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Abstract. We prove the existence of  non-self-dual Yang-Mills connections on SU(2)  
bundles over the four-sphere, specifically on all bundles with second Chern number 
not equal :k l .  We study connections equivariant under an SU(2)  symmetry group to 
reduce the effective dimensionali ty from four to one, and then use variational tech- 
niques. The existence of  non-self-dual SU(2)  YM connections on the trivial bundle 
(second Chern number equals zero) has already been established by Sibner, Sibner, 
and Uhlenbeck via different methods. 

1. Introduction 

1.1. Background and Statement of the Main Result 

In this paper we prove the existence of  non-self-dual Yang-Mills connections on topo- 
logically nontrivial SU(2)  bundles over the four-sphere S 4, with the standard metric. 
For  brevity, we use the term non-self-dual to refer to connections that are neither 
self-dual nor anti-self-dual. Recall  that the SU(2)  bundles over S 4 are topologically 
classified by C2, the second Chern number of  the associated vector bundles. The ex- 
istence of  non-sel f -dual  Yang-Mills connections on the trivial SU(2)  bundle over S 4 
has been proven by Sibner, Sibner, and Uhlenbeck [SSU]. As announced in [SS2], we 
prove that non-self-dual Y M  connections exist on all SU(2)  bundles with C2 ~ •  
Existence for C2 --- +1  is still an open problem. 

The study of  non-self-dual Yang-Mills connections has developed rather slowly 
compared to the progress made in the understanding of  self-dual connections. The 
first nontrivial solution of  the Yang-Mills equations on S 4 was the self-dual SU(2)  
instanton, found in 1975 [BPST]. Three years later, the self-dual solutions on S 4 were 
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classified [ADHM], not just for SU(2) but for all classical groups. The study of self- 
dual SU(2) connections on four-manifolds led to spectacular progress in topology, 
notably in the works of Donaldson (see [FU] for an overview). 

In contrast, the understanding of non-self-dual YM connections is at present rel- 
atively modest, falling far short of a classification theory. In 1981, Itoh [I] found 
non-self-dual YM connections on S 4 with structure groups SU(k),  k > 4, and other 
large groups. Itoh's YM connections are equivariant under the full $O(5) symmetry 
group. In 1984 Manin used twistor methods to find other examples of non-self-dual 
YM connections on S 4 which had rather complicated gauge groups (and supergroups) 
[Mal; Ma2, Sects. 2.7, 2.9, 5.5]. Urakawa [Ur] found non-self-dual YM connections 
on SU(2) bundles over S 2 x S 2 and over S 3 x S 1. Parker [P1, P2] has recently proven 
the existence of non-self-dual SU(2) YM connections on S 3 x S~, where S~ is a 
circle of circumference L, and on S 4, the four-sphere with a nonstandard metric. 

Non-self-dual YM connections on SU(2) bundles over the standard four-sphere 
proved elusive, however, and there were reasons to believe that they might not exist. 
The SU(2) Yang-Mills connections on S 4 are formally analogous to harmonic maps 
from the Riemann sphere to itself [A J]. This analogy seemed to suggest that all SU(2) 
YM connections on S 4 should be (anti)self-dual. Bourguignon and Lawson [BL] (see 
also [T1, BLS]) showed that every weakly stable I SU(2) Yang-Mills connection on 
S 4 is self-dual (or anti-self-dual). Taubes IT2, JT] showed that all SU(2) YM con- 
nections that are equivariant with respect to a certain 0(3) action are (anti)self-dual. 
Despite these apparent indications of nonexistence, Sibner, Sibner, and Uhlenbeck 
have recently demonstrated that there exist infinitely many non-self-dual SU(2) YM 
connections on the topologically trivial bundle over the four-sphere [SSU]. 

The basic technique of this paper is to consider solutions with a symmetry group 
action that reduces the dimensionality of the Yang-Mills equations and the self-duality 
equations from four to one. The general formalism of dimensional reduction of the 
Yang-Mills equations from four dimensions to one has been developed by Urukawa 
[Ur], and has been worked out in this specific context by Bor and Montgomery 
[BoMo]. Sibner, Sibner, and Uhlenbeck [SSU] used quite different techniques, namely 
minmax theory for monopoles on hyperbolic space. 

The symmetry group we consider is SU(2), and the action on S 4 is that induced 
from the unique irreducible representation of SU(2) on R 5. The inequivalent lifts of 
this action to SU(2) bundles over S 4 are naturally classified by a pair of odd positive 
integers (n+, n_). We shall refer to each such bundles P~n+,n_) ~ S 4 as a quadrupole 
bundle; these bundles appeared in [ASSS] as spectral bundles of quantum-mechanical 
quadrupole operators. Our main result is: 

Theorem 1.1. On each quadrupole bundle P(n+,~_) --+ S 4 with n+ 7 ~ 1 and n_ 7~ 1, 
there exists a smooth non-self-dual SU(2) Yang-Mills connection. These connections 
are all distinct. 

On the bundles with n+ ---- 1 or n_ = 1, we believe that there exist (anti)self- 
dual equivariant connections, although we do not prove this in the present paper. We 
remark that the fiat connection is equivariant on P(1,a), and the BPST instanton is 
equivariant on P(3,1), see [ASSS]. Recently Bol ~ has established the existence of a 
self-dual connection on P(5,1) via an equivariant ADHM construction. 

1 A YM connection is weakly stable if the second variation is nonnegative 
2 Gil Bor, private communication 
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The second Chern number of  a quadrupole bundle P(,~+,n_) is given by C2 = 
(n 2 - n 2 ) / 8  ([SS1, ASSS]). From this and Theorem 1.1 above, one can easily deduce 
the following facts. Non-self-dual Yang-Mills connections exist on every topological 
bundle type with C 2 ~ +1.  In fact, for a bundle with U2 = k, the number of 
distinct non-self-dual YM connections we obtain is equal to the number of  distinct 
odd positive factors of k (not necessarily prime), minus one if k = + n ( n  + 1)/2 for 
some n = 1,2, 3 . . . .  For example, k = - 4 5  has six positive odd factors, 1, 3, 9, 
5, 15, 45, and furthermore - 4 5  = - 9(9 + 1)/2, so the number of  distinct solutions 
we obtain is five. For the trivial bundle k = 0, we obtain a countably infinite set of  
distinct solutions, which are of  different symmetry type than the solutions of  [SSU]. 

1.2. Outline of the Paper 

In Sect. 2 we discuss the SU(2) action on the quadrupole bundles, and connections that 
are equivariant under this action. Much of  this material is due to Urakawa [Ur] and 
to Bor and Montgomery [BoMo]. We denote by X c S 4 the dense open submanifold 
consisting of  the principal (three-dimensional) orbits of the symmetry group. The 
Yang-Mitls and self-duality equations on X are reduced to one dimension, as systems 
of  ODE's  on the interval (0, 7r/3). 

We label the equivariant connections on X with two real numbers, r and t, which 
describe holonomy near the singular orbits of  the symmetry group in S 4. If  r = 

- 1 (mod 4) and t = - 1 (mod 4), then a finite-action connection on X C S 4 extends 
to a connection on the quadrupole bundle P(~+,~ ) ---+ S 4, where n+ = Ir[ and 
n_ = It I. However, if r r - 1 (mod4) or t r - 1 (rood4), there is a holonomy 
obstruction to extending the connection, and the connection has "fractional Chern 
number" [FHP1, FHP2, SiSil, SiSi2] equal to (r 2 - t2)/8. 

In Sect. 3 we solve the one-dimensional problem, showing that non-self-dual Yang- 
Mills solutions exist on X for all (r, t) with Irl > 1, Itl > 1 (Theorem3.a). The exis- 
tence of  Yang-Mills solutions (Theorem 3.10) is proved with the direct method in the 
calculus of variations. The usual difficulties caused by conformal invariance (bubbling 
off [SaU, Uhl ,  Uh3]) and gauge invariance do not occur, because we are working in 
one dimension. The nonexistence of  (anti)self-duN solutions (Theorem 3.11) comes 
from analyzing the boundary values of  solutions of  the one dimensional (anti)self-dual 
equations. 

In Sect. 4 we show that the non-self-dual YM solutions on X extend to smooth 
solutions on quadrupole bundles P(n+,~_) - ~  ~q4 for the appropriate values of  (r, t) 
(Theorem 4.1). This is a straightforward application of  Uhlenbeck's theorem [Uh2] 
on the existence of  a gauge choice (Coulomb gauge), which together with the Yang- 
Mills equations forms a uniformly elliptic system of PDE's.  Most of  this chapter 
consists of  verifying that in a certain gauge, our connections belong to the appropriate 
Sobolev space. Uhlenbeck's theorem then gives the existence of  a Sobolev gauge 
transformation which takes our gauge to Coulomb gauge, and the smoothness follows 
by eliptic regularity theory. The symmetry of  our connection actually forces the gauge 
transformation to be continuously differentiable, eliminating the difficulties associated 
with noncontinuous Sobolev gauge transformations changing the topological type of 
the bundle. 3 

3 There are similarities here with the equivariant Sobolev theorems announced by Parker [P1] 
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1.3. Numerical Approximations 

Having established the existence of equivariant non-self-dual Yang-Mills connections, 
it remains to consider the form of the solutions and the geometry of the various moduli 
spaces. While we have not yet found any closed-form expressions for these solutions, 
we have numerically computed the connection and the minimizing action for several 
values of (n+,n_). For example, on  P(3,3) the solution has action 5.432815071 4- 
0.00000001 times the action of the BPST instanton. We find that the action grows 
rapidly with n• and that distinct solutions with the same Chern number do not have 
the same action, which led us to conjecture in [SS2] that non-self-dual YM moduli 
space is disconnected. The numerical work will appear in [SS3]. 

2. The Symmetry Group Action 

In this chaper we discuss the SU(2) group action on the quadrupole bundles P(n+,,~_) 
--* S 4. The equivariant connections are described by triplets of real functions on 
an interval (0, 7r/3), and the YM equations and (anti)self-dual equations reduce to 
systems of ordinary differential equations. 

2.1. The Symmetry of the Four-Sphere 

We will consider the symmetry group G = SU(2) = Sp(1). Recall that Sp(1) is the 
unit sphere in the quaternions H. Let (1, Q1, Q2, 03) be a basis of H, with 

~iOi = - 1, ~1Q2 = - -  QZQ1 = 63 , etc. 

For h C G, let Rh : G --+ G be the right translation taking 9 ~-+ 9h. Similarly the left 
translation Lh takes 9 ~-* h9. 

The Lie algebra Lie(G) is the space of left-invariant vector fields on G; a vector 
field 1 E Lie(G) satisfies (Lh). l  = l for any h E G. Lie(G) inherits the algebraic 
structure from the commutator operation on vector fields. Let h(t), t E R be a one- 
parameter subgroup of G. Then the vector field 

d Rh(t)glt=o E TaG 
dt 

is left-invariant (since left translations commute with right translations). Take as a 
basis of Lie(G) the vector fields li, i ---- 1 ,2 ,  3, that correspond to the right translations 
by exp(tL)i/2). Then [11,12] = 13 and (cyclic), by which we mean that the equation 
holds not only for the indices 1,2, 3, but as well for the cyclic permutations 2, 3, 1 
and 3, 1,2. We will often use the fact that G is a subgroup of a linear group to identify 
exp(tli) = exp(toi/2). Denoting by fli the basis of left-invariant one-forms dual to 
li, the Maurer-Cartan equations are d/31 = - / 3  2 A/3 3, and (cyclic). 

The irreducible representation of G on V ~ R 5 factors through a representation 
of SO(3), which we now construct. Let V be the 5 dimensional vector space of real 
traceless symmetric 3 x 3 matrices, with norm [IQII 2 = �89 TF(Q2). The linear action 

SO(3) x V ~ V 
(2.1) 

(9, Q) ~ gQ9-~ 
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defines a norm-preserving representation c : S 0 ( 3 )  --~ Aut(V). Composing with the 
double cover j : SU(2) ~ SO(3), we obtain a representation b = e o j : G ~ Aut(V). 

It is convenient to have explicity matrix bases. Choose a basis of  R 3 such that the 
matrices K~ -- j . l~  E Lie(SO(3)) are (i0 o) (0 (i 1!) K I =  0 - 1  , K 2 =  0 0 0 , K3 = 0 . 

1 0 - 1  0 0 0 

A basis for the representation b, :Lie(G) ~ End(V) is then given by 

Ri  -- b,l~ : V ~ V 
(2.2) 

Q ~ [K~, Q], 

where of  course [R1, R2] = R3, and (cyclic). An orthonormal basis of  V is given by 

1(! 0li) (i~ = - , Q I =  0 , 
Qo o o 

Q 2 =  0 1 , Q3 = 0 - 1  , 0 , 4 =  0 . 
1 0 0 0 0 

The restriction of  the representation to the unit sphere in S 4 c V induces an 
isometric action of  G on S 4, which we now study via the matrix realization above. Let 
I = (0, lr/3) C R, and f = [0, 7r/3]. The path Qo - cos(O)Qo+sin(O)Q3 is a geodesic 
on S 4, with affine parameter 0 C R. Points on this geodesic are diagonal matrices in 
V. We now define some subgroups of G = Sp(1): let F = {4-1, -4-pl , -4-p2 , 4-~3 } and, 
for i = 1,2, 3, let Li = {exp(~bQ0; ~ E [0, 21r)}. 

L e m m a  2.1. There is a closed geodesic segment of  length 7r/3 on S 4 which intersects 
each G-orbit exactly once. The principal orbits are three dimensional, and there are 
two exceptional orbits o f  dimension two. 

Proof. Every matrix in S 4 C V is diagonalizable, and so is related by conjugation 
to some diagonal matrix Qo. The rotation exp0rK3/2)  maps Qo ~ Q-o,  and the 

rotations exp(-t-27r(K1 + K2 + K3) /3x /3  map Qo --+ Qo7:2~/3, so we can restrict 
2 

out attention to 0 c f .  Since the function Det(Q0) = ~ cos(30) is 1-1 on [ ,  the 

reduction can go no further. The geodesic segment Qo, 0 E i ,  thus intersects each 
SO(3) orbit exactly once, and so intersects each G orbit exactly once. 

For 0 C I ,  the subgroup of  G that leaves Qo fixed is F ,  which is finite, so the 
orbit G / F  is three dimensional. Q0 is fixed by the group J0 which is generated by 
the subgroups /~ and L3. L3 is a one-parameter group, so the orbit of  Q0 is two- 
dimensional. Similarly, Q,~/3 is fixed by the group J~/3, which is generated by F and 
L2. [] 

Let X C S 4 be the union of  the three-dimensional orbits. X is a dense open 
submanifold of  S 4. It is convenient to consider a covering space of  X on which G 
acts freely. Define Y _= I • G, with a right action of  F C G by G-translation on the 
second factor. Then Y / F  TM X ,  and the projection map is 

s : Y ~ X  
(0, g) --+ 9Qo,  (2.4) 

where g denotes the action (2.1) of  9 E G on X c S 4. 
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The topological classification of  bundles over Y = I x G coincides with that 
over G ~ S 3, since these spaces are homotopic. K-bundles over S 3 are classified 
by 7r2(K), which is trivial for all semisimple Lie groups. The tangent bundle T Y  is 
thus topologically trivial, and admits a global basis of  vector fields. One such basis 
is given by the vector fields { 0 / 0 0 ,  11,12,13}. 

Let 9 be the canonical Riemannian metric on S 4, induced from the invariant inner 
product on V. The pullback metric s* 9 on Y is invariant under left translation on the 
second factor. Defining 

f l  (0) = 2 sin(Tr/3 § 0) ; f2(0) = 2 sin(Tr/3 - 0) ; f3(0) = 2 sin(Tr), (2.5) 

we have: 

L e m m a  2.2. The one- forms 

c~ ~ = dO; a i  = f i f l i ,  i = 1,2,  3 

on Y = I x G are invariant  under left translation on the second factor ,  and consti tute 
an or thonormal  basis o f  the cotangent  bundle T * Y .  

Proof.  The invariance is immediate. Orthonormality is by direct calculation. We show 
that the dual basis 

0 li 
e0 = 00 ' ei = fi  ' i = 1,2, 3 

of  the tangent bundle T Y  is orthonormal at (0, 1) E Y by checking that the vectors 
s , e i  are orthonormal at Qo c S 4. 

Using the explicit matrix bases, we compute in TQo S 4 

s , l l  

s,12 

s,13 

0 
8 ,  N 

= R I ( Q o )  = cos(O) [/(1, Qo] + sin(O) [K1, Q3], 

---- - -  f l ( O ) Q 2 ,  

= n2Qo  = fe (O)Q1,  

---- R3Qo = f3(O)Q4,  

= dQo/dO = - sin(0)Q0 + cos(0)Q3, 

where the linear maps R i  are as in (2.2). Since Q0, . . .  , Q4 are orthonormal in V, 
the orthonormality of  the e i ' s  follows. [] 

The Riemannian volume form on Y, relative to the metric s ' g ,  is given by 

~7 = o~~ A c t  1 A O~ 2 A e~ 3 = f l f 2 f 3 d O  A fll A f12 A f13, (2.6) 

and we compute the Hodge dual on a basis of two-forms: 

�9 (d0Afl 1) = G1/32A/~ 3 ; .(d0Afl2) "= G2/~3A/31 ; ,(d0A/~ 3) =- G3/33 A/32 , (2.7) 

where 

G1 = f2 f3  ," G2 --  f3f.___~l ., G3 - f l f 2  (2.8) 
k f2 f3 
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2.2 Quadrupole Bundles 

The quadrupole bundles of  [ASSS] are a family of SU(2)  bundles over S 4 together 
with an action of G by bundle morphisms. The G-act ion induced on the base space 
S 4 coincides with the action that comes from the irreducible representation of  G 
on V = R 5. The bundles arose as the spectral projections of certain families of  
quaternionic operators [ASSS], but our discussion here follows the description of  Bor 
and Montgomery [BoMo] and Urakawa [Ur]. 

For  every pair (n+, n_)  of  positive odd integers there exists a distinct quadrupole 
bundle. 4 Each bundle is distinct in the sense that no two quadrupole bundles are 
isomorphic via a bundle map that commutes with the G-actions. However,  restricted 
to X C S 4 all the quadrupole bundles are isomorphic to a bundle P x  --+ X .  In 
this section, we first describe P x  ~ X and then construct the extensions to the 
quadrupole bundles P(n+,n ) --* S4- 

Let H = SU(2)  = Sp(1) and let Py  = Y x H be the trivial principal bundle. 
Then H acts on the right, 

(0, 9, h) ~ (0, 9, hh') ,  h' C H .  (2.9) 

Let G act on P y  by 

(O,9, h) ~-~ (0,9'9, h), 9' E G.  (2.10) 

This left G action commutes with the H action (2.9), i.e., G acts by bundle morphisms. 
We now introduce an equivalence relation ~ on P y .  Let F act on P y  on the right 

by 
(O,9, h) H(O,g" / ,7 -1h) ,  7 E F ,  (2.11) 

where we identify H = G = Sp(1). Then p ~ q E Py i f p  = q7 for some q' E F ,  i.e., 

(O,9, h) ,.o (0,9.,/,7-1h), 7 c 1". (2.12) 

The F action commutes with the H action (2.9), and the resulting right action of  
H x/1" is free. The quotient P x  = P Y / ~  is a principal H bundle, with base space 
X = Y / F .  The G action (2.10) also commutes with the F action, passing to a G 
action by bundle morphisms on Px .  The action induced on the base space X C S 4 
coincides with the action induced by the irreducible representation of  G on R 5. 

Let K be the canonical section of  the trivial bundle P y  = Y x H:  

rc:Y--+ Y x H 
(0,9) ~-+ (0,9, 1). (2.13) 

t~ is G-equivariant,  in that n o 9 = 9 o n where in the first instance, 9 is the action on 
Y, and in the second instance, on P y .  

Now we construct the quadrupole bundles P(n+,~ ) ~ S 4. Let Y _= f x G, and 

consider the trivial bundle P ?  = Y x H ,  with H acting on the right by (2.9) and G 
acting on the left by (2.10). !7 maps onto S 4 by the obvious extension of the maps 8 
in Eq. (2.4). Recall  that the isotropy group J0 of  Qo for 0 E I is the group f ' ,  that 
the isotropy group J0 of Q0 is generated b y / "  and L3, and the isotropy group J~/3 
of Q~/3 is generated b y / ~  and L2. 

4 Comparing notation with [ASSS], n+ = 2lraT ], and n_ = 2lraB I. Comparing with [BoMo], our 
n• are the absolute values of their n• 
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We extend the equivalence relation ~ .  Let r and t be integers with r = - 1 (mod 4) 
and t = - 1  (mod4),  and define n+ = ]r] and n_ = It[. For 0 E I ,  define the 
homomorphism 

For 0 = O, let 

A o : d o ~  H 
' ] /  I - i f  ~ /  . 

A0:J0 ~ H 

7 H 7 ,  7 E F  
exp(r H e x p ( - r r  

Since 63 belongs to both F and L3, the condition r = - 1 (mod 4) is both necessary 
and sufficient for the consistency of  this definition. Similarly for 0 = 7r/3, 

A~r/3 : J~r/3 --~ H 

7 ~--+ 7 ,  7 E F  

exp(r ~-+ exp(--tr  

We define P(~+,n_) to be the quotient of  P~  under the equivalence relation 

(0,9, h) ~ (O,9J, Ao(j-1)h), j E Jo. (2.14) 

The restriction of  the equivalence relation to P y  C P ?  coincides with (2.12), so the 
restriction of  P(n+,~_) ---+ S 4 to X c S 4 is Px.  

The local product structure of  P0~+,,~-) over X is already clear. Following [Ur, 
Sect. 1.3], we now describe the local product structure of  P~+,,~ ) over a neighborhood 
U of  Q0 in 5 4, by constructing a local section. The local product structure over a 
neighborhood of  07r/3 is completely analogous. 

We first specify the neighborhood U. Let D be the open disk 

D = {(Yl, Y2) E R 2 [ yl 2 + y2 < (7r/4)2}, 

and let S = R (mod 2rr) be a cricle. The map 

r 2 1 5  

(Yl, Y2, Y3) ~-+ exp(yt 61 + Y2 62) exp(y3 63) 

is a diffeomorphism 5 of  D x S onto its image N = r  • S) c G. N is clearly 
invariant under right translations by L3. Since L3 and 61 generate J0, the union 
M = N U N01 is J0-invariant, and furthermore N N N01 = 0. Lett ing/~ = [0, re/6], 
the quotient o f / ~  • M C IV by the equivalence relation defines the neighborhood 
U c S  4. 

To construct a section, we first define a map ~o : M ---+ H.  For g E N 

~o(g) = exp(ry303) E H . .  (2.15) 

Every g'  E NOt is uniquely expressed as g' = g01 for some g E N,  and we define 

~(g') = 071~(g),  (2.16) 

5 Although the function Y3 is defined on S only modulo 2re, the map ~p is well-defined, since 
exp(27rQ3) = 1. Similarly, the one-form dy3 (by abuse of notation) is well-defined and closed, 
though not exact 
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where qo(9) is given by (2.15). Note that ~ cannot be continuously extended from M 
to G. 

Denoting by P~• the restriction of  the bundle P~  t o / ~  • M C Y, we have 

L e m m a  2.3. The section 

6: F, x M ~ P~• (2.17) 
(0, g) ~ (0, g, ~(g)) 

passes to the quotient, giving a local section of P(~+,n_) over the neighborhood U of 
Qo in S 4. 

Proof. Using Urakawa's general results [Ur, Sect. 1.3], we only need to prove that 
the map ~ : M  ---* H satisfies 

~(9J) = A0(J-1)~(9), 9 E M ,  j E J0.  (2.18) 

For j = Or, the proof of  (2.18) is immediate from Eq. (2.16). For j = exp(r r 
L3 C J0 and 9 E N,  we compute 

r = qo(exp(y161 + Y2 62) exp(Y3 63) exp(r 

= r + Y262)exp((y3 + r 

= exp(r(y3 + r 

= exp(rC63) exp(ry363) 

= /~0(j-1)~o(g). 

Since L3 and 61 generate J0, Eq. (2.18) holds. [] 

The section 6 defines the local product structure of P(~+,,~_). 

2.3. Equivariant Connections 

A connection ~ on P x  corresponds to a F-equivariant 6 connection w = s*5~ on P y ,  
since P x  = P y / F .  In particular, a G-equivariant connection ~ on P x  corresponds 
to a G-equivariant and F-equivariant connection w on Py-. 

Let A,~ = t~*w be the connection form relative to the section ~. A~ is a Lie(H)- 
valued one-form on Y. A,~ is G-invariant, since n is G-equivariant, and the most 
general invariant expression is 

A,~ =/31 | A1 -}-/32 | A2 +/33 | A3 + dO | Ao , (2.19) 

where the Ai are Lie(H) valued functions of  0 E I .  However, A,~ is not in general 
invariant under the action (2.11) of  F.  Requiring F invariance further restricts this 
expression. 

We call a triplet a = (al, a2~ a3) of real-valued functions on I a reduced connection. 

L e m m a  2.4 [BoMo]. There is a one-one correspondence between G-equivariant con- 
nections ~ on P x  and reduced connections. The correspondence is given by 

A~ = n ' s * &  = - alfl  1 | 11 - a2/32 | 12 - a3fl 3 @ 13, (2.20) 

where a is a reduced connection. 

6 Following the terminology of [Ur] and [BoMo], we use equivariant connection for what could as 
well be called an invariant connection 
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Proof. This is an application of  Urakawa's extension [Ur, Theorem 4.3] of  a classical 
theorem of  Wang on invariant connections. [] 

The functions ai are related to the holonomy around certain loops on X C S 4. We 
consider a3, but al and a2 are completely analogous. For fixed 0 E I ,  we consider 
the path #o(t) = (0, exp(to3/2)) on Y, where t runs from 0 to 7r. The tangent vector 
d /d t  along the path is 13. Under the projection (2.4) of  Y ~ X,  the endpoints #0(0) 
and/Zo(Tr) project to Qo E X ,  so the path #o(t) projects to a closed loop on X.  

We now calculate the holonomy around this loop. Lift the path #o(t) on Y to a 
horizontal path (#o(t), ho(t)) on Y x H = P y .  The differential equation for the lift, 

dho 
dt a313ho 0; ho(O) = 1, 

is solved by 
ho(t) = exp(ta313) = exp(ta3o3/2) c H .  

However, we have (#o(Tr), ho(Tr)) ~ (/zo(0), 03ho(Tr)) under the equivalence (2.11), so 
the holonomy around the closed loop on X is 

~93h0(71") = exp((a3(0) + 1)7r03/2) E H .  (2.21) 

For a given 0 E I ,  this holonomy is trivial if and only if a3(0) = - 1 (mod4). 
The circumference of  the closed path on X is equal to 7r f3(0) = 27r sin(0), which 

goes to zero as 0 ---+ 0. If  the connection on P x  over X extends to a connection on 
a bundle P over S 4, then the holonomy around a loop goes to the identity as the 
circumference of  the loop goes to zero, which, by (2.11), requires 

lim a3(0) = - 1 (mod4) .  (2.22) 
0---,0 

The same analysis as 0 ~ 7r/3 yields the condition 

lim a2(O) = - 1 (mod4) .  (2.23) 
0---+7r/3 

The special role of  a3(0) and ae(Tr/3) motivates the following: 

Definition 2.5. For (r, t) E R a, we say a reduced connection a = (al, a2, a3) is a 
reduced (r, t) connection if the limits 

a(O) =-- ~im ~ a(O), a(Tr/3) _= l i m a ( O )  (2.24) 
0--+7r/3 

exist, and furthermore a(0) = (0, 0, r) and a(Tr/3) = (0, t, 0). 

Bor and Montgomery have established which equivariant connections on P x  ex- 
tend to the quadrupole bundle P(n+,n >. This is a special case of  [Ur, Theorem 5.1]. 

L e m m a  2.6 [BoMo, Proposition 3]. Let (r, t) be two integers with r = - 1 (mod4) 
and t = - 1 (mod4), and with n+ = Irl r 1 and n_ = Itl r 1. Equation (2.20) 
gives a 1-1 correspondence between connections that extend to smooth equivariant 
connections on P(,~+,n_~ and the reduced (r, t) connections ( al, a2, a3) which have the 
following properties: Each ai can be extended to a smooth function on an open interval 
( - e ,  7r/3 § e), s > O, such that for  all z C ( - e ,  e), 

a l ( x )  = ~ 2 ( - - z )  ; a 3 ( z )  = a 3 ( - - z )  , (2.25) 
a 1 ( 7 1 / 3  ~- 37) = (z3(7 i /3  - -  z ) ;  a 2 ( T r / 3  -~- z )  ~--- 6L2(71-/3 --  z ) .  
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Proof. The proof proceeds by analyzing the smoothness of the connection form in 
the local gauge induced from 5. The details are given in [Ur, BoMo]. [] 

The case n+ = 1, also worked out in [BoMo], is slightly more complicated. In 
that case, reduced connections satisfying the above conditions still give equivariant 
connections on the quadrupole bundle. However, there also exist equivariant connec- 
tions for which the corresponding reduced connections may have nonzero values of 
al(0) and a2(0 ). Similarly if n_ = 1 then al(Ir/3) and a3(Tr/3) may be nonzero. Such 
connections will not be used in this paper. 

2.4. The Yang-Mills Equations 

We now compute the Yang-Mills action and equations for an equivariant connection 
on X in terms of the reduced connection a. We do this by lifting to the cover Y of 
X, and working relative to the local section (gauge) ~. In the following, we often 
abbreviate A,~ = A. When discussing the Lie(H)-valued connection and curvature 
forms, we will identify Lie(H) with the traceless hermitian 2 x 2 complex matrices, 
and the trace should be interpreted in this way. 

The curvature 2-form on Y is given by 

F = d A + A A A  

= (-a~ldO A/31 + (al + a2a3)/32 A/33) | ll q- (cyclic), 

where ~ denotes d/dO. The Yang-Mills action of a smooth connection over X is 
defined by 

S = / - T r ( * P  A/~), 
, J  

X 

where/~ is the curvature in any local gauge. 

Proposition 2.7. Let Co be a smooth equivariant connection on Px,  and let a = ( a l ,  

a2, a3) be the corresponding reduced connection. 
a) The action is given by 

S(a) ~ 71-2 I [(atl)2G1 -]- (al -~- a2a3)2/G1 + (cyclic)] dO. (2.26) S(~) 

I 
b) The self-duality equations *F = i F  read 

! 

-alG1 = +(al  + a2a3), 
! 

-a2G3 = :t:(a2 + ala3), (2.27) 
! 

-a3G3 = -4-(a3 + ala2). 

Proof. Using (2.7), we compute the Hodge dual of the curvature, 

*F = ( _ a1G1/3, 2 A/33 q_ (al-bGiaza3) dO A/31) | lx + (cyclic), (2.28) 

which immediately gives (2.27) and 

1 [(a~l)2G1 + (al + aza3)Z/G1 + (cyclic)] dO - T r ( , F  A F)  = 

A/31 A/32 A/33. (2.29) 
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By gauge invariance, Tr(*F A F)  = s*Tr(,J  ~ A F). Now s is an eightfold cover, so 
the integral over Y is eight times the integral over X.  Since f /33  A/32 A/32 = 16rr2 

G 
(calculated by embedding G C I-I), integrating (2.29) over I x G and dividing by 8 
(for the 8-fold cover) gives (2.26). [] 

The Yang-Mills equations 

0 = DA * F =-- d * F + [A, *F] 

are the Euler-Lagrange equations of the action S. We call a smooth finite action 
reduced connection a = (al, a2, a3) critical if 

d 
d--7 S(a + ec)le=0 = 0 (2.30) 

for any c = (cl, c2, C3) C C~~ If  a is a critical reduced connection, then integration 
by parts gives the Euler-Lagrange equations of S expressed in terms of the reduced 
connection: 

(Gla'l)' = (al + a2a3)/G1 q- a3(a2 -+- a3al)/G2 q- a2(a3 -4- ala2)/G3 , 
/ I  ! 

(G2a 2) = (a2 + a3al)/G2 + al(a3 + alaz)/G3 + a3(ai + a2a3)/G1, 

(G3a~)' = (a3 + ala2)/G3 + a2(al + aga3)/G1 + al(a2 + a3al)/G2. 

(2.31) 

We call these equations the reduced Yang-Mills equations. This terminology is justified 
by 

Proposition 2.8. A smooth finite-action equivariant connection on P x  ---+ X is a 
solution of the Yang-Mills equations on X iff the reduced connection satisfies the 
reduced Yang-Mills equations. 

Proof This can be proved with the principle of symmetric criticality [Pal]. However, 
we prove this explicitly for A = A~. For a smooth YM connection on X,  we use 
(2.28), and take the exterior derivative of , F  using the Maurer-Cartan equations, 
obtaining 

DA * F = [ - (Gla'l)' + al q- a2a3 a3(a2 q- ala3) 
G1 q- G2 

x dO A/52 A r3 | ll q- (cyclic). 

a2(a3+ala2) + 
G3 

(2.32) 

The vanishing of DA * F on X is thus equivalent to (2.31). [] 

We define C2 to be the integral over X C S 4 of the second Chern form, 

f -Tr(P A P) 
C 2 ~ 871. 2 

x 

(2.33) 

Since X is an open manifold, Ca need not be an integer, depending on the holonormy 
around the two-dimensional singular sets [FHP1, FHP2]. 

-Proposition 2.9. I f  a = (al, a2, a3) is a finite action reduced (r, t) connection, then 
6'2 = (r 2 -- t2)/8. 
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Proof. 

Tr(F  A F )  = (a'l(al + a2a3) + cyclic) d0 A/~1 A/~2 A/~3 
_ 1 d(a~ + a~ + a~ + 2ala2a3) A/~' A/32 A/53 

1 f Tr(P A P) C 2 ~ 87l. 2 
s 4 

_ 1 f Tr (F  A F )  
647r 2 

I x G  

-- 647r 2 ' j ( ! d < 4 + a ~ + 4 + 2 a ' a 2 a 3 )  f  2A 2A 32 
I G 

= --  [(a2(Tr/3))  2 -- (a3(0))21/8  = ( r  2 --  t 2 ) / 8 .  [] 

If  r = - 1 (mod 4) and t = - 1 (mod 4) then the holonomy vanishes and C2 is an 
integer. Together with Lemma2.6  this yields the formula C2 = (n 2 -n2_)/8 for the 
Chern number of  the quadrupole bundle P(n+,n_) --+ S 4. 

3. Existence of Yang-Mills Connections 

In this chapter we prove an existence theorem for reduced (r, t) connections: 

T h e o r e m  3.1. For any (r, t) E R 2 with [r[ > 1, Itl > 1, there exists a smooth reduced 
(r, t) connection that is a finite-action solution of the reduced Yang-Mills equations on 
I, and which is not (anti)self-dual. 

There is a discrete symmetry of the reduced action (2.26), the (anti)self-dual equa- 
tions (2.27) and the reduced Yang-Mills equations (2.31). These are all invariant under 
the change of sign of any two of the functions a~. That is, the four distinct reduced 
connections 

( a l ,  a2, a3 ) ,  ( - - a l ,  - -a2 ,  a3 ) ,  ( - - a l ,  a2, - a 3 ) ,  ( a l ,  - a 2 ,  - a 3 )  (3.1) 

all have the same action, and if any one is a solution of the reduced self-dual or 
Yang-Mills equations, then all four are solutions. It is therefore sufficient to prove 
Theorem 3.1 for r and t positive. 

3.1. The Hilbert Space of Reduced Connections 

We first define a class of  weighted Sobolev spaces on I .  Let ~/~ = C( [ )  N C ~ ( I ) ,  
and let F be a continuous positive function on I .  For b c J~ ,  define the norm 

IlbllF = dx[(b')2F + (b)Z/F] , (3.2) 

0 

and consider the subspace ~ F  of functions with finite norm. We define the real 
Hilbert space 3b~F as the completion of • F  with respect to the norm II - liE. 
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We next consider affine subspaces. Define 

C([ ;  c~,/3) = {b E C(I) ;  b(0) = a,  b(Tr/3) = / 3 } ,  

and let .~F(C~,/3) = C( / ;  c~,/3) A ~ .  The completion of ~F(C~,/3) with respect to 
[1' liE is a closed affine snbspace of fit(F, which we denote by ff{F(a,/3). Note that 
~%~F(0, 0) is a vector subspace of . ~F .  

We now prove a Sobolev-type lemma. 

L e m m a  3.2. YdF(ct, /3) embeds continuously into C(f ;  a,/3). 

Proof. Given a, e E ~ F ( a , / 3 ) ,  we have b = (a - e) E ~/~F(0, 0), 

[b(x)] 2 = 2 f b'(y)b(y)dy 
o 

2B 

2 f (b'v/ff) (b/v~) dy 
.J 

o 

< 2[Ibl] 2 . (3.3) 

Taking the supremum over x E [,  

Ilbllc(i) -< v ~  IlbllF, (3.4) 

so ~ F ( a , / 3 )  embeds continuously into C(f) ,  in fact into the closed subspace 
C( i ;  oz,/3). Now ~ F ( a , / 3 )  is dense in ~ F ( a , / 3 ) ,  So we are done. [] 

Note that under the reparametrization T = f dy/F(y), the g~C'F norm becomes 
~r/6 

6 

/" [(db/dr) 2 § b 2] dT , (3.5) IIbltF 
-3 '  

7r/6 
which is the Sobolev W 2 norm on the interval (6, 7) where 3' = f dx/F(x) and 

0 
7r/3 

6 = f dx/F(x). If b E f i f e  and 3' is infinite, then lira b(x) = 0, and if 5 is infinite 
~r/6 x-+O 

then lim b(x) = 0 .  
x--,rc/3 

Definition 3.3. The Hilbert space f i f  is the orthogonal sum 

f i f  ~ .~G1 | fifa2 ~3 .Y~G3 - (3.6) 

The affine subspace f i f ( r ,  t) of  f i f  is the sum of affine subspaces 

~ ( r ,  t) --= .Yd'ai (0, 0) | fftga2 (0, t) | ~%r (r, 0).  (3.7) 
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By the discussion preceding Definition 3.3, all elements a E ~ have afrO) = a2(0) = 
0 and aa(Tr/3) = a3(Tr/3) = 0, so ~ = [.J ~ ( r ,  t). We shall show that if Irl r 1 

and It I r 1, then all finite-action reduced (r, t) connections belong to ~ ( r ,  t) c J~ .  
For a smooth a E ~ ,  we define the action S(a) as in (2.26), and divide it into 

two pieces 

7r/3 

S(a) = 7r2(Sl(a) q- ~q2(a)) = 71.2 / [81(a) q- 82(a)] dx, (3.8) 
, /  

o 

where 
! 2 sl(a) = [(a'l)2G1 + (a 2) Gz + (a~)2G3] , 

(3.9) 
s2(a) - [(al q- a2a3)2/G1 q- (az + ala3)2/G2 q- (a3 + alaa)2/G3]. 

Now the smooth reduced connections are dense in ~d,  and there is a unique norm- 
continuous extension of  $1 to g~,  since Sl(a) _< 2 2 rc [lall.~d. By Lemma 3.2, any a C ~ d  
is continuous, so $2 is well-defined (though possibly infinite) on 3 J .  It is clear that 
$1 and $2 are nonnegative. 

A minimizing sequence in .:,~(r, t) is a sequence of  reduced connections A (n) E 
.Y~(r, t) such that 

lira S(a (~)) = inf S(b). (3.10) 
n--+oo b E ~ d ( r , t )  

A minimizing sequence obviously exists for any (r, t). 

3.2. The Limiting Connection 

For simplicity, in the remainder of  this chapter we only consider positive r and t. By 
the discrete symmetry (3.1), these results are easily extended to r and t of arbitrary 
sign. In this section we establish 

Proposition 3.4. For positive r ~ 1 and positive t ~ 1, every minimizing sequence in 
fir(r, t) has a weakly convergent subsequence. The weak limit a* of this subsequence 
belongs to ~%r t). 

We first prove two technical lemmas. 

L e m m a  3.5. Let a be a smooth reduced (r, t) connection with finite action S(a) = 
7r2M. Then there exists a function K3(x) such that 

la3(x)-rl < K3(z) @ , (3.11) 
o 

with 0 <_ K3(x) <_ M and lim K3(x) = 0. Similarly, there exists a function K2(x) 
x---+O 

such that 

la2(x)-rl _< K2(x) ~ , (3.12) 
X 

where 0 ~ Ka(x) ~ M, and lira Ka(x) = 0. 
x--~Tr/3 



378 L. Sadun and J. Sege~ 

Proof. 

2 

l a 3 ( x )  - -  a3(0)l 2 = a~(y)dy 
0 

< a 2 2 

~ 0  

--= K3(x) G3(y) ' (3.13) 
0 

where we have used the Schwartz inequality. The proof of  (3.12) is similar. [] 

Using Lemma 3.2 and the fact that smooth reduced connections are dense in 
~ ( r ,  t), we have 

Corol la ry  3.6. I f  a E .~ ( r ,  t) has finite action S(a) = 7r2 M,  then (3.11) and (3.12) 
hoM. [] 

L e m m a  3.7. For positive r 7 ~ 1 and positive t 7 ~ 1, and any finite M,  the set 

~r t, M )  -- {a e ~7d(r, t); S(a) <_ rr2M} 

is a norm-bounded subset of ffg;. 

Proof. For a connection a = (al,a2, a3) E J~g(r,t) with action S(a) <_ rr2M, we 
wish to bound the squared norm 

7r/3 /[ a2 
I l a l l%  = (a )2al q- (a~)G2 -t- (a~)2G3 -/- ~ -t-- G22 q- G3I 

0 

= Sl(a) + H(a) ,  (3.14) 

where 
7r/3 ~/3 

fra  o31 x 
[G1 + ~22 q- G3J 

0 0 

The bound should depend only on M,  r,  and t. $1, $2 and H are all nonnegative on 
. ~ ,  so we immediately obtain $1 (a) _< M.  

Bounding H(a) is more complicated due to the presence of cubic and quartic 
terms. We divide I = (0, 7r/3) into three subintervals, and bound H separately on 
each interval. Take 

c~= 1 min (M-1 /2 l r_  l i , M - 1 / 2 l t _  11,7r/6) ' /3 = 7 r / 3 -  a ,  

and let I1 = (0, c0 , / 2  = [c~, fl], and I3 = (fl, 7r/3). 
We begin wi th /1 ,  where 

1 1 1 1 
- -  < - -  < - ;  x _ < - -  < 2 x .  (3.15)  
4x - G i , 2 ( z )  - z G 3 ( x )  - 
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By Eq. (3.11), this gives 

l a 3 ( x ) -  r I < M1/2x < I r -  11 (3.16) 
- - 2 ' 

where we have used x < a < M-1/2lr - 1[/2. Thus 

la3l < r + [r - 11 < 3r q-.......~2 (3.17) 
- 2 - 2 

Combining (3.15) and (3.17) yields the bound 
o~ 

f [(a3)2/G3]dx < o~2(3r + 2)2/4.  (3.18) 

0 

We now bound the remaining two terms on Ia. From (3.16) and the triangle inequality 

la3 + 11 _> I t -  11/2. 
Using this fact, and using (3.15) repeatedly, we have 

af  [(al)2/G1 -t- (a2)2/G2] dx 

0 

] [(al)2 -~- (a2)2] dXx 

0 

1 ]  __ = ~ [(al  "+" a2) 2 "q- (a l  --  a2) 2] dx 
x 

0 

2 ] __ 
--< ( r  - -  1) 2 [(a3 -}- 1) 2 (a l  q- a2) 2 q- (a3 -- 1) 2 (a l  --  a2) 21 dXx 

0 4/ 
-- (r -- 1) 2 [(al q-- a2a3) 2 + (a2 + ala3) 2] d___X_Xx 

0 

16 ] 
--< (r ---1) 2 [(al + a2a3)2/G1 + (a2 + ala3)2/G2] dx 

0 
16M 

-< ( r -  1) - - - - - - -~"  (3.19) 

For r 7 ~ 1, this is finite, and adding (3.18) and (3.19), we obtain a bound on f h(a)dx. 
I1 

Analogous techniques bound f h(a)dx. 
I3 

Finally, we bound f h(a)dx. For any x _< /3, we have 1/G3(x) _< 1/o~, and we 
/2 

obtain from Eq. (3.11) 
( Mrc'~ 1/2 

l a a ( x ) -  rl < \ 3~ ff ' (3.20) 
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and, by the triangle inequality, 

yielding 

(M'/I-"~ 1/2 
la3l _< K+ = \ 3a ] + r ,  

/ [(a3)2/G3ldx < ~ 1(2" 

OL 

(3.21) 

(3.22) 

Similarly, we obtain on I2 the uniform bound 

la2l < K_ \ 3a ] + t ,  (3.23) 

and the analogous bound on the (a2) 2 piece of the norm. Only the (al) 2 term o n /2  
remains. The triangle inequality gives 

lall _< ]al + a2a31 + K 2 , (3.24) 

where K - max(K+, K_), and squaring gives 

lall 2 _< lal + aza312 q- 2K2lal + a2a31 q- K 4 �9 (3.25) 

Integrating this inequalities gives 

f (al)2 dx < / - G1 dx--{- 2K 2 f lal-~a2a31 dx~-K4 GI( x)dx 
cg c~ ~ 

(/.<" / < M + 2K 2 M dx  + K 4  dx 
-- GI(X----~ ' (3.26) 

OL 

where we have used the Schwartz inequality 

< lal + a2a312 dx 1 
G1 - G1 Gll dx  . 

o~ 

(3.27) 

This completes the bounding of f h(a)dx. 
12 

Adding up the previous bounds, we obtain a bound on [[al[~ = & ( a ) +  H(a)  that 
depends only on M, r, and t [] 

Proof  of  Proposition 3.4. Any minimizing sequence a (n) in ~ ( r ,  t) is by definition a 
set of bounded action. By Lemma 3.7, such a set lies within a sufficiently large finite 
ball in Jg .  By the Banach-Alaoglu theorem and the reflexivity of Hilbert space, a 
finite ball is weakly compact [RS, Theorem IV.21], so the minimizing sequence has 
a weakly convergent subsequence in .~g. 
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Now ~ ( r ,  t) is a norm-closed convex subset of ~ ,  so it is weakly closed ([RS], 
problem 12, p. 388). The weak limit a* of the convergent subsequence in 5~(r,  t) 
thus belongs to ~ ( r ,  t). [] 

3.3. Weak Lower Semicontinuity 

We next show that the weak limiting connection a* on .~f(r, t) attains the infimum 
of the action on g.d(r, t), by showing that the action S is sequentially weakly lower 
semicontinuous on ~ .  That is, if b (~) ~ b* in ~ is a weakly convergent sequence, 
then 

S(b*) <_ lim S(b(~)) . (3.28) 

For 0 < 6 < 7r/6 we denote by I5 the open interval (6, 7r/3 - 6) C I .  Let W~(I6) 
be the ordinary (unweighted) Sobolev space with norm 

7r/3-6 

Ilgllnl~<,~) = [(9') 2 -[- 92] dz .  (3.29) 

6 

Lemma 3.8. Let b (n) ~ b* be a weakly convergent sequence in ~ .  Then the functions 
b!~) i = 1, 2, 3 converge to b* uniformly on f~ c I. Z 

Proof. Since the functions Gi and 1/Gi are bounded on Ie, the restriction map 

T :._r ~ W~(Ie) 
(3.30) 

is bounded, and thus continuous. 
The map T then takes a weakly convergent sequence b~ n) ~ b* in ~ a ~ ,  to a 

weakly convergent sequence in W~(Ie). We now use the Kondrakov-Rellich embed- 
ding theorem [Au, Theorem 2.33; Ad, Chap. VI] to conclude that W~(Ir) embeds com- 
pactly into CO=e). A compact map takes a weakly convergent sequence to a norm con- 
vergent sequence [RS, Theorem VIA1], so b~ ~) converges to b* in the uniform norm 
on Ie. [] 

Proposition 3.9. The action S is weakly lower semicontinuous on ~ .  

Proof. Recall the splitting (3.8) of S = 7rZ(S1 + $2). S1 is convex, and thus weakly 
lower semicontinuous ([RS], p. 355). 

It remains to show that Sz is weakly lower semicontinuous. Suppose that $2 were 
not. Then there would exist a weakly convergent sequence b (~) ~ b* in ~.~ such that 
S2(b*) > lim S2(b(n)). For such a sequence, 

Since 

e = S2(b*) - lim S2(b (~)) > 0. 

~/3-~ 

S2(b*) = lim / se(b*)dz 
6--+0 J 

6 
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there exists a ~5 > 0 such that 

~/3-~ ~/3 

el2<_ f s2(b*)dx- l im f s2(b(n))dx 
6 0 

7r /3-6 

< lim / [s2(b*) - s2(b(~))] dx 

6 

= O. (3.31) 

Here we have used the fact that 82(b (n)) is nonnegative, and Lemma 3.8. We have a 
contradiction, which proves that $2 is weakly lower semicontinuous. [] 

We now obtain the existence of  minimizers. 

Theorem 3.10. For positive r ~ 1 and positive t ~ 1, there exists a reduced (r, t) 
connection that is a smooth finite-action solution of the reduced Yang-Mills equations. 

Proof. Let a* be the weak limiting reduced connection of Proposition 3.4. Then by 
Proposition 3.9, a* minimizes the action on . ~ ( r ,  t). So a* is a weak solution of  the 
Euler-Lagrange equations on I .  This is a semilinear elliptic system of ODE's ,  and 
standard regularity theory (see e.g. [Ber], Sect. 1.5) gives the smoothness of  the ai 
on I .  

3.4. Nonexistence of(Anti)Self-Dual Solutions 

Finally, we show that these solutions are not (anti)self-dual. 

Theorem 3.11. There are no finite-action anti-self-dual reduced (r, t) connections with 
r > 1. There are no finite-action self-dual reduced (r, t) connections with t > 1. 

Proof. We will prove the first statement; the proof of the second statement is similar. 

A reduced (r , t )  connection has al(0) = a2(0) = al(Tr/3) = a3(Tr/3) = 0. We 
will show that a solution to the anti-self-dual equations must have a3(Tr/3) > 0, 
contradicting this. 

The anti-self-duality equations are 

a~ = (al -]- aza3)/G1, 

a~ = (a2 q- ala3)/G2, (3.32) 

a~3 = (a3 + ala2)/G3. 

If  at some point a3 is positive and a1 and a2 are nonnegative, then all three derivatives 
are nonnegative, so a3 stays positive and al,2 remain nonnegative as 0 increases. 
Similarly, if al ,  a2 ~ 0 < a3, then at, a~_ _< 0 < a~, and again the signs persist. In 
either case a3(Tr/3) will not be zero. Thus it suffices to find a 0 E I ,  where al and 
a2 do not have opposite signs, and where a3 > 0. 

Since a3(0) = r > 1 and a3 is continuous, a3 > 1 on some nonempty interval 
(0, c). Suppose a l and a2 had opposite signs throughout this interval. Then [al - a z ]  > 
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]al-k-a2[ on this interval. The Eq. (3.32) yield 

d(al - a2) 2 
- - 2 ( a l - a 2 ) ( a ~  - a ~ )  

dO 

(1 
+ GI 

1) 
+ ~ (a3 -- 1)(al - a2) 2 

G2 (a3 + 1) (al -- a2) (al -k- a2). 

Since ( G I  1 + G21) = O(0 -I) and G] -1 - G21 --= O(1), since a3 - 1 is bounded away 
from zero on (0, e), and since lal - a21 > lal + azl, the first term is larger than the 
second for 0 sufficiently small. Thus d(al - az)Z/dO is negative on some nonempty 
interval (0, 6) C (0, c), so (aa - a2) 2 is a positive decreasing function. However, 
al(0) = a2(0) = 0, which is a contradiction. Thus al and a2 cannot be of  opposite 
signs on all of  (0, 6). [] 

Proof of Theorem 3.1. For r > 1 and t > 1, Theorem 3.10 yields the existence of  a 
reduced (r, t) connection that is a solution of  the reduced YM equations, and Theorem 
3.11 shows that this solution cannot be (anti)self-dual. The discrete symmetry (3.1) 
completes the proof. [] 

4. Regularity on the Four-Sphere 

We have established the existence of  smooth equivariant non-self-dual Yang-Mills 
connections on the bundle P x  --* X ,  corresponding to reduced (r, t) connections for 
all values of  (r, t) with It[ > 1, It[ > 1. In this chapter, we complete the proof of  
Theorem 1.1 by showing that, for the appropriate values of  (r, t), these connections 
extend to smooth YM connections on quadrupole bundles P(n+,~_) -+ S 4. 

Theorem 4.1. Let r = - 1 (mod4) and t = - 1 (mod4), with n+ = It[ r 1 and 
n_ -- ]tl r 1. A finite-action reduced (r, t) connection that satisfies the reduced Yang- 
Mills equations corresponds to an equivariant connection on P x  ~ X that extends 
to a smooth Yang-Mills connection on the quadrupole bundle P(n+,n_) --+ S 4- 

The proof of  Theorem 4.1 is an application of  the following theorem of Uhlenbeck 
[Uh2], which adapted to our situation states: 

Theorem 4.2. Let A be a weak solution of  the Yang-Mills equations on a neighbour- 
hood U of Qo in S 4, and suppose that A c W2(U). Then on some neighborhood (7 
of  Qo in S 4, f[ is equivalent by a gauge transformation r E W2((7) to a smooth one- 
form A. 

Proof. See [Uh2], Theorem 1.3 and Corollary 1.4]. The theorem proved by demon- 
strating the existence of  a gauge transformation r for which the transformed connec- 
tion form A is in Coulomb gauge, d*A = 0. The Yang-Mills equations together with 
the Coulomb gauge condition are a uniformly elliptic system of PDE's ,  and elliptic 
regularity theory applies. Alternatively, we could use Theorem 5.1 and Corollary 5.2 
of  [SiSi2], which are specifically suited to a codimension two singular set. [] 

The proof of  Theorem 4.1 consists of  two parts. First, we will show that finite- 
action reduced connections extend from equivariant connections on P x  ---+ X to 
continuous connections on the appropriate quadrupole bundle P(n+,,~_) ~ S 4. Then 
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we will show that if the reduced connection is a solution of the reduced Yang-Mills 
equations, then the conditions of Theorem 4.2 are satisfied in the local gauge induced 
by 6 on S 4. Since A is continuous and A is smooth the gauge transformation r which 
could a priori be a noncontinuous element of W2 2, must be continuously differentiable. 

Unfortunately, the technical details of the regularity proof are somewhat lengthy. In 
the next section, we present a simple regularity result which illustrates the ideas used 
in the proof of Theorem 4.1, while avoiding the complications of gauge invariance 
and higher dimensions. The following section is not essential for the proof of Theorem 
4.1. 

4.1. A Simple Regularity Result 

We consider as an illustrative example the probolem of extending harmonic functions 
from the punctured two-disc to the unpunuctured two-disc. Let B be the open unit 
disc in R 2 with Cartesian coordinates (x, y), and let /3o be the punctured unit disc 
B - {0}. Let E be the energy functional 

E(f) -- / ]dfl2dz A dy. (4.1) 
*J 

Bo 

The critical points of E are the harmonic functions, which satisfy A f  = 0. The 
following is a simple analog of Theorem 4.1: 

Proposition 4.3. Let f be a bounded finite-energy harmonic function on Bo. Then f 
extends to a smooth function on B. 

Note that this example has a singular set of codimension two, the same codimension 
as the singular (two-dimensional) G-orbits in S 4. Codimension 2 plays a crucial role, 
and Proposition 4.3 is false on the one-dimensional ball, the function f(x) = x/Ix I 
being a counterexample. 

Proof of Proposition 4.3. A standard regularity result [LU, Chap. 3; Ber, Sect. 1.5] 
states that if f E W2(B) is bounded and weakly harmonic on B, then f E C~(B). 
Given a bounded harmonic function f on B0 which has finite energy, we first prove 
that f E W~(B), and then that f is weakly harmonic on B. Proposition 4.3 is then 
immediate. 

It follows from the boundedness and finite energy of f that f E W~(Bo). To show 
that f E W~(N) we need to show that the function Oxf, defined a priori only on B0, 
is the weak derivative of f on B, i.e., that 

/ (O~r A dy = - / r A dy (4.2) 

B B 

for any r E C~~ For fixed y r O, integration by parts gives 

f (Oxr = - f r 

Integrating this expression over y, using Fubini's theorem and the fact that the line 
y = 0 has zero measure, we see that Eq. (4.2) holds, so f c W~(B). 

We now show that f is weakly harmonic on B, i.e., 

0 = / ((O~f) (0~r + (Oyf) (OyO))dx A dy (4.3) 
. J  

B 
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for any r E C~(B) .  For fixed y r 1, integrating by parts, 

f (Oxf) (Oxr = - f (OxO~f)r 

As before, we integrate this expression over y, using Fubini's theorem and the fact 
that the line y = 0 has zero measure, obtaining 

f ( O x f ) ( O x r  f (OzOxf)OdxAdy.  (4.4) 

B B o 

Combining with the analogous contribution for Oyf, we conclude that f is weakly 
harmonic on B if f is harmonic on B0. [] 

4.2. Continuity of Equivariant Connections 

Equivariant connections on P x  ~ X ,  even those that are not Yang-Mills, have some 
regularity if they have finite action. In this section, we prove 

Proposit ion 4.4. Let r = - 1 (mod4) and t = - 1 (mod4) with n+ -- Ir[ r 1 and 
n _  - I t l  r 1 A finite-action reduced (r, t) connection corresponds to an equivariant 
connection on P x  ~ X that extends to a continuous connection on the quadrupole 
bundle P(n+,n_) ----+ S 4. 

This proposition has similarities with results announced by Parker [P1]. We shall 
prove Proposition 4.4 by showing that the connection form relative to the local section 
6 (of Lemma 2.3) extends continuously from X to S 4. 

L e m m a  4.5.  On E x N C Y,  

A~ = 5* w = - fll | al [cos(2ry3)ll - sin(2ry3)12] 

_ r2 | ae[sin(2ry3)ll + cos(2ry3)12] 

_ r3 @ a313 + dy3 | 2r13. (4.5) 

Proof. Any two sections are related by a bundle automorphism (gauge transforma- 
tion). By inspection of  Eqs. (2.13) and (2.17), the gauge transformation that relates n 
and 5 is the map ~ of (2.15). The connection forms are now related by the famous 
formula 

A6 = ~-1A,~9~ + qo-ldg~. (4.6) 

Noting that 9~(Yl, Y2,y3) = exp(2ry313), and d~ = exp(2ry313)dy3 @ 2rl3, Eq. (4.5) 
follows from straightforward algebra. [] 

Proof of Proposition 4.4. Let b = (hi, b2, b3) be a smooth reduced (r, t) connection 
satisfying the conditions of  Lemma 2.6, and such that for all 0 in the subinterval 
E ---- (0,7r/6) C I ,  we have bl(0) = b2(0) = 0 and b3(0) = r. By Lemma 2.6, 
b corresponds to an equivariant connection on P x  ~ X that extends to a smooth 
connection on P(n+,n ) ---* S 4. By Lemma 4.5, the connection form B ,  corresponding 
to b equals 

B~ = - r3 | rl3 + dy3 | 2r13 (4.7) 

on E x N C Y. B6 passes to the quotient to give a one-form/)~ on U N X  C S 4, and 
this one-form extends to a smooth one-form on U. We recall that U is a neighborhood 
of  Q0 in S 4. 
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We shall show that the one-form C -= Ae - Be has a well-defined limit at 0 = 0 
(namely C = 0), from which it follows that A6 = Be + C can be continuously 
extended. By (4.5) and (4.7) we have 

C = -- fll  | al [cos(2ry3)ll -- sin(2ry3)12] 

_ /3 z  | az[sin(2ry3)ll + cos(2ry3)I2] 

- - /33  | (a3 -- r)13 

~--- O~ 1 | C1 -t- o~ 2 @ C2 -~- oz 3 | C3, (4.8) 

where we have further decomposed C relative to the orthonormal basis { a  i} of  T * Y .  
The components are given by 

al  a2 a3 -- r 
C1 = - f l  v t '  C2 --f2 r e ,  C3 - f3 v3, (4.9) 

where 
Vl =- [cos(2ry3)ll - sin(2ry3)12], 

V2 ~ [sin(2ry3)ll + cos(2ry3)12] , 

v3 ~ 13 

are Lie(H)-va lued  functions that do not depend on 0. 
It is clear that l im ICi,21 --  o. To show that 

0-~0 

(4.10) 

l im IC3[ = 0 (4 .11 )  
040 

we use Lemma 3.5, which states that [a3(0) - r[ _< 0 ~ ,  with l im/s  = 0, 
0---,0 

from which Eq. (4.11) follows. We conclude that lim C = 0, where we are using 
0~0 

the Riemannian metric s ' g ,  for which a i are orthonormal. Passing to the quotient, C 
defines a one-form C on U fq X that extends to a continuous one-form on U. 

4.3. Smoothness o f  Equivariant YM Connections 

In this section, we shall prove Theorem 4.1 by showing that the conditions of  Theorem 
4.2 are satisfied. We start by proving 

Propos i t ion  4.6. The one-form C = A ~ -  Be belongs to the Sobolev space W 2 ( E x N ) .  

To compute the Sobolev norm of  a Lie(H)-va lued  differential form, we evaluate 
V C ,  where V is the covariant derivative corresponding to the Riemannian connection 
on the tangent bundle T S  4, and the flat connection on P y  induced by the local 
trivialization 0. 

Using the orthonormal basis a i of  the cotangent bundle, the covariant derivative 
is expressed by the matrix w~. of  connection forms 7 on S 4. 

7 wj i should not be confused with w, the Lie(H)-valued connection form on Py --+ Y 
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L e m m a  4.7. The connection one-forms of the torsionless Riemannian connection on 
T Y  are given by 

30L3 f[ ozl f~ c2 coO = __ f '  
coo = _ 771 ' coo = _ X ' ?73 ' 

1 c~ 3 1 c~ 1 1 c~2. 
col = _ 7;3 ' co~ = - T ~  ' co~ = + T ~  

i J with coj = - co i . 
Proof. We check that the Cartan structure equations [CDD, Chap. V] 

dc~ + Z co} A c~ j = 0 ,  (4.12) 

J 

are satisfied. Starting with dc~ ~ = ddO = 0, the i = 0 equation holds trivially since 
aJ  A c~J = 0. For the remaining equations, e.g. i = 1, 

dc~ 1 = dfl /~ ~1 + ftd~l 

- f [  c~ ~ A c~ 1 f l  02 0~3 
- f l  - ) 7 3  A , 

where we used the Maurer-Cartan equation. Now (4.12) holds because f l  - f 2 +  
f3 ----- 0. [] 

We need one more lemma before proving Proposition 4.6. 

L e m m a  4.8. Let a be a smooth reduced (r, t) connection with finite action S(a) = 
7r2 M. Then 

~r /6 

f r)2 dO 3 M .  < 

o 

Proof. Let q = a3 - r ,  so q(0) = 0. By Lemma 3.5, we have Iq(0)l _< v /M0.  Defining 
9 = q/O, we have 9 2 < M,  

~/6 

2S/7r 2 > 2 f dO(d3)zG3 > 

o 

> 

~/6 

f dO(q')2/o 
o 

~/6 

f dO{O(q/O)' +q/O}2/O 
o 

~/6 

f dO{2gg'-t- q2/03} 

o 
~/6 

92(~/6) --  9 2 ( 0 ) @  / dO(q2~03) 

o 
~/6 

Adding M to both sides of  the inequality completes the proof. [] 

>_ - M + / dO(q2/03). 

o 
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Proof of Proposition 4.6. Since C passes to a form on the quotient that extends 
continuously to S 4, ICI is bounded and hence square integrable on E x N.  We now 
need to show that V U  E L 2. To compute the components of  V C  with respect to the 
orthonormal basis a k | a i of T* | T*,  we use 

V C  = ~ (a k @ dCk + V a  k | Ck) 
k 

= }~, (~k | ~i | ~ k C  i _ ~ | ~i | Ck) 
k,i 

= ~ (VC)ki ak | a i , 

k,i 

where Y is the Lie derivative, and w/k are the Riemannian connection forms of 
Lemma 4.7. A straightforward computation gives 8 

(VC)0o = 0, 

(al~' 
(VC)o 1 = ~C~eoC 1 = C~ = ~,~ll] v l '  

/a2'~' 
(VC)o  = = " 2 '  

[a3 - r ~ '  
(VC)o3 = = k - - 7 7 3  ) v3, 

: f ;  C1 ~-- f;al 
(VC)I~ ~-~ fl  f-~ vl '  

(VC)ll : + ~/IC1 _ a l  fl f2 ~/1Vl' 

1 1 - a 2  a3 - r ) 
(VC)12 ~-- fll (~ /1C2-C3)  : ~ ( W  ~/lV2 -~- T v3 ' 

1 1 (-(a3__- r) ~/IV 3 -1- a2 ) 
(VC)l~=Tl(&C3+C~_)=7;1 \ f~ Yv2 ' 

-j;_ f ~  
(vC)~o = --)72 c2 = T ~ '  

1 1 --al a3 -- r ) 
(re)21 : ~22 ( ~ / 2 C 1 - C 3 ) :  f22 (--~-1 ~/2Vl -~- - - - ~ 3  v3 ' 

1 a2 
( v c ) =  = 722 ~ 2 c ~  - )-7 ~ 2 ~ 2 ,  

1 1 (-(~_3 7 3) gl ) 
(VC)23 = ~22 (~/2C3 ~- C1) : 722 ~, f3 ~/2V3 -- ~ vl ' 

8 Since we have identified G = H, l~ denotes both vector fields on G, as in ~ ,  and also the basis 
of Lie(H), as in v3 = 13. The meaning should be clear from context 
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- f '  f~(a3_ r) 
3 63 __ ? V3 (re)30 = T f~ 

1 1 - a l  a2 
(vc)3, = 733 ( ~ c ~  - c~) = ~ (T-~  ~ + ~ ~ ' 

1 1 - a 2  al 
(VC)32 : ~33 (~/3C2 -[- C1) : f33 (--~-2 r -/- ~ Vl.,i , 

1 --(a 3 -- r) 
(VC)33 = f33 ~ 3 C 3  - f~ ~/3v3 " 

For each pair of  indices k, i we must show that 

Tk# -- /"  I(VC)kd2~ 
ExN 

is finite, where ~ = f l f 2 f 3 d O i ~  1 A f t  2 Aft 3 is the volume element on Y. The Lie(H)-  
valued functions vi and ~ v k  are bounded and independent of  0, so we need only 
look at the coefficients. Using the fact that f3 = O(0) and f l  and f2 are O(1), we 
easily bound all the Tk#'s ,  by a multiple of  

+ (a~)20 + ---U + (a2) 0 + (a~)2/0 + (a3 - ,')2/O3 a0. 

The integral of  the first five terms is finite by Lemma 3.7, and the integral of  the last 
term is finite by Lemma 4.8. [] 

We are now ready to prove the regularity theorem. 

Proof of Theorem 4.1. Since Be is smooth and C = Ae - Be belongs to W~(E x N) 
by Proposition 4.6, Ae E W~(E x N). The one-form Ae on E x N passes to the 
quotient, defining a one-form :ie on U A X C S 4, and -Ae belongs to W~(U A X). 
The singular set has codimension two, and using Fubini 's  theorem, as in the proof of 
Proposition 4.3, we conclude that -4e E W](U). 

Since the reduced connection a is a solution of the reduced Yang-Mills equations, 
A,~ is a solution of the Yang-Mills equation on Y. The YM equations are gauge- 
invariant, so Ae is a solution on N x N.  Passing to the quotient, .4e is a solution of 
the YM equations on U C? X C S 4. Since the singular set has codimension two, we 
use Fubini 's theorem again, as in the proof of  Proposition 4.3, to conclude that Ae is 
a weak solution (in the sense of [Sed, Eq. (4.1)]) of  the YM equations on all of  U. 

Now by Theorem 4.2, on some neighborhood C? of Q0 in S 4, there is a gauge 
transformation r E W22(U) that takes -Ae to a connection form A that is a smooth 
solution of the YM equations on U. This gauge transformation solves the equation 

d e  = CA - A e r  (4.13) 

Now A is smooth on U, and -Ae is continuous on 0 by Proposition 4.4, so we conclude 
that r is actually continuously differentiable on (L Moreover, since A,~ and hence Ae 
are smooth on ( ;  N X, the gauge transformation r is in addition smooth on U N X.  
(See e.g. [JT], Lemma 6.2 for details on this type of argument.) 

By covering the singular orbits with patches, and repeating this argument, we 
obtain the existence of a smooth YM connection on a bundle that is C 1 isomorphic, 
hence C cc isomorphic ([JT], Theorem 4.4) to the quadrupole bundle. [] 
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Now we can prove our ma in  theorem. 

Proof of Theorem 1.1. For any two odd integer n •  > 1 we can choose r = + n +  
such that r = - 1 (mod4)  and t = q-n_ such that t = - 1 (mod4) .  By Theorem 
3.1 there exists a smooth reduced ( r , t )  connect ion  that is a non-se l f -dual  solut ion 
of  the reduced Yang-Mil ls  equations.  By Theorem 4.1 this corresponds to a smooth 
(non-self-dual)  Yang-Mil ls  connect ion  on  the quadrupole  bundle  P~n+,n_~ ~ S 4. 
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