specified by the'lsomorphlsms' ~,,,,,(J) ~ ~ ~(v_r",p,_m, -j) 

j~Z 

for j e 7 / a n d  (m, m')~D. 

3. The Three-Point Vertex and Twisted Homology of Braid Spaces 

3.1. In this section we give the details of the construction of the three-points vertex 
of minimal models introduced in [FelS 2]. This object generalizes the intertwining 
operators introduced by Tsuchiya and Kanie [TK]. 



22 G. Felder and R. Silvotti 

A pair of integers e.g. (n, n'), will be denoted by the corresponding capital letter, 
i.e. (n, n ' )=  N. So also (p,p')= P; and (1, 1) will be denoted by 1. 

We will always identify the irreducible module L(hu, c) with index M in the 
Kac table with the cohomology module H*(,~M) of Theorem 1. Three-points 
conformal blocks of minimal models on the Riemann sphere S depend on a triple 
01, 02, 03 of distinct points on S, and a choice of local coordinates vanishing at 
Oi. They are constructed as complex trilinear forms CulM2M3 on the product 
L(hM1, c) x L(hu2, c) x L(hu3, c) of irreducible modules with indices M i in the Kac 
table D. And are determined, up to a normalization constant, by the conformal 
Ward identities [BPZ], which express a covariance property under the Lie algebra 
of meromorphic vector fields on S holomorphic on S - {01, 02, 03}. If we fix two 
of the points, e.g. 0 1  = 00, 0 3 = O, the operators obtained from CM,M2U~ by duality 
form the set of minimal models' chiral fields. 

In the following paragraph we introduce trilinear forms ~UxU~U~ defined on the 
Fock complexes ~M, of Theorem 1 and satisfying the Ward identities of CMIM2M3" 

* By Theorem 2, these induce trilinear forms "r on cohomologies H*(~'M, ) 
which are identified with three-points conformal blocks. Such identification will be 
discussed below Theorem 2. Here it is important to note that, because hM, = he_M,, 
there are canonical module isomorphisms ~b*:H*(.~M,)~H*(~p_M, ). Thus all 

*. * *. * *. * *. *. * 
c o m p o s i t e s  (~r  I/I1)MlM2M3, (3(/" 1/12)M1M2M3, (3(/" 1/13)MIM2M3, (,~(/" 1/11 1/12)MtM2M 3 
are trilinear forms on cohomologies H*(.~M,) satisfying the same Ward identities, 
and can be equivalently identified with Culu~u~. 

3.2. Let us suppose that 0i :/: ~ and that the local coordinates around 0i are 
z -  z(O~), where z is the standard coordinate on ~ = S -  oo. Other choices are 
related to this one by conformal transformations. 

Define descendant vertex operators V(~, P) at P~CE with local coordinate 
z -  z(P), depending linearly on ~eF(~,flo), as follows: if ~ = I-Ia_kjV(OC), then, in 
terms of the U(1)-current J(z)= ~a, ,z-"-1,  j 

dzj 
V(~, P) = I~ ~ ~ (zj - z(P))kJj(zj) V~(P) 

with integration over small circles encircling P. The definition is then extended by 
linearity to the whole Fock space. As for vertex operators, vacuum expectation 
values of products of descendant vertex operators have well defined meaning as 
analytic continuation of absolutely convergent series and integrals, and are many- 
valued functions with the same monodromy as the corresponding product of 
primary vertex operators V~(P)= V(v(a), P). 

Let O~, O 2 and 03 be three points on S. In the continuation of this section: 
The Mi for i = 1, 2, 3 are pairs in the Kac table D = { 1 __< m $ p - 1, 1 __< m' < p' - 1 }. 
For j ieZ(i  = 1,2, 3) such that ~ j i  = 0, the Mi[jl] = (mi[ji], m'i[ji]) are the pairs 

(mi, m'i + JiP') when Ji is even al~d (p - rni, rn' i + JiP') when ji is odd. 
The three-points vertex CU,M~M3(OI,02,0S):o~MI X~U~ X ~ M ~ I E  is a 

trilinear form of degree zero on Fock complexes. Its component on ~ ' )  x ~ x 
ff(i~)~(~ ~ :~ ~ is defined by the integral M3 t~l~ ~2~ ~3) 

~i/'M,[jdM2[j2IM3tJa](01, 02 ,  03 ;  r ~2, ~3) 

= I O)MltJtIM2tJ2]M3tJ3](OI' 0 2 '  03 ;  ~1, ~2, ~3)" (3.1) 
CM I[ jl ]M 2[ j~]M 3[ j3] 
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The integrand is the matrix element of an operator mapping the vacuum Fock 
space F(0, rio) to the equivalent (in cohomology) Fock space F(flp_ 1, rio), 

~OM~tmM~tj~1M3tj~J(Ox, 02, 03; ~1, ~2, ~3) 

I rtj] r'[j I I 
= v( f lp-O",  V ( ~ ,  O~)V(~z, 02)V(r 03) 1--[ Vp+(P,) 1~ Va-(P'r)v(O) 

i=1 i'=1 

"dz(PO ^ "" ^ dz(P' 1) ^ "", (3.2) 

if the numbers 

rEjl= ( mEjl p 1) 

r Ejl  ( m Ejil p 1) p l /  1) 
are non-negative integers. If this condition is not satisfied, the three-points vertex 
is defined to be zero. 

The three-points vertex obeys the Ward identities if the domain of integration 
CM,tmM2tj21M3tj3] is a cycle dual to the cohomology of the multivalued forms (3.2). 
The problem of determining this cycle is considered in the following paragraphs. 

3.3. Here p' and p are positive, relatively prime integers. The numbers n~ for 
i = 1, 2, 3 will always denote integers subject to the condition that 

r = ~  n i - p -  1 

is a positive integer. 
Let X = S - {0, 1, oe} be the Riemann sphere minus three points. Consider the 

forms 

~o,,.~.~= f ( z  1 . . . . .  z,) [-[ zll-"~)P'lp(1- z,) (1-~)p'/p 1-[ ( z i -  zJ)2P'/PdZl ^ "'" ^ dz,, 
i= 1 1 <i<j<-_r 

with functions f ( z l , . . . ,  Zr) which are holomorphic on X', meromorphic on S' and 
symmetric under permutations of the z[s. Let A(X r) be the diagonal subspace 
U {zi = zj} of X', and X(r) = X ~ - A(X'). The symmetric group S(r) acts freely by 
i<j 
permutations on X(r), and the fundamental group ~l(X(r)/S(r)) of the braid space 
X(r)/S(r) is a generalized braid group on r strands. 

. . . . . .  is a complex, multivalued, C ~ holomorphic r-form on X(r)/S(r), i.e. an 
element of the de Rham cohomology of C ~ differential forms on X(r)/S(r) with 
values in a rank one local system LP, ..... defined by its monodromy. Explicitly, 
let p:zq(X(r) /S(r) ,Xo)~C*,  7~-+p(7), be the representation of 7tl(X(r)/S(r),xo) 
defined by the monodromy action ?*co,,,~,3(Xo)=p(?)'eg.~,2,3(Xo) for any 
xo~X(r)/S(r). Then we have, up to isomorphisms, a unique flat complex line bundle 
5r ..... on X(r)/S(r) with characteristic homomorphism Z = p. The elements 7 of 
~(X(r)/S(r),  Xo) act on a point fo of the fiber over Xo moving it horizontally along 
? back to the point P(7)'fo over x o. Thus, if e(xo) is a local section defined in a 
neighborhood of x o, 7 acts as 7e(xo)= p(?)'e(xo). 
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The differential form co has in general non-integrable singularities at the 
insertion points 0, 1, ~ and vanishes on A(Xr). The natural support condition on 
the integration cycles c is that the support of c, viewed as an S(r)-invariant subset 
of X(r), be mapped by the inclusion X ( r ) ~  X r to a set with compact closure. 
Denote by H~(X(r)/S(r), ~e ) the homology with coefficients in ~n~.~,~ with 
this support condition. 

Let Y be the compact space obtained from the sphere S by deleting three small 
open disks around the points 0, 1 and ~ ,  and denote by Y(r) the space yr _ A(yr). 
Then, by a standard homotopy argument, we have the natural isomorphism 

H ~  ( Y(r)/S(r), ~.~.~.~) --% H** (X (r)/S(r), ~.~.~,~), 

where Hl,f(Y(r)/S(r), LP, I,~.3) is the homology of the complex Cl, f(Y(r)/S(r), s 
of locally finite chains on Y(r)/S(r) with coefficients in s This complex can 
be described as follows. Let ~'(r)/S(r) be the universal covering of Y(r)/S(r), and 
Ct, I(Y(r))|  the complex of locally finite chains (i.e. possibly infinite linear 
combinations of simplexes, such that only finitely many intersect any given compact 
set) on ~'(r) with complex coefficients. Then C~(Y(r)/S(r), ~.,,~,~) = C~f(Y(r))| 
where C~,Y(~'(r)) | C is the complex CZ, S(~'(r)) ~ IE modulo the equivalence relation 

for any ~Ct,f(~'(r)), ~ and 7~rq(Y(r)/S(r), Yo) (acting on ~ from the right). 
We now compute the r th homology group relevant to the integration of o~.1.2.3. 

The fundamental group nl(Y(r)/S(r)) is a slight generalization of the braid group 
B r on r strands, obtained by adding to the generators of Br the two elements 
representing loops around 0 and 1. In other words: it is the subgroup of Br +2 

2 generated by the set {a~, ai, i =  2, . . . ,  r + i, at+2}, where the standard generators 
ai describe the positive simple braiding of the i th and (i + 1) th strand. We have 
p(a~) = qZll-,31; P(a3 = _q2, i = 1 . . . .  , r  + 1; p(a2+2) = qm -,2), where q = e ~f/p. 

Consider any subspace A of Y homotopic to the bouquet A o of two circles of 
radius 1/2 centered at the points 0 and 1. A o is the subspace of the complex plane 
parametrized as the union 

A o =  x _ - _ -  - y e  1=<0<2re} (3.3) 

Let A(r) = A r - A(A~). Define of the two circles in their common point ~. 

cj = { {z1(01) . . . . .  zr(Or) }~A(r)/S(r)rO < 01 . . . . .  Oj < ~, 

it < Oj+ 1 . . . . .  Or < 2re; 01 < " "  < 0r} (3.4) 

forj  = 0 . . . . .  r. Also define b~ to be the subset ofct defined by 0t+, = 0, l = 0 . . . . .  r - 1. 
The cells cj - bj and b z give a cell decomposition of A(r)/S(r). Our calculation is 
based on the assumption that the homomorphism induced by the inclusion i:A --+ Y 

i ,  : U ~ (A(r)/S(r), i* s ~ Ht,Y ( r(r)lS(r), ~ )  

is an isomorphism. This is clear for r = 1, since A is a proper deformation retract 
of Y, but appears technically difficult to prove in the general case. Thus what we 
actually compute is Ht, f(A(r)/S(r), i*~) ,  and leave the above isomorphism as a 



Conformal Blocks of Minimal Models on a Riemann Surface 25 

conjecture. The  bounda ry  of cj is given by 

r--1 
~ej-~- ~ t31jbl, 

/=0 

where d 0 is the r x (r + 1) matr ix  

dzj = (q2~r-j-*2~ _ 1)6,j -- (q2~n3-j~ __ 1)rt+ 1,j" 

Since there are no cells of  d imension r + 1, we have 

H~f(Y(r)/S(r), L~'n,~2.3)= Ker  ~. 

The dimensions of  the r th homology  groups,  considered as functions of  the local 
system, are given by 

Proposition. Assume that qP = 1 for some integer p > 1 and qJ # 1 for j = 1 . . . . .  p - 1. 
Given any integer n, let ~ be the unique integer in { 0 , . . . , p - 1 }  such that n = ~  
(mod p). There are three cases 

(1) r < ~  2 -  1 and r < ~ 3 -  l : d i m K e r t ~ =  1, 

(2) r > n2 and (r - n2) < ~i3 - l : d im  Ker  d = 2 + (r - ~3) div p, 

(3) r > na and (r - n2) > na - 1 :dim Ker  a = 1 + (r - n3) div p, 

where a div b denotes the integer part of  a/b (i.e. the largest inte#er less than a/b). 

T o  prove  the propos i t ion  we notice that  the elements of d which are not  identi- 
cally zero lie on two diagonals.  In  case (t) none  of the elements on  the diagonals  
vanish. Thus  Ker  t3 = 1 because ~ is a r x (r + 1) matrix.  In case (2) and (3) the 
diagonals  have vanishing elements and 8 decomposes  into blocks of  i x j matr ices 
with [i - J [  < 1. The kernel of  each block componen t  is one-dimensional  i f j  = i + 1 
and is empty  otherwise. A simple analysis of  the block decomposi t ion  of a gives 
the result. 

No te  tha t  case (1) of  the above propos i t ion  could also be deduced as a corol lary 
of  a general result of K o h n o  [K] ,  except that  the suppor t  condit ions are slightly 
different. If  the hypothesis  of  case (1) is satisfied, Kohno ' s  Theorem 1 implies that, 
in part icular,  H~(Y(r)/S(r),  Le~,.~.~)= H~f(Y(r)/S(r), Za.ln~.~ ). The  dimension of the 
only non-vanishing homology  group  is then equal  to the absolute  value of the 
Euler  characterist ic of Y(r) divided by r!. 

3.4. Let us now consider the r-forms 

09. = f ( z  1 . . . . .  z,) n zl 1-'~p'/p I-I ( z , -  zj)Zp'/pdzl ^ . . .  ^ dzr, 
l_<l_<r l <i<j<=r 

with functions f ( z l  . . . . .  Zr) holomorph ic  on (S -- {0, ~}) r ,  me romorph i c  on S r and 
symmetr ic  in all arguments .  This is a subcase of  the one considered in Sect. 3.3. 
If  Z is the sphere minus two small open disks centered at 0 and ~ ,  the homology  
dual  to the cohomology  of the forms ogre is H~f(Z(r)/S(r),~q~,,), where 
Z(r) = Z r -  A (Z  r) and the local system ~ a  is the extension of ~ , , ~ =  ~,.~, with 
n 3 = m and n 1 = p -  n to Z(r)/S(r). The calculation proceeds as in the previous 
paragraph .  The  cells cj are replaced by 

d r = {(2"1(01) . . . . .  zr(Or))~. TrI0  ~ 01 < ' "  < O r =< 7~}, (3.5) 
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where T is a circle homotopic to To = {z(0) =~-e.1 _2iO,rtlU..~ 0 < /  -- n} in 112. The boundary 
is adr = (1 -q2tr-m))br_l,  with b,_ 1 the face of dr defined by 0 r = re. Thus the r th 

homology group is one-dimensional and generated by dr if r = m (mod p), and 
vanishes otherwise. 

Note that for r = m this is the cycle which defines the operator Qm in (2.4). 
Choosing the normalization as in Theorem 1, we have 

q21 1 
d(m)= ,=1 f i  q--T~- 1 dr'" (3.6) 

3.5. The N~ = (n~, n'~) for i = 1, 2, 3 will denote pairs in 7/. 2 subject to the conditions 
that 

r = � 8 9  I), r' 1 , , 
- = ~(Zn i - p - 1) 

are positive integers. Let us fix the points O1 = oo, 02 = 1 and 03 = 0 on S = Cw  {~} 
in (3.1), (3.2). The coordinate is z on �9 and 1/z around the point at infinity. Other 
choices of coordinates are related to this one by conformal transformations. The 
forms WN,NeN~(~, 1, 0; ~1,42, 43) introduced in (3.2) can be computed explicitly as 

. .  Z !  t x 
0 9 N ' N e N ~ = f ( z l  ' " 'Zr'  l . . . . .  Zr'J H H (Zi--Z' i ' )  - 2  

l <i<r l <i'<r' 

1-I z", - 1-I z j )  
l <_i<_r l <i<j<r 

1-I z', !1 -='~'P/P'(1 - z ' , , )  ~1 -";P/P'~ I-I ( z ' , , -  z~,)2P/P'dzl ^ . . .  ^ dz'r, , 
l<-i'<-r" l<_i'<j'<r" 

with functions f which are holomorphic on X r x X ~', meromorphic on S" and S r', 
and symmetric in all their arguments. They are elements of the de Rham cohomology 
of C ~~ differential forms on X(r + r')/S(r) x S(r') = IX(r) x X(r') - d(X(r) x X(r '))]/  
S(r) x S(r') with values in the local system &?N1N~N~ on X(r + r')/S(r) x S(r') defined 
by the homomorphism z:zl(X(r+r') /S(r ) x S(r'),Xo)~C* associated with the 
monodromy of O~N~N~N~. 

Note that the exponent of the factors (z~ - z;) in CON,N~N~ is an even integer for 
all 0 < i < r, 0 < i' _< r'. The subgroup of the braid group nl(X(r + r')) generated 
by the elements that represent the simple braiding of z~ and z'~, for all i and i' is 
in the kernel ofT. Therefore, any local section of LaN,N~N ~ defined in a neighborhood 
of a point close to the diagonal A(X(r) x X(r')) can be continuously extended to 
a neighborhood of the diagonal in X(r) x X(r'). We use the same notation L#N~N~N~ 
for the local system so obtained on X(r)/S(r)x X(r')/S(r'). The restrictions of 
L'eN~N~N~ to X(r)/S(r) and to X(r')/S(r') are, respectively, L#, .... ~ and L:' 
Therefore there is a monomorphism 

H~:(X(r)/S(r), ~ . , . ~ )  | H~((X(r')/S(r'), LZ';n~.;) 

~ H~:+r,(X(r + r')/S(r) x S(r'), &#N,N~N~)" 

Thus the product of any r-cycle on X(r) and any f-cycle on X(r') gives an (r + r')- 
cycle on X(r + r'). 

3.6. In this paragraph the data Mi, M~[ji], r[j] and r'[j] are as in Sect. 3.2, with 
the condition that r[j] and r'[j] be positive integers. 
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Definition. We say that a triple (L, M, N) of pairs in the Kac table D obeys the 
fusion rules if l = m + n - 1 (mod 2), l' = m' + n' - 1 (mod 2) and 

I m - n f  + 1 < l < min(m + n -  1 , 2 p - m - n -  1), 

I r a ' -  n'l + 1 < l' < min(m'  + n' - 1,2p' - m' - n ' -  1). 

We say that the three-points vertex ~t/'M~M2M3 obeys the fusion rules if the triple 
(P - M s, M2Ma) does. 

The three-point  vertex, as it is defined in the following theorem, is given in 
general by an integral which is convergent  but  not  absolutely convergent  at the 
points  in the integrat ion domain  where z i = z~. for some i,j. At these points, there 
is a violation of Ward  identities. This p rob lem does not  arise if p = 2 or p' = 2, 
since only z variables or  only z' variables are present  in that  case. We conjecture 
that  there is a regularizat ion prescript ion of the cycle of integrat ion that  solves 
the p rob lem in the general case. More  precisely, one should show that  for each 
pair  of cycles c | c' in n~S(X(r)/S(r), L,~174 n~((X(r')/S(r'), ~'n,ln,2n,3) , t h e r e  is a 

cycle representing an element of  H~f+r,(X(r + r')/S(r) x S(r'), Za/~,N~N3), homologous  
to the image of c | c', but  with suppor t  in the complement  of a tubular  neighbor-  
hood  of U {zl = ~}.  We have checked that  such a cycle indeed exists in the case 

ij 
r = r' = 1, but  a general p roof  is lacking. 

Theorem 2. Suppose p = 2  or p' = 2. Let ~"M,M:M3:~'~M, X ~M~ X ~u+~IF, be the 
degree zero trilinear form on Fock complexes ~ - ~ o  M , -  ~ + defined in (3.1), with 

si~TZ 

c(M I [jl],  M2[J2], M3[J3]) a cycle of H~YtJl(Y(r[j])/S(r[j]), ZP,,~tJ,l,,~[j2l,,+[j~l)| 
H~./I(Y(r '[  j ] ) /S ( [ r '  [ j ]  ]), La' 

.,',ts,J,.;t.m,,,;tm )" 
Then there exists a unique 

* " * ~ H * t ~  ~ x H*(~M~)--*C 

induced on cohomologies. ~I/'M~MzM~* is nonvanishin9 if and only if it obeys the fusion 
rules. 

Conjecture. Theorem 2 holds for any relatively prime positive integers p, p'. 

The  conjecture is p roven  if there exists a regularizat ion prescript ion for cycles 
containing both  kinds of variables (see remark  above). No te  that  the fusion rules 
for minimal  models  were obta ined by Belavin, Po lyakov  and Zamolodch ikov  
[BPZ]  upon  requiring that  the "opera to r  a lgebra" be closed. Theorem 2 gives, in 
part icular,  a topological  derivat ion of  the fusion rules. 

Proof. It  is organized in three steps. 

(1) Assume that  ~fM~M2M3 obeys the fusion rules. These can be equivalently written 
as the inequalities 0 < r [0 ]  < min(mt  - 1, m 2 - -  1, m 3 - -  1), 0 < r ' r0 ]  =< min(m'  1 - 1, 
m 2 - 1, m 3 - 1). Thus  we have 0 < r[j] < min(m 1 [ J l ]  - 1, m 2 [J2] - 1, m a [J3] - 1), 

! t 0 < r'[j] < min(m' 1 - 1 ,  m 2 - 1 ,  m 3 - 1 ) .  F r o m  the Propos i t ion  in 3.3, the homo-  

logy groups  H~(j](Y(r[j])/S(r[j]),s ) and Hr,tjj(Y(rZl . . . .  [j])/S(r [ j ] ,  
4e,,;tm.fits~],,~rm) are bo th  one-dimensional .  
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Fig. 1 

Fig. 2 

The generating cycles are, respectively 

c(ma [Jl] ,  mz[ j2] ,  mzl-j3]) 

1 

c'(m'l [J l ] ,  m'2[J2], m3 [J3]) 

= k'=O"t"(k'NXq'Z(r't'l--"'~t~21--"--lr~J ~ ', '=0 0 '2 -- 1 ,=k'+l q'2'''3tJ3'-0 -- 1 ) ~  -~ i C~,,, (3.8) 

where the chains Ck are parametrized as in (3.5). In (3.8) q' = e i'p/p" and the chains 
! 

c k, are 
t 

ck, = { ( z 1 ( 0 1 )  . . . . .  z,,(O~,))~A'"'lO < 01 , . . . ,  Ok, < z,  z < Ok, + 1 . . . . .  0,, < 2rq 01 < . . .  < 0r, } 

for k ' =  l , . . . , r ' -  I, where the bouquet A' is homotopic to the bouquet A and 
chosen such that the intersection is as in Fig. 2. The cycle defining the three-points 
vertex is the product 

= ~" ' (3.9) CM~[jIjM2[jzjM3[j3] "~ Mt[jt]M2[j2]M3[jajCmt[j~]m2[J2]m3[j3] (~ Cm~[j~]m,2[j2]m,3[j3 ], 

where W" is an arbitrary normalization factor. X will be conveniently chosen (see 
Lemma 1). 

The integral (3.1) can be explicitly computed I-Fel 1; DoF]  using techniques 
of contours deformation similar to those usually employed in integrals of the 
Pochammer-Selberg type (see e.g. [WW], [HK] and [TK]). One then verifies that 
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it is not identically zero. We conclude that the three-point vertex ~U,M2U3 is 
uniquely defined and nonvanishing if it obeys the fusion rules. 

(2) Let Qti) for i = 1, 2, 3 be the coboundary operators acting on the tensor product 
of three complexes ~M, as Qr = Q | 1 | 1, Qt2) = 1 | Q | 1 and Q(3) = 1 | 1 | Q. 
The composites ~/rM,u2M3"Qt0:~ul x ~M2 x ~M3 ~IE  are trilinear forms of degree 

one. Their components on ff~'~ x ..~(j2)u2 X ~(J3)U~ are "~MItjl + l]Mztjz]Uatj3](o(Jl)~l ' ~2' C3)' 

3V'M,[jdM2[ h+ 1]MatJ3](r Q(Jz)~2, ~3) and ~//'u,tj0M2tj~]U3tj~+X](~I, ~2' Q(J3)~3) with 
Yji+I=0. 
i 

Using (3.1), (3.2) and the definition of the operator Q given in Theorem 1, we 
can express them as the integrals ~ Ogp+M,E~1,M~[j~j,M~tj~ of the same (r + r')-form 

r= mi[j i]--  i ,r' 1 ~ m  i = ' - - p ' - - 1  ; see 3.5 over the three cycles F~i ) 
�9 i 

schematically represented in Fig. 3. 
The F(0 are given by the products of a cycle c(0 defining the respective three- 

point vertex and a cycle d~0 supported on a circle around oe, 1 or 0 defining 
Q(1), Qt2) or Q(3)- They are elements of H | H' = H~f(Y(r)/S(r)), LPp + m,o,l,~tj2l,,~tj~l) | 

i f  I I I H ,, (Y(r )/S(r ), ,~m,,m,2,m,3). 
Let us assume that ~//'M,M~M3 obeys the fusion rules. Then the numbers r 

and r' satisfy the inequalities m2[J2 ] < r, r -  m2[J2 ] < m3[j3] - 1 and 0 < r' < 
! 

min(m' 1 - 1, m 2 - 1, m 3 - 1). 
From the Proposition in 3.3, we see that dim H = 2 and dim H' = 1. Therefore 

the Fr are linear combinations of only two inequivalent cycles. On the other hand, 
an explicit verification shows that they are in fact pairwise independent. It follows 
that there is precisely one linear relation between the three composites " ) ~ ' M , M 2 M 3 " Q ( i ) "  

We have proven the first part of the 

Lemma 1. Assume that 3e'M,M2M~ obeys the fusion rules. Then 

(i) (BRST invariance). There are nonvanishing complex coefficients 2 i for which 
3 

E 2i~[FMtMzM3"Q(i) = O. 
i = 1  

(ii) Fix the normalization of the cycle (3.9) defining ~(/*M1M2M3 to be 

JffM~tj~lM~tj~lU~tj~l = e[J2'J3]' f~ j2,J3 even 

= g[J2,J3](--1)tm~-l)tm'~-l)q -tm~+m~m~) for j2 odd, j3 even 

= e[j2,J3-[(-1)<P-m')~'~+m3q -tm~+m~m~) for j2 even, j3 odd 

= e[J2,J3-[(- 1) pt";-1)+p'(m2- 1)+m2m'~ forj2,J3 odd, 

@@@ 
Fig. 3, 
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where e[j2,J3-] = ( - 1) k2Ep(m'3 - 1)-p'(m3 - 1)]+k3[p(m" 2 - 1 ) -  p ' ( m 2 -  1 ) ]  and ki = �89 ji even, 
k i = �89 - 1) for Ji odd. Let Ji be the grading operators which take the values Ji on 
~ m  We have Mi" 

~/PMIM2M3"Q~I) = ~f~M1M2M3"Q(2) + ~MIM2M3"( -- 1)J2"Q(3). 

Part (ii) of the lemma is the commutation property of the three-point operators 
(obtained from the vertex by duality) and the coboundary Q (see 4.1). The proof 
relies on the explicit form of the cycles defining the three terms of the above 
equation, 

As an immediate corollary of point (i) of the lemma: CM1M2M3 is well defined 
on the product of cohomologies if it obeys the fusion rules. For the restriction 
"~M1M2M3' d e f i n e d  - " ~/~) Ker Q{j2) b y  ~MltJl]M2[j2]M3[j3]'Ker Q x x Ker Q~S~)_., C, vanishes 
on all submodules Im Q~S,- 1) c Ker Q~S,). 

(3) It remains to prove that the restriction ~'UIM~U~ vanishes if it does not obey 
the fusiod rules. Let us consider the case where the fusion rules are violated by 
the first components rn 1 [Jl] ,  m2 [J2] and m 3 [J3] of the pairs M1 [A ], M2 [J2] and 
M3[J3 ]. Then the above vanishing statement follows from the fact that ~U,U2U~ 
can be written as a linear combination of the composites ~u,u~u3"Q~i). 

As an example, consider the case where 0 < r[j] < min(ml [A] - 1, m2[J2 ] - 1), 
r[j] > m 3 [J3], 0 < r ' [ j ]  < min(m' 1 - 1, m~ -- 1, m~ - 1). Let c | c' be the (r[j] + r'[j])- 
product cycle defining the three-points vertex. From the Proposition in 3.3, we 
have that the classes of c and c' are both unique, c' is given by (3.8). c can be 
computed as the kernel of-the boundary matrix in 3.3 in the form of a linear 
combination of the chains Co, C, . . . . .  c,ul_~u~ 1 in (3.4). Let d(m3[J3]) be the 
m3[Ja]-cycle (3.6) defining the BRST operator Q acting on ~s~) The product of M3" 

C,,u~j,,~tm,v_,~u~ 1 in (3.7) and d(m3[J3-] ) gives a cycle of HVjl(Y(r[j])/S(r[j]), 
~m~tm,mtm,m3U31) which is necessarily homologous to c. We have thus proved that 
"~M1M2M3 = "~MIM2M3" Q(3). 

More general violations of the fusion rules can be analyzed in a similar way. 
The cases where these are violated by the second components of the pairs M1, ME 
and M 3 do not require any new proof. The argument lies in the fact that, if we 
exchange fl+ with fl_ (i.e. p with p'), a complex isomorphic to that of Theorem 1 
can be defined with a coboundary Q' constructed in terms of Va_ screening 
operators. A violation of the fusion rules implies that q/'M~u2u~ be equal to a linear 
combination of composites u,M~m'Q~ir The proof of the theorem is now 
complete. 

* .  * .  * Observe that, in the notation of 3.1, ~e'* ( ~  I//1 I]I2)MIM2M3, MIM2M3' 
*. *. * *. *- * satisfy the fusion rules. It can ("IF ~1 ~13)MIM2M3 and ( ~  ~2 ~13)MIM2M3 s a m e  

be easily verified that they are in fact proportional. The same observation applies 
* - *  *. * and (V*'~b*'r 3. to ( ~  I/II)MtM2M3' ( ~  ~12)MIM2M3' ~,[~f'o*"I'*~W3IMIM2M3 * 

They are nonvanishing and all proportional if and only if (M1, M2, M3) obeys the 
fusion rules. In view of the remarks of Sect. 3.1, this fact implies that there are 
several equivalent representations of minimal models' three-points conformal 
blocks CM~M2M~. They are expressed as integrals of multivalued forms of maximal 
degree on braid spaces of different dimensions. For example, CM,M~M~ can be 

* .  * identified with ~'*,M~M3 when this is nonzero and with (~f~ ~/3)M,M~M~ otherwise. 
An explicit form for the isomorphisms ~* ("background operators") is given in 4.2. 
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4. Conformal Blocks on Genus g 

4.1. We will formulate "sewing" I-G; So; MoS] using operators rather than trilinear 
forms. The difference is merely in notation; however, this choice makes the notion 
of summing over "intermediate states" somewhat more direct. The dependence of 
three-points vertices and operators on the points will be usually left as implicit 
when no ambiguity can arise. 

Three-points operators are the operators obtained from the three-points vertex 
by duality. For example "r 3:~u2 |162 ~ ~M, is the three-points operator 
with matrix elements between 4~' e ~ ' )  v ~ ~e--/~,- and ~2 @ ~3 ~ )= ~ ~'(J2)M2 W C J ~  ~'(J3)M3 

defined by 

(4/,"t/ 'Ml[Jl] 'g ~ r  = ~/~(p-M,)[-jl]M2[jz]M3[j3](~/ 42, 43), r M2[j2]M3[J3 ] ~2 ~ 

with Jt =J2 -[-J3" It is expressed as the integral 
t,~Ml[jt ] 
~t~ME[j2]M3[j3]  

cMl[Ji]  
M2[J2]M3[j3] 

of the multivalued operator obtained from (3.2) by duality on the ~- -~  ~M~tj~] ~y~,l~, UM2[j2]M3[j3] = 
r Mx)[- j1]M2[JE]M3[J3]" 

Analogously, we define 3vM'U~',~ ""~Mt 
~M2,'-- �9 As a rule, the direction of the mapping goes from the lower to the upper 
indices, and (the matrix elements of) an operator with upper indices Mk are defined 
by the corresponding three-points vertex with indices P -  Mk. 

The operators with indices Mi, M2, M3, one of which is upper and two lower, 
obey the fusion rules if the triple (MI, M2, M3) does. Those with two upper indices 
and one lower obey the fusion rules if ( P -  M~, M2, M3) does. 

Lemma 1 and Theorem 2 have obvious versions for three-point operators. In 
particular, point (ii) of Lemma I implies that, with the normalization there estab- 
lished: 

M1 M1 Mt _ Q3VM~M3 = "t/'A,t~M~Q| t + 3~"*M2M3 ( 1)J |  (4.1) 

Theorem 1 ensures that CU~M3.H*M~ . *(~U~)| *(~M~) ~ ~ H * ( ~ M I  ) is uniquely 
defined and nonvanishing if and only if it obeys the fusion rules. Analogous 
statements apply to 3v *u~M: ~ . u ~  

M 3  ' - - M 1 M 3 '  . . . .  

4.2. Observe that the Fock space ~ e  ~ 1 = F(2flo, flo) has vanishing highest weight. 
Consider the degree zero bilinear form ~M~M~(Ot, 02, Q):~-M~ x ~ M ~ C  with 
components given by 

~MIt -  j]M2[j]( O1, 02 ,  Q; 41, 42) = ~V~M It- j]P- I M2tj]( O l , ~,  02; 41, V, 42), 

where v is the highest weight vector of ~o~_x. Since hp_ ~= 0, ~M~M~(O~, 02, Q) 
does not depend on the reference point QeS where we insert the primary vertex 
operator with charge fie-1 = 2flo. The dual two-points operator ~M:~M~O~, 02, Q) 
("background operator") induces ~ * u '  (01,02; Q):H*(~u~) ~ H*(~u~) on cohomo- 
logy which is nonvanishing if and only if it obeys the fusion rule M1 = P - M2. 

Let 0 1  = o~ and 0 2 = 0 on S = rE. "rM~'I'*M' denotes N*M'rO~M: ' ,0", Q) with the choice 
of coordinates z on ~ and 1/z around infinity. It can be easily shown that O f f - u  
commutes with L k for k e n  and thus defines a canonical module isomorphism 
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mapping every vector of H*(~M) to its dual in H*(~e-u) .  The composites 
if,M, .~ , e -M,  ~,M~ .,/,,P-M2 and ~,M, .,/,,P-M~ are proportional. 

P- -MI  - - M 2 M 3  ' P - M 2 M 3  ~FM2 M 2 P - M 3  WM3 
From the concluding remarks of 3.6, a representation for minimal models' 

three-point operators C~'M~ is given by v*M'M~M3 if (M1, M2, M3) obeys the fusion 
r ~ : , M t  . , P - M 3  ules and by M2e-M~ ~M~ if (M 1, M2, P - M3) obeys the fusion rules. Let/z i 

M, and the duals CM,M~M3, C M~M2 be Mi or P - Mi. We then conclude that CM~M3 M~ .... 
are all nonvanishing if and only if one of the triples (#1, #2, #3) obeys the fusion rules. 

4.3. Let X be a three-punctured Riemann sphere S\{a, b, c} together with a choice 
of local analytic coordinates zt~), Ztb) and z<~) which vanish at, respectively, a, b and 
c. X will be denoted by the graphical symbol of a vertex with three incident edges, 
where each edge (or "leg") corresponds to a puncture. To X we associate three- 
point operators ~l:*(a,b,c) defined on cohomology with representation indices 
L, M and N corresponding to the vertex operators inserted respectively at the 
points a, b and c. A three-point operator is represented by an analogous graphical 
symbol, where now each leg corresponds to a cohomology module and carries a 
representation index and an arrow. The orientation of the arrows is an agreement 
with the direction of the mapping between cohomology modules. In Fig. 4 the 
symbols representing (i) ~*Ltahc):H*(~M)|  and (ii) MN~ ' ~ '  

Y'~VLM(a, b, c):H*(~N) -'* H*(~L) |  are given as examples. 
The generic expression "sewing" will be understood as a sequence of elementary 

sewings. An elementary sewing is a surgery operation of three-punctured Riemann 
spheres. It proceeds in two steps. Let p and q be two punctures on either the same 
or two distinct spheres, z~p) and Z~q) be local coordinates defined around them. In 
the first step we delete two small open disks centered at p and q on the sphere (or 
the spheres) to which p and q belong. Secondly, we identify, on annuli around p 
and q, the local coordinates by setting zCp)= z~) 1. In the general case, moduli 
parameters are introduced in the definition of the local coordinates. We say that 
sewing has been performed "around p and q." 

Graphically, we represent an elementary sewing operation by joining with a 
solid line two legs of either the same or of two distinct three-punctured spheres. 

o,L a,L 

c,N c,N 

( i )  ( i i )  

Fig. 4 

~ ~ b al ~ a2 

c I c 2 
(i)  (~i) 

Fig. 5 
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The respective sewing diagrams are drawn in Fig. 5: (i) is the one-punctured torus 
obtained by sewing X around its punctures a and c; (ii) is the four-punctured 
sphere obtained by sewing X1 = $1 - {ax, bl, cl } and X2 = $2 - {a2, b2, c2} around 
the punctures bl and b 2. 

The associated elementary sewing of three-point operators has an analogous 
graphical representation, where two legs can be joined if they carry equal representa- 
tion indices and have compatible orientations. It is defined by the following 
operations: (1) sew around the punctures associated with the two legs; (2) if L is 
the common representation index of the two legs, take a sum over all "intermediate 
states", i.e. over a basis ~j of vectors of definite weight of H*(~,~L). 

Concretely, diagram 6(i) represents the map from H*(~-M)~r/to r defined by 
v .r L ~<~ i ,  MLr/| > (4.2) 

J 

associated with the one-punctured torus 5(i). Here, ~y denotes the dual basis with 
< ~y, ~> = 6~t. This expression depends on the puncture b and on a modular 
parameter introduced in the sewing operation. This dependence is prescribed by 
the coordinate dependence of three-point operators. Diagram 6(ii) represents the 
four-point operator mapping H*(~N1 ) | 41 | ~2 to H*(~L1) @ H*(~L 2) 
whose matrix elements are 

~ < o~1, .L, v ~:.L2M : , (4.3) 
~ f ~ M N l l ~ j | 1 7 4  , r  N 2 ~ 2 2 ,  

J 

where co i are in the dual spaces. It is associated with the four-punctured sphere 
in 5(ii). 

Note that a concrete computation of the above sums over cohomology modules 
is made possible by replacing them with suitable sums over complexes. From 
property (4.1), the sum over H*(~-L) = H~ in (4.2)is equal to the alternated sum 

(__ 1)i~" <~i)v  q/'L[i] ~ t ~ ( i ) ~  (4.4) 
' - - M [ O ] L [ i ] ' I  ~ ~ j  - 

i 6 7~ j 

over the complex ~L" Here gt.0 is a basis of ~(i) and ~)~ the dual basis in the ~j L ' 
dual complex. On the other hand, the sum in (4.3) could be obviously replaced 
by a sum where t7 ranges over a basis of the entire complex ~ u .  For, in virtue of 
(4.1), all terms with r/not in the cohomology are identically zero. 

Sums over Fock spaces can be computed using coherent state techniques 
[DiPFHLS; Fel 1]. 

LI L 2 

Ni N 2 
( i )  C~i) 

Fig. 6 
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P-" x,,,, 

N./ 
Fig. 7 

L 

Fig. 8 

In order to complete the set of graphical rules, we also need a symbol for the 
background operators B*P-N(a,  b; Q). This is represented in Fig. 7. The dot corres- 
ponds to the reference point Q. 

~ , L  "a The sewing of a three-point operator Me-N (  ,b, d l )  and a background 
operator , P - n  . B N (c, d2, Q) is drawn in Fig. 8. The resulting three-point operator is 
associated with X = S -  {a ,b ,c}  and coincides with ~tr*L_N(a,b,c)'~N*P-N, of 
which Fig. 8 establishes the graphical symbol. 

Finally, the construction of conformal blocks of minimal models on a Riemann 
surface is formulated as follows. A k-punctured surface ~'o,k of genus 9 can be 
obtained by sewing a number ( 2 9 -  2 + k) of three-punctured spheres. The same 
2~g,k may be represented by different sewing diagrams, according to differently 
chosen patterns of elementary sewings. These diagrams are related by transforma- 
tions of the mapping class group of Zg.k. To every sewing diagram representing 
Z,o, k we associate the k-point operator obtained by sewing three-point operators 
~t/* (Fig. 4) or ~U*. ~O* (Fig. 8) according to the same diagram. The matrix elements 
of this operator are minimal models' k-points conformal blocks on genus 9. In 
particular, the matrix element taken between k highest weight vectors is a primary 
conformal block. 

4.4. We call genus g characters the zero-point conformal blocks on genus g defined 
by sewing. For 9 = 1, they are the characters ZL(q) = TrH*~L~q L~ of  L(hL, c) ~- H*(~L) ,  
where q = exp(27ziz) with Im z > 0. ZL(q) is computed by sewing a single operator 

1 
,L = - and = qu of local coordinates around YF1L(O% 1,0) with the choice z(~) Zto ) 

U 

and 0. On higher genus, let us choose a specific sewing diagram for 27g in the form 
of two one-punctured tori and (9 - 2) two-punctured tori connected by their legs. 
Fix the canonical basis for Hl(27g, Z) which is given by the a i and b i cycles of the 
g tori, and let z be the period matrix on the Siegel upper half-plane defined in 
terms of a basis of abelian differential v i of first kind as S vi = 6~j, S v~ = zij. The 

ai bi 

genus # characters Z corresponding to the sewing diagram for S o are labelled by 
the sets {L, M, N} of representation indices L1 . . . . .  L o, M1 . . . . .  Mo- 1, N2 . . . . .  No- 1 
and turn out to be functions of z. The characters corresponding to any other 
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L I L 2 Lg-i Lg 

N2 Ng -I P-Lg 
( i )  

L 1 L 2 Lg_ I Lg 

N2 Ng-I 

Fig. 9 

choice of sewing diagram can be obtained from the above ones via the action of 
the symplectic group Sp(2g, Z) on z. The action of Sp(2g, Z) on the genus g 
characters is calculable, in principle, from the results in [Fel $2]. 

x{L,M,N} is represented in diagram 9(i) for g even and in 9(ii) for g odd. A 
parity argument based on the fusion rules shows that a number s of three-point 
operators (with s - g = 1 mod 2) must have the representation of Fig. 8. We choose 
the smallest numbers s = 1 for g even and s = 0 for g odd. All other possibilities 
give in fact proportional results. 

The traces over the cohomology modules H*(~L,) are written as alternated 
sums over the respective complexes, as in (4.4)�9 Using then (4.1), we easily see that 
all sums over intermediate vector states in H*(.~M,) and H*(~N, ) can be 
equivalently replaced by sums over the larger Fock spaces ~-to) and ~-tJ'~ for all 
additional terms so introduced are equal to zero. Thus 

z{L,M,N) = Z 
j l , . . . , j g ~  7gg 

where 

K{L[j], M, N[j] } 

= Z-.. Z Z ... 
"~g Lg ,i I Mg - 1 

( i  =laI1 (-'I)J')K{L[j],M,N[J]}, 

Z Z ... Y, 

(4.5) 

X ~ l  ~ - - M 1 N t [ j l ] r l l " ~ ' " ~ l  '" N2[j2] 52 / N. 52  ' r M 2 L x [ j 2 ] r l 2  

( V ,,,~,,c~,,,v .,FL~ti,,]u ,~<(~ a~P-L~tJ,,]~: "~ fo rgeven  
[ / ,  X ' ~ g  " : - ~ ' I g - - I , - - ( P - L ) [ j j ]  ' ~ g l  ' ~ L [ j g ]  " ~ g /  

�9 ~ ; g e ~ ) L ~  

W~'~ ~ . ~  ~ e~L~Ej~]M~-~ \ for g odd. 

The notation ~ means the sum over a basis of vectors with definite weight, 

and ~ v denotes the element of the dual basis dual to the basis element ~. 
Each three-point operator is expressed as an integral over a cycle supported 

on the associated three-punctured sphere. K{L[j], M, NI-j]} has then the form 
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Fig. 10 

of an integral 

I2~Ltj1,M,Ntj1 ~ (4.6) 
F{L[ j ] ,M,N[ j ] }  

over the cycle given by the product - f  ~L1tjll ,,Z2tj21ul ,~N2tj21 This cycle is ,..,~t " M I N I [ j l ] ~  ~N2[j2] ~ ~ M 2 L 2 [ j 2 ] '  . . . .  
drawn in Fig. 10. Each of its factors is given by (3.9) as a product cycle times a 
normalization. Let 6i = ( - 1 )  j' be the parity of ji. Using the fact that every 
three-point operator in diagram 9 obeys the fusion rules, one can show that 
F { L [ j ] ,  M, N [ j ]  } depends only on the parity 6 = (61 . . . . .  6 o) of j l  . . . . .  jg. For an 
integer n such that 0 < n < p - 1, let n[6] be the integer equal to n if 6 = 1 and 
equal to (p - n) if 6 = - 1. As a result: 

F { L [ j ] ,  M, N [ j ]  } = F~{L, M, N} (4.7) 

is given by the product of 

Clt[  _ al] ,mt , l l [ t~t]  @ Ctp, _ l,l,m,t,l,l , 12[ -  8 2 ] , p -  ml,n2162] @ Cp, - I[,p" - m'l,n" 2'  
t 

c.~[_~21 .... 1~[~1 | cp_,~,m~,,~ . . . . .  

each cycle being supported as in Fig. 10, times the normalization factor 
g g - 1  

�9 #' ,~{L,M,N} = I-[ qX/2~a-~,)t,~l-m,) ~I ql/2~,-,~o,,~ . . . .  +,) 
i = 1  i = 2  

.qEtg for g even 1 for g odd. (4.8) 

The integrand in (4.6) can be computed explicitly. The direct method [DiPFHLS]  
makes use of a concrete (Schottky) parametrization of 27g. The sums over Fock 
spaces are evaluated and shown to be convergent. A simpler method is suggested 
by the observation that the integrand in (4.6) is a conformal block of a conformal 
field theory constructed upon: a pair ~r ~7 of commuting Heisenberg algebras; a 
representation space ( ~  F(fln, flo) |  flo); the duality product introduced in 

N e Z  2 

Sect. 2. This theory has a formulation in terms of a single scalar field 
tk:27 o ~R/2~f l+Z ,  with action [Fr] 

1 2 
S(qb) = ~n~ d xv/~(~u'O~,q~O,(a + 2ifloRqb), 

where R is the scalar curvature of a metric ~ given on 2? o. Local correlation 
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functions are path-integral expectation values of products l--[ exp(ifladP(Pa)) obeying 
�9 a 

the neutrality condition ~ fla = - - 2 f l O ( g -  1). The path-integral is computed by a 
a 

saddle-point method. Let us choose a complex coordinate system for which 7 takes 
the local form ds 2 = p(z, ~)]dzl 2. The analytic structure of local correlation functions 
was analyzed by E. Verlinde and H. Verlinde [VV1]. 

The same analysis can be repeated in our case. We first observe that 12~ztj],M,N[i] ~ 
is a conformal block of the expectation value 

( ( 1 / 2 ) o ( . -  2~ (lm.(p'- 2~ ) 
I-I ei#+4~(Pi) 1--[ ei#-4~(P;')ei2f~176 for g even, 
i = l  i=1  

(1/2)(0- 1)(p-  2) (1/2)(0- 1)(p' - 2) ) 

l--[ eia + ~'(P') I-I e ia- ~(e;'~ for g odd. 
i=1  i = 2  

Here the total number of screening operators is computed by summing the numbers 
of those associated with each three-point operator of diagrams 9(i) and 9(ii). A 
diagrammatic algorithm can be easily derived, which shows that the total numbers 
of fl+ and fl_ screening operators are, respectively, equal to the topological numbers 
�89 of arrows) - (p + 1)(# of vertices) - 2(# of dots)} and �89 of arrows) - 
(p' + 1)(# of vertices) - 2(# dots)}. This makes it clear why they depend only on 
the genus and not on the representation labels {L[j] ,  M, S [ j ]  }. 

Secondly, we compute the path-integral. Let the canonical basis ai, b~ chosen 
as specified above, vi be the corresponding abelian differentials of first kind with 
z as period matrix. We use the following standard notations. Given on 2? o two 

B 
positive divisors A and B having the same degree, Sv with v = ( v l  . . . .  ,vo) is the 

A 
Jacobi map to J(.S,o) = C~ 0 + zZ~ E(P, Q) is the accordingly defined prime form. 

A 

Finally, let A be the Riemann divisor class and S v be the projection to J(Xg) 
( g -  1)P 

of the vector of Riemann constants with base-point P. By a(P) we denote the 
unique homomorphic,o/2-differential having: no zeroes, no poles, and multipliers 

1 and exp i n ( g -  1)zj j -  2hi f vj when P is moved around, respectively, as 
( 0 - 1 ) P  

and bj. a(P) was introduced by Fay IF, p. 31] (see also [VV1]). 
Let us fix the metric ds 2 = pldz[ 2. Then [VV1] 

(a=~exp(ifla~)(Pa)))=[eCSL(P'~a P(Pa)-k(#")IL~,...~LgeZ2IS{L}(P 1 .... ,Pk)' 2, 

where SL(p) = ~ ~(~ log p dz)-^ (~-log p d~) is the Liouville action. The conformal 

blocks S~LI = S(L ...... L.) are sections of a line bundle over the k-fold product 
J(Xo) • ... • J(Zo) minus its diagonal subspace. Explicitly: 

"l~6(Pa) - 2~~ 1-[ E(Pa, Pb) pal~b, 
a a < b  
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where det' Q is the holomorphic square root of the regularized determinant of the 
Laplacian without zero mode and/7~L ) = (/7L1 . . . . .  /TLg ). Note that, in virtue of the 
condition }-'1/7, = -2/7o( 9 - 1), the above expression does not depend on the base- 

a 

point Po. Putting {L} equal to {L[j] }, some of the charges fla equal to/7+, some 
equal to/7_ and one equal to 2/7o if 9 is even, we obtain an explicit formula for 
I2~Ltjlus~tjj). Note that this formula depends only on {L[j]  }. 

The final part of the computation is straightforward. We have 2v/~/TL,tj d = 

l'iP - liP' - (P - P') +JiPP' if Ji is even and 
( J i -  1)pp' if j i  is odd. Set 

A[8] = (21 [81] . . . . .  2o[<$o]), 

= @1 . . . . .  

2X//~ flL,tj, 1 = l'iP + lip' i ( p  [ p ' )  + 

2116i] = l'iP -- ~ilip', 

e i = p -- p'. 

W e  

ki[6i - 1 ] - 1  �9 = - -  ~ ( J i  - -  1) for Ji odd. The result is 

z { L , M , N } =  Z ( 0 1 ~ / )  I -Qa{L}, 
~l , . . . ,~o = + 1 i F ~ , { L , M , N }  

where, if g is even 
O(P - 2)/2 

.O~{g} = Azt~l(Zeveni'r ) I'-[ E(Pi,  Pj)  2"'/" 
i , j =  1 

i < j  

g(p" - 2)/2 g ( p  - 2)/2 g(p" - 2)/2 

H E(P,i, ' p~,)Zpip' 1-I H e (P , ,  P'i')-2 
i ' , j ' = l  i = 1  i ' = 1  

i ' < j '  

g(p - 2) /2 O(P' - 2)/2 

l~ a(Pi) 2-2p'ip I ]  ~(P'I')Z-EplP'a(Q) -4+2p'ip+zpip" 
i = 1  / ' = 1  

perform the sums in (4.5): over k i [6 i=  1] = � 8 9  for Ji even and over 

and 

H 
i ' = 1  

aA(ZIT) = 

a(P'i,)z-2plp' dz(Pa) /x ... A dz(P'I) ix ...; 

y '  exp{ in(2pp 'k  + A - e)z(2pp'k + A - e)'/2pp' 
ke77 O 

+ i4n(2pp'k + A - e)Z' /2pp'} ,  

( o -  1)(p' - 2) /2 

E(Pi' PJ) 2v'ip IJ E(P'.,, P'. 12pip' t j ' z  
i ' , j ' = l  

i ' < j '  

(O-  1 ) ( p -  2)/2 

E(Pi ' p ,  ) -  2 I - I  2,,.i,, 
i = 1  

E(P;,, Q)- 2 + 2pip' 
g ( p - -  2)/2  g(p '  - 2)/2  

I~ E(Pi,  Q)-2+2p'/P [ I  
i = 1  i ' = 1  

�9 dz(P1) A ... A dz(P'l) A ...; 

if g is odd 
( 0 -  1 ) ( p -  2)/2 

a {c) = aat j(Zod l ) 1-I 
i , j = l  

i < j  

(g - 1 ) ( p -  2)/2 (g - 1)(p' - 2) /2 

I1 I1 
i = 1  i = 1  

(g-- 1)(p' - 2) /2 



Conformal Blocks of Minimal Models on a Riemann Surface 39 

Zeven  : 

Zod  d 

E P'I v -  E P l v - ( P - - P  ' v+ I v , 
i=1  Po i ' = 1  Po (g -  1)Po d 

(g -  1)(p- 2)/2 P i  ( g -  1)(p ' -2) /2  PI' a 

E P'I v -  E I v - ( p - p ' )  I v. 
i = 1 Po  i '  = 1 Po  ( 0 -  1)Po 
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