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Abstract. We show that all onto cellular automata defined on the binary sequence 
space are invariant with respect to the Haar measure, and that an extensive class of 
such maps (including many nonlinear ones) are strongly mixing with respect to the 
Haar measure. 

I. Introduction 

Let X denote the space of bi-infinite sequences a =  (ai)i~z, where each al = 0  or 1, 
regarded as a compact abelian group under component-wise addition. Denote the 
normalized Haar measure on X by/~. Let a be the shift map defined by a(a)i = a, § 1 
for all i e Z  and all a e X .  If f :  {0, 1 }"-+ {0, 1 } is a Boolean function ofn variables and 
r < s are fixed integers with s - r  = n + 1, then we write fo~ for the corresponding 
cellular automaton: fo~(a)i = f ( a i + r , . . . ,  a~+,) for all i e Z. Surjective such maps have 
been analyzed in great detail from both the combinatorial and the topological 
points of view [1, 3, 8]. We characterize those f~  which preserve the Haar measure 
[i.e. # ( fg  I(A))=#(A) for all measurable subsets A of X] in Theorem 2.4, in 
particular showing that f~  is onto if and only if it preserves the Haar measure. (The 
latter result was announced by J. Milnor in [2].) We show further that certain of 
the f~  are actually ergodic with respect to/~ (Theorems 3.2 and 3.4), although our 
results here are not complete since we suspect that all onto one-dimensional 
cellular automata (with the exception of the identity and the inversion map) are 
ergodic with respect to #. Nonetheless, 3.4 shows that certain nonlinear automata 
considered by Wolfram in [7, Chap. 2.3], are in fact strongly mixing. To our knowl- 
edge these are the first examples of nonlinear ergodic automata in the literature. 

* This work was supported in part by grants from NSERC of Canada 
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II. Measure-Preserving Maps 

We begin by defining a class of open sets which will be extensively used in what 
follows. Let k = {0, 1} be the field of two elements, and let R = k[x~: i ~ Z] denote 
the free k-algebra in the commuting variables xi subject to the relations x 2 = x~ for 
all i. (In other words R is the quotient of the polynomial algebra k[Xi: i ~zrJ by the 
ideal generated by all the polynomials X 2 - X v )  It is well-known (and trivial to 
prove) that every Boolean function in a finite number of variables can be regarded 
as an element of R. (To be more precise, disjunction, conjunction and negation are 
defined as follows: pwq = p + q + pq, pc~q = pq, and p' = 1 + p, where the operations 
on the right-hand side are the ring operations.) 

If p =p(x,,... ,  x j)~ R (it is understood that i<j) and a ~ X define p(a) to be 
p(ai,..., a j), and let 

v(p) = {a X : p(a)= o) .  

Clearly every V(p) is a finite disjoint union of cylinder sets, and conversely every 
cylinder set is of the form V(p) for some p ~ R [e.g. the cylinder set {a ~ X : ao = 1 and 
al =0} is V(1 +Xo +XoXO]. The following properties of V(p) are easy to verify. 

2.1. Lemma. Let p, q ~ R. Then 
(i) X--  V(p)= V(1 +p). 

(ii) V(pq)= V(p)wV(q). 
(iii) V(pwq) = V(p)c~ V(q). 
(iv) V(p) = V(q) if and only if p = q. 
(v) V(p) c__ V(q) if and only if q(a) < p(a) for all a ~ X.  [] 

Given p e R ,  where p=p(xi,. . . ,xj),  write supp(p)={Xm:i<m<j},  Ip [=j - i  
+ 1 = the number of variables in supp(p), and r(p) = the number of roots of p, i.e. the 
number of vectors (bi,..., br) (where r = j -  i + 1) such that p(bi,..., b,) = 0. [There is 
some ambiguity about the number of variables involved in a polynomial p, and so 
in the above definitions. For  example p=x~x2 can also be written 
p = x o + x a x 2 + x o ,  thereby changing supp(p), IP], and r(p). In what follows, 
however, no contradiction will arise if it is borne in mind that the determination of 
the above quantities refers to a f ixed representation of a Boolean function as a 
polynomial in R.] For example if p = Xo + xz then IPl = 3 (regarding p as a function 
of Xo, X 1, and x2) and r(p)=4 [since there are four vectors (b ,  b2,b3) with 
b l + b 3 = 0 ] .  

We can now determine the measure of the sets V(p). 

2.2. Lemma. Let p, q6R.  Then: 
(i) /l(V(p)) = r(p)2-Ipl 

(ii) I f  supp(p)c~supp(q) = q~ then #(V(p)c~ V(q)) = #(V(p))#(V(q)). 
In particular #(V(x~, u . . .  UXir)) = 2 -r. 

Proof (i) If p= p(x i, ...,xj) thenclearly V(p) is the union of r(p) disjoint cylinder sets 
[each being the set of all a ~ X such that (ai . . . . .  a j) is equal to one of the r(p) roots of 
p]. Since each such cylinder set has measure 2-Ipl we have the result. 
(ii) The condition supp(p)nsupp(q)= q5 means that p and q have no variable in 
common, so the number of roots o fpuq  is r(p)r(q), and [pwq[ = Ipl + ]q]. Thus by 2.1 
and part (i), 

ll(V(p)n V(q)) = #(V(puq)) = r(pwq)2-Ip~ql = #(V(p))ll(V(q)). [] 
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The shift automorphism tr acts on R in the obvious way: i fp  =p(x~ . . . .  , x j) then 
pa = p(x i + 1 , . . ,  x j  + 1), and dear ly  (pa) (a) = p(a(a)) for all a e X (the use of the same 
letter to denote the shifts on X and R should cause no confusion). It is also obvious 
that 

V(pa) = a -  ~(V(p)) for all p e R. 

Given an element f e R define an algebra homomorphism OI:R ~ R  as follows: 
Oy(xi) = f t f l  for all i e 7Z and 0y is extended multiplicatively and linearly to all of R. 
In other words ifp =p(xi , . . . ,  x i) then 0tip) =p( fa i , . . . ,  faJ). In particular f = Os(xo). 

Given f E R define f~o : X ~ X  by foo(a)i = f(ai(a)) for all i e 2~ and all a e X [so if 
f = f ( x  . . . . . .  x,) then fo~(a)i=f(ai+ . . . . . .  ai+~)]. It is well-known that f| is con- 
tinuous and commutes with a (cf. Hedlund [-3]). I f f  ge R [say f = f ( x  . . . . . .  x~)] then 

foo(g~(a))i = f(ai(g o~(a))) = f (g  oo(aia)) 

= f(goo(ala)~,..., goo(a'a)~) =f(g(a  i+ ~a),..., g(a '+ ~a)). 

Put  h = Oa(f) = f(gtr r . . . .  , ga~). Then 

h ~o(a)i = h(tfla) = f(gar(aia),.. . ,  gtr~(aia)) = f~(g o~ (a))i �9 

We have shown that 

and in particular 

fo~g~ =(0g(f))~ for all f g e R ,  

f t  

We also have the following result: 

2.3. Lemma. For all p ~ R, 

f s I( V(p))= V(O z(p)) . 

Proof. Suppose p = p ( x  i . . . .  ,x3). Then 

a e f s  l(V(p)) ~ f ~  (a) e V(p) r P(foo (a)) = 0 

~p( f~ (a ) i  . . . . .  f~(a)j) = 0 r p(fai(a) . . . . .  tiff(a)) = 0 

v(O/p)). [] 
We can now prove the equivalence of onto-ness and measure-preservation, and 

at the same time provide an algorithm for determining whether a map is measure- 
preserving: 

2.4. Theorem. For f ~ R the following are equivalent: 
(i) fo~ is measure-preserving. 

(ii) foo is onto. 
(iii) For all integers il, i2,.., with i 1 < i 2 <. . .  < i r we have 

# ( V ( f  ai~)~... ~ V ( f  ai")) = 2-r .  

(iv) For all non-negative integers il, i : , . . ,  with 0 = ia < i: < . . .  < i, we have 

 (v(f v( f   ig)= 2 -r. 

Proof. (i) ~(i i) :  In general f ~ ( X )  is a closed subset of X since f~  is continuous and 
X is compact. Further, since f~  is measure-preserving we have #(fo~(X)) 
= g ( f ~  l( f~(X)))=/~(X) = 1, so foo(X) is dense in X. Therefore f ~ ( X ) =  X.  
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(ii)=~(iii): Since o is a measure-preserving homeomorphism of X and 
fooak=(fok)oo, by applying a suitable power of o to f we may assume that 
f = f ( x l , . . . ,  xm) for some m > 1. Also since 

#(V( f  ah)~.. ,  c~ V ( f  ffir)) = It(V(f)o-hc~...  c~ V ( f  a i~- h)o-it) 

= I~(V(f)c~... c~ V( fo  i~- h)) 

we may assume that i I =0.  Put  p = f o h w . . . w f a  ~ and i=ir, s o  we need to show 
that #(V(p))= 2". Consider the set T of all ( i+ 1)-dimensional vectors b = bo...b~, 
where b i = 0  if j~{ i l , . . . , i , } ,  and bj~{0,1} is arbitrary otherwise. Clearly the 
c ardinality of T is I TI = 2 i + ~ -~. As in [3] define the map f~: {0,1}~+"~ {0,1 }~+ ~ as 
follows: given a=(a x ... . .  ai+m) let f i(a)=(f(al, . . . ,a"),  f(a2,... ,am+l),... ,  
f(ai+ 1 ... . .  al +,,)). Observe that fi(a) e T if and only if f (a l  +**, ..., am ~ J = 0 for 
k = 1 . . . . .  r. On the other hand, for u e X we have u ~ V(p) if and only if f oS(u) = 0 for 
1 < k < r, which happens if and only if f(u~ + ~, ..., u,, + ~) = 0 for 1 < k < r. In other 
words, u ~ V(p) if and only if u~...u,+ m e U f~- ~(b) =f~-  ~(T). By Theorem 5.4 of 

b e T  

[3], the onto-ness of fo~ implies that each f i -  ~(b) has cardinality 2 " -  1, and so 
[f~- ~(T)[ = 2 ~-  i x 2 i + 1 -~ = 2" + i- ~. It is now clear that/~(V(p)) = 2 i + m- ~/2 i + m = 2- ' ,  
as required. 
(iii) :=>(iv) is trivial. 
(iv)=>(iii): This is proved by induction on r, the case r = l  being equivalent to 
g(V(f)) = 1/2. In general since 

V ( f  o~)c~.., c~ V ( f  o ~) = [ V( f )n . . .  c~ V ( f  o i~ - '*)]a-",  

we may assume that i, = 0. If i, > If[ then supp(f)c~supp(fa i~) = ~b, so by 2.2 (ii) we 
have 

v ( f  dg) = u ( v ( f  v ( f  o 9) (v(fa 9) 
= 2  -r ~) x 2 -1 = 2 - ' ,  

by the inductive hypothesis. If i ,<  Ifl then the inductive step is given directly 
by (iv). 
(iii)=:-(i): Take any u~{0,1}, and consider the function p ,=(x i ,+uOw. . .  
u(x~. + u,), where il < . . .  < i, are arbitrary integers. Then p,(u)= 0 and p,(v)= 1 if 
v 4: u. We claim that g(f~o I(V(P,))) = #(V(p,)) = 2-r  if (iii) holds. If every u~ = 0 then 
this is simply (iii). As an example of what happens when some of the ui are nonzero, 
consider the case where only ul = 1. If p=x~,w.. .ux~ r and q=x~2w...~x~, then 
pp, = q, so V(p) w V(p,) = V(q) and hence f g l( V(p)) w f  Zo l(V(p,)) = f s 1( V(q))7 Since 
the union is disjoint and fo~ I(V(P)) and f g  l(V(q)) have measure 2 - '  and 2 - ( ' -  1) 
respectively [by (iii)] we obtain # ( f s  t(V(p,))) = 2- ' .  Similarly reasoning es- 
tablishes the result for all u. For  a general p ~R it is clear that V(p) is the disjoint 
union of the V(p,), where u ranges over the r(p) roots of p. Since #(fo~ I(V(P,))) 
= 2-Ipl for each u we get #( f2  ~(V(p)))= r(p)2-Ivr = #(V(p)). Finally since the V(p) 
generate the Borel a-algebra of X it follows that f~o is measure-preserving. []  

2.5. Remark. Theorem 2.4 provides an effective algorithm for deciding whether a 
given f~o is onto: let m = [ f l - 1 .  Then f~  is onto if and only if f" :{0 ,1} 2"+1 
~{0,  1} "+~ is an exactly 2"-to-I map. It is known [8] that the onto-ness of a 
cellular automaton in dimensions higher than 1 is undecidable. 

For  example it can be verified that the only measure-preserving cellular 
automata f ~  with f = f ( x l , x 2 , x 3 )  are the following ( c = 0  or 1): c+x~, c+x2, 
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C"~ X3, C'+'XI-~ X2, C--~ Xl-'t-X3, C--~ X2-qL X3, C'-~ Xl-~-X22cX3, e ~- xl-4-X2X3, C nk Xl  
--~Xz--~X2X3, C--~- X 1 --~ X3 --l- X2X3, C-t- X 1 -I- X2 --}- Xa --J- X2X3, C-}- X3 -I- X1X2, C--~- X3 -qL X1 
-t-XlX2, C --~- X3 -~- Xz -t- XI X2, C -t- X3 --~ Xl  --~ N2 --~ X1X 2. 

It is perhaps worth mentioning that iff~o is not onto, then f |  has measure 0. 
For  foo(X) is always a closed subset of X, and clearly ~ - l ( f ~ ( X ) ) = f o o ( a - I ( X ) )  
= f~(X). Since o-- 1 is ergodic it follows that f ~ ( X )  has measure 0 or 1, and iffoo is 
not onto then #(fo~(X))# 1, as claimed. 

IIL Ergodicity 

Throughout this section f = f ( x  . . . . .  , x~) is a fixed element of R. In contrast to the 
property of being measure-preserving, ergodicity and the various forms of mixing 
are shift-dependent, in the sense that f~  and f~oa may have different properties 
(think of the identity map). We begin with the following lemma: 

3.1. Lemma. Let  p=p(x , ,  . . . , x j ) e R ,  and let n>O. Then 

supp (0}(p))_ {Xk " i + nr <__ k <=j + ns} . 

Proof. Since f ak = f (xr  + k, ..., xs + k), we have Of(p) = p ( f  tr i . . . . .  f a j) 
= P(f(xi  + r,.. . ,  x j  + r) ," ' ,  f ( x i  + 2,'--, Xj + 8)), SO supp (0s(p))_c {Xr +i . . . .  , X~ + ~}. The re- 
sult follows by induction on n. [] 

We now come to our first result concerning the ergodicity of the foo. It is in fact 
easier to prove that foo is strongly mixing [i.e. g(Ac~f~o"(B))--*~(A)#(B) as n ~  oo for 
all measurable subsets A and B of X] and to deduce ergodicity from this ([4], 
p. 142). 

3.2. Theorem. Let  f = f (xr, . . ., x~), where either 0 < r < s or r < s < O, and assume that 
f ~  is onto. Then for  all Po, Pt ~ R we have 14V(po)c~ f~"(V(pO))=lt(V(Po))#(V(pO) 
for all sufficiently large n. In particular foo is strongly mixing and hence ergodic. 

Proof  Consider first the case 0 < r <  s, and suppose supp(pi)= {Xk:ei < k <ill} for 
i=0,  1. By 3.1 we have supp(0"(p0)____ {Xk : Cq + n r < k < f l l  +ns}. Since r>0 ,  for all 
sufficiently large n we have flo <e~ +rn, which implies that P0 and 0"(p 0 have 
disjoint supports. By 2.2 (ii) this implies that 

#(V(po)n f Zo "( V(p x))) = #(V(po)c~ V(O"(p 1))) = II(V(po))U(V(O"(p,))) 

= ~ ( V ( p 0 ) ) ~ ( V ( p , ) ) ,  

the finally equality following from the fact that f~  is measure-preserving, by 2.4. 
The case r < s < O  can be established analogously, since f l ~ + n s < %  for all 

sufficiently large n. [] 

Question 1. Is f~  above m-mixing for all m >-_ 1? The method of proof does not 
allow us to establish this fact. When f~  is a linear map then it is known that f~o is 
m-mixing for all m > 1, cf. [5]. 

We can also say something about those maps f for which the conditions on r 
and s stipulated in 3.2 do not hold. For brevity we introduce the following 
terminology: let p = p(xi, ..., x j) ~ R. Say p has k roots in [i, j ]  if there are exactly k 
vectors u = (ui, ui +a,..., u j) for which p(u)= 0. We need the following. 
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3.3. Lemma.  Let  r < o~ < fl and s > r be given integers, and consider the polynomial 

h =  [x, + g(x,+ 1 . . . .  , xs )]up(x ,  . . . .  , xp) , 

where p, g e R and p has k roots in [~, fl]. Then h has 

k2 ~ - , - 1  roots in[r ,  fl], i f  s < f l ,  

k2 " -*+~-# -1  roots in [r ,s] ,  if  f l < s .  

Proof  Consider  first the case s<fl .  If  u=(u, , . . . ,u~, . . . ,u#)  is a roo t  of  h then 
(u,, ..., ua) is a roo t  of  p, so there are k possibili t ies for  (u,, ..., up). N o w  for every 
choice of  a roo t  (u,, ..., u#) o f p  and  every a rb i t r a ry  choice o fu ,+  a . . . . .  u ,_ ~ we get a 
unique roo t  of  h by  sett ing ur = g(u,+ ~ . . . .  , u ,_ 0. Thus  the n u m b e r  of  roots  of  h is 
k2(~- ~)-(,+ ~)+ 1 = k 2 , - , -  x. Similarly in the case fl < s, if (u,, ..., u~) is a roo t  o f h  then 
(u~, ..., up) mus t  be a roo t  of  p, u, + ~ . . . . .  u ,_ ~ and  up + ~, ..., us (whence the factor  of  
2 ~-#) can be chosen arbitrari ly,  and  u , = g ( u , + l ,  ..., us). This p roves  the second 
formula .  [ ]  

O u r  next  result  has some  affinity to a result of  Willson [6, T h e o r e m  A]:  

3.4. Theorem.  Let  f = f (x~, . . . ,  x~), and assume that either f is permutive in x~ and 
r<O<=s, or f is permutive in x~ and r< O<s .  Then for  all Po, P l e R  we have 
~(V(po)r~ f s = ~(V(po))#(V(pO) for all sufficiently large n. In  particular fo~ 
is strongly mixing and hence ergodic. 

Proof  Assume, for definiteness sake, tha t  f is pe rmut ive  in x~, say f = x ~  
+ g(x~ + 1 . . . .  , x~), where  r < 0 < s. Since f = O:(Xo), it is easy  to p rove  by  induct ion  on 
n, tha t  

O"(x~) = Xn, + , ,  + g , ( x . ~ +  m + ~ . . . . .  X.s  + , . ) ,  

for some  g,  e R. We m a y  clearly assume tha t  V(po) and  V(p0 are cylinder sets, say 
Po = x , l u . . . w x ~ ,  and  p~ = x , , l w . . . w x , ,  ~. Since r < 0  we m a y  choose  n sufficiently 
large so tha t  nr + 1 < i~ < . . .  < i~ < ns + ink. [ In  the case s = 0 we m a y  clearly assume 
tha t  it < mk, since those  x,, with it > mk can be d isposed of  by  means  of 2.2 (ii) as they 
do not  a p p e a r  in any  of the 0"(x,,,).] W e  have  to  find the n u m b e r  of  roo ts  of  

hx = [x~, +,,~ + g,(x~,,+,,~ + 1, ..., x~,+,,1)]u. . .  

[x, .  +,.~ + g,(xr, +,,k + 1 . . . . .  xs, +,,~)] ~ Po. 

Cons ider  

hk = IX,, +,.k + g,(x,,  +mk + 1 . . . . .  Xs, +,,~)) upo .  

The n u m b e r  of  roo ts  of  Po = x~l w. . .  wx~, in [il ,  i J  is clearly k = 2 2'- ~' + 1 -~, and  so 
the second fo rmula  of  3.3 gives the n u m b e r  of  roo t s  of  hk in [nr+mk, ns+mk]  as 

2i~-ia + 1 - l  X 2 iI-  1 --(rn+mk)+sn+rak--i! ~ 2 s n - r n - l .  

Next  consider  

hk- 1 = [ x r n  + ink -1  + g n ( X r n  + m ~ -  i + 1 . . . .  , Xsn + , . k  - 1 ) ]  U hR. 

By the first fo rmula  of  3.3, the n u m b e r  of  roo ts  of  h k_  1 in [rn + m k_ 1, sn -k m k] is 

2 s n - r n - I  X 2 rn+mk-  1 - ( rn+mk-  1) ~ 2 s n - r n - I  - 1 +ink--ink- I 
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Inductively the number of roots of 

h k - t  = [ X r n + m k - t  "[- g n ( X r n + m k - t +  1 . . . . .  X s n + m k - j ] k ' ) h k - t +  1 

in [rn + mk_~, sn + ink] is 2 s"- r . -  z-, +,~- m~-,. In particular for t = k-- 1 we find that 
the number of roots of hi in [rn + ml, sn + ink] is s(h 1) = 2s"- r"- z- k + 1 +,~-,~1. Thus 

I~ (V(hl)) = S(hl )/2sn + mk -- (rn + m l) + i ~ S - l - k ~ # ( V ( p o ) ) l A (  V ( p  1 )),  

as claimed. The proof of the other case is entirely analogous. 

3.5. Corollary. All one-dimensional affine cellular automata fo~ (i.e. those with 
f = e + x r + . . . + x s ,  c = 0  or 1) except the identity ( f=Xo)  and the inversion 
( f  = 1 + xo) are strongly mixing and hence ergodic. 

Proof. In all cases other than the ones excluded in the statement, one of 3.2 or 3.4 
will apply. []  

Question 2. Are all onto one-dimensional cellular automata (other than the identity 
and the inversion maps), strongly mixing? 

It is perhaps worth mentioning that by 3.2, Wolfram's nonlinear rules 
3 0 ( f =  x_ 1 +Xo+X 1 + x0xl) and 4 5 ( f =  1 + x - 1  +Xo+Xj +XoXO are now known 
to be strongly mixing. In [7, Paper 2.3], he studies the former map, particularly 
from the point of view of its potential as a random sequence generator. 
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