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Abstract. Modular invariant conformal field theories with just one primary field 
and central charge c = 24 are considered. It has been shown previously that if the 
chiral algebra of  such a theory contains spin-1 currents, it is either the Leech lattice 
CFT, or it contains a Kac-Moody sub-algebra with total central charge 24. In this 
paper all meromorphic modular invariant combinations of  the allowed Kac-Moody 
combinations are obtained. The result suggests the existence of  71 meromorphic 
c = 24 theories, including the 41 that were already known. 

1. Introduction 

A conformal field theory is characterized by two algebraic structures: the chiral algebra 
and the fusion algebra. The chiral algebra consists at least of the Virasoro algebra, 
which in general is extended by other operators of  integer conformal weight. The 
representations or primary fields of the chiral algebra obey a set of fusion rules, 
determining which primary fields can appear in the operator product of two such 
fields. In general, both the chiral algebra and the set of fusion rules are non-trivial. 

If  one is interested in classifying conformal field theories, it seems natural to start 
with the simplest ones. For example, one might consider theories in which either the 
chiral algebra or the fusion algebra is as simple as possible. Theories of the former 
kind form the "minimal series" [1] (whose chiral algebra consists a priori only of the 
Virasoro algebra) and have been classified completely [2-4]. The theories with the 
simplest possible set of fusion rules are those with only one primary field 1, and a 
fusion rule 1 x 1 = 1. In such theories the entire non-trivial structure resides obviously 
in the chiral algebra. 

Theories of  this kind have extremely simple modular transformation properties 
[5]. The identity is self-conjugate, and hence the charge conjugation matrix C 
must be equal to 1. Therefore S = •  and the identity character X(T) satisfies 

X ( -  1) = +X(~-)- Choosing ~- = i, and noting that the character is a polynomial with 

positive coefficients in q = e 2~{~ so that x(i)  7 ~ O, we see that S = 1. Furthermore, 
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( c )  2k~ri e27rz h - ~  and h 0 since (ST) 3 = C, we f i n d T  = e 3 , k E Z. Since T = = 
it follows that c must be a multiple of 8. The one-loop partition function of  such 
a theory is simply XX*, where X is the character of the only representation of the 
theory. If  e is a multiple of  24 the character itself is a modular invariant partition 
function, and one can consider a corresponding pro'ely chiral conformal field theory. 
In such a theory all correlation functions are meromorphic, and hence these theories 
have been called meromorphic conformal field theories in [6]. 1 

Examples of  conformal field theories with just one character are easy to construct. 
Consider N free chiral bosons whose momenta lie on an even self-dual Euclidean 
lattice. The one-loop character X(~-) is simply the lattice partition function divided 
by N v-functions. Using Poisson resummation it is easy to show that this function 
transforms into itself (up to phases) under both S and T. Hence this character 
transforms as a one-dimensional representation of the modular group, and c = 2V 
must be a multiple of  8, which indeed is necessary in order to have an even self-dual 
Euclidean lattice. 

Even self-dual Euclidean lattices have been classified for dimensions 8 (the root 
lattice of  the Lie algebra Es), 16 (the root lattice of E 8 x E 8 and that of D16 with 
the addition of a spinor weight), and 24 (the 24 Niemeier lattices [7]). Any of these 
lattices defines a distinct conformal field theory, and it is natural to ask whether this 
exhausts the list of meromorphic conformal field theories in these dimensions. 

For c = 8 and e = 16 it is easy to see that this must be true. If  there were 
any meromorphic theories one could use them instead of  E 8 or E 8 • E 8 in the 
construction of the heterotic string. In particular one could construct new modular 
invariant supersymmetric heterotic strings, to which the relation between modular 
invariance mad cancellation of  chiral anomalies of [8] (easily generalized to higher 
level, see [9]) would apply. Hence any such meromorphic theory would manifest 
itself in the gravitational anomaly (and the gauge anomaly if there are gauge fields) 
of the field theory. Since only the two gauge groups E s • E s and SO(32) were found 
to be allowed we know that no such theory can exist. 

This argument does not apply to the meromorphic c = 24 theories. Indeed, several 
theories are already known that cannot be described by free bosons on Niemeier 
lattices. The first example is the "monster module" [10], a meromorphic c = 24 theory 
without any spin-1 operators, and which therefore lacks the 24 bosonic operators OX 
that are present in any lattice theory. This theory can be obtained by applying an 
orbifold Z2-twist X --+ - X  to one of the 24 Niemeier lattice CFTs [11, 12]. Such 
a twist does not directly yield a meromorphic CFT, but a theory with four primary 

3 fields E,  O, (7o and ~7 E, with spins 0, 1, ~ and 2 respectively. The corresponding states 

form respectively the odd and even states of the original Hilbert space, and the odd 
and even states of  the twisted Hilbert space. The fusion rules of  these primary fields 
may be found in [13]. In particular one has 02 = ~ = cr~ = E ,  showing that all 
of them are simple currents. Hence if they have integral spin they can be put into 
the chiral algebra. Putting O into the chiral algebra projects out the twist fields cr 
and % and gives us back the original lattice theory, with character X = XE § Xo. 
The more interesting possibility is to put cr z into the chiral algebra. This projects out 
J and ~7, and gives a new, meromorphic CFT whose character is X E + X~z" The 

This terminology is in fact used in a broader sense in [6]. Throughout this paper we use 
the adjective "meromorphic" to indicate a "one loop modular invariant meromorphic," or, in the 
terminology of [6], "bosonic self-dual meromorphic" theory 
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number of  spin-1 operators in this new theory is easy to compute [11], and is given 

by ~tFwisted 1 = ~ l / a t t i c e  - -  12, where ~/" denotes the number of spin-1 operators in the 

chiral algebra. 
This twisting procedure can be applied to any of the 24 Niemeier lattices. Although 

it always yields a different theory, that theory may itself be another lattice theory. 
In [6] it was shown in a very elegant way, using the theory of codes, that in 15 
cases one obtains something new. One of those 15 is the monster module, obtained 
from the Leech lattice CFT, which has M / =  24. Thus we know now altogether 39 
meromorphic c = 24 theories. 

The existence of  one more theory can be inferred [14] from the existence of a ten- 
dimensional (non-supersymmetric) heterotic string theory with Kac-Moody algebra 
Es, 2 [15] (here and in the following X,n,, ~ denotes an untwisted Kac-Moody algebra of 
type X,  rank m and level n). In [16] a mapping from ten-dimensional heterotic strings 
constructed by means of  the covariant lattice construction (or free complex fermions) 
to a subset of the Niemeier lattices was described. This produced an easy classification 
of all ten-dimensional heterotic strings with a rank-16 gauge group. However, the same 
map takes any ten-dimensional heterotic string to some meromorphic c = 24 theory. 
The Es, 2 theory does not have a rank-16 gauge group and cannot be described by 
a lattice, but it is still mapped to some c = 24 theory. This theory has 384 spin-1 
currents forming a Bs,1Es, 2 Kac-Moody algebra, which does not correspond to any 
twisted or untwisted Niemeier theory. Hence it must be a new item on the growing 
list of meromorphic c = 24 theories. 

The last example known to us before starting this work was found more or less 
accidentally, as a result of  a computer search for integer spin extensions of Kac- 
Moody algebras [17, 14]. A modular invariant of F4, 6 emerged that was neither a 
simple current invariant nor a conformal embedding. Although this new theory is not 
a meromorphic theory, it turned out that its six characters could be combined with 
the six characters of A2, 2, so that a meromorphic theory was formed with S/" = 60. 
A twisted Niemeier theory exists with the same number of  spin-1 currents, but that 
theory has a Kac-Moody symmetry (C2,2) 6, and is thus clearly different. This brings 
the total so far to 41. 

The goal of this paper is to complete the list of meromorphic c = 24 theories. 
This goal will indeed be achieved, but under three additional assumptions. First of  all 
our methods require that .fi/" 5k 0. It has been conjectured that there is just one theory 
with J//" = 0; for counting purposes this will be assumed to be true in the following. 
Secondly, we will assume that the chiral algebra is generated by a finite number of 
currents. This is indeed true for all unitary rational conformal field theories we know, 
and it might be possible to derive this rather than assume it. Finally, we will not really 
construct conformal field theories, but modular invariant combinations of Kac-Moody 
characters. It will be shown in the next section that if M/" ~ 0, then the chiral algebra 
contains a spin-1 algebra with a total central charge 24. Hence the partition function of 
any such theory must be a modular invariant combination of Kac-Moody characters, 
and these combinations will be enumerated completely. There are 69, not including 
the Leech lattice and the monster module. Barring the unlikely possibility of having 
two or more distinct conformal field theories per combination (which in any case 
must all have the same representation content in each excitation level), this limits the 
set of possible distinct c = 24 theories to 71. It remains to be proved that a conformal 
field theory corresponding to all of  these 71 partition functions actually exists. In 
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particular, one would like to write down the operator product algebra of the set of 
the higher spin fields appearing in the partition function. This is simply an example 
of the familiar problem of writing down operator products for non-diagonal theories. 
Methods to address this problem exist and have been applied to various examples, 
but they are rather laborious, and will not be pursued here. The existence of  non- 
diagonal modular invariant partition functions requires a large number of  conditions 
to be satisfied, and it is difficult to believe that this would be a mere coincidence 
without having the significance it strongly suggests. For this reason we conjecture 
that a meromorphic c = 24 theory exists for any of the new partition functions. 

Explicit constructions exist for the twisted and untwisted Niemeier theories as well 
as the/38,1E8, 2 theory (which can be built out of  real fermions), but for the second 
example of [14] only the modular invariant character combination is known. 

There are several motivations for attempting to classify the c = 24 meromorphic 
conformal field theories. Originally our interest in this problem was related to 
the aforementioned relation between this classification and that of ten-dimensional 
heterotic strings. Indeed, from a list of the c = 24 theories one can obtain a list of all 
d = 10 heterotic strings by simply looking for all possible embeddings of  D8,1 . Several 
d = 10 heterotic strings have been constructed by various methods [15, 18, 19], (in 
particular orbifolding, fermionic and lattice constructions), but none of  these methods 
has any claim to completeness. In a recent paper we have proved completeness for 
d = 10 heterotic strings from a partial classification of the meromorphic c = 24 
theories [20]. This work made it clear that with some more effort a complete 
classification of the latter should be possible. Although at present our main motivation 
for completing the classification is just curiosity, there are many interesting facts 
related to c = 24 that suggest these theories might have their r61e to play (for example 
in connection with the bosonic string or the intriguing even self-dual Lorentzian lattice 
F25,1, or in connection with the Monster group). In fact, we hoped that the complete 
list might reveal an underlying structure that was not apparent from the partial list, 
but this hope has not been fulfilled so far. 

Finally, the new solutions will provide us with interesting information about a 
class of Kac-Moody modular invariants that is still not understood at all. There are 
three known methods for constructing in a systematic way extensions of the chiral 
algebra of Kac-Moody algebras: simple currents, conformal embeddings and rank- 
level duality. Simple currents [ 17] yield generalizations of the D-invariants of  SU(2). 2 
Conformal embeddings H C G [27] imply extensions of  the chiral algebra of  H to 
that of  G [28]. They can be recognized by the presence of  spin-1 currents in the 
extension. Sometimes this method can be applied to embeddings H 1 • H 2 C G to 
infer the existence of invariants of  H 2 from those of  H 1. Rank-level duality [29-32] 
can be viewed as a special case of  this, and implies relations between the modular 
group representations and invariants of  the pairs SU(n) level k +-+ SU(k)  level n, 
C~, k +-+ Ck, ~ and SO(n) level k ~ SO(k)  level n. 

Unfortunately this is not sufficient to obtain all extensions of Kac-Moody algebras. 
Only one genuine exception (which cannot be obtained by any combination of these 
methods) was known so far, namely the F4, 6 invariant of  [14] (note that we are not 
considering fusion rule automorphisms here). The list of meromorphic c = 24 theories 
yields several additional examples. 

2 In the special case of Kac-Moody algebras, most of these invariants can be obtained by orbifolding 
with respect to certain extended Dynkin diagram automorphisms, which form a group isomorphic 
to the center of the Lie algebra [21-24]. The only exception [25,26] is Es, 2, which has a simple 
current that can yield extensions of the chiral algebra in certain tensor products 
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The methods we used can be summarized as follows. The starting point of  the 
classification is the fact, mentioned above, that the c = 8 and c = 16 theories can be 
classified using anomaly cancellation in superstring theory. For c = 24 we do not use 
chiral anomalies of some string theory, but consider directly the same trace-identities 
that imply anomaly cancellation in superstring theory [8], and which contain in fact 
far more information. This will be explained in the next section (some of  the results 
have already appeared in [20]). The crucial observation is that the spin-1 currents of  
any c = 24 theory must form a Kac-Moody algebra with c = 24, or a product of 24 
U(1)'s.  (Note that this property does not hold for c > 24; a trivial counter-example is 
the monster module tensored with Es, 1. The trouble is that there could be non-trivial 
counter-examples as well.) Furthermore all Kac-Moody algebras appearing in a given 
theory must have the same ratio 9 / k  (where g is the dual Coxeter number and k the 
level), and 9 / k  can be computed from JU,  the total number of  spin-1 currents. There 
are only 221 solutions to these three conditions. 

This is a very small number in comparison with the number of ways of writing 24 
as a sum of central charges of  Kac-Moody algebras (not to mention rational U(1)'s). 
Since this simple argument gets us so close to the final answer, it is worthwhile to try 
to continue. From here on, further reduction of the number of solutions is considerably 
harder, though. 

The next step is to use higher trace identities to rule out accidental solutions. This 
is a fairly laborious task, but one is finally left with 69 Kac-Moody combinations for 
which one or more candidates for the second excited level (with 196884 elements) 
exist that satisfy all trace identities. Now we consider directly the modular invariance 
conditions for the remaining candidates. This looks hopeless at first, since the total 
number of  primary fields can be huge (for example 512), and often the number of  
integer spin fields is much too large as well. Here simple currents come to the rescue. 
In many cases, we can conclude from the already known results at the second level 
that certain simple currents of spin 2 are present in the chiral algebra. This implies that 
some primary fields are projected out, and the remaining ones are organized into orbits. 
Each independent simple current of order N reduces the number of primary fields 
by a factor of N 2 (ignoring fixed points). This makes it possible to find the solution. 
Indeed, for all of the 69 combinations for which a second-level solution exists we 
find precisely one modular invariant partition function (up to outer automorphisms). 

2. Trace Identities 

In this section we construct the character-valued partition functions for (unitary, 
modular invariant) meromorphic conformal field theories with central charge 8n, 
n E Z, and derive the resulting trace identities for c = 24. 

Consider a unitary meromorphic theory with spin-1 operators, i.e. M/" ~ 0. Then 
these operators must have the following product [33, 6]: 

k~ ab 1 
J a ( z ) j b ( w )  = (z  - w)  ~ + z - w i fabc JC(w) + finite terms. 

If  for some label a all f~bc vanish, then J~ generates a U(1) factor. Otherwise the 
coefficients f~bc must be structure constants of a semi-simple Lie algebra, and the 
current algebra is then a Kac-Moody algebra. The central charge of the Sugawara 
energy momentum tensor of  this algebra is smaller than or equal to the total central 
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charge. The states in the theory are transforming in certain representations of  the 
zero-mode algebra, and this allows us to write down a "character-valued" partition 
function containing this information: 

p ( q ,  t7) = Tr e ~ ~ q  L~ (2.1) 

where F .  J - ~ F a j a ,  and F a is a set of  real coefficients. (In anomaly applications 
a 

F ~ would be a Yang-Mills two-form, but this will not be needed here.) 
In general, the Kac-Moody algebra generated by the spin-1 current consists of  

several simple factors, and the partition function can be expressed in terms of  the 
t of  the ~th factor and an unknown function without spin-1 contributions: characters Xie 

P(q ,  /71, " , /TL) ~ i ~ .. L "" = )~il ( q ' V l )  " XiL (q'FL))~il  ..... iL (q)" 
il,...,i L 

Now we wish to make use of the modular  transformation properties of  the theory. 
For c = 8n it transforms with S = 1 and T = e -2rein~3. It is convenient to multiply 
P with ~7(q) 8n to remove the phase in the T transformation. Then the function 

P(q ,  0 , . . . ,  O) = (r](q))S*~p(q, 0 , . . . ,  0) transforms as a modular function of weight 
4n. Furthermore we know the transformation properties of  the Kac-Moody characters 
[34] 

~- ---+ ~- 4- 1 : Xi(7- 4- 1, f i )  = e2rci(hi-c/24)Xi(7-/7) , 

1 l f f ,  i k F2 
T ---+ - - - -  : X i ( - -  - - '  7 )  = e 8r~r gTradj /7)  

T T S i j  X j  (T, , 

where 

(2.2) 

Xi(% i f)  = Tri e f f ' ~ e  27riv(L~ (2.3) 

with the trace evaluated over the positive norm states of the representation "i ."  In 
(2.2) g is the dual Coxeter number of the Kac-Moody algebra, and we have traded 
q for % with q = e 2~i~. The trace in (2.2) is evaluated in the adjoint representation, 3 
except for U(1) factors, where one can use any non-trivial representation, provided 
that k / 9  is replaced by some normalization N.  4 This normalization turns out to be 
irrelevant for our purposes. 

Using (2.2) and the fact that the P must be a modular function for f f  = 0, we can 

derive how it must transform when ff  r 0. (This is precisely the same argument as 
was used in [8] to derive the transformation properties of the chiral partition function 
of heterotic strings, from which one can derive the Green-Schwarz factorization of 
the anomaly.) One finds 

~ r r + d ' c r + d  = e x p  8 r c ( c r +  

where we have defined 

$2= Z Tradi F:, 
g 9g 

with the appropriate modifications for U(1) 's  as explained above. 

3 Conventions: J~ is Hermitian, f a b c f a b e  : 2gdce' A factor i/2rc in the usual definition of Chern 
characters has been absorbed in F 
4 The natural choice is the charge-1 representation, where "charge" is defined to be the eigenvalue 
of the spin-I operator "OX',  i.e. the "lattice momentum". In that case N = 1 
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To analyse the consequences of these transformation properties we need the 
Eisenstein functions, for convenience normalized as follows: 

Of) 

E 2 ( q ) = l _ 2 4  E n_ q~_ 
n=l 1 - q n  

?@qn 
E4(q) ~-- 1 + 240 E - - - - -  ' 

n=l  1 -- qn 
O(3 

E6(q) = 1 - 504 Z -nS-q'~ . 
,~=1 1 - q ~  

The last two are entire modular functions of  weight 4 and 6 respectively, whereas E 2 
has an anomalous term in its modular transformation 

E fa +b  2 \ c r  + dJ = (cr + d)ZE2(7 ") - 6ire c(cr + d). 

The anomalous term in the E 2 transformation can be used to cancel the exponential 
prefactor in (2.4). Indeed, if we define 

P(q, if) = e-1/48E2(q)3"2p(q, f )  

we find 

/5(ar+b\~j[t, crff+ d)  = (c~- + d)4~/5(7'/7) . (2.5) 

Expanding t5 in powers of F one finds that the expansion coefficients of terms of 
order m must be modular functions of  weight 4n § m. To proceed, we need to know 
that they are regular in the upper half-plane. 

The Kac-Moody characters X~(r, if) are explicitly known and regular by inspection. 
However, the functions Xix ,--.#L are characters of an unknown conformal field theory. 
It can be shown [35] that these characters are regular if the chiral algebra of this 
unknown theory is generated by a finite number of  currents, essentially because 
this limits the growth of the number of  states with increasing level. The unknown 
conformal field theory is in any case unitary and rational (since the modular group 
closes on the finite set of  characters Xq,...#L), and all known theories of this type 
have a finitely generated chiral algebra. It might be possible to prove that this is true 
in general, but at present the best we can do is assume it. The multiplication with ~/sn 
removes the singularity at q = 0, so that the coefficient functions are entire modular 
functions of weight 4n+m on the upper half-plane including r = ioc. Basic theorems 
on modular functions can then be invoked to show that all coefficient functions must 
be polynomials in E 4 and E 6. 

We define the functions ~n as polynomials in E 4 and E 6 with total weight n. These 
functions have one or more free parameters. For example ~ = a ( E 4 )  2, ~10 : aE4E6, 
~12 --~ ~ ( E 4 )  3 _u }~(E6)2, ~14 = ~ , etc. Clearly 6~12k+z depends on k + 1 
parameters for l = 0, 4, 6, 8 and 10, and k for 1 = 2. An important linear combination 
of the two weight 12 functions is 

A(q) = 1@28 [(E4) 3 - ( E 6 )  2 ]  : (~(q))24. 
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The characters out of which P was built are traces over exponentials of the 
representation matrices of each excitation level. This yields traces of arbitrary order 
and over different representations. Traces over different representations can always 
be expressed in terms of traces over some fixed representation (called the reference 
representation in the following). Furthermore all traces can be expressed in terms of 
a number (equal to the rank) of basic traces Tr F 8, where s is equal to the order of 
one of the fundamental Casimir operators of the Lie algebra (these are equal to the 
"exponents" of the Lie algebra plus 1). The reference representation must be chosen 
so that for all s these basic traces are non-trivial and cannot be expressed in terms 
of lower-order traces (unfortunately, this often excludes the adjoint representation). 
In the following all traces will be over the reference representation unless a different 
one is explicitly indicated. 

Thus we arrive at the following expression for the character-valued partition 
function 

P(q'Fl'''"FL)=e~sE2(q)j2(~(q))-8n ~ Z ~4n+m(i)~ (2.6) 
m=O i 

Here ~ m  denotes a trace of total order m, and i labels the various traces of that 
order. Such a trace has the general form 

L 

~ = II[Tr(Fs)~(e#)]'~(e#), 
g=l 

with ~ s(g, i)m(g, i) = m, and s(g, i) - 1 is one of the exponents of the (g)th Lie 
g 

algebra. Each such trace can have a different coefficient function, as indicated by the 
argument (i) of g~. 

Since the ground state is a singlet representation of the theory, it does not contribute 
to any of the higher traces. This fixes some of the parameters in the coefficient 
functions g~. In the absence of the exponential "anomaly" factor this would simply 
mean that all coefficient functions for m > 0 must start with ql rather than qO. 
However, because of the extra factor this is not true if ~ is a product of second- 
order traces. In that case the coefficient function must cancel the traces generated 
by the exponential factor multiplying the m = 0 terms in the sum. We can take the 
required terms out of the coefficient functions g~ by rewriting the partition function 
in the following way: 

P(q,F)= exp(~-~E2(q).y2)~?(q) -sn 

•  1 

-(E4(q))n-3/zE6(q)[sinh(1EX/~@4(q).Y2)] 

+ ~ Z A~4~+ r " - l e ( i ) ~ ' ~  } '  (2.7) 
m=2 i 

where v~,~(0) has a leading term equal to 1. Note that the cosh and sinh terms, when 
expanded in F,  produce coefficient functions that are polynomials in E 4 and E 6 of the 
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correct weight. We can take out a factor A from the remaining coefficient functions, 
because we know that they must be proportional to q. This leaves ~4,~+~,~/A, which 
is an entire modular function of weight 4n + m - 12 (since A has no zeroes). The 
functions ~ exist only for l = 0 and l _> 4, 1 even. For all other values that occur in 
the sum they must be interpreted as 0. 

Now consider the first excited level. Expanding (2.7) to second order in F one 
gets 

-- - -  r~ q- g 2  q_ E Ctg Trad j Fg 2 . (2 .8)  
6 e 

Here c~g is the leading coefficient of ~4n 10 (g) (times a factor for the conversion 
from reference to adjoint representation). This term vanishes if n _< 3. Since by 
construction the first excited level (the spin-1 currents) consists entirely of  adjoint 
representation of  the Kac-Moody algebras, the result should be equal to the Chern- 
character Tr e FA, where A is the adjoint representation matrix. Upon expansion this 
yields, for non-Abelian algebras 

4 g ~  (d ime  + ~  Tradj �9 (2.9) 

For U(1) factors there is no F 2 contribution in (2.9), and any non-trivial representation 
can be used for the other traces. Comparing (2.8) and (2.9) we get, for non-Abelian 
algebras 

E dim e = M/" and 
g 

(3o3  - - - n +  - - + c ~  e =  1. 
3 9e 

For n > 3 (i.e c >_ 32) the second equation simply determines the coefficients c~ e, 
and one does not learn anything about the possible Kac-Moody algebras. However,  
for n _< 3 these coefficients are absent, and we get 

9g = 30 31 J / f  (2.11) 
kg - T n +  2-4- 

which is independent of  g. For U(1) factors the right-hand side of  the second 
equation in (2.10) is zero instead of one, and ke/ge is replaced by the non-vanishing 
normalization constant N e. Hence in this case we find (if n _< 3) 

~/"  = 248n - 720. (2.12) 

This makes sense only if n = 3. Then one finds that . /U = 24, and substituting this 
into (2.11) we conclude that any non-Abelian factor that might still be present must 
have vanishing dual Coxeter number. Since this is not possible, all 24 spin-1 currents 
must generate U(1)'s.  This saturates the central charge, and hence the entire theory 
can be written in terms of free bosons with momenta  on a Niemeier lattice. The only 
such lattice with 24 spin-1 cun'ents is the Leech lattice. Therefore this is the only 
meromorphic c = 24 theory in which Abelian factors appear. 
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Hence we may ignore U(1) ' s  from here on, and focus on non-Abelian factors. 
One can find the solutions of (2.12) by determining for each .A/" the allowed Kac- 
Moody algebras, and then trying to combine them in such a way that the total adjoint 
dimension is , / f .  In addition the total Kac-Moody central charge must be less than 
8n. For  n = 1, 2 we get only four solutions: Es, 1 for n = 1, and (Es,1) 2, D16,1 , and 
Bs, 1 for n = 2. However,  for n = 1 and 2 the number of  spin-1 currents is not a free 
parameter: it must be equal to 248n, which eliminates the fourth solution. 

it  is instructive to compute the total Kac-Moody central charge: 

ke dim e J U  
eto t = ~ - -  24 

e he + ge 248(3 - n) + S/"  ' 

which is valid only if  n _< 3. For n = 3 we see that the result is always equal to 24, 
which implies that the Kac-Moody system "covers" the entire theory, and that the 
unknown part of the theory defined above is necessarily trivial. Our results so far can 
be summarized as follows: 

Theo rem 5. Let ~ be a modular invariant meromorphic e = 24 theory whose chiral 
algebra is finitely generated and contains S/" spin-1 currents, with ~/Y r O. Then 
either ./K" = 24, and ~ is the conformal field theory of the Leech lattice, or M/" > 24, 
and the spin-1 currents form a Kac-Moody algebra with total central charge 24. The 
values of 9 /k  for each simple factor of this algebra are equal to one another, and 
given by ~/ ' /24 - 1. 

This is all that can be learned from the trace identities at the first level. The 
identities for higher-order traces involve (for n _> 3) always unknown coefficients 
analogous to a e above. These coefficients can be determined and then used to compute 
traces over the second excitation level. 

To write down these higher-order trace identities we first need some definitions. 
The indices J , ~  ..... m~ (R) of a representation R of a simple Lie algebra are defined 
as 

f 

TrR F ' ~  = Z Jm, ..... , ~  (R) I I  T r ( F = i ) ' ~ ,  
i-1 

where the traces on the right-hand side are over the reference representation, 
and ~ r a i s  i = ra. Here r is the rank of the Lie algebra, and the sum is 

i 
over all combinations of basic traces with the correct total order ra. Note that 
with this definition the indices depend on the reference representation. For our 
purposes it will be sufficient to consider the coefficients J~,0 ..... 0, i.e. the coefficient 

of  (TrF2)  m. In a tensor product of L Kac-Moody algebras we will denote the 
coefficient of (Tr(F1)2) ~I x . . .  x (Tr(FL)2) nL for a representation R = ( R , . . . ,  R e) 
as KR(n I , . . .  , nz). Thus 

L 

= H �9 
g=l 

5 For the special case of simple laced, level-I Kac-Moody algebras (yielding even self-dual lattices) 
this result has been proved by Venkov [36], who also observed that all the solutions to these conditions 
correspond precisely to the Niemeier lattices 
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The second-level trace identities can now be derived from (2.7). After a rather 
lengthy computation we get 

[ clIJe (2ne-1--)_~ (1Q'~ ne] 
~-]~KR(nl'''''nL)=R 6= , r 2 ' ~ - e  )' \2N6J j 

c P -  1) B2k \ k6 J ' 
x (2.13) 

6=1 k=l 

which is valid if the total order, P = ~ n 6, is smaller than or equal to 5. The sum 
6 

on the left-hand side is over all representations appearing at the second excitation 
level. The identity is valid for any (non-trivial) choice of  reference representation. 
The dependence on this choice enters via the exponential "anomaly" factor in (2.7), 
and manifests itself through the normalization constants N 6. They are defined by the 
quadratic trace of the reference representation matrices A 6 in the gth group 

a b = 2Nd5ab Tr A 6 A 6 

If one chooses the adjoint representation one must set N 6 = g6 (the adjoint is a valid 
choice as long as only quadratic traces appear). The coefficients Ck, 6 are the indices of 

the adjoint representation in the gth factor, e.g. Ck, 1 = Kadj(h , 0 , . . . ,  0), with respect 
to the reference representation. The coefficients C L in (2.13) are respectively equal 
to 196884, 32760, 5040, 720, 96, and 12 for P = 0, 1 ,2 ,3 ,4 ,  and 5, where P is the 
total order of the trace, P = ~ n 6. Finally, B2~ are the Bernoulli  numbers. 

6 
There is a trace identity of order P whenever the function ~2P has one (or fewer) 

parameters. Hence one expects also an identity for P = 7. This one is more subtle, 
since one has to cancel the undetermined parameter of ~12 by subtracting traces of  
order 12. The result is 

L 
he 

1 2 K ( n l , . . . , n  c ) -  ~ 2N 6ne(2n g -1 )K(%, . . . , ne_ l ,n  6-1,ne+l, . . .  ,n6) 
g=l,ngr 

= g=l,II#0 2ne-z57ng - i)!  

L ne 2 k + l n e ! ( k _ 6 ) ( k + 5 ) [ . 2 N g ~ l  C 1 

6=1 k=l 
(2.14) 

Once the correct linear combination for the left-hand side has been determined the 
expression on the right-hand side can be derived from (2.13), which is still valid 
for P = 6 and P = 7, except that the coefficients depend on an undetermined 

9 parameter c~. Parametrizing ~ a  in a certain way one gets for example C 6 = ~ - c~, 
31 7 

C7 - -  48 12 Ct. The parameter c~ cancels if one combines the seventh- and sixth-order 

traces as indicated above. 6 

6 There is in fact a separate free parameter for each distinct subtrace of order 12. The precise from 
of the left-hand side of (2.14) is obtained by requiring the cancellation of all these parameters 
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As already mentioned, these identities hold independent of  the choice of  reference 
representation. For example, the lowest-order trace identity reads 

K R ( 1 , 0 , . . . , 0 ) = ~ 1 1  3 2 7 6 0 - 2 4 \  /;1 J 
R 

If the reference representation is the adjoint representation, then C1,1 = 1 and N 1 = 91 

and the right hand-side becomes 2@,[32808 - 2/K']; if for example the first Kac- 

1 Moody factor is of type A n and we choose the vector representation, then N = 

a n d  C1:1 = 291. Now the right-hand side is larger than before by a factor 291, but the 
same is true for all indices on the left-hand side. 

For higher-order traces this independence is less manifest. The indices J can be 
computed by means of the symmetric invariant tensors of the Lie algebra [37]. There is 
one such tensor for each exponent, and they are uniquely defined, up to normalization, 
if one requires that their contraction with all lower-order tensors should vanish. For 
example to fourth order one has (ignoring odd traces): 

Tr A a A  b = 12(1~)9 ab , 
(2.15) 

T r A ( a A b A e A  d) = I [R'~oabed-~ - f ( R  "~'~(ab'-'ed) 

where A a is a representation matrix of an irreducible representation R, and the round 
brackets denote symmetrization with weight 1. The second-rank it)variant t e n s o r  9 ab 

can be chosen equal to ~5 ab by a suitable basis choice. In this basis tensor 9 abed is 
traceless, and is fully determined by fixing the value of f4(R) for one representation. 
A general expression is known for 12,2: 

312(R) 2 [ D 1 I2(adj)] 

/2'2(/~) -- D + 2 d i ~ R )  6 12(R) J ' 

where D is the dimension of the adjoint representation. The indices [2,/2,2 and I 4 
are closely related to the indices J1,0,...,0, J2,0,...,0, and Jo,l,0,...,0 (or or0,0,1,0,..., 0 if 
there is a trace of order 3, which, for obvious notational purposes, we will from now 
on assume that there is not) defined above, but they are not quite the same. Note in 
particular that I2,2 does not depend on a choice of  a reference representation. 

To compute the indices J one can choose some reference representation, contract 
9 F a F b F c F  d in all indices in (2.15) with vectors F a, and then solve for F 2 and abed 

terms of the indices of  the reference representation. Then one can express the traces 
over all other representations in terms of those of the reference representation, and 
read off the indices J .  This yields 

~2(R) 
J1,0 ..... 0(R) - i2(ref ) , 

f4(f~) 
~ ..... 0(R) - /4(ret ) , (2.16) 

52,0 ..... 0(R) = f 2 2 ( f ~ ) ( ~  ) 2 -  -- /4(-~) 
' ~ 2( f) J -- I2'2(R)(ref)14~,lct) @ 

The dependence on the reference representation is partly through the normalizations 
f2(ref), I4(ref) and (I2(ref)) 2, which cancel as explained above. The main complication 



Meromorphic c = 24 Conformal Field Theories 171 

is that the last formula contains an extra term. However, this term is proportional to 
/4(R) and contains no other dependence on R. Since (2.13) must hold independently of 
the choice of reference representation, both terms must satisfy separate trace identities. 
From this we may conclude that the terms proportional to I 4 (appearing on both sides 
of (2.13) because K R as well as C2, e are modified) must satisfy the trace identity for 
J0,1,0...,o. This can easily be checked explicitly. Furthermore the term proportional to 
I2, z must satisfy the J2,0 ..... 0 trace identity even when the second term in (2.16) is 
omitted. 

This gives us one method for computing the left-hand side of  (2.13) for P = 2. If  
the third index vanishes (which is true for all Lie algebras except A,~, n _> 2) there is 
also a formula for/2,2,2, which may be used instead of (but is not equal to) J3,0 ..... 0 
for analogous reasons: 

15/2(R)3 [( D ) 2 112(adj) D 1 (I2(adj)~21 
I2'2'2(R) = (D + 2)(D + 4) ~ 2 I2(R) dim(R~ + ~ \ / 2 ( R )  J J " 

This allows us to use trace identities for P < 3. 
A method for computing the indices J directly is to use Chern characters. For 

example in A n Lie algebras the Chem characters of the anti-symmetric tensor 
representations can be expressed easily in terms of the Chem character of the 
vector representation. Suppose the Chem characters are known for some set of  
representations .Y. Now tensor each element of  ~9 a with one of the antisymmetric 
tensor representations. If  only one new representation appears in the product, one can 
compute its Chern character and enlarge the set ~9 # (Chern characters are multiplied 
for tensor products and added for direct sums). It is easy to see that for A,~ this 
procedure will yield all representations. For other algebras we are already able to go 
to sixth-order in F (P  = 3), which turns out to be sufficient. 

In these computations one has to take into account the vanishing relations due to 
the non-existence of  certain fundamental traces. For A n these are the traces of  order 
larger than the rank plus one. To remove them one starts by expanding the Chern 
character of the vector representation up to the required order, and then on substitutes 
the vanishing relations. This yields a polynomial involving only fundamental traces, 
whose coefficients are the indices J of the vector representation (the natural choice 
for the reference representation). To obtain the indices of all other representations 
is then a matter of straightforward multiplication and addition of polynomials. The 
vanishing relations, as well as a more detailed account of this method, may be found 
in [8]. 

Our strategy is now to compute the right-hand side of (2.13), and then try to match 
it with the traces of some set of irreducible representations on the left-hand side. This 
set of representations consists of the descendants of the ground state and the spin-1 
states, plus a choice of the spin-2 primary fields of a given Kac-Moody combination. 
Equation (2.13) yields diophantine equations for the multiplicities of  these primary 
fields, which must be positive integers. If  these equations do not have a solution, 
there cannot exist a modular invariant partition function or the combination under 
consideration. 

The main purpose of  this method is to rule out "fake" solutions to the first level 
conditions. These conditions (summarized in the theorem above) yield 221 solutions. 
Especially for small groups such as SU(2), accidental solutions should certainly be 
anticipated. One may hope to eliminate them by means of second-level trace identities. 
The main advantage of  using the trace identities instead of directly checking the 
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conditions for modular invariance is of course that we only have to deal with spin- 
2 currents, whereas in the latter case all integer spin currents need to be included. 
However, in many cases the number of spin-2 currents is still much too large. For 
example, one of the 221 combinations is (Al,16) 9. This has (17) 9 primary fields, of 
which 581820 have spin 2. The number of equations we have at our disposal to 
determine all these variables is "only" 8437. Clearly this is still untractable. Note 
that since only A 1 Kac-Moody algebras appear, whose only fundamental trace is the 
quadratic one, there is no chance to get more equations than we already have. 

The large number of primary fields in this (and many other examples) turns out to 
be due to large combinatorial factors arising from permutations of identical Kac- 
Moody factors. The solution to this problem is to sum over all permutations of 
the orders n l , . . .  , n L of the equations within identical Kac-Moody factors. In the 
present example, this reduces the number of equations to just 34, but it also reduces 
the number of variables, since fields that are permutations of each other become 
indistinguishable from the point of view of the symmetrized equations. Note that the 
equations are already insensitive to the difference between (complex) conjugation and 
SO(8) triality. Conjugation forms, together with permutation of identical factors and 
triality, the group of outer automorphisms of the Dynkin diagram of the Lie algebra. 
By symmetrizing the equations we are thus identifying all representations related 
to one another by outer automorphisms. In the example, the number of variables 
is reduced to 62. This would still be too much for real variables, but since they are 
positive integers the situation improves drastically. In this case we find that no positive 
integer solution exists. Of course, if solutions do exist, we still have to disentangle 
the symmetrization. 

For all 221 combinations this computation is now manageable. The maximal 
number of variables that occurs is 288. Typically, the number of equations is roughly 
the same or much larger than the number of variables. A computer was used to solve 
these equations, but no limit was imposed on the size of the integer coefficients (of 
course there is an absolute maximum, namely 196884). We are finally left with 69 
combinations for which there are solutions to all equations considered, including of 
course the 39 known cases. 

3. Modular Invariance 

Since "accidental" solutions to all trace identities are highly improbable, we expect 
modular invariant partition functions to exist in all 69 cases. Therefore it is not 
worthwhile to consider trace identities for spin-3 currents. Although, given the 
representation content of the second level, the spin-3 currents have to satisfy even 
more equations (traces of order up to 26 can be used), the computations become 
forbiddingly complicated, and would anyhow not settle the existence of modular 
invariants definitively. 

In principle, the conditions for modular invariance are much simpler than the trace 
identities. The partition function has the form 

:~(T) = ~ m~Xi(T), (3.1) 

where X~ is a combination of Kac-Moody characters for the combination of fields 
labelled by i. Invariance under T implies that i must have integer spin, and invariance 
under S that the positive integers m~ must be an eigenvector of S with eigenvalue 1. 
The obvious strategy for solving this is to enumerate all integer spin fields, and then 
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solving the set of linear equations ~ S fire i = 0, where f is a fractional spin field. 

The number of fractional spin fields is much larger than that of integer spin ones, so 
that there is no lack of equations. (In all cases considered, the solutions m i turn out 
to satisfy also the remaining equations, ~ S j im  ~ = mj ,  where j has integral spin.) 

The problem with this approach is again the large number of variables that occur 
in certain cases due to permutations. Now symmetrization does not help, since this 
does not determine m~ completely and does not even settle the existence of a solution, 
only its non-existence. The solution to this problem is to make use of simple currents. 

Simple currents are primary fields J whose fusion rules with any primary field 
yield just one field. Obviously this organizes the set of fields into orbits, and it also 
assigns charges to all fields. One would expect the presence of a simple current in the 
chiral algebra to greatly reduce the amount of work needed to determine the rest of the 

1 
algebra, since this effectively reduces the number of primary fields by ~ ,  where N 

is the order of the current. One factor of N is due to the fact that fractionally charged 
fields are projected out, and the second one is due to combining N fields into a 
single one, a primary field of an algebra which has been extended by J (this counting 
argument is modified if the current has fixed points). The idea is now to consider 
the spin-2 content of the theory, previously determined from the trace identities, and 
check whether any of those fields are simple currents. This knowledge can then be 
used to simplify the search for modular invariants. 

First, some of the previous intuitive statements have to be made more precise. 
Consider thus a partition function built out of characters of some CFT, as in (3.1), 
and suppose that one of those characters corresponds to a simple current J.  Closure 
of the chiral algebra implies that J ,  acting on any other current in the algebra, must 
yield another such current. This immediately rules out fields with fractional charge 
with respect to J ,  since in that case J changes the conformal weight by a fractional 
amount, leading to a violation of T-invariance. Now we prove 

Theorem. Suppose that a simple current J appears in a modular invariant of the form 
(3.1) with multiplicity m j  > O. Then m i is constant on the orbits of J. 

I Proof. Define mi = ma~, where Ji denotes the field obtained from i by the action 
of J .  In the presence of simple currents, the matrix S satisfies [38, 39] 

~ j , J i  z e27riQ(J) 

where Q(j) is the charge of the field j .  Modular invariance implies 

m i = ~ S~jmj .  

J 

The summation index j is equal to Jk  for some other field h, uniquely determined 
by j .  Thus we get 

h k 

Now we make use of the fact that J appears in the algebra. This implies that all other 
fields in the algebra must have integer charge, i.e. either m~ = 0 or Q(i) E Z. Hence 
the phase in the foregoing equation may be omitted, and we get 

t Z -1  ?TZ k z ~ k , i m i  ~ m k  
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because of modular invariance of m. Hence m is invariant under J-shifts, i.e. m must 
be constant on the J-orbits. 

An immediate consequence is that the multiplicity of J itself must be equal to 
that of the identity, i.e. equal to one. (The generalization of this result to arbitrary 
modular i n v a r i a n t s  x iMi jx~  is the statement that M.ij = Mjr i j  = Mi,JRj, if JL 
(JR) is a current in the left (right) chiral algebra. This was proved in a somewhat 
different way in [40], but only in the case where the chiral algebra exists only out of 
simple currents, which is not true here.) 

A similar result applies to charge conjugation. Since S 2 = C, the charge 
conjugation matrix, one gets immediately C m  = SZm = m, so that the coefficients 
are invariant under simultaneous charge conjugation in all Kac-Moody factors. 

The knowledge that each simple current can appear only once is usually enough to 
reconstruct the set of spin-2 simple currents from the symmetrized multiplicities. In 
a few complicated cases it was helpful (though probably not necessary) to determine 
the spin-2 multiplicities with less than maximal symmetrization. Having determined 
a set of simple-current orbits that must appear in the chiral algebra, we eliminate all 
fractional charge fields, and rewrite the equations for m i as follows : 

Z Sf#oX~oraio = O, 
io 

where f is an integral charge, fractional spin fixed, and the sum is over all orbits of 
integral charge, integral spin fields. Each such orbit is represented by one field i 0, 
and Ni0 is the number of fields on an orbit. It should be emphasized that S is the 
original Kac-Moody modular transformation matrix, and not the matrix of the theory 
with a chiral algebra extended by simple currents. The latter is in general not easy to 
determine because of fixed points. 

An illustrative example is (A2,3) 6. This combination has 106 primary fields 
and 6819 spin-2 currents, which are permutations of only 9 distinct primary field 
combinations. The unique solution to the trace identities for the spin-2 fields is 

30 • [(3, 0)2(0, 0) 4] -~- 15 • [(1, 1)4(0, 0) 2] + 30 • [(0, 2)2(0, 1) 4] -[- 12 • [(1,2)(0, 1)5], 

where (r~, m) are A 2 Dynkin labels, and the square brackets denote a representative 
from a set of fields identified under charge conjugation and permutation. The result 
tells us to select 30 elements of the set of 60 spin-2 simple currents (i.e. 15 
permutations of [(3,0)2(0, 0) 4] times a factor 4 from charge conjugation). Requiring 
locality of the currents with respect to each other, and using the fact that each of 
them can appear only once, one easily determines the solution, which is unique up to 
conjugation in each A2, 3 factor. It consists of all permutations of [(3, 0)2(0, 0) 4] plus 

their conjugates. The simple currents generate a (Z3) 5 subgroup of the center, and the 
"naive" estimate of the number of integral charge orbits is thus 106/3 l~ ~ 17. Because 
of fixed points the actual number is somewhat larger (53), including 9 integral spin 
orbits. Solving the equations for these 19 variables is easy, and one finds that all 
occur with multiplicity one, except the fixed point field (1, 1) 6, which occurs with 
multiplicity 6. 

In many cases we find that after taking into account the simple currents, all 
remaining orbits occur in the algebra with multiplicity 1. There are several exceptions 
where some orbits do not appear, and a few with multiplicities larger than 1. This 
happens only for orbits that are fixed points of the simple currents, and can be 
interpreted as follows. If one were to extend the original Kac-Moody algebras with the 
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simple currents, the new diagonal invariant has multiplicities No/N f on its diagonal, 
where N o is the length of the identity orbit, and NI the length of  the fixed-point 

orbit. The wellknown interpretation is that the extended theory contains No/N f fields 
corresponding to this term in the modular invariant. In the example discussed above 
there are thus 243 fields in the "intermediate" theory with representation (1, 1) 6. When 
the algebra is extended further, six of those fields appear in the chiral algebra. From 
the point of view of the intermediate theory, these are however distinct fields (or at 
least that is a logical possibility; to check this, one has to construct the matrix S 
of the intermediate theory by resolving the fixed points, which is not an easy task). 
All occurrences of higher multiplicities in the 69 solutions are consistent with this 
interpretation. 

In some cases there are no simple currents with spin 2 (for example C4,10 has 
a simple current of  spin 10). Luckily, in those cases it turned out to be possible to 
determine the m i ' s  completely without reducing the set of primary fields by means 
of simple currents. 

For all 69 solutions of the trace identities we wish to prove existence as well as 
uniqueness (up to equivalence) of the meromorphic modular invariant. No further 
work is needed for one third of the solutions, for which both of  these features follow 
from the work of Niemeier. For the 14 theories corresponding to Z 2 Niemeier lattices 
existence has been proved in [12], but this does not rule out the existence of other 
partition functions for the same Kac-Moody combination. 

Uniqueness holds in general only up to the outer automorphisms described above. 
Furthermore, we often find additional solutions with spin-1 currents in the chiral 
algebra.7 Their presence implies an enlargement of  the Kac-Moody algebra of  the 
theory, with the original theory conformally embedded in the new one. Clearly these 
invariants should not be counted as separate theories, since they will be encountered 
again when the enlarged Kac-Moody algebra is studied directly. Note that conformal 
embeddings will never appear as solutions to the trace identities, because they were 
derived under the assumption that there are no additional spin-1 currents. 

Apart from outer automorphisms and conformal embeddings, we have found 
exactly one modular invariant partition function of the form (3.1) for each of the 
69 combinations. 

4. Results 

The complete results are listed in the table. Columns 1-3 are self-explanatory. Column 
4 lists the simple current orbits that appear in the chiral algebra. Since the simple 
currents form an Abelian group under addition, it is sufficient to list a set of  generators 
of  this group. In all cases except D~, the simple currents generate a Z M group, and 
the elements J ~  of this group are labelled by m. In algebras of type A~, k, J is 
chosen to be the field with Dynkin labels (k, 0 , . . . ,  0); in E6, k the one with Dynkin 
labels (k, 0, 0, 0, 0, 0); B~,, C~, E 7, and Es, 2 have only one non-trivial simple current, 
and G2,/74, E8, k, k r 2 have none. Finally the D~ simple currents are denoted as 
v, s, or c if their Dynkin labels are k times those of the vector, spinor or conjugate 

7 In particular all combinations with ./l/ = 48 have al least one meromorphic modular invariant of 
this type, since one can easily show that they can all be embedded conformally in the D24 Niemeier 
CFT 
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spinor representation. The simple currents appearing in the case of simply laced level- 
1 algebras (i.e. even self-dual lattices) were taken from [41], where they were called 
glue vectors. We have adopted this terminology also for the other combinations in the 
table. 

Column 5 contains the orbits and the multiplicity with which each orbit appears. 
Note that sometimes the choice of orbit representative may hide symmetries and other 
relevant features. 

Some notation has been introduced to deal with permutations. By 
{At; A2 ; . . .  ; A ~ }  we mean all permutations of  the entries separated by semicolons; 
{ }~ means even permutations only, and [ ] means all cyclic permutations; ( )~ means 
of course that the entry between round brackets is to be repeated n times. In principle, 
if there is more than one Kac-Moody factor, their simple currents and representations 
are separated by commas and enclosed in round brackets. However, these symbols 
are omitted when no confusion is possible. 

Finally, th e last column indicates where a certain conformal field theory or modular 
invariant partition function has appeared before. (Although the twisted Niemeier 
theories have been listed in [12], this paper does not contain the partition functions.) 

A few cases require a separate discussion: 
No. 0 This theory, the "monster module," can of course be described in terms of a Z 2- 
twisted Leech lattice. Apparently no explicit expression is known giving its modular 
invariant partition functions in terms of  simpler theories, although one would expect 
this to be possible. 
No. 1 The Leech lattice [42] can be described as a modular invariant partition function 
of  24 copies of "DI , "  putting it on a more or less equal footing with the other Niemeier 
lattices. An example of a set of simple currents yielding the Leech lattice can be 
found in [43], although a simpler presentation might be possible. In principle one can 
obtain various representations of the Leech lattice from the trace identities. We have 
investigated this by solving the equations for just one U(1) factor, allowing different 
radii for the U(1). The trace identities are ( ( 2 N +  1)!! = 1 x 3 • 5 • . . .  x 2 N +  1) 

Mq q = C p ( 2 P - 1 ) ! !  ( P = 0 , . . . , 5 )  
q=0 

and 

2/drq 12 - 91 = - 8  • 13[[, 

q=0 

where Cp  are the coefficients appearing in the trace identities (2.13), and n defines 
the radius, in such a way that one obtains a rational U(1) with 2n primary fields 
with charges q / Z ,  q = - n  + 1 , . . . ,  n. Note that opposite charges give the same 
contribution to the traces, so that the sums can be reduced to half this range. (One 
can reduce them even further by requiring that the conformal weights do not exceed 
2, i.e. q _< 2,,/2~.) For n = 1 these identities are not valid because they do not take 
into account the charge + ~  states (the SU(2) roots) appearing at the first level; 
likewise, for n = 2 there are charge 4-2 (q = 4) descendants at the second level, 
which must be included in the sum on the left-hand side, with multiplicity M 4 equal 
to 2 (i.e. 1 for each charge). For larger n the first such descendant appears at level n, 
and does not affect the argument. One may try to solve the equations to obtain the 
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unknown multiplicities Mq of the primary fields. For n _< 10 we always found one or 
more solutions (since the number of contributing fields increases with n it does not 
make much sense to consider larger values). For example, for n = 2 the equations 
are satisfied with M 0 = 93474, M 1 = 94208, and M 2 = 9200. This can be inverted 
to obtain a somewhat strange closed formula for the coefficients Cp,  P _> 1: 

C p ( 2 P  - 1)!! = 92(100 + 210-2P) q- 22P+l . 

The fact that solutions exist for larger values of n indicates that there are many other 
ways to write the Leech lattice as a product of  rational U(1)'s. Constructing some of 
these by considering traces over more than one U(1) factors might be feasible; but 
proving that all solutions are in fact the same, up to rotations, is certainly impossible 
with these methods alone. Fortunately, this is already known by other arguments. 
No. 2 This was one of  the most difficult cases, owing to the presence of a large 
number of  fixed-point fields. The solution is, with the set of  simple currents listed in 
the table: 

(0) 12 q- (1)113 -- {(2;)9(0;) 3} q- 12 • (2) 12 q- 132 chosen from {2606}, 

1 i.e. all 220 permutations of the spin-3 fields (2)9(0)  3 appear once, but only ~ of the 

permutations of (2)6(0) 6. Using identities symmetrized on subsets one can show that 
all 132 must be different, but the hard problem is to select them. The answer can be 
characterized as follows. Take the set of  11 vectors 

1[0; 0; 1;0; 0;0; 1; 1; 1;0; 1], 

and generate all 113 vectors obtained by adding them modulo 3. One then obtains 
729 different vectors, each appearing with a multiplicity 243. Now replace the non- 
vanishing entries of all vectors (which are either 1 or 2) by the SU(2) fixed-point 
field (2), and divide by 2 the multiplicities of all these fields, except the identity. In 
this way one obtains 12 copies of (2)  12 , all 220 permutations of (2)9(0)  3 , and 132 
different permutations of (2)6(0) 6 (2 x (132 + 220 + 12) + 1 = 729). This is the 
solution, up to permutations of  the SU(2) factors. The description given here was 
obtained by working out the Z 2 twist of  the (A2) 12 Niemeier lattice, s However, this 
was only used to obtain a presentable description of the 132 spin-2 fields. Uniqueness 
was proved by solving the modular invariance conditions, as in all other cases. 
No. 5 As in the previous case, the only complication is the determination of 
combinations of  SU(2) fixed points. The answer is 

(0)  16 -}- 8 • (1)  16 -}- J .~Y, 

where .r is the set of 30 vectors 

7~0(1) 16 q- ~1 (0 )8 (1 )  8 -I- ~ 2 ( ( 0 ) 4 ( ] ) 4 )  2 q- n3 ( (0 )2 (1 )2 )  4 q- 1"/~4(01) 8 m o d 2 ,  

with n~ defined modulo 2, with at least one of the n~, 1 _> i _> 4 equal to 1. As 
indicated, the vector entries (which of  course are SU(2) Dynkin labels) are added 

3 modulo 2. The combination (0)8(1) s has spin 5" A spin-2 field is obtained by acting 
once with the SU(2) simple current d on one of the identity components. The simple 

8 The spin-2 field (1)113, 12-fold degenerate because of the simple current action on it, plays the 
r61e of one of the twist fields, referred to as cr E in the introduction 
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currents in the chiral algebra imply that it does not matter in which factor one performs 
this action. 
N o .  12 The notation in column 5 uses a double cyclic permutation, which may be 
confusing. It means to perform all cyclic permutations of the six representations, 
combined with all permutations of the last two pains of representations, with all 
the distinct combinations that are obtained counted once. The total number of 
representations obtained this way is 30. 

The other modular invariants do not require further explanation. 
An interesting by-product of these results is a list of some new invariants of simple 

Kac-Moody algebras. They can be read off from the table by looking for cases where 
non-trivial primary fields appear in combination with the identity of all other simple 
Kac-Moody algebras (if any) in the theory. In this way we find modular invariants 
(with extension of the chiral algebra with spins 2 and higher) for D4,12, D5,8, AT, 4, 
D5,4, D6,5, 65,3, A8,3, D7,3, C7,2, A9,2, CIO,1, C4,10, A5,6, A6,7, D9,2, /312,2, /74,6, 
E6, 4, and ET, 3. These invariants correspond neither to conformal embeddings, nor 

are they simple current invariants. However,  the first 11 are presumably 9 related to 
conformal embeddings by rank-level duality, The invariants to which they are related 
are respectively those of D6, s, D 4 10, A3 8 ~ D3 8, D2 10 ~ (AI,10) 2, B212, C3 5, Aa 9, 
/31,14 ~ AI,28, C2 7 - /32 7' A1 1; and C~,~o -=' A1 10" Of the remaini]~g one;, C 4'10 
is dual to C10,4, w}lich cannot be conformally embedded in any Kac-Moody algebra. 
Hence we anticipate the existence of a higher spin extension of Ci0,4. The algebras 
As, 6 and A6, 7 are "self-dual," and D9, 2 and/312,2 are formally related to SO(2),  but 
since this is Abelian it is" difficult to give meaning to the level. Finally, the three 
exceptional algebras are not dual to anything. Some of these Kac-Moody invariants 
have already been obtained or conjectured on the basis of  rank-level duality, and the 
F4, 6 invariant appeared first in [17]. 

5. Discussion 

In this paper we have shown that all meromorphic c = 24 conformal field theories with 
finitely generated chiral algebras containing at least one spin- 1 current have a partition 
function which can be written entirely as a modular invariant combination of Kac- 
Moody character. Furthermore we have enumerated all 69 such partition functions, 30 
of which were not yet known. The actual construction of the conformal field theories 
corresponding to these new partition functions remains to be done. If  there is exactly 
one CFT per modular invariant, and only one theory without spin-1 currents, then the 
total number of c = 24 meromorphic CFT's  is 71 (an interesting fact, though perhaps 
a meaningless coincidence is that 71 is precisely the largest prime in the order of the 
monster group). 

We hope that these theories have an interesting r61e to play in physics or 
mathematics, but this remains to be elucidated. The list itself could have revealed 
some underlying structure, but if it exists it must be rather subtle. In the spirit of  
generalizing from lattices to conformal field theories there are several questions that 
suggest themselves. For example, for self-dual lattices a formula exists [44] for the 

9 This has not been checked, but is conjectured here on the basis of the existence of a rank-level 
dual conformal embedding, using the duality relations C~, k +-~ Ck,n, SO(n)k  +-+ SO(h)  n, and 
SU(n)  k ~ SU(k )~  
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sum of  the inverse orders of  the lattice automorphism groups (this is known as the 
Minkowsky-Siegel  formula). If  there is a generalization of this formula to conformal 
field theory one could use it to prove completeness of our list, and at the same time 
prove uniqueness of the monster module. A second interesting fact about the Niemeier  
lattices is that they can all be embedded into the unique Lorentzian self-dual lattice 
F25,1, and are "orthogonal" to certain lightlike vectors on this lattice. It would be very 
interesting to see if  this fact has a generalization to conformal field theory. 

The last two points are pure speculation, but in any case the list has enabled us to 
make some modest  progress in two other classification problems, namely string theory 
in 10 dimensions, and modular invariants of Kac-Moody algebras. The main lesson 
learned about the latter classification problem is that we still know essentially nothing 
about it. Several new invariants were found that could not have been anticipated 
with any known method. One might hope that this exhausts the list of  exceptional 
extensions of the chiral algebra of simple Kac-Moody algebras, but there is not really 
any good reason to believe that. The situation is much worse for semi-simple Kac- 
Moody algebras. A very large number of exceptional invariants for such algebras can 
be read off from the table. It would be very strange indeed if no new exceptional 
invariants appear on a list of c = 32 (or larger) conformal field theories, which 
undoubtedly will never by enumerated. 

Indeed, the present classification has made it clear once more that something 
changes drastically beyond c = 24 (this can also be seen in other ways, e.g. from the 
Minkowsky-Siegel  formula, or from the properties of F8~+1,1 Lorentzian self-dual 
lattices). Even though the number of meromorphic conformal field theories is too 
large to allow a complete listing (already the number of lattices is much larger than 
8 • 107), one would at least like to have a finite algorithm that can produce the list in 
principle. Even for the subclass that has a c = 32 spin-1 algebra the methods we used 
for c = 24 do not yield a finite algorithm, since one has to allow a priori U(1) factors 
with arbitrary radii. These difficulties are closely related to the unsolved problem of 
arriving at a practical classification of rational conformal field theories. 
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