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Abstract. In this paper we consider the bosonic sector of the electroweak theory. 
It has been shown in the work of Ambjorn and Olesen that when the Higgs mass 
equals to the mass of the Z boson, the model in two dimensions subject to the 't 
Hooft periodic boundary condition may be reduced to a Bogomol'nyi system and 
that the solutions of the system are vortices in a "dual superconductor". We shall 
prove using a constrained variational reformulation of the problem the existence 
of such vortices. Our conditions for the existence of solutions are necessary and 
sufficient when the vortex number N = 1, 2. 

1. Introduction 

Instantons, monopoles, and vortices form a rich spectrum of topologically elegant 
solutions of gauge field theories. Vortices arise in two-dimensional models in which 
the gauge symmetry is spontaneously broken via Higgs bosons. Such solutions 
represent string-like field configurations in higher dimensions and, in the context 
of the abelian Higgs theory, were first discovered in Abrikosov's poineering study 
1-1] of the magnetic properties of superconducting materials. In recent years, due 
to their interesting roles in grand unified theories, especially in cosmology [10], 
nonabelian vortices have attracted a considerable amount of attention. It is well- 
known that one of the most important and successful nonabelian gauge field 
theories is the electroweak theory of Glashow, Salam and Weinberg, where the 
gauge group is SU(2) • U(1). In a series of papers, Ambjorn and Olesen [3-5]  
proposed that a class of periodic vortex-like solutions similar to those of Abrikosov 
occur in this electroweak theory (see also Skalozub [11, 12-1). They showed that, 
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when the coupling constants satisfy a critical condition, energetically stable solutions 
can be found from a Bogomol'nyi system. These solutions give rise to a distribution 
Of vortex-lines and the total energy is proportional to the quantized flux or the 
vortex number. Moreover, the interesting structure of the equations allows one to 
derive a magnetic anti-screening phenomenon relevant to the quark confinement 
problem. Since the fermionic sector of the model is not responsible for the spon- 
taneously broken symmetry, it suffices to consider the bosonic sector only. The 
periodicity may be realized by the 't Hooft boundary condition [13]. Ambjorn 
and Olesen used a perturbation analysis and numerical experiments to support 
the existence of such nonabelian vortices but they were unable to obtain a rigorous 
proof [4]. The major difficulty is that the Bogomol'nyi equations now take a more 
delicate form than in the classical abelian case [8, 14] due to the above mentioned 
anti-screening of the magnetic field. (For the abelian case, the structure of the 
Bogomornyi equations allows a complete resolution of the multivortex problem 
over a periodic cell realizing Abrikosov's solutions [14].) Indeed, such a significant 
difference has already been exhibited in an earlier study of Ambjorn and Olesen 
on the periodic vortices of a simplified SO(3) theory [2] in which the W-bosons 
acquire masses through a Higgs mechanism but the Higgs fields are neglected 
from the Lagrangian. Here a system of the Bogomol'nyi type equations also occur 
but the reduced elliptic equation takes a similar form as those in the prescribed 
Gaussian curvature problem for compact surfaces with a positive Euler character- 
istic [9]. Hence in this situation one might only expect to find certain sufficient 
conditions for the existence of multivortex solutions [15]. 

In this paper we will study the existence of multivortex solutions in the full 
electroweak theory proposed by Ambjorn and Olesen. Our main strategy is to 
use a crucial change of field variables to transform the system into a "lower 
diagonal" form. Such an approach allows a multi-constrained variational solution 
of the problem if the given data in the problem satisfy certain restrictions. Under 
these restrictions, existence results will be established. When the vortex number 
N = 1, 2, our conditions for existence are both necessary and sufficient. Whether 
or not these conditions for the case N > 3 may further be improved remains open. 

The organization of the paper is as follows. In Sect. 2 we discuss the electroweak 
theory in the standard unitary gauge with a residual U(1) symmetry and set up 
most of our preliminary notation. In Sect. 3 we show that a convenient 't Hooft 
periodic boundary condition (for an arbitrary lattice structure) in the electroweak 
theory is equivalent to that in the corresponding U(1) model. Section 4 gives a 
characterization of the quantized flux by the vortex number, parallel to the situation 
in the abelian Higgs model [14]. In Sect. 5 we prove our main theorem (Theorem 5.6) 
for the existence of multivortices in the electroweak theory. Section 6 contains 
some concluding remarks. 

2. The Eiectroweak Theory in the Unitary Gauge 

We shall use {Za}a= 1,2,3 to denote the Pauli matrices: 

oil ~ 
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Then t. = %/2, a = 1, 2, 3 is a set of generators of SU(2) satisfying the commutation 
relation 

Its, tb] = ie,bct c. 

Let q5 be a complex doublet. The gauge group SU(2) x U(1) transforms q~ as 
follows: 

~b~--~exp(Li~%t~)~b, og.~R, a = 1 , 2 , 3 ,  

~- -~exp(-  i~to)4), ~P,~,  

where 

1 

is a generator of U(1) in the above matrix representation. 
In the (1 + 3)-dimensional Minkowski space with the signature ( -  + + +), the 

A a a SU(2) and U(1) gauge fields are denoted respectively by Au = uta (or Au = (A )  
as an isovector) and Bu. Both A and Bu are real 4-vectors. The field strength 
tensors and the SU(2) x U(1) gauge-covariant derivative are defined by 

Fu~ = OuA~ - ~vAu + i g [A , ,  A~], 

G~v = OuB~ - ~vBv, 

Du4) = Ou~) + igA~t,c~ + io'Butoeb, 

where 9, 9' > 0 are coupling constants. 
The Lagrangian density of the electroweak theory in the bosonic sector is 

= _ LtFu~.v4,_ --u~ + GU~Gu~) - (DUcP)*'(D,49) - 2(q ~2 - -  0 * 0 )  2, (2.1) 

where and in what follows, ,,t,, always denotes the Hermitian conjugate, and 2, ~0 o 
are positive parameters. 

The new vector fields Pu and Z u are a "rotation of the pair A 3 and Bu: 

Pu = B~ cos 0 + A 3 sin 0, 

Z u = - B u sin 0 + A 3 cos 0. 

In terms of Pu, Zu, Du is written 

Du = Ou + i 9 ( A l t l  + A ] t z )  + iP , (9  sin Ot 3 + O' cos Oto) + iZu( 9 cos Ot 3 - O' sin Oto). 

Requiring that the coefficient of P ,  be the charge operator eQ = e(t3 + to), where 
- e  is the charge of the electron, we obtain the relations 

e = 9 sin 0 = 9' cos 0, 

99' 
8 - -  

(0 z + 0'2)1/2' 

cos 0 - g (02 + 0,2)1/2. (2.2) 

Such a 0 is called the Weinberg (mixing) angle. In the sequel, we will always assume 
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that 0 is fixed this way. The D. takes the form 

D. = ~3~ + ig(A~t~ + AEt2) + iP.eQ + iZueQ', 

where Q' = cot Ot 3 - tan Ot o is the neutral charge operator. 
From (2.2), when we go to the unitary gauge in which 

where q~ is a real scalar field, there holds 

l 1 1 �9 2 
Du~ = 2g(A u tA ~)~o 

ig 

Define now the complex vector field 

1 
W.  = - - ( A ~  + iA 2) 

,A 
and ~ = 8. - ioA 3. With the notation Puv = 8.Pv - OvPu, Z.v  = O.Z~ - ~?vZ., the 
Lagrangian (2.1) takes the form 

5 ~ = - � 8 9  w ~ - ~ v w " ) * ( ~ , , W v  - ~ ~ W . )  - ! 7 , - 7  _ ! p . v p  

_ �89 [WuW,]2 _ [W" IV.] [WvW~] *3 - ig(Z"" cos 0 + P"~ sin 03 W~ W. 

1 
- -  !,92,o 2 l/l/'# W t  __ 8 # ~ 8 # ~  - -  Z ( r  - -  ~2)2. (2.3) 2v v . .  . . ,  4cos 2 0g2c~2ZuZu  

Thus the model is reformulated in the unitary gauge. The W and Z fields 
represent two massive vector bosons which eliminate the unphysical massless 
goldstone particle in the original setting. These fields mediate short-range (weak) 
interactions. The remaining massless gauge (photon) field P arising from the 
residual U(1) symmetry mediates long-range (electromagnetic) interactions, 

As in [4], we assume that the magnetic excitation is in the third direction, 
Thus, we arrive at the vortex ansatz 

A~ = A~ = B o = B 3 = 0, 

A~= A~(xl,x2), B j =  Bj(xl ,x2) ,  j = 1 , 2 ,  

r = ~b(xl, x2). (2.4) 

As a consequence, if the corresponding W 1 and W 2 are represented by a complex 
scalar field W according to W1 = IV, W 2 = i W  (this implies the relation A21 = - A  2, 
A~ = AI), the energy density associated with (2.3) takes the form 

1 2 1 2 _ 2 g ( Z 1 2 c o s O + P 1 2 s i n O ) l W [ 2  = 1~1 W + i ~ 2 W [  2 + 2"P12 + 2 Z 1 2  

1 ~2. 2,72 + 2g2l Wl4 + (t3jt, o)2 + ~ y  (p z_,j + g2q921WI2 + 2(q92 - ~2)2. (2.5) 



Multivortices in Electroweak Theory I 5 

The residual U(1) symmetry of the model may clearly be seen from the 
invariance of (2.5) under the gauge transformation 

W~-*exp(i~)W, ej~--~Pi+l ~j~, Zj~-~Zj, ~p~-*tp, (2.6) 
e 

due to (2.2). 

3. Equivalence of the 't Hooft Periodic Boundary Conditions 

In this section, we discuss the 't Hooft periodic boundary conditions. Since we are 
interested in vortex-like solutions, only the two-dimensional case will be examined. 
Namely, we assume that the field configurations are in the form (2.4). 

Consider a fundamental domain O of a lattice in R 2 generated by independent 
vectors a~ and a2: 

= {X = (X1, X2)~R21X ~- sla 1 + $2a2,0 < SI,S 2 < 1}. 

Define 

Fak = {x~p-21 x = Skak, 0 < Sk < 1}, k = 1,2. 

Then t~12 = FalU Fa~u{a 1 + F~2 } u{a  2 + Fat} u {0,al,a2,a I + a2}. 

Let Aj = A~.t a, Bj, and tk be the gauge potentials and the Higgs boson fields 
respectively. The 't Hooft periodic boundary conditions are such that the triple 
(A j, B j, cp) are doubly periodic in p2  up to gauge transformations. For our purpose 
we impose this periodicity as follows: 

(exp (- i~k( t  3 + to))~b)(x + ak) = (exp (-i~k(t 3 + t0))~b)(X), 

o)kA jo)~ 1 i 1 -- ~O)k~ jO) k (X), - ~kaj~o~- )(x + ak) = o~kAj~ok- 
g 

(BJ4-~t~J~k)(X + ak)= (Bj + ~j~k)(X), 

x (ra, or,2)-rak, k =  1,2, (3.1) 

where ~ ,  ~2 are real-valued smooth functions defined in a neighborhood of ea2 u 
{al +/-'a2}, /"at L){a 2 + Fat}, respectively, and 

Ok(X ) = exp ( -  i~k(X)t3)eSU(2), exp ( -  i~k(X)to)e U(1). 

Let us see what these conditions imply for the field configurations in the unitary 
gauge. It is easy to verify that the first relation in (3.1) says that q~ is periodic: 

c#(x + ak) = q0(x), x6(Fa, L) Fa2 ) - Yak, k = 1, 2. (3.2) 

To proceed further, we recall the following well-known Campbell-Hausdorff 
formula 

e x p ( - A ) B e x p ( A ) =  B + ~ [ B , A ]  + ~.[[B,A],A] + ~.[[[B,A],A] ,A]  + ..., 
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where A, B are n x n complex matrices. Therefore 

09A j09-1 = exp ( -  i~ta)A~t a exp (i~t3) 

= ( A J  1 2 1 2 1+ 1 3 2 -~.r162 Aj ~.l. ~ Aj + "")t 1 

+ ( A 2 +  1 1 1 2 2 _  1 3 1 ~ A ~ - ~  Aj ~ A t +--.)t,~ 
\ 

3 + Aj t3, 

g g 

Thus after some calculation we obtain, in the notation of Sect. 2, 

exp (i~k(X + ak))W(x + ak) = exp (i~k(X))W(x), 

(A3 + ~Oj~k)(X + ak) = (A3 + ~Oj~R)(X), 

x ~ ( r a ,  u F,=) - ra~,  k = 1, 2. (3.3) 

Combining the above equation with the last relation in the boundary condition 
(3.1) and using (2.2), we have 

( P j + leOJ~R )(X + ak) = ( P ~ + ~j~R )(X), 

Zj(X+ak)=Zi(x) ,  x~(F,,wF,2)-F,~, k = l , 2 .  (3.4) 

We summarize the boundary conditions (3.2)-(3.4) we have obtained as follows: 

~0(x + a~) = ~o(x), 
exp (i~k(X + ak))W(x + ak) = exp (i~,(x))W(x), 

(Pj + ledJ~R)(X + ai)=(Pj + ~dj~k)(X), 

Zj(x + a,) = Zj(x), x~(Fa, u F , 2 ) -  Fa~, k = 1, 2. (3.5) 

The relations (3.5) are exactly the ' tHooft  periodic boundary conditions for 
the reduced U(1) model (2.5) over the lattice with fundamental domain ~ (because 
in such a situation a gauge transformation is defined according to the formula 
(2.6)). Hence we have shown that the ' tHooft  periodic conditions for the full 
SU(2) x U(1) theory and the theory in the residual U(1) symmetry are in fact 
equivalent. 

For convenience, we momentarily denote the value of a function ~ at a point 
x = slax +s2a2~ff2 by ~(sa,s2). Since W is a single-valued complex scalar field, 
there must exist an integer N~Z so that 

ix(l, 1 - ) -  4,(1,0 +) + ~a(O, 0 + ) - ~,(0, 1-) 

+r ZrcN=O. (3.6) 
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2 
g~~ , 

+ 2sinO r12 

= sin Ok e 8 s in 0 

In the critical case where 

As a consequence of (3.5)-(3.6), there holds 

2nN 
= S P12 dx = ~ P j d x s -  (3.7) 

a aa e 

Namely, the total magnetic flux through/2  is quantized and independent of the 
size of O. On the other hand, it is easily seen that the flux through O induced by 
the massive vector boson Z is zero. 

Using (3.7) and the boundary condition (3.5), we see that the energy density 
(2.5) leads to the energy lower bound as in Ambjorn and Olesen I-4]: 

E = ~Sdx  
0 

= dx I ~ l W + i ~ 2 W I 2 q - ~  12 

g 2 g 2 

g2 ) 2 

8 c o :  0 - 8 o 

g~02 Z12 g ~k(~,jkZj~02)~ 
2 cos 0 2 cos 0 J 

for 2 > g2 
-- 8 COS 2 0" 

~,-- g2 

8 cos 2 0' (3.8) 

.namely the Higgs mass equals to the mass of Z vector boson, the above energy 
lower bound may be saturated by the solutions of the following Bogomol'nyi 
system: 

~ 1 W  + i~2 ~'z = O, 

g Oq92+2gsinOiWi2, P12 = 2 sin 

Z 1 2 -  2 cosg 0 (q~2-q~2)+2Oc~ 

2 cos 0 
Z j -- ejkd k In ~o, (3.9) 

g 

subject to the 't Hooft periodic boundary condition (3.5). 
It is straightforward to verify that solutions of (3.9) give rise to solutions of the 

original electroweak theory. From the second equation in (3.9) and (3.7) it is seen 
that the integer N in the relation (3.6) must be positive. The rest of the paper will 
be devoted to a construction of the solutions of (3.9) 
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4. Realization of  Quantized Flux 

This section discusses how the quantized flux is characterized by a smooth solution 
quartet (r IV, P j, Z j) of the Bogomol'nyi equations (3.9). For simplicity, we assume 
that the field W does not vanish on 0~.  The domain g2 may be viewed as a subset 
in the complex plane 112. A point in .(2 will be denoted by z = x 1 + ix z and the set 
of zeros of W by Z(W) .  

Under the notation 

1 1 
: 2(r - -  ir r = ~(r -'[- i~2), O~ = a31 -~- iA 3, 

the first equation in (3.9) takes the form 

OtW = �89 (4.1) 

Such a relation implies that, locally in g2, W is the product of a holomorphic 
function and a nonvanishing smooth function (see Jaffe and Taubes [8]). Let 
z o s Z ( W  ). Then we have the representation 

W(z) = (z - Zo)"~ x2) (4.2) 

in a neighborhood of z = Zo. Here ho is a nonvanishing complex-valued smooth 
function and the multiplicity no of the zero zoEZ(W) a positive integer. This 
description implies in particular that Z(W)  is a finite set. 

The unitary gauge assumption makes it necessary to impose that the real Higgs 
field ~p has no zero. 

To proceed further, we let Z(W)  = {z~ . . . . .  Zm} and assume that the multiplicity 
of the zero z = z~ is nt >0 ,  I=  1 . . . . .  m. z~ . . . . .  Zm are the vortex locations of the 
solution and n~ . . . . .  nm are commonly called the local vortex numbers. Hence 
N = n: + ... + n~ is the total vortex number. 

The first equation in (3.9) or (4.1) may be rewritten 

2i 
= - - - t~* ln  W, away from Z(W).  

g 

Therefore, outside Z(W), Eqs. (3.15) may be reduced by 
Z12 = (2 cos O/g)A In ~0 to 

[ _ A l n  i W[2  = g2q)2 + 4g21WI 2, 

g2 
l A lnq~=4~os20(q~2-~oZ)+g2lWI2 (4.4) 

(cf. [4]). Since W has the representation (4.2) in a neighborhood of a point ~Z(W),  
the substitution IWI2= exp(u), q32= exp(w) allows us to rewrite (4.4) in the full 
domain ~ in the form 

m 
- Au = g 2 exp (w) + 4g 2 exp (u) - 4n ~ nl6(z - z~), 

1=1 

Aw - g2 
2cos 2 0(exp(w)_ ~p2) + 2gZexp(u), in f2, 

u, w are periodic on 8~. (4.5) 

(4.3) 

virtue of (4.3) and 
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Conversely,  if (u, w) is a 
(go, W, P j, Z j) according to 

go(z) = exp (1 w(z)), 

solution of (4.5), then we can define the quar te t  

W(z) = exp (l[u(z) + i 6} (z) ]); 
m 

O(z) = 2 ~ ntarg(z - zl), 
1 = 1  

2 cos 0 
Zj  (z) = - - -  ~ijOk In go(z), 

g 

Pj(z) = csc OA 3 (z) - cot OZj (z), (4.6) 

where A 3 is determined through (4.3) (the definition of ~ may  actually be extended 
smooth ly  to the full .O; see [8]). It  is not  hard to check that  (go, W, Pi, Zj) is a 
solution of the Bogomol 'nyi  system (3.9) satisfying the periodic boundary  condit ion 
(3.5) so that  the total  vortex number  in (3.6) is given by N = n 1 + ... + nm. 

In conclusion the quantized flux @ is characterized as in the abelian Higgs 
model  [14] by the vortex number  and, to find a solution with flux 2nN/e, it suffices 
to solve the coupled equat ions (4.5) with n 1 + ... + n,, = N. In the next section, we 
will present  a resolution of this system of equations.  

5. Existence of Multivortices 

Since the boundary  condit ion in (4.5) is periodic, it will be most  convenient  to 
view the prob lem as defined on the 2-torus T(12) = R 2 / ~  where x ~ y for x, y~Fx 2 
if x = y mod(a l )  or mod(a2).  In the sequel no ment ion of the domain  .O will be 
made  ~vhenever there is no risk of  confusion. 

The following s tandard result will be useful for our  background  subtraction.  

L e m m a  5.1. For N = n I -{-... q-nm, there is a function u o which is smooth in the 
complement of  the set {z 1 . . . . .  Zm} SO that 

4nN m 
Au o - - -  + 4 n  Y' n l 6 ( z -  zz). (5.1) 

IOI l = x  

Moreover, Uo(Z ) - I n  I z -  ztl 2"' is smooth in a small neighborhood of z = zl. 

A proof  of this l emma may  be found in Aubin [7]. 
N o w  define v = u -  u o. Obviously  the function Uo = exp(uo) is smooth  and 

nonnegative.  Hence Eqs. (4.5) become 

t Av - 4 n N  gZexp(w)_4g2Uoexp(v)  ' 

_ g2 
Aw 2 c ~  z 0 ( e x p ( w ) -  go~) + 2gZUoexp(v). (5.2) 
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It may be hard to treat the above system directly. To proceed further we 
introduce the following transformation of dependent variables: 

q = v +  2w, 
v = v. (5.3) 

Then (5.2) is equivalent to 

A r / =  - H + g 2 tan / 0 exp (�89 I t / -  v]) ,  

Av - 4nN g2 exp (�89 [~/- v]) - 492 U o exp (v), (5.4) 

where 

H = g2q)2 4nN 
c o s 2 0  I-O1" 

An integration by parts of the first equation in (5.4) yields a constraint for the 
solution: 

S e x p ( ~ [ q - v ] ) = C l - ~ ( c o t 2 0 ) H  >O. (5.5) 

On the other hand, using (5.5) and the second equation in (5.4), we obtain another 
constraint: 

IOI (anN ) 
U o exp (v) = Ca - 4 g ~  \ [ ~ -  - g2~0~ > 0. (5.6) 

These are constraints for both the solutions and the ranges of physical parameters. 
For convenience, we extract the above constraints for the parameters as follows: 

g2tpg < 4nN g2(p2 
- -  < - -  ( 5 .7 )  
1.01 c o s  2 o 

Let W l'a = WL2(T(12)) be the usual Sobolev space (the set of (ax, a2)-periodic 
L 2 functions whose distributional derivatives are also in L a, equipped with the 
standard inner product). Here L v = LP(O)= LP(T(O)). The norm of L p will be 
denoted by II lip. 
LemmaS.2. The mapping w I ' a ~ L  1 given by f~--~exp(f) is well-defined and 
compact. 

Proof. See Theorem 2.46 in Aubin [7]. [] 

It will be seen that the modified system (5.4) leads to a variational reformulation 
of the problem. Let us first define the functionals l , , J i , J  2 on W ~'2 by the 
expressions 

{~ a24nNl . (2[  } I~(r/,v)=~ IVvl2+~lV~l + v - a H q  , 

Jl(r/, v)= S exP(�89 v]), 

Jz(rl, v) = ~ Uo exp (v). 
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Lemma 5.3. Consider the following constrained minimization problem 

min {I'(r#, v)l(t/, v)~ W 1'2, Jk(r#, v) = Ck, k = 1, 2}. (5.8) 

I f  a = cot 2 0, then a solution of(5.8) is a smooth solution of  Eqs. (5.4). 

Proof. Lemma 5.2 implies that J1, J2 are well-defined in W 1'2. Note also that the 
Fr6chet derivatives J'l, Jz of the constraint functionals are linearly independent. 

Given a > 0, let (r/, v) be a solution of (5.8). Then by standard elliptic regularity 
theory (it, v) must be smooth and there exist Lagrange multipliers 2~, #" depending 
of course on a so that 

t 2,, /1 At/= - H + ~ e x P t  7[r/- v]), 

) /iv 4nN 
[OI ~exp  ~ [ t l - v ]  +#x'Uoexp(v). (5.9) 

Integrating the first equation in (5.9) and using J~(rl, v)= Ct, we obtain 

2" = 2~g 2 tan 2 0, 

which means that (t#, v) verifies the first equation in (5.4) for any a > 0. 
To recover the second equation in (5.4), we choose e = cot 2 0. Therefore, by 

virtue of 2" = 2g 2 and integrating the second equation in (5.9), we have ix" = - 4 g  2. 
In particular, (t/, v) solves the second equation in (5.4) as well. The lemma is 
proved. [] 

In the rest of this section, we fix a = cot 2 0 and suppress the subscript of I" for 
simplicity. The admissible set of the variationN problem (5.8) will be denoted by 

6 t~ = {(tl, v)eW~'21Jk(thV)= Ck, k = 1,2}. 

When (5.7) is satisfied, C1, C2 > 0, and thus 6 e r ~ .  

Lemma 5.4. For f e W  1'2 with S f = 0 and given e > O, there holds the following 
optimal estimate: 

~exp(f) < C ( ~ ) e x p ( [ ~ - - ~ + ~ l l l V f [ [ 2 ) ,  (5.10) 

where C(8) > 0 is a constant depending only on ~. 

The above lemma is a special case of a result in Aubin I-6]. 
We now state our existence result for Eqs. (4.5) as follows. 

Lemma 5.5. If, in addition to (5.7), there holds the inequality 

IOI  (anN g2qo~ ) (5.11) 
1 > 8ns in20\  IOI  - 

then for any distribution z I . . . . .  Zm~K2 and n l , . . .  ,nm6Z+ with n 1 + ... + n m = N ,  the 
system (4.5) has a solution. 

Proof. It suffices to prove that (5.2) or (5.4) has a solution. However, by virtue of 
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Lemma 5.3, it is sufficient to show the existence of a minimizer of the constrained 
optimization problem (5.8) 

We first prove that, under the condition (5.11), the objective functional I is 
bounded from below on 6 e. For  this purpose we rewrite each f ~  W 1'2 as follows: 

f = J#(f) + f ' ,  

where J r  denotes the integral mean of f : J g ( f )  = (~ f)/I s and ~ ' ( f ' )  = 0. Hence 
I may be put for (q, v ) e ~  in the form 

Let us now evaluate 

A(t/, v) = 4rrg~'(v) - a H  I s ~'(t/) 

in (5.12) in terms of q', v', and the constraints. 
From (5.6), we have 

exp (J#(v)) ~ U o exp (v') = C 2. 

Thus 

J#(v) = In C2 - ln(~ Uo exp (v')). (5.13) 

On the other hand, (5.5) implies in a similar manner 

J#(r/) = J//(v) + 2 In C1 - 2 In (I exp (�89 - v'])). (5.14) 

As a consequence, 

A(r/, v) = (47rg - aHI s I)Jt'(v) + 2~rgIo  I In (~exp (�89 - v'])) + C3, 

where C3 = - 2trHIs In C1. 
The second term in the expression of A(r/, v) above has a lower bound as may be 

seen from the convexity of the exponential function and Jensen's inequality: 

I n ( '  exp(~  [t/' - v ' ] ) )  > l n ( l f 2 l e x P ( l ~ l  ' ~ [r/' - v ' ] ) )  = In IL21 �9 

Therefore, using (5.13), 

where 

A(r/, v) > C4J#(v ) + C 3 + 2crHl-O Iln [.Q I 

= C 4 In C2 + C3 + 2aHl.O Iln I-(2[ - C4 ln(~ U o exp(v')), 

1.62[ (4rcN ) 
C4=- 4xg--crHl.Ol = s i ~ \ ~ - - g 2 q ~  2 > 0  

(5.15) 

due to the condition (5.7). 
We now estimate the last term on the right-hand-side of (5.15). Let p,q be a 

pair of conjugate exponents: 1 < p, q < ~ ,  1/p + 1/q = 1. From the Schwarz inequality 
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and Lemma 5.4 it follows that 

ln(~ U0 exp(v')) < 1_ ln([ U~) + 1 ln(~ exp(qv')) 
P q 

< - l n ( ~  g~) + +~ qllVv'll~. 
p q 1 ~  

By virtue of (5.15)-(5.16) we obtain the lower bound 

I(q, v) = 111 vv' II 22 + ~ It re'  tl ~ + A(r/, v) 

(5.16) 

where 

> tr ~)11Vv' II 2 + 2 II vr/' II + c3  + 2all It2 [ln [.O [ 

+ C4(lnCz-lln[,U~]-~lnC(e)),p (5.17) 

1 C 1 

=12(1_2'~1-4=N = 21r1+ 
V/  

Using (5.1 t), it is seen that the constants q > 1 and ~ > 0 can be suitably chosen 
to make x(q, ~)> 0. Hence I has a lower bound on 5 e. 

Finally, let { (q j, v j)} c 5 e be a minimizing sequence of the variational problem 
(5.8). The inequality (5.17)implies that {(q~, v~)} is bounded in W 1'2. On the other 
hand, the relations (5.13) (5.14)and Lemma 5.2 say that {~/(v~)} and {~'(r/j)} are 
bounded sequences as well. Hence { (r/j, v j)} itself is bounded in W 1'2. For simplicity, 
we assume that (r/j, v j )~some (r/,v)EW l'z weakly as j ~  ~ .  As a consequence of 
Lemma 5.2, there holds (r/, v)E5 e. However, the weak lower semicontinuity of the 
functional I over W 1'2 enables us to make the comparison I(~/, v)< lim infI(qj, v j). 
Thus (r/,v) solves (5.8) and the proof of the lemma is complete. [] 

From Lemma 5.5 and the discussion of Sect. 4, we are immediately led to the 
following existence result for multivortex solutions of the electroweak theory. 

Theorem 5.6. For any z I . . . . .  Zm~ff~ and n l , . . . ,nmEZ + with nl + . . . +  n m = N  
satisfying (5.7) and (5.1 I), the Bogomornyi system (3.9) subject to the 't Hooft periodic 
boundary condition has a smooth vortex-line solution (tp, W, P j, Zi) so that tp > 0 and 
Z(W)  = {z~ . . . . .  Zm}, the multiplicity of the zero z = zz of W is n~,l= 1 . . . . .  m, and 
the total flux ~ =  2~N/e. 

Corollary 5.7. In the case that N = 1, 2, (5.7) is a necessary and sufficient condition 
for the existence of a vortex solution described in Theorem 5.6. 

Proof. We may rewrite (5.11) in the form 

0 > @r(N - 2 sin 2 0) - 9 2 [,(2 [ ~0~. (5.18) 

It is easy to see that (5.18) is contained in (5.7) for N = 1,2. [] 
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6. Concluding Remarks 

Remark 6.1. Our existence theorem is obtained through the transformation (5.3) 
which reformulates the problem into a "lower diagonal" system so that a cons- 
trained variational solver may be used. We do not know at this moment whether 
or not the sufficient condition (5.11) may further be improved. At first glance, the 
condition (5.11) seems to depend on our special choice of the change of variables 
(5.3). For example, the transformation 

_ V + W, 

7 2COS2 0 (6.1) 

W = W  

also reduces the system (5.2) into a variational problem which makes one think 
that a different set of sufficient conditions for the existence of multivortices of the 
model might be worked out and a possible improvement upon (5.11) would result. 
The following brief discussion provides a negative answer to this speculation. 

In fact, substituting (6.1) into (5.2), we have 

{Ad;=H'-292tan20Uoexp(2cos20[,-w]), 
= ~(exp(w) - q~2) + 202 Uo exp(2 cos 2 0[7 - w]), (6.2) 

where ) g2 
2 cos  2 0 \ IOI  ' 2 cos  2 0" 

Integrating (6.2), we find the constraints for a solution as follows: 

Uo exp(2 cos 2 0[7 - w]) = C' 1 - cot 2 0 n'lOI (6.3) 
2g2 ' 

~exp(w)=C,2_cot20[~'2[( 92tp 2 4nN~. (6.4) 
0 2 \cos20 I ~ 1 /  

It can be shown as before that, if tr = cot E 0, a minimizer of the constrained 
optimization problem 

min {1(7, w) l(7, w)~Se}, (6.5) 

50 - {(7, w)e W 1'21(7, w) satisfies (6.3)-(6.4)} 

is a smooth solution of the system (6.2). 
With the notation of Sect. 5, we have, for (7, w)E~ the decomposition 

7 = ~'(7) + r w=dl(w)+w'. 

Therefore we may rewrite 1(7, w) in the form 

17 
I(7, w) = ~ II v / I I  22 + �89 II Vw' II 22 + I ~q I (crH'~'(7) -./~;~(w)) 
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where 

o" 
-- ~ II vy  1122 + �89 II Vw' II 22 + B' ln(S exp(w')) 

- I~  I a l l '  ~ ln(S Uo exp(2 cos 2 0[7' - w'])) + C3, 
2 cos 2 0 

- -  - -  - -  > O, 2sin20\cos20 J~Q[/ 

1 ! p 

C a -- - f l ' l nC 2 +2~osEO[t2ltrH'lnC'l. 

Jensen's inequality again implies that  ln(Sexp(w')) > ln].O 1. 
Let p,q be a pair of conjugate exponents as in Sect. 5. F rom the Schwarz 

inequality and (5.10) we obtain the following lower bound for I(7, w): 

I(~, w) > x' I[ Vy' II 2 + K" II Vw' 112 + c~, (6.6) 

where 

x' = ~ - 2ll2lH' qcos2 0[1-~ + el[ l + ~ l ), 

~c" = ( ~- 2[OlH' qcos2 0[ l~--rc + ela[1 + r ] ) ,  

r > 0 is a constant,  

I.OIoH' {1 .  ~ "~ C'4= C'3-2cos2 0~pmO Ug] +l lnC(e)] + fl' In I-O I. 
q 

Suppose now there is a suitable r > 0 to make 

1> 1"(21( 47rN g2~o2)(1 +!), 

1 > ~ - ~  \ I-~-1121(4rrN g2~002)cot20( 1 +r ) .  (6.7) 

As a consequence of this condition, it is immediate to see that we can choose 
suitable q > 1 and e > 0 so that  x',~"> O. Thus (6.6) implies that (6.5) has a 
minimizer and the existence of multivortex solutions again follows. 

However,  the two conditions (5.11) and (6.7) are actually equivalent. 
To  see this, we first assume that (5.11) is true. Let  r = tan s 0. It is seen that 

both requirements in (6.7) are verified. Hence (5.11) implies (6.7). Suppose now 
(6.7) holds for some r > 0. If r > tan 2 0, then the second inequality in (6.7) implies 
(5.11); while i f r  < tan 2 0, or 1/r > cot 2 0, then (5.11) follows from the first inequality 
in (6.7). Thus  (6.7) implies (5.11) as well. 

Remark 6.2. Let T denote the temperature  and T c > 0 a critical temperature.  The 
dependence of the electroweak theory on T may be switched on by adding the 
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term 22q92(T/Tc)2r 2 to the static energy (2.5) (see Ambjorn  and Olesen [5]). 
Therefore the vortex equations (3.9) become 

,,~1 W d - i~2W---- 0, 

g 2 (  F Tl2~+2gsinO[Wl2, 
P x E = 2 s i n 0  q~o 1 - L T ~ A  J 

g (~o2 T 2 

2 c o s 0  
Z~ - - -  ejkdk In ~o. 

g 

It is clear that  for T > To, this system has no solution, while for T < To, an N-vortex 
solution exists provided that N satisfies (5.7) and (5.11) in which ~02 is replaced 
by ~o2(1 - [T /Tc]2 ) .  

References 

1. Abrikosov, A. A.: On the magnetic properties of superconductors of the second group. Soy. 
Phys. JETP 5, 1174-1182 (1957) 

2. Ambjorn, J., Olesen, P.: Anti-screening of large magnetic fields by vector bosons. Phys. Len. 
B214, 565-569 (1988) 

3. Ambjorn, J., Olesen, P.: A magnetic condensate solution of the classical electroweak 
theory. Phys. Lett. B218, 67 71 (1989) 

4. Ambjorn, J., Olesen, P.: On electroweak magnetism. Nucl. Phys. B315, 606-614 (1989) 
5. Ambjorn, J., Olesen, P.: A condensate solution of the electroweak theory which interpolates 

between the broken and the symmetry phase. Nucl. Phys. B330, 193-204 (1990) 
6. Aubin, T.: Meilleures constantes dans le th~or~me d'inclusion de Sobolev et un th6or~me de 

Fredholm non lin6aire pour la transformation conforme de la courbure scalaire. J. Funct. 
Anal. 32, 148-174 (1979) 

7. Aubin, T.: Nonlinear Analysis on Manifolds: Monge-Amp6re Equations. Berlin, Heidelberg, 
New York: Springer 1982 

8. Jaffe, A., Taubes, C. H.: Vortices and Monopoles. Boston: Birkh~iuser 1980 
�9 9. Kazdan, J. L., Warner, F. W.: Curvature functions for compact 2-manifolds. Ann. Math. 99, 

14-47 (1974) 
10. Kibble, T. W. B.: Some implications of a cosmological phase transition. Phys. Rep. 67, 

183-199 (1980) 
11. Skalozub, V. V.: Abrikosov lattice in the theory of electroweak interactions. Sov. J. Nucl. 

Phys. 43, 665-669 (1986) 
12. Skalozub, V. V.: The structure of the vacuum in the Weinberg-Salam theory. Sov. J. Nucl. 

Phys. 45, 1058-1064 (1987) 
13. 't Hooft, G.: A property of electric and magnetic flux in nonabelian gauge theories. Nucl. 

Phys. B153, 141-160 (1979) 
14. Wang, S., Yang, Y.: Abrikosov's vortices in the critical coupling, preprint, 1990 
15. Yang, Y.: Existence of the massive SO(3) vortices. J. Math. Phys. 32, 1395-1399 (1991) 

Communicated by A. Jaffe 


