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Abstract. We discuss the topological sigma model on an orbifold target space. We 
describe the moduli space of classical minima for computing correlation functions 
involving twisted operators, and show, through a detailed computation of an 
orbifold of CP 1 by the dihedral group D4, how to compute the complete ring of 
observables. Through this procedure, we compute all the rings of dihedral CP 1 
orbifolds. We then consider Cp2/D4, and show how the techniques of topological- 
anti-topological fusion might be used to compute twist field correlation functions 
for nonabelian orbifolds. 

I. Introduction and Summary 

Orbifolds define consistent string vacua [11]. Therefore, we may wonder whether 
the string theories described by orbifolds have a simple topological description, or 
we may inquire about topological properties for example Yukawa couplings of 
fermion generations - of string theories with orbifold compactifications. Such 
knowledge can also be applied to the non-topological theory as well. We consider 
topological sigma models on orbifolds of K~ihler manifolds. These theories are 
defined by twisting the N = 2 supersymmetric sigma models, and have associated 
with them a ring of observables. This "quantum ring" is a generalization of the 
chiral primary ring to models which are not conformal field theories. The dis- 
cussion of these rings their characterization and product structure - for topologi- 
cal orbifold models is the focus of this paper. 

The observables of the (untwisted) topological sigma model are described by 
cohomology classes of the target space. Interactions are treated by taking intersec- 
tions of homology cycles in the moduli space of holomorphic maps (Sect. two). An 
orbifold is a possibly singular space, defined by equating points related by a group 
action. In order for the orbifold to have a sigma model description at the non- 
singular points, the metric and complex structure must be preserved by the action 
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of the group on the target space. We show (Sect. three) that the observables of the 
orbifold model are described in terms of the cohomology of the fixed point 
manifolds of the group elements. At the singular points of the group action, there is 
an identification of tangent space vectors. Since the fermions of the sigma model 
have tangent space indices, the fermionic sector of a twisted state obeys twisted 
boundary conditions. These conditions lead quite generally [20, 30] to a fractional 
chiral fermion number assigned to the vacuum in this sector. Thus twisted states 
have a shifted fermion number. By analogy with the familiar correspondence 
between topological observables and cohomology elements (for non-orbifold the- 
ories), we may assign Hodge labels based on the chiral fermion numbers of 
observables. In this way, we describe the "cohomology" of the singular orbifold. 
We show that Poincar6 duality is preserved, and in the case of a Calabi-Yau 
orbifold by a group action which preserves the unique (d, 0) form, this "cohomol- 
ogy" has the Hodge diamond we would expect from a Calabi-Yau manifold. In 
fact, in several examples (Sect. four) we show that this cohomology is precisely that 
of the manifold one gets by resolution of the singularities. Another check is 
agreement with the appropriate Landau-Ginzburg orbifold theory, when the 
manifold in question is a Calabi-Yau variety defined by a quasi-homogeneous 
polynomial. We offer no general proof of this equivalence. 

Computation of the product structure of the ring of observables involves 
intersection numbers in an appropriate moduli space. For a correlation function 
involving several g~-twisted observables inserted at points Pi on a Riemann surface, 
the moduli space is holomorphic maps having proper monodromies around these 
points, or equivalently, holomorphic equivariant maps from an appropriate bran- 
ched cover of the Riemann surface. We use this formalism in computing an explicit 
example - a detailed computation of the complete chiral ring for the orbifold of 
CP 1 by the dihedral group D4 (Sect. five). These findings can be the generalized to 
the higher even dihedral groups Dzk and odd groups Dzk + 1 (Sect. six), or to a higher 
dimensional target space (Sect. seven). With knowledge of these rings, and in 
particular behavior under scale transformations, we can use recent techniques 1-6] 
to try to compute the proper normalization of twist operators in the conformal 
limit of large radius (Sect. eight). The CP 1 orbifolds reduce to abelian orbifolds in 
this limit, and the requirement of regularity fixes the boundary conditions, giving 
the twist field correlations. For higher dimensional spaces, it is unclear whether 
regularity is enough to determine the solution. 

2. Topological Sigma Models and Quantum Rings 

Let us briefly recall the topological sigma model on a Kfihler manifold, K. In this 
case, the action can be derived as a twisted N = 2 model. This twisting leads to an 
isomorphism (as vector spaces) between local BRST observables and the states of 
the chiral-primary ring. Specifically, we have [31] 

2 1 I J S : 2tJd z~g~s~z(a 0 ~  + i~br_D~i_gri + i~+D~+g;~ 

+ RzOy~+ ~pF+ ~ p y  . (2.1) 

Here 27 represents the Riemann surface, which, for our purpose will always be of 
genus zero, gls and RzFj] are respectively the metric and Riemann tensor of the 
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target space. D is the pull-back onto S of the connection under the map, 4. The 
N = 2 structure implies a holomorphic U(1) current, by which we may twist the 
energy-momentum tensor. Mathematically, this is equivalent to redefining the 
bundleS in which the fields live. Specifically, we now take ~+ ~q~*(T 1'~ and 
~T e ~b,(T o, 1). And, we put ~F+ ~: ~f~l,0(~; r  o, 1)), and ~ e ~2 ~ 1(~; ~,(Tl,O)), 
that is, they combine to form a one-form on 2 with values in the pull-back of the 
tangent space of K: call these components ~ and ~ respectively. These redefini- 
tions correspond to shifting the spins of the fields by 

1 1 - -  
T--+T-~aJ,  f ~ f + ~ o a ,  (2.2) 

which is equivalent to adding a background gauge field to the spin connection. To 
make this theory topological, we reinterpret the supersymmetry transformation as 
a BRST transformation associated to a topological symmetry (in order for this to 
close off-shell, more fields must be introduced) [-31]. We make the replacement 

QL + QR ~ QBRST �9 (2.3) 

Thus the topological observables are precisely the chiral-chiral fields, and when the 
original model is a conformal field theory, i.e. when K is a Calabi-Yau manifold, 
the elements of the BRST cohomology correspond precisely with the chiral- 
primary ring of the conformal theory [23]. When the manifold is not Calabi Yau, 
the topological theory is still well-defined, and the ring of observables generalizes 
the chiral primary ring; it can be thought of as a "quantum cohomology ring." 

[Note that there is another "twist" we may perform, which, due to a global 
anomaly, is only defined on a manifold with vanishing first Chern class, i.e. 
a Calabi-Yau manifold. The observables in this theory have a different co- 
homological description [31].] 

We have 

S = it S dZz{Q , V} + t ~ cb*(k), (2.4) 
Jg X 

where V is an appropriate pre-potential (see [31]) and 45" (k) is the pull-back of the 
K/ihler form. The second term in (2.4) is a topological term, and for the moment, we 
restrict ourselves to maps q~ within a given component of the space of maps. That 
is, we take maps of a given instanton number, so that the second term in (2.4) is 
constant in this component of maps from S to K. By standard arguments based on 
the vanishing of all correlation functions with Q-exact terms, our calculations 
reduce to a semi-classical treatment. That is, we may take the large t limit, and 
restrict ourselves to the moduli space of classical minima, which occur when 

0e~b' = 0z~b'= 0 ,  (2.5) 

i.e. �9 is a holomorphic map. Thus the moduli space for this problem is 

= {4: S-+ K l ~  holomorphic} = @ JCl, (2.6) 
i 

where i labels the instanton number. 
The correspondence between the cohomology of the target space and the local 

observables (BRST cohomology) is described by replacing form components by the 
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fermion fields. Let A = A i y d z I d Z  j be a form on K, written in local coordinates, 
where I and J are multi-indices. The corresponding operator, (9A, is obtained by 

T 
replacing dz  ~ ~ z  and d5 ~ ~ .  The isomorphism of cohomologies is described by 
the equation 

{Q, (-gA} = -- (-leA. (2.7) 

Since BRST trivial operators annihilate all correlators, expectation values only 
depend on BRST cohomology classes. If we label observables by their correspond- 
ing forms, this means we may choose the forms to have delta-function support on 
the cycle to which they are Poincar6-dual. This way of representing tile observables 
clarifies the degree zero instanton sector contribution to observables: the correla- 
tion functions will have non-zero contribution only at the points of intersections of 
the representative manifolds. The degree zero holomorphic maps are simply 
constants, so the integral over J/{o is just an integral over K. Thus, because of the 
cancellation of bosonic and fermionic determinants familiar to topological the- 
ories, each point of intersection contributes 1 to the correlator; so the degree zero 
correlations are precisely the intersection numbers of the cycles representing the 
observables. 

Generally, the correlation function must be evaluated by considering the 
contribution from each component of moduli space. This is done as follows 
[31]. At a given component of moduli space ~ i ,  we define a manifold Lj ,  i c ./r 
for each observable (gj(pj) to be the set of maps in J/g~ which take pj to a 
point in the manifold representing the form corresponding to (9 i . Then the 
ith sector contribution to the correlation of any number of observables is given by 
the intersection number of the Lj, i. This is equivalent to integrating over the 
pullbacks of the forms by the evaluation maps at the points of insertions. In 
equations: 

j = l  i j = l  i , / d i j = l  

where the evaluation map evj: ~ ~ K is defined by evj(~) = qb(pj). Here we have 
ignored the second term in (2.4). This is a topological term which has a constant 
value in each component of moduli space. Thus, if Si represents the value in the ith 
component of moduli space, then the i t~ term in (2.8) must be weighted by e -s'. 
Note that the moduli space may need to be compactified in order to have a sensible 
intersection theory. 

It is instructive for us to discuss the CP" model as an example [25]. Here 
we have K = CP", which has hu = 1, i -- 0 . . .  n, with all other Hodge numbers 
vanishing. The intersection theory of nontrivial cycles is very simple, then. 
The intersection number of homology cycles is one if the codimensions sum to 
n, zero otherwise. Basically, this is because L~ of codimension k can be taken 
to be the CP "-k defined by setting k coordinates equal to zero, in an appropriate 
basis. 

Consider ~k ,  i.e. the holomorphic maps of degree k from CP 1 to CP n (we 
consider genus zero correlations, for these define the ring).1 These are described by 
(n + 1)-tuples of homogeneous polynomials of degree k in two variables, which act 

1 I thank S. Axelrod for explaining this to me 
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as shown below: 

q~o . . .  4~1k k - l y  

�9 (X, Y ) =  i . . (2.9) 

\q~o --- 4~.~ \ Y~ 

The homogeneity property insures that scale changes on (X, Y), which are 
trivial on the CP 1, only result in (trivial) scale changes on the (n + 1)-tuple. Now we 
should ensure that the polynomials, defined by the matrix rows, do not have 
common zeros. This would make the map r ill-defined. However, in the 
compactified moduli space, we allow such points, which can occur as limits 
of well-defined maps. Basically, if there is a common root, we can factor it out 
of the (n + 1)-tuple of polynomials and get a new, well-defined map (of a lower 
degree). Thus the only requirement we make on the matrix elements ~bij is that they 
are not all zero. Of course, the matrix q~ is only defined modulo an overall scale. So 
we have shown 

~/k ~ CP ("+ 1)~k+ 2)- 1 (2.10) 

The cohomology ring of K has a single generator X with X "+~ = 0. The 
quantum ring is defined by the correlation functions. Consider the correlator 
( x a x b x c ) .  This will be nonzero if there is a k such that (n + 1)(k + 1) - 1 
= a + b + c. In this case, the instanton action is e -kA=/~k, where A is the 

one-instanton action. All these correlators derive simply from the relation 

X "+1 = fl ,  (2.11) 

which defines the chiral ring. Note that the chiral fermion number is conserved if 
we make the artificial assignment of n + 1 as the chiral fermion number of ft. 

3. The Orbifold Theory 

We would like to study these theories when the target space is an orbifold, i.e. we 
consider the quotient K/G of a Kfihler manifold under a group G, which acts on 
this manifold by isometry. Thus, the metric will be well-defined on the quotient 
space - the inner product of two vectors in K/G may be computed by choosing any 
lift of the vectors to K and using the metric on K; G-invariance guarantees 
independence of the particular lift. Furthermore, we will assume that the action of 
G preserves the complex structure. That  is, 

g. oJ = Jog .  for all gEG , (3.1) 

where the asterisk represents push-forward action on vectors, and J is the complex 
structure. When G acts with fixed points, the orbifold will have a set of singular 
points, though the string theory is not necessarily singular. If the manifold is not 
Calabi Yau, then the quantum field theory is not conformal and not a string 
vacuum [5]; for K/G to be a "Calabi-Yau orbifold," we must have that G leaves 
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invariant the unique holomorphic (d, 0) form under pull-back. In either case, 
though, the topological sigma model is well-defined. 2 

To properly consider the full orbifold theory, we must specify the action of the 
group G on every operator in the theory. In particular, if we were considering the 
orbifold as a space for string compactification, then we would need to specify the 
action of G on the fields representing the rank 16 gauge group. This can lead to 
phenomenologically desirable symmetry breaking. In any case, we see that the 
proper definition of a 9-twisted state, O (where O may be any type of quantum 
field), is that 

O(a + 2~) = 9 ~ O(a) ,  (3.2) 

where a is the coordinate along the string. 
For our purposes, we will restrict attention to the twisted N = 2 theory 

at hand. The action of G on the bosonic fields q~ is the action considering the fields 
as coordinates on the manifold K. On the fermionic fields, which involve (pull- 
backs of) the tangent bundle TK, the action is induced from the coordinate action 
by the push-forward of vectors. At any point p on K, the tangent space Tp is 
identified with Top. However, at a fixed point f of 9 (i.e. 9 f = f ) ,  we must identify 
tangent vectors in T: related by the action of 9. More precisely, we must identify all 
tangent vectors related by the stabilizer group of elements fixing 
f :  S ( f )  = { g ~ G lgf = 9 }. Because 9 acts by isometry, each g ~ G defines an element 
of SO(2d) at a fixed point, where d is the complex dimension of K (SO(2d) may be 
replaced by some subgroup depending on the properties which G preserves). The 
tangent space for the orbifold (denoted T ' )  at f is thus 

T': = R2a/S( f ) .  (3.3) 

On the fixed point sets, i.e. where S ( f )  is non-trivial, the tangent space is not 
a vector space but the cone (3.3), so the orbifold is not a smooth manifold; it has 
a conical singularity. 

3.1. Observables in the Orbifold Sigma Model. We have already discussed the 
isomorphism between local operators (BRST observables) and the cohomology 
classes of the target manifold. What, then, are the observables of the topological 
theory on the orbifold? To answer this question, we may begin by recalling the 
standard lore or orbifold theories [1 l]. For these theories, the Hillbert space of the 
theory splits into a direct sum of twisted sectors, one for each conjugacy class { 9} in 
the group G: 

= @ ~(f~o) �9 (3.4) 
co} 

In each of these sectors, only the G-invariant states survive the group projec- 
tion. A brief word on our notation is in order. Really, the Hilbert space splits 
into one sector per group element. However, the action of group elements not 

2 As stated in [31], this follows from the positivity of the fermionic determinant, which 
allows us to define it as a function of the moduli. In general the fermionic determinant gives 
a line bundle over the moduli space of theories, which will lead to an anomaly. The anomaly 
cancellation condition for the topological theory of the inequivalent twist is that the manifold 
be Calabi-Yau 
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commuting with 9 permutes the sectors in the conjugacy class of 9 .3 We thus define 

l{g}l 
#f/ol = O Yfo = @ ~r,~r, 1 (3.5) 

ge{g} i =  1 

for an appropriate set {rl}. We further take the projection onto {g}-invariant 
states. Now let 

if{o; = (ft,, ~ 0r1' . . . .  ) ~ Yf{o} �9 (3.6) 

The action of any h in the centralizer, h~C(g)  =- {klkg = gk}, on ~0~ is defined by 

h(~o } = (h( o, rl hr? 1 ~,0~1' . . . .  ) .  (3.7) 

This is still {9}-invariant. With these definitions, each ~'~{0} is invariant as a vector 
space under the action of any group element. Thus, the concept of G-invariant 

1 
states now makes sense, and the state ~ ZhsC(o)h({o} is group invariant. In 

effect, we only have to take a C(9) projection. 
A similar description of the observables is found for the orbifold sigma model. 

Once again we will make notation simpler by eliminating the conjugacy class label, 
and only considering C(9)-invariant states. By the above procedure, in which 
g represents { g}, this suffices. 

As always, we begin with the untwisted sector. Here we have all of the 
observables in the original theory (the cohomology classes of K), and must project 
onto those which are G-invariant. That is, we are interested in the differential forms 
A obeying 9*A = A. Let C~ 'q represent the untwisted observables in the orbifold 
theory with fermion-anti-fermion number (p, q), where for simplicity in the follow- 
ing we have chosen the anti-chiral fermion number to be positive; thus the total 
fermion number is p -  q. (Although the chiral fermion numbers will only be 
conserved for Calabi-Yau orbifolds, we will be able to make sense of chiral fermion 
number violation as we did following (2.11).) We see that we have 

C~ "q = H~'q(K), (3.8) 

where the subscript represents G-invariance. By considering the Poincar6 duals of 
these forms, we may think of them as lying on the quotient K/G. In this way, we are 
able to see the equivalence between H~(K)  and the simplicial cohomology 
H*mp(K/G) of the coset space, which is well-defined even though K/G is not 
a smooth manifold. This interpretation allows us to show the familiar equival- 
ence [11] between the untwisted T r ( - 1 )  e and the Euler characteristic. Since 
(anti-)chiral fermion numbers correspond to (anti-)holomorphic form degree, 
we have 

d 

T r y , ( - 1 )  r =  ~ h~'q=g~imp(K/G). (3.9) 
p,q=O 

In the above formula, J~f~ represents the untwisted, G-invariant Hilbert space, and 
the h~ "q are the Betti numbers of the G-invariant simplicial cohomology. In fact the 
value of (3.9) may be calculated by considering the operator which projects to 

3 For a string obeying X(2~) = gX(O) we see that hX(2~z) = hgX(O) = (hgh-1)hX(O) 



308 E. Zaslow 

1 
group invariant states, P = ~-~ ~ g (note G = C(1)). N o w  in the calculation of  

Tr~e,(-  1) r by the path integral, the presence of g (from the group projection) in the 
trace yields the Lefschetz number  of g, which is the Euler number  of the fixed point  
sets [32]. Hence [11], 

1 
T r y 1 ( -  1) e = [-~ Z )~(Mo)" (3.10) 

Note  that (3.10) agrees with the r ight-hand side of (3.9), as it should. 4 
Consider now a g-twisted ground state, which corresponds to a string sitting at 

a point. If this state is twisted, the point  must  lie in the fixed point  set of 9. Let us 
call this manifold Mg. ~ These manifolds will play a crucial role in our analysis, so 
we pause here to consider the geometry of these spaces. It is impor tant  for us to 
show the complex structure of Mg. In fact, we may use the same J that we used for 
K, considering the tangent vectors on T M  o as vectors in the larger space T K  

(specifically, we use the push-forward under the inclusion map). Let v e . T z M  o. We 
may express v as the "time" derivative of a path  Q(v) on M o, i.e. v = Q(%). N o w  
since the action of g is compatible with J, by (3.1) we have 

g ,  oJ(v)  = J o g , ( v )  = J ~  = J(Q('co)) = J (v) ,  (3.11) 

where we have used the fact that  g,((~) = Q, since Q lies entirely in the fixed point  
manifold Mg. So we see that  J(v)  is fixed under  g , .  But since 

TKIMg = T M g  (~ N M  o , (3.12) 

where N M  o is the normal  bundle on M o, on which g ,  acts nontrivially, we see that 
J(v)  ~ T j . M  o, which shows that  J is a complex structure on M o. Similarly, one can 
show that M o is Kghler. Therefore, it makes sense to speak of  the Hodge  numbers  
of the fixed point  manifolds. The Dolbeault  cohomology  classes of these spaces will 
correspond to observables in the K / G  theory. 

Finally, we should consider the nature of  the G-action on the normal  bundle. 6 
We know that  G respects the metric, hence also the volume form. In a real basis 
{x i } ,  the volume form is a multiple oftl = d x  1 /x . . . /x d x  2d. N o w  g*rl = t /means 
that at a fixed point, the pull-back action of  g* is represented by a matrix in 
GL(2d ,  R) (g is invertible) satisfying 

2d 

A g* = 1; (3.13) 

4 This was proved, for example in [26]. The basic point is that we may take a simplicial 
decomposition of K on which G has a well-defined linear action on simplices of a given dimension. 
Then the simplices fixed under G form a decomposition of the fixed manifold. Now, when we sum 
over the group elements in the projection and take the trace over homology classes, we get zero 
from the other classes and the cardinality of the group for each fixed class 
5 To see that this space is a manifold, consider the linear g-action on the tangent space of K at 
a fixed point f of g. We denote this (push-forward) map by g.. Then the exponential map 
exp : TzK ~ K will diffeomorphically map the linear subspace annihilated by dg onto the fixed 
point set of g. (Since G respects the metric and complex structure on a K~ihler manifold, it 
commutes with the connection, and hence the exponential map as well.) This coordinatization 
shows why M 0 is a manifold. Similar considerations reduce other questions about M o to linear 
algebra 
6 G acts trivially on the tangent bundle since it fixes all possible paths in M 0 and hence all vectors 
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but since the highest exterior power of a matrix is its determinant, we find that 
g*~ SL(2d, R). Note that the same is true of g , ,  since g,  = [(g*) T] -  1 which can be 

easilyseenbypreservationofldzi ,  o~Z]l=6~.Theabovereasoningextendstothe 

other conditions we've placed on g. Since g preserves the complex structure, which 
means locally that it doesn't mix z's and ~'s, we can see that g* ~ U(d) in a complex 
basis. We also require that g* preserves the holomorphic top forms, which restricts 
the determinant to be unity, i.e. g*,g,~SU(d).  But we already know that 
g ,  decomposes into the identity on TM o and a matrix which, by abuse of notation, 
we call g. That is, g ,  = 1 • g in (3.12). Collecting this data, we have that g is 
non-trivial and 

g ~ SU(codimcMo) �9 (3.14) 

As an immediate corollary, we see that for group actions satisfying the Calabi-Yau 
conditions we have imposed, there are no fixed manifolds of codimension one. We 
will need this result. 

To understand twisted observables one must first understand twisted interac- 
tions, a subject of the next subsection. Here we will need the following result, which 
is proved in that subsection. Essentially, twisted observables are also differential 
forms, but the only piece which matters in correlations is the value of the pull-back 
onto M s by the inclusion map. Of course, for the untwisted case, this characteriza- 
tion is still true, since M1 = K. Then, BRST cohomology corresponds to differen- 
tial cohomology on M o. Note, then, that the original form A need not be closed on 
K:  if i*A is closed, then the non-closed part of A on K must contribute zero always. 
Hence, we have the twisted version of (3.8) for the g-twisted sector: 

(99 ~- Ho(Mo), (3.15) 

where we have intentionally omitted the Hodge labels (p, q). Once again, we must 
keep in mind that each label represents a full conjugacy class. In this case, the 
different sectors within a conjugacy class are equivalent since r : M  0 -o Mra~ 1 is 
a holomorphic homeomorphism. For  simplicity in labeling, we have dropped the 
conjugacy class symbol. 

Recall now that the equivalence of (anti-)holomorphic form degree with 
(anti-)chiral fermion number was due to the construction of the observables with 
fermionic fields of definite chirality. Implicit in the above was that the vacuum had 
fermion number equal to zero. This reasoning breaks down in the twisted sector 
because of a shift in the fermion number of the vacuum [20, 30]. Although 
a constant bosonic field at a fixed point describes a vacuum, the fermionic fields, 
even though at a fixed point, cannot be constant - for to be twisted they must go 
from one tangent vector to the g-translated vector, and g acts nontrivially on all 
fields corresponding to normal directions. Thus the fermionic vacuum corresponds 
to a sector with generalized boundary conditions on the ends of the string; the shift 
in the chiral fermion number of the vacuum is a general phenomenon for fermions 
in one real spatial dimension obeying nontrivial boundary conditions (Originally, 
in [20], the fermions were in the presence of instantons). As we have previously 
discussed, g acts nontrivially on the normal bundle, NMo, and trivially on the 
tangent bundle TM 0. Focusing on the chiral fermions, let us imagine just one chiral 
fermion in one spatial dimension obeying generalized boundary conditions. It was 
shown in 1-30] that when the (chiral) fermion number is properly regularized to 
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account  for an infinite spectrum of energies, the more  general boundary  condit ion 
~(o" + 2n) = e - 2 n l f l / / ( o  -) leads to the non-zero result 7 

F = f  (3.16) 

for the twisted fermion vacuum. We take F = 0 for the periodic case, corresponding 
to the unique Neveu-Schwar tz  vacuum (the fermionic fields are periodic after 
twisting). This argument  extends simply to the anti-chiral and multiple-fermion 
cases. Choos ing  a basis for the tangent space so that  g is diagonal,  we can see that 
we have a separate shift for each of the chiral fermions. If  the eigenvalues of g are 
e -2nifj, j = 1 . . .  n, where n = c o d i m c M  o, then the chiral fermion number  of  the 
vacuum shifts by 

F o = ~ f j ,  (3.17) 
j = l  

where we always take the fj to satisfy 0 < J )  < 1. The formula (3.17) looks like 
Fg = (i/2rc) T r  (log g) = ( -  i/2rc) log det g, but is of course different (for example if c~ is 
a primitive third root  of unity, then diag(c~, c~, c 0 yields F o = 1 or  2). However,  for 
Ca lab i -Yau  orbifolds we do have det g = 1, which means that F o is integral. This 
gives us 

O < Fo < n f o r g # l ,  F o e Z  . (3.18) 

Some words are in order about  the choice in defining fermion number.  We have 
chosen the untwisted sector to have F1 = 0, of  course, and have 0 < J )  < 1 for 
nontrivial g. The reasons for this choice are twofold. One way to set the fermion 
number  is through interactions. Namely, the three-point functions on the sphere 
determine the ring structure of  the observables (the chiral ring). For  the vacua, 
these correlation functions correspond to twist field calculations. By requiring the 
twist fields to respect fermion grading (in the Ca lab i -Yau  case this is possible), we 
are led to unambiguous  assignments. We will encounter  an example of this in Sect. 
five. The other way of determining the value of  the shift is to consider the path of 
a twisted string with no oscillator modes. In  one complex dimension, that  path 
looks like X ( z )  = z Ij, which is non-singular  as z --, 0 for fi  positive, and is minimal 
for fj < 1. (By this we mean that  X ( z )  = z 1 +fJ could be thought  of as the product  of 
a twisted string and a closed untwisted string.) Finally, note that F o is now 
well-defined and independent of  which point  on (the connected componen t  of) 
Mg we choose to determine it; for 9 has a finite order, say m, so fj = k / m ,  which is 
fixed, since it cannot  vary cont inuously along a componen t  of M o (other compo-  
nents have forms corresponding to separate operators  with different shifts). 

We should also point  out  that  the shift is the same in the anti-chiral sector: 
Fa = Fo  which yields the same shift of form degrees. (Remember, we choose the 
anti-fermion number  to be + 1 for an anti-fermion.) In  the anti-chiral sector, g acts 

7 The proof is straightforward [30]: the fermion number of the vacuum is the integral of 
the energy density for all energies less than zero. This is the filled fermi sea. We regularize this 
fermion number by subtracting the total number of fermionic states in the Hilbert space 
a (perhaps infinite) constant and inserting a convergence factor. We have F = C -  
~lim~o ~ _ d E p ( E ) s g n ( E ) e x p -  slE[. We choose the constant C to be -21 by requiring the 
periodic fermionic vacuum to have zero fermion number. Using the plane wave solutions 
~k,(a) = exp i(n - f ) a  with E, = (n - f )  yields the result for the boundary conditions stated above 
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by its complex conjugae (i.e. f i ~  1 - f j )  but the change in the Hamiltonian 
compensates for this difference, yielding the desired result. 

3.2. Twisted Interactions, Observables, and Poincarb Duality. In this section we will 
prove Eq. (3.15) by carefully considering interactions of twisted observables. We 
will also show that the interpretation of the observables as cohomology elements 
does not run counter to Poincar6 or Hodge duality, or to the Calabi-Yau charac- 
terization. Namely, we show that the Hodge diamonds of Calabi-Yau orbifolds 
have all the properties one would require of Calabi-Yau manifolds. 

Let us briefly recall the procedure for computing interactions of orbifolds by the 
path integral method [17]. Consider a loop X(o-) twisted such that X(a + 2~) 
= yX(a). As a map from the Riemann surface, a configuration corresponding to 

a g-twisted state at z = 0 must satisfy 45(e2"iz) = y45(z). Orbifold configurations 
involve multivalued maps 4~ : Z --* K with proper monodromies around points of 
insertion of twisted states. We can find an equivalent description with single- 
valued maps by choosing a cover 2; of Z on which G acts by automorphism 
(preserves metric, complex structure): 2; ~ ZIG. Now for a y-twisted state at Zo, we 
choose our group action such that a small loop around Zo (i.e., one not enclosing 
other points of insertion) will lift to a line from ~ to gS, say. For an interaction 
involving observables twisted by 91 . . . . .  Y, (with l~iY~ = 1 for 2; ~ S 2 the selection 
rule, viewing all states as incoming), at Pl . . . . .  p,, we consider S, a G-cover of 
S, with loops around the p~ lifting to lines with endpoints separated by the action of 
y~. In particular, continuity of the G action for very small loops means that the 
Pi descend from fixed points of gl on Z : g~/3i =/5~. Now ~b : Z ~ K obeying 

4~(g~) = g4~(~) (3.19) 

is a single-valued map with equivalent information. That is, instead of S(4~; S) we 
consider the same theory on 2; with 4~ and the pull-back metric (under the 
projection from the cover), with the exception that we must divide by N = I GI, 8 
since we have overcounted the area by the order of the covering. The genus of S can 
be easily obtained from knowledge of G and the orders of the y~ [17] (see footnote 
following (5.9)); finding 27 explicitly, however, may be very difficult. Of course the 
different thing about orbifold interactions is that each interaction requires a new S, 
and the functional integral will be taken only over equivariant maps, i.e. maps 
obeying (3.19). 

Let us turn now to explaining (3.15). Generally, a candidate observable can be 
likened to a differential form (not necessarily a cohomology class) as discussed in 
Sect. two. There it was explained that exact forms should be set to zero, while the 
interest with BRST-compatible observables forced us to consider cohomology 
classes. This analysis must be reconsidered in the case of twisted observables. For  
example, suppose we were to consider a correlation function involving a g-twisted 
state at a point p on 2;. Then by the above, we would need to consider equivariant 
maps around ,6. But the equivariant condition (3.19), together with our observation 
that/~ lies at a fixed point ofy on 2; means that at/5 we have cb(y/~) = qS(/~) = yq'~(/~). 

s The cover need not be of order [G[, actually. The order of the cover can be chosen to be the 
order of the group generated by the 9~ 
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Hence ~(/3)~ Mg. This is an important observation! For  instance, suppose we 
consider a differential form A 4:0 on K. If, however, the restriction of A to Mg were 
equal to zero, i.e. A IM~ -=_ 0, then the observable corresponding to A would always 
be evaluated at some 4~(i6) = m~Mg and hence always give zero. Thus as a g- 
twisted observable, we could set CA = 0; for every correlation function with 
(9 a would be zero. 

Of course the (not necessarily closed) form A must be invariant under the group 
action to be an observable in the orbifold theory. This gives us a condition for its 
value at m, which we just saw had to lie in the fixed manifold Mg. For  suppose 
A had indices pointing in the direction normal to Mg. We know that g acts 
nontrivially, i.e. has nonunital eigenvalues, in these directions, so invariance at 
m - which is invariance under the differential matrix g - is impossible! Any normal 
components are projected out. Thus, we see 

A IM~ = i*A + (Noninvariant Terms--* 0),  (3.20) 

where we have abused notation slightly by considering i*A as a form on TK fM, (this 
can be done because there is a 1-1 imbedding of TMg into TKIM. ) Thus, since all 
values of A outside the manifold M 9 do not contribute to correlation functions, and 
since the normal components of A IM~ are projected out, the observable A is 
completely determined by i*A. 

We are now eready to classify the g-twisted observables. Since Mg is imbedded 
in K, the map i*: Y2*(K) --* f2*(Mg) is onto. Therefore, forms expressible as i*A are 
isomorphic to all differential forms on Mg. Now, since i* and h* commute, where 
h e C(g), the invariant forms are just the C(g)-invariant forms on Mg (as always, 
g represents any element of the conjugacy class {g}). Finally, we must impose the 
BRST symmetry, which means only considering forms such that di*A = 0 modulo 
all forms i*dA. But pull-back commutes with exterior derivative, and so we must 
take all closed forms and mod out by all exact forms on Mg (remember i* is onto). 
Thus we have shown (3.15). 

We now know the observables associated to an orbifolded topological sigma 
model. Furthermore, by carefully keeping track of the fermion number shift asso- 
ciated to twisted boundary conditions on fermions, we were able to assign the correct 
fermion numbers to these observables. Now by analogy with the untwisted case, it is 
tempting to assert that these observables correspond to cohomology classes asso- 
ciated to the singular space K/G, with holomorphic form degrees given by the chiral 
fermion numbers. So let us consider what the Hodge diamond of such a space would 
be. In several examples in the next section, we show agreement with the Betti 
numbers of the resolutions of orbifolds. 

In the g-twisted sector, the vacuum has chiral-anti-chiral fermion number 
(Fg, Fg), as we've defined it. We saw in (3.15) that the space of observables in this 
sector was isomorphic to the C(g)-invariant cohomology of Mg. These observables 
are built from untwisted fermion operators, which have their usual fermion num- 
bers (form degrees), and the twist field part which shifts the vacuum. For  example, 
the identity operator in the twisted sector is the actual twist field. Thus these 
operators have their degrees shifted by (Fg, Fg). We may thus define the twisted 
Hodge numbers of the orbifold K/G to be given by 

Hp,q(K/G) =_ t ~  H p - F o , q  - eg(Mo) (3.21) c(g) {g} 
for any g representing {g}. 
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Does this definition preserve the familiar structure of the Calabi-Yau Hodge 
diamond? Yes. This is easily seen by realizing that Mg = Mg-, and C(g) = C(9-1 ). 
Thus if { k j m }  represents the fj  for the action of g on the normal bundle, then 
{(1 - k j ) / m }  represents g-1. We conclude that 

Fo-, = n - F o , (3.22) 

where n = codimcM 0. This shows us that there is indeed Poincar6 duality. Namely, 
let 0 be a C(g)-invariant (p, q) form on M o. Then in the language of (3.21): 

O6Hp+Fg'q+F,(K/G); O<=p,q<=n. (3.23) 

Let Obe the Poincar6 dual of 0 in Mg-, = M o. As observables, the Poincar6 dual of 
0 is f in the sector twisted by g-1. This is easily seen; for 

f ~  H (dimcMg ~ - P + F~ "dimcM~ P + F~ ' ) ( K / G ) .  (3.24) 

Using (3.22), we see 

dimcM0-, - p + 1:o-, = d - (p + Fg) (3.25) 

and likewise for q. So Poincar6 duality of K / G  is shown. We note here that Ohas the 
product structure of a Poincar6 dual as well. That is, if we consider the correlation 
function (O(p)O(q))  on the sphere, then by considering 0 and f to have support 
only on their Poincar6 duals, these will intersect only at a single point, call it x. So, 
going to the N-fold cover of the sphere with two fixed points, where N is the order 
of g (i.e. another sphere, with g acting as rotation by 2re~N), we find a single 
equivariant holomorphic map of degree zero - t h e  constant map x. Thus 

(O(p)O(q))  = 1. (3.26) 

This suggests Off = X, where X represents the volume form on K (which is an 
untwisted observable). As we have discussed, however, nonabelian observables are 

composi te  operators. This complicates the product structure. The identity (3.26) 
requires the knowledge of the dimension of moduli space of equivariant holomor- 
phic maps of given degree; we must show that there is no higher component of 
moduli space of dimension d containing an equivariant map with this property. 
This is easily seen in the examples we compute, as the dimension increases with 
instanton number. 

We must also show that the (p, 0) and (0, q) cohomological structure of 
a Calabi-Yau manifold is preserved in the K/G theory. In fact the above proof 
suffices to show this. Since F 0 > 0 for all non-trivial g, we see from (3.21) that no 
twisted sector can contribute to H * ' ~  or H~ By the duality proven 
above, the same is true for H*'a(K/G) and H d' *(K/G). Finally, since the volume and 
holomorphic top forms are group invariant, the familiar structure of the Hodge 
diamond for Calabi-Yau orbifolds is preserved. As an example, let K be a three- 
fold with M o codimension two (codimension one is impossible by (3.14)). Now 
(3.18) tells us that F 0 = 1 and the Hodge diamond of M o fits right in the center of 
the diamond H**(K/G) .  

To what extent can we show the equivalence of our cohomology with the 
standard cohomology of the resolved manifold? We know of no general proof 
(nor is there a complete understanding of the relationship between the Landau-  
Ginzburg models and geometry - see [26, 27, 2] and references therein). Let us thus 
concentrate on a less lofty equivalence - that of the Witten index or Euler 
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characteristic. As was shown quite generally in [11], the Witten index can be 
computed for the orbifold theory to be 

1 
Zorbifold(K/G) ---- Z ~ Z z(Mo.h)" (3.27) 

{O} I I h~C(a ) 

Now by the footnote below (3.10), we can see that the h sum simply computes the 
Euler number of C(9)-invariant forms for each M o. Thus, 

•orbifold(K/G) : 2 Zc(o)(Mo) �9 (3.28) 
{0} 

Since the fermion number shift of the observables always changes the form degree 
by 2/:o, an even number for a Calabi-Yau orbifold, the "Euler number" of our 
orbifold, calculated directly from the counting of observables, agrees with expecta- 
tions. 

4. Hodge Numbers of Orbifolds: Some Examples 

As a concrete example of a Calabi-Yau orbifold which is not expressible as 
a complete intersection (and hence has no simple Landau Ginzburg description 
- see [16]) we may consider the Z orbifold Z = (T x  T x  T)/Z3, where Tis a torus 
with modular parameter r = 2 - e 2~i/3 and the Z3 group action is generated by 
diagonal multiplication by 2. Note that in this example T x T x T is not Calabi- 
Yau, but the quotient gives a group-invariant cohomology with Calabi-Yau 
structure. There are 27 fixed points of this action, all of which have a Z3 action on 
the (three-dimensional) normal bundle which is simply diagonal multiplication by 
e-a  (we must remember that tangent vectors transform contravariantly). Now let 
9 be the generator of the Z3 action. We have ( f x , f z , f3 )  = (1/3, 1/3, 1/3), which 
gives us F0 = 1. Thus, the 27 vacua in the 9-twisted sectors all contribute to 
H 1, I(Z). In the g2 sector, Fg2 = 2, so we have a contribution of 27 elements to 
He'z(z). In the untwisted sector, the invariant forms contribute nine elements 
(dzi dSj) to H 1,1 (Z) and also nine (the duals) to H 2" 2(Z), in addition to the standard 
volume, identity, holomorphic and antiholomorphic forms. This analysis agrees 
with the Hodge structure of the resolution of Z [3]. 

Let us now compute another example which can be directly compared to 
a resolved manifold. We start with the quintic hypersurface K in CP 4 defined by 
the zero locus of the homogeneous polynomial W(X)  = ~5i= 1 X~. Now automor- 
phisms of CP ~ (given by PGL(5)) which leave W(X)  fixed will act on K. Let us 
consider the orbifold of K by G = Zs, where the generator g of G acts by 

g:(X1, X2, X3, X4, Xs)  -~ (X1, eX2, ~X3, c~4X4, ~4X5) , (4.1) 

where c~ = e 2~v5. If we recall I-5] that the holomorphic three-form has a polynomial 
representation as I-L X3 then we can easily see that this form is preserved (because 
the transformation acts analytically, G respects the complex structure as well). 

Now it is simple to do our fixed point analysis. First, in the untwisted sector, we 
search for invariant forms. K has Hodge numbers h 1' 1 = 1, h a, 1 = 101. The K/ihler 
form (equivalent to complex structure) is preserved since G acts holomorphically, 
so it remains to calculate which of the 101 forms of H 2'1 a r e  invariant. These 
have representatives as homogeneous polynomials of degree five, modulo the 
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polynomial ideal generated by X~ [5]. Those monomials which remain invariant 
under the action (4.1) represent invariant forms [33]. It is not difficult to see that 

X ~ A U  (4), X 1 A 2 U  2 (4), A3B 2 (4), U3V 2 (4), X 1 A B U V  (1) (4.2) 

represent the seventeen invariant forms in H~' 1, where A ~ B range over X2, X3 
and U ~e Vrange over X3, X4 (the numbers of such forms are in parentheses). First 
note that g has ten fixed points: 

M0 = {(0, 1, - c~m, 0, 0), (0, 0, 0, 1, - a"): m,n = 0 . . . . .  4} (4.3) 

(this is the full set of fixed points - others are related by projective equivalence). 
Note that all group elements have the same fixed point sets; since these are discrete, 
we see that the vector bundle NMo,  which is trivial, has rank three. What is the 
action of g? Let us consider the point p, an element of the first set of five fixed points 
listed in (4.3). We can coordinatize the manifold K near p by 
(el, 1 + ~2, - c~m + ~3, ~4, es). Now we may fix ~2 = 0 by projective invariance, and 
use the defining quintic equation for K to determine e3. In this way (el, e4, es) 
represent a basis for differentials near p. It is simple to see then that g acts by 
diag(a4, aa, a 3) on these differentials. Since tangent vectors transform con- 
travariantly to differentials, we find that ( f l , f z , f 3 ) =  (4/5, 3/5, 3/5) (recall the 
hidden ( - ) sign) and thus F o = 2. Analyzing the second set of fixed points for 
g gives F o = 1. Thus, in the g-twisted sector, we have h 2' a = hl, 1 = 5, since each 
fixed point has a single invariant cohomology element. The same is true for 
g2, 93, 94. We conclude that the orbifold observables have the structure exhibited in 
the figure below: hi' 1 (K/G) = h2" 2 (K/G) = 21; h 2' a (K/G) = hi'  2 (K/G) = 17. 

1 0 0 1 

0 17 1 0 

0 1 17 0 

h** 1 0 0 1 

Y~o ,1  h** 

0 0 0 0 

0 0 20 0 

0 20 0 0 

0 0 0 0 

h**(K/G)  

1 0 0 1 

0 17 21 0 

0 21 17 0 

1 0 0 1 

Indeed the above numbers agree with the Hodge numbers of the resolved manifold 
of this singular space [15]. The same result can be obtained by considering an 
appropriate Landau-Ginzburg orbifold [16, 18, 29]. Namely, the topological 
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sigma model on K corresponds to the N = 2 superconformal Landau-Ginzburg  
model with superpotential W =  ~5= 1 cb 5, orbifolded by the group j, which is 
generated by j = e 2~is~ [16]. If we consider the orbifold of this theory (i.e. we take 
W/( j  x G)), then a careful treatment of the U(1) charges leads to this theory: one 
must identify the Hodge numbers (p, q) with (J, 3 - J) of the NS sector of the 
N = 2 L G  theory. Note that we are only interested in j cosets; for example, we 
consider all elements in the 9, 9J, gj2, gj3, ~lj4 sectors to lie in the g-twisted sector, 
and of course only consider group-invariant states [18]. 

Let us consider a case involving a fixed manifold. Again we consider 
w ( x )  5 x = ~ i =  1 i -- 0 in CP 4. We now orbifold by the Z5 group generated by g: 

g:(X1, X2, Xa, X4, Xs)  -* (c~X1, c~4X2, X3, X4, Xs)  �9 (4.4) 

Now M o = { X e K :  X1 = X2 = 0}. This is clearly a one (complex) dimensional 
space; we can compute its Euler number by a simple application of the adjunction 
formula for Chern classes (see, e.g., [16]). Since M o is defined by the zero locus of 
the three polynomials W, X1, X2 of orders 5, 1, 1, we have 

(1 + j)5 
e(M~ = (1 + 5J)(1 + J)(1 + J)  = 1 - 2J , (4.5) 

where J is the K/ihler form. This yields )~(Mo) = - 1 0 .  Of course all forms are 
group-invariant since they are invariant under 9, the generator (this is true in all 
twisted sectors since the order of the group is prime). We may now use (el, e2) as 
infinitesimal coordinates normal to M 0. Then 9" acts by diag(e, e4), which gives 
F o = 1, as it must for the Hodge diamond of M 0 to fit into the orbifold cohomology 
without disturbing the Calabi-Yau properties. This same structure is repeated for 
each of the four non-trivial group elements. The results are summarized in the 
following tables: 

1 0 0 1 

0 25 1 0 

0 1 25 0 

h** 1 0 0 1 

~ o *  1 h** 

0 0 0 0 

0 24 4 0 

0 4 24 0 

0 0 0 0 

h**(K/G) 

1 0 0 1 

0 49 5 0 

0 5 49 0 

1 0 0 1 
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Once again, we find complete agreement with the appropriate orbifold of the 
corresponding Landau-Ginzburg model. 

As a final example of computing the Hodge numbers of an orbifold, we consider 
the following mirror pair. Let 

5 5 

W =  2 X ~ -  50 1--[ Xk (4.6) 
k = l  k = l  

define a variety M = (W = 0) c CP 4. This is a Calabi-Yau space, as is easily seen 
from the adjunction formula. Note that W is the most general quintic invariant 
under the Z5 x Z5 x Z5 action generated by diagonal multiplication by 

gl = (~l, 1, 1, 1, cd) 

gz = (1, a 1, 1, 1, a4) 

g3 = (1, 1, el, 1, e4). (4.7) 

Note g 4 =  (1, 1, 1, ~1, c~4) = (g lgzga) - t  is not independent. 
We must determine the fixed point structure of each of the 125 elements of the 

group. This is simplified by noting that whenever more than one homogeneous 
coordinate is multiplied by the same power of ~, then there will be a fixed point set 
determined by setting all other coordinates to zero. The results are summarized in 
the following table, where we have denoted any (complex) curve by C, and 
a number indicates the number of discrete fixed points; group elements are denoted 
by the exponents of ~: e.g. gl = (1, 0, 0, 0, 4). 

:r g Example M o Z Zinv 

1 1 (0, 0, 0, 0, 0) M - 200 0 
12 g7 (1, 0, 0, 0, 4) C - 10 2 

ni nj  

12 gi gj (1, 4, 0, 0, 0) C - 10 2 
ni + n j =  5 

ni tlj 

9i gj (1, 2, 0, 0, 2) 10 10 2 24 ni + nj 4:5 

12 ginigjni (1, 1, 0, 0, 3) 10 10 2 
ni nj  nk 

24 g~ gj gk (1, 2, 3, 0, 4) 0 0 0 (4.8) 
ni 4: nj 4: nk 4: ni 

nl nj  nk 

gi gj gk (1, 1, 3, 0, 0) 10 10 2 12 ~, n, ~ 5Z 

?/i n j  nk 

g~ gj 9k (1, 1, 2, 0, 1) C -- 10 2 
12 3ni + nk~5Z 

ni nj nk 

gi gj Ok (1, 1, 4, 0, 4) 10 10 2 
12 2ni + 2nke5Z 

4 (919293)" (1, 1, 1, 0, 2) C -- 10 2 

This table was calculated using the G-index theorem (or Lefschetz fixed point 
theorem) to compute group-invariant cohomology, as described below. For the 
elements with isolated fixed points, the group-invariant cohomology is just the 
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number  of orbits under  the action of the other  group  elements (things are simplified 
since this is an abelian orbifold). As an example,  we consider gig2 = (1, 1, 0, 0, 3). 
The fixed points  are (1, - ~r, 0, 0, 0) and also (0, 0, 1, - ~s, 0), r, s = 0 . . .  4. We 
now concentrate  on the first set of  points. These points  are also fixed under  g3. 
N o w  under  gl or  g2 these points  are m a p p e d  to ( 1 , - c ( - 1 , 0 , 0 , 0 )  and 
(1, - ~r+ 1, 0, 0, 0) respectively. So the first class contains only one orbit  under  the 
group  action. Similarly for the second. Thus gig2 has 2 orbits of fixed points: 
Zinv = 2. The analysis is similar for o ther  group  elements with isolated fixed points. 

N o w  consider a fixed curve. All are of the form 

C = { X  5 +  y s + z  s = 0 }  c C P  2,  (4.9) 

and the adjunct ion formula  tells us that  ~( = - 10; since this curve is a connected 
complex manifold, h00 = hl l  = 1, hlo = hol = 6. We also know that  the volume 
form and trivial form 1 are invariant.  So we have 

2 - Xinv (4.10) 
h l ~  = h ~  - 2 

N o w  to figure out  Zinv we need to compute  the al ternat ing sum of invar iant  
cohomology  elements of various dimensions. This is much  like the Euler character-  
istic, except we must  insert a project ion opera to r  for C(g) invariance, i.e. 

1 
Zc(o) = ~i ( -  1)iTrlH'~'~ -- I C(g)l ~. ( -  1)iTr gln " (4.11) 

The above reduces to a sum over  fixed points  of g (when the fixed points  are 
isolated [1]), where we have the formula  

d 

( -  1)iTrgln~ = ~ sgn(det(1 - dg)), (4.12) 
j = 0 fixed points 

where dg is the differential g-action on the cotangent  space. In this example, the fixed 
point spaces are all one (complex) dimensional, so dg acts are a rotat ion by a phase. 
In the real sense, we see that  det(1 - dg) = 2 - 2cos(0) > 0, with equality only for 
g = 1, in which case the g-index is just the Euler characteristic, g = - 10 for any fixed 
curve. So we only have to count the number  of fixed points for any g # 1. 

N o w  how does G act on the fixed curve? Any fixed curve has the form of (4.9), 
with the act ion by the group equivalent  to t h e  group  generated by the elements 
(1, 0, 0), (0, 1, 0), (0, 0, 1), where we have used the same nota t ion  as in (4.8). One  of 
these elements is dependent,  say (0, 0, i), so the act ion on a fixed curve is by Z5 x Z5 
generated by two elements a and b (it is obviously fixed under  the Z5 of the twisting 
element). This group  has 25 elements, 12 of which are nontrivial  and have fixed 
points. They are of the form (i, 0, 0), (0, i, 0), (i, i, 0). Each of these elements has 
exactly five fixed points. Thus fo r  any  curve we insert the project ion opera to r  onto  
invariant  states to get 

= ( -  1) j Tr  a"b" nJ (-1)~:~-invlnJ ~ =  m=0n=0 
1 = 0  

1 
= ~ ( - 1 0 ,  + 12"5) = 2 .  (4.13) 

Thus,  for all fixed curves (4.10) tells us h~ 1 = h ~176 = 1, h~ ~ = h ~ = 0. 
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Now to construct the Hodge diamond from the observables, we just need to 
shift by the appropriate amount. There are 101 elements with fixed points. The 
curves have codimension two and thus have a shift of one, fitting in the center of the 
Hodge diamond. A simple analysis shows that half of the 80 fixed point orbits have 
a shift of one, half by two. The invariant untwisted elements have no shift. Thus, the 
Hodge diamond is the same as that of the mirror manifold, obtained by resolving 
this orbifold [4]: 

h * * ( M / G )  

1 0 0 1 

0 1 101 0 

0 101 1 0 

1 0 0 1 

This is the mirror orbifold of M. 

5. A Dihedral Orbifold 

Now that we know how to compute the "cohomology" of the orbifold, we would 
like to compute the ring structure as well. This involves computations of intersec- 
tions on the moduli space of equivariant holomorphic maps from appropriate 
branched covers of the Riemann surface, depending on the interaction under 
consideration. In this section, we offer a detailed computation of this quantum ring 
for a nonabelian orbifold. 

We wish to consider an orbifold of CP 1 by the dihedral group O4, the symmetry 
group of a square. Recall that CP 1 is topologically a sphere, and that all the point 
groups act naturally on the sphere, since they are subgroups of the rotation group. The 
dihedral group DN is generated by an order N rotation 0 and a flip r, with the relations 

r 2 = O N = 1, rOr - ~  = 0 -1 (5.1) 

We take the action on CP 1 =~ C ~ o~ to be r(z)  = z -  2, O(z) = ~z,  with ~ = e 2~i/N. 
Note that for the even dihedral groups there is a non-trivial center containing the 
element 0 N/2. In homogeneous coordinates (X, Y) for C P  1, this group has a repre- 
sentation in P G L ( 2 )  given by 9 

Note that this is a projective representation - matrices are only defined modulo 
nonzero scale factors. 

Let us first discuss the fixed point geometry. Each nontrivial group element 
g acts by a rotation of the sphere CP a, and thus has two fixed points, which we label 
A o and B o. Let us make the following definition for r: 

1 . . ( l )  
9 We required action by a holomorphic isometry, hence the group must act as a subgroup of the 
automorphisms of CP 1, i.e. of PGL(2) 
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Thus the cohomology of M o is just C �9 C. Now we know that we can only use 
C(g)-invariant forms. Consider the element r e  {r}. We have C(r) = {1, r, 0 2, tO2}, 
and thus  

Hc~r)(Mr)  = 1At + 1Br ~ r (5.4) 

since the two fixed points are related under C(r) by 02 and rOZ. In  this way, we can 
find all the observables of the theory. 

Although CP 1 is not a Calabi-Yau manifold, and thus the chiral fermion 
number is not conserved, we can still try to ascribe chiral fermion numbers to our 
observables using the methods described in this paper. This will then be conserved 
by assigning a chiral (and anti-chiral) fermion number F~ = 2 to the parameter/~, 
representing the instanton action (recall X 2 =/3 is the ring for the CP 1 model, 
which is still true since X remains as an element in the untwisted sector). Quite 
generally, all elements g of order two in a one-dimensional complex space must 
have Fg = �89 since in a neighborhood of a fixed point at z = 0, we have g(z) = - z, 
or d9 = - 1. For  0 the action on a local coordinate at Ao gives dO = e 2 ' : i / 4  and hence 
FAo = �88 Conversely, F m = �88 These observations are tallied below. 

Observable: (9 Sector F~ 

1 1 0 
X 1 1 
r {r} 1/2 
g {r0} 1/2 
0A {0} 1/4 
02 {02 } 1/2 
On {0} 3/4 

(5.5) 

Before computing correlation functions, let us anticipate a symmetry of the 
chiral ring. The automorphisms of the group D4 have a normal subgroup known as 
the inner automorphisms, given by conjugation by the various elements, a~ The 
outer automorphisms are those defined modulo inner automorphisms. Conjuga- 
tion acts trivially on our ring elements by construction, but the outer automor-  
phisms should survive in some form in our ring. The group of outer 
automorphisms of D4 is easily seen to be Z2 and is generated by a, which is 
determined by its action on r and 0 : ~(r) = tO, ~r(O) = O. 

In order to derive the chiral ring, we must compute all the three point functions 
of the theory. There is a subtlety, though. When we write the observable r we really 
mean a sum of terms related by conjugation. In the case of r, for example, we have 
a nontrivial centralizer which includes the element 02, relating Ar and Br. Thus, we 
have 

r = Ar + Br + Aro2 + Bro2 �9 (5.6) 

In order to compute a correlation functioninvolving an r-twisted operator at p, we 
have to choose an appropriate cover Z over E. (We will always take 22 to 
be a sphere, since the genus zero correlation functions determine the ring of 

lo N c G is normal if aN = Na VaEG. Let I be the inner automorphisms, i E1 represents 
conjugation by g. Let p be an automorphism. I is normal because p o ig(x) = (p(g~)p(x)(p(g))-1 
= ip(g)o p(x). So pI = Ip 
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observables.) The different choices of points/3 covering p are related by the group 
elements and correspond to different twistings in the conjugacy class. By the way 
we constructed our operator r, our results will be independent of this choice. 
However, to compute correlations involving r we must choose a particular lift. 

We begin by considering some simple correlation functions involving two twist 
fields. An explicit computat ion will show us how to generalize our procedure for 
the more complicated three-point functions. In genus zero, the selection rule states 
that the product of all twists is the identity (we consider all states as incoming). Let 
us compute (Ao(p)Bo3(q)Xr), for example; the "pre-operators" in this correlation 
function are pieces of a full-fledged observable - they are only defined for a particu- 
lar choice of lift. The first thing we notice is that the two twisting elements 
commute. In fact they generate an abelian Z4 subgroup, which means that our 
cover need only be a Z4 cover of the sphere; the other elements of G will act 
redundantly. One can compute general Z,  orbifolds of the sphere by a similar 
calculation [8-1. Since it is a twice-twisted correlator, we need a cover of the sphere, 
branched by 0 and 03 over p and q. Since we can choose an automorphism of the 
sphere which takes p to the south pole and q to the north pole, we may choose 
p and q to be the points z = 0 and z = oe. The covering su r face I ,  is also a sphere, 
and the Z4 acts by rotation. If w is the coordinate on S, then O(w)= iw. 
The covering map is w ~ w 4, or in other words z = w 4, so the lifts of a point z 
are given by the four points w = z 1/4. At z = 0, a branching point, there is only one 
w, and we note that a small circle around the origin lifts to one whose endpoints 
are separated by the action of 0. Now we need to find the equivariant maps from 
2; - CP 1 to the target space K ~ CP 1. We know the (compactified) moduli space 
Jr {~ : CP 1 --* CP~I~  holomorphic} decomposes into maps of degree k, with 
J/dk ~ C P(~+~)~k+l)-~. We need to find equivariant maps. Consider the general 
degree k holomorphic map given by (see (2.9)) 

�9 : (x ,  r )  (5.7) 

Now 0 acts by Y~--~ i Y, so recalling that there is an overall scale ambiguity, we see 
that �9 = ~bzm is equivariant if m - l + 1 mod 4 and I has ranges over a fixed value 
mod  4. The four values of m mod 4 represent the four components of J/k,  which we 
label J//k,m. For  example, we have Jgg,1 = {(alX 8 y1 + a5X 4 y5 + y9, bzX7 y2 
4- b6X 3 y6)}. The astute reader will recognize from the form of (2.9) that equiva- 

lence of �9 means that it commutes with the projective group action, and so the 
different sectors of J//k correspond to different spaces of intertwiners of projective 
representations of the dihedral group with various multipliers [24]. The group 
action on the space of homogeneous polynomials of degree k is obtained by the 
symmetric tensor product of the representation on (X, Y). 

We need the maps which take p = (1, 0) ~--~ (1, 0) = Ao and q = (0, 1) ~--~(0, 1) = Bo. 
The maps will be ill-defined unless there are terms like X k yO and X ~  k. So we 
require the X k term to be in the first coordinate, and the yk term in the second. 
Thus we must have I - 0 and k - 1. Let us write k = 4q + 1. Counting a's and b's, 
we see that dim,////gq+ 1, o = (q + 1) + (q + 1) - 1, where we must subtract one for 
global rescaling of a's and b's. The minimum dimension is one, so we must add the 
observable X, representing the volume form, to our correlation function in order to 
get a non-zero correlation number (i.e., to have finite intersection of the cycles in 
the moduli space): r = 1. Since X will require maps from a given point to a single 
point in the target space, X is a linear condition on the as and bs, and so defines 
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a cycle of codimension one. Thus, we see that there is a unique map of degree 
4a + 1 for the correlation function ( A o ( p ) B o 3 ( q ) X  za+l ).  Since we need the three- 
point function, we take a = 0. Then k = 1 and the equivariant maps are (aX,  bY ) .  If 
we take the point of insertion for the observable X to be (1, 1), say, and we represent 
the (dual of the) volume form by the point (c, d), then the unique map is just 
�9 (X,  Y ) =  (cX,  d Y ) .  Now since the degree just counts the instanton number, let 
fl = e-A represent the contribution of instanton number one (A is the area of CP 1). 
We recall again that we must rescale the action (and the area) by S ~ S / N  for an 
N-fold cover. We find: 

( A o B o 3 X )  = fil/4 . (5.8) 

Although we should really only consider three point functions to define the ring, we 
note here that ( A o B o 3 X  2"+~) = fl,,fll/4 is consistent with the known relation 
X 2 = ft. From this we can see how some ring relations are derived. For  example, 
from the above, with the knowledge that X is the only observable with ( X )  = 1, 
we can guess that 

Ao" Bo3 = fll/4 , (5.9) 

although this product could conceivably contain other untwisted elements like 
X - further analysis shows it does not. Again let us stress that we are deriving these 
relationships for a particular lift to S. The full ring of observables (r, etc.) is 
independent of this choice. 

The procedure is similar for the three-point functions. We briefly consider the 
correlation function ( A r ( p l ) B o ( p z ) A r o ( P 3 ) ) .  One can apply the Riemann- 
Hurewicz formula to find the genus of the appropriate covering space.11 The cover 
is once again a sphere, where we take the group action to be the same as for the 
target space, namely that of (5.2). We take the lift of pl to be p, = (1, 1) (not (1, - 1)), 
with Po - (1, 0) and Pro - (c~, 1). 

We begin by considering the equivariant map 

(or: (X ,  Y)~---~(X k - l  yZ, e X  t y k - t )  , (5.10) 

where equivariance under 0 and r (and hence all of D4) requires 

k = 2 1 + l m o d 4 ,  e = _ l .  (5.11) 

The general equivariant map will be a sum of the qSz of fixed values of e and 
(l mod 4). Therefore, there are eight sectors of equivariant maps of a fixed degree. As 
before, the different sectors have different properties, sending Pr, Po, and Pro to 
different fixed points in CP x. Some sectors drop out, all maps being multiples by 
X Y of other maps (of two degrees less), and hence equivalent. For example, to 
compute the correlation function (BrAoBro ~, we find that there is a unique map of 
degree one, namely (X, - Y), which gives 

( B r A o B r o )  = f l~/s .  (5.12) 

,1 This formula [17, 13] gives the genus 0 of the covering space in terms of the orders v~ of the 
twisting elements, and the cardinality N of the group they generate: 2 -  2~ 1) 
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Note that the chiral fermion number is always violated mod 2 in correlations. This 
allows the ring structure to preserve F as long as we take/3 to have Fp = 2, as in the 
untwisted CP 1 case. Similarly, one must compute all three-point functions for 
pre-operators. These include the abelian ones involving ( r ) (02)  (r02), which only 
require a four-fold cover of the sphere (by a sphere), since the three group elements 
only generate a Z2 • Z2 subgroup. 

Once we have solved for the (now commutative) chiral ring, we try to find an 
economical way of presenting it. It turns out that all the ring relations are 
generated by the following: 

r .  (0A)  2 = 4/31/4r , 

r .  r = 4 X  + 4/31/2 - 4 f l l / 4 (OA)  2 , 

(0A) ~ = 2X -- 2/31/2 + 4/31/4(0A) 2 , 

X ~ 0 A = /31/4(0A)3 - -  3/31/20A . (5.13) 

The other observables are expressable in terms of r and 0A (for example, the 
right-hand side of the last equation is just/31/40B). In fact, using the second and 
third equations in (5.13) we can eliminate X, and make the ring "dimensionless." 
We also normalize the variables in a way which is most suitable to more general 
even dihedral group orbifolds. We define: 

1 1 
p ~-- (#)'4~1/2"1/~ r ,  q~ ~ ( f l l / 4 ) 1 / 2  0A " (5.14) 

In terms of these generators, the ring of observables is defined by 

p ( ~ Z = 4 p ,  2p 2 = ~ b  4 - 2 q ~  2, ~b 5=6q~ 3 - 8 q ~ .  (5.15) 

This ring contains all the information of the topological theory. We use it to define 
higher genus amplitudes through factorization. Note too that the single outer 
automorphism survives as an automorphism of the rin9 of observables. In the 
variables of (5.15) it has the form 

1 
p ~ -~ p (~ , (o - ~  c~ . (5.16) 

The ring (5.15) is the ring of observables of a topological sigma model orbifold on 
the space CP 1. This space is not a Calabi-Yau manifold. However, as we let the 
area of the space go to infinity, the curvature must go to zero, giving us a Ricci-flat 
manifold - the plane. Thus, as in [8], the limit/3 ~ 0 should give the chiral primary 
ring of a conformal field theory. In order to take the/3 ~ 0 limit, we should use 
(5.14) to recover the/3 dependence of the ring. In doing so, we easily obtain the 
following chiral-primary ring: 

pq~2 = 0 ,  2p  2 = 4 4 , q~5 = 0 .  (5.17) 

We may ask whether this ring is familiar. Is it the ring of a Landau-Ginzburg 
model in two variables? The anaser is no. In fact, it is quite easy to see that no such 
superpotential could give rise to this ring. However, the ring (5.15) contains an 
interesting subring. Let us consider the ring generated by the elements p and q~2. In 
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terms of these generators, the last relation in (5.15) becomes dependent on the 
others. It  only enters as ~b6= 6~b 4 -  8q~ 2, a simple consequence of the other 
equations. Let us define x - q52, y - p (do not confuse x with the observable X).  
This subring is then described by the relations 

x 2 = 2y 2 + 2 x ,  x y  = 4y .  (5.18) 

Now this  ring has a simple Landau-Ginzburg  description. It  is the same as the ring 
derived from the superpotential 

X 3 
W -  3 2 x y 2  - -  X2 -t- 8y 2 . (5.19) 

The last two terms in (5.19) are the //-dependent perturbations, which vanish as 
/ / ~  0. In this limit, we recover the superpotential 

X 3 
l~D 4 = ~ - -  2 x y  2 , ( 5 . 2 0 )  

which is none other than the superpotential corresponding to D4 in the A - D - E 
classification o f N  = 2 minimal models. So a subring of the dihedral CP 1 orbifold is 
the same as the ring of the corresponding dihedral Landau-Ginzburg  series!? 
There is no obvious connection. In fact, we will show in the next section that this 
relationship is somewhat general: the chiral ring of the D2k orbifold has a subring 
described by a perturbation of the Dk+ 2 superpotential W = x k + ~ + x y  2 (up to 
normalization). It  is a coincidence that 2" 2 = 2 + 2. 

6. Cp1/DN 

In. this section, we will outline the generalization to orbifolds of CP 1 by an 
arbitrary dihedral group DN. Let us first consider the even case N = 2k. The 
features of the previous section are quite general, so we will be brief. The dihedral 
group is defined by (5.1). When N = 2k, there are two "flip" conjugacy classes, {r) 
and {rO}, as before. We also have the trivial class 1, the central element O k, and 
k - 1 conjugacy classes {0 '} ,  i = 1 . . .  ( k  - 1) (here {0 i} = {0 i, 0-1}). 

Now to determine the ring, we must compute many  correlation functions 
involving the twists (r)(0 i) (rOt). These turn out to be very similar to the ones we just 
computed. The main difference is in the factors of // in the ring coefficients. 
However, by F conservation, we can always determine the correct//-dependence 
from the "dimensionless" operators p and qS. Once again, these generate the ring, 
though the relations between them are a bit more complicated. 

Consider the/- twisted sector, by which we mean the conjugacy class of {01}. 
There are two observables in this sector, which we will label ~bi and ~bZk-Z. Here we 
define 

4), - ( U l / 4 k ) ( A o ,  + B o - , )  . (6.1) 

We use the convention ~bo - 2, and the abelian result (Ao)  zk = X gives us that 
~92k = ( f l - 1 / 2 )  2 X  =- 2Z (X is the dimensionless version of X). We also have the 
generalization of (5.9): 

Ao" Bo-1 = fla/2k . (6.2) 
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This, combined  with another  abelian result, AoAo = Ao 2, allows us to compute  all 
p roducts  of  the ~b, in terms of ~bl - q~. The  trick is to derive a recursion relat ionship 
for the q~t. Note,  for example,  that  

~ ' ~ 1  = ~1"~1 

= fl-1/2k(Ao + Bo- , ) (Ao  + Bo-~) 

..~ fl-1/2k(A02 + Bo-2 ) + 2fl 1/2k 

= q92 + ~bo. (6.3) 

More  generally, we find the following recursion relation a m o n g  the ~bi: 

~b.~b, = q~n+l + ~b,-1 �9 (6.4) 

This is a difference relation which can be solved as follows. First, assume that  ~b acts 
as a constant  (which it is not); let's call it A. Then, as for a second order  differential 
equat ion,  we say that  q~n "~ t n, solve for t and impose  bounda ry  conditions. We 
easily see that  we must  have 

t 2 - A t + l = O  (6.5) 

which gives 

t+ = (A/2) _ ix /a  - (A/2) 2 . (6.6) 

The general solution is ~b, = e+ t% + c_ t"__. We must  have that  ~bo = 2 and ~b~ = A. 
This gives 

~b, = t~_ + t"_ . (6.7) 

I f  we formally put  A = 2cos(z), then t• = e +*z, and we can easily see that  
q~, = 2cos(nz). The  Chebyshev po lynomia l  W,(X) is a degree n polynomia l  in 
X defined by (conventions vary) 

W , ( X  = 2 cos(z)) = 2 cos (nz) . (6.8) 

We thus have derived 

~b, = W,(~b). (6.9) 

Al though the recursion relation did not  have constant  coefficients, the ul t imate 
justif ication of this me thod  is that  it works! 

N o w  the generalization of (5.8), a long with (6.1), tells us that  

Z(h = CpZk-I . (6.10) 

Of  course Z = (1/2)~bZk, SO, in part icular  

(~ W2k(t~) = 2 Wzk-  1 (q~). (6.1 i) 

In  fact this relation generates all of the equat ions  in (6.10). Fo r  example,  

zq~2 = Z(q~ 2 - 2) = (gq~l)~b - ~b2k = q~zk-lq~ -- qSZk = q~2k-2 , (6.12) 

where we have made  use of  (6.11) and the recursion relat ion (6.4). 
The ring relations involving r can now be made  simpler by defining 

F 

p =- (2kfll/2)1/2 , (6.13) 
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where r is the conjugacy class operator and contains 2k terms, exactly analogously 
to (5.6). The simple relations AfAr = X and ArB, = fll/2, along with their generaliza- 
tions for the other flips, are helpful in deriving 

k - 1  

p2 = 1 + Z + ~ ~2~, (6.14) 
Z=l 

which we can rewrite as 
l k - 1  

p2 = 1 + ~ W2k(qS) + ~ W2z(~b) �9 (6.15) 
/=1  

Finally, the first relation in (5.15) survives unchanged with our present definitions. 
This relation exactly parallels the multiplication of conjugacy classes in the group 
ring. Summarizing, the general ring of observables for the topological orbifold 
CP1/D2k as: 

pq~2 = 4p , 

1 k - 1  

= 1 + + F ,  , 
/=1  

q~Wzk(~b) = 2Wzk- l(~b) �9 (6.16) 

The group outer automorphism survives in the ring as before, and we have 
defined our generators so that (5.16) is valid as written. 

Once again, our ring has a subring generated by x - (~2  and y -= p, and the last 
relation in (6.16) becomes redundant. Note that Wzt(q~) is a degree I polynomial in 
x alone, so we can define a degree k + 1 polynomial F(x) such that the right-hand 
side of the second equation in (6.16) is given by F'(x). We can write this subring as 
the chiral ring associated to the superpotential 

W = F(x) - xy  2 -F 4y 2 . (6.17) 

This is a perturbation of the Dk + 2 Landau-Ginzburg potential. The perturbation 
involves the Chebyshev polynomials, which have been shown to be integrable 
[10, 12], though we don't know whether this model is integrable. This is remini- 
scent of the CW/Z,  case, where the ring was found to be that of a perturbed 
A:, minimal Landau-Ginzburg model. (For recent work on the relationship of 
orbifolds to Landau-Ginzburg models, see [9].) Work in progress shows a connec- 
tion between CP1/Dk orbifolds and extended Dynkin diagrams of D k +  2 [-9, 35]. 

In the odd case, N = 2k + 1, there is perhaps only one subtlety. In considering 
the covering surface of the sphere for the three point function, one must be careful 
in choosing the lift. For example, the sphere covers the sphere with the usual action, 
but if we are considering a (r)(0)(rO) correlation, we should make sure the points 
representing r and rO do not lie on the same orbit (or else they represent the same 
point on the underlying sphere). For the odd orbifolds, there is only one "flip" 
conjugacy class, but there are two operators associated to it, since the two fixed 
points are not related by any element. Proceeding in much the same way as for the 
even case, we find the following ring: 

pq5 2 = 4p ,  

1 * 
p2 = Wzk+l((~) + 2 mz/-l(~b) 

/=1  

Wzk +1 (qS) = 2 W2k(~b). (6.18) 
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This ring also has the automorphism 

1 
p ~ p ~ ,  O ~ ( a ,  (6.19) 

though now it corresponds to the geometric symmetry corresponding to a 0 rota- 
tion by ~, which is not a group element. No connection to the D-series is evident. 

7. Cp2/D4 

Our techniques allow us to compute higher dimensional orbifolds as well. In this 
section, we consider the orbifold CP2/D4, with the group generators acting by the 
matrices 

r =  0 , O= i . 

1 0 - -  

(7.1) 

The reason for considering this orbifold is that as we let the area of the CP 1 go to 
infinity, we can obtain a nonabelian conformal orbifold theory. Nonabelian orbi- 
folds have not been heavily studied (though see 1-14]) and little is known about 
their twist fields. To see how this limit arises, consider the point p = (1, 0, 0). This 
point is fixed under the entire group D4. Thus, in the conformal limit fl ~ 0, the 
space around p becomes C 2 and the action of the group is given by the differential 
action near p, which is the linear action defined by the bottom two entries of the 
matrices in (7.1). 

There are no subtleties in the computation of the ring for this theory. The ring 
contains three observables for each conjugacy class, fifteen total. Some group 
elements have fixed spheres, leaving us with a twisted volume form Vg as an 
observable. This is equal to X .  lg. 

The ring of observables is generated by three elements 

1 - 1/6 1 1/3 A o  , (7.2) 

where r represents the composite operator associated to the nontrivial 0-form on 
the fixed sphere of r, and A0 represents the operator corresponding to the fixed 
point (1, 0, 0). The defining relations are 

~7 = ~ , ~ 2  = ~ 4  , ~ 6  = /~, )~3 = 1 , #Z = / ~ 4 ,  ~Z = ~5 . (7.3) 

The group automorphism takes the form 

e ~ e ,  /~__}/~3, X ~  X (7.4) 

in this presentation of the ring. 
We leave to further study the consideration of orbifolds by other groups and 

higher dimensional spaces, though we expect orbifolds of CP t by the exeptional 
discrete subgroups have a soliton spectrum described by the associated extended 
Dynkin diagrams [9, 28, 35]. 
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8. Methods for Computing Twist Field Correlations 

Our observables are nothing but twist fields - they create twisted chiral-primary 
states in the full non-topological sigma model. With our knowledge of the ring, we 
have the //-dependence of the theory (which means scale dependence since 
fl = e-A). There is another theory we could have gotten from the original sigma 
model which is the complex conjugate theory, obtained by performing the twist of 
the N = 2 theory so that anti-holomorphic maps were the instantons. The ring of 
this theory is obtained by complex conjugation. Now we can use recent non- 
perturbative results [6] for computing the metric 

g,r = <j l i> (8.1) 

as a function on coupling constant space. This is the metric of the full non- 
topological sigma model, restricted to the chiral states, and is closely related to 
Zamolodchikov's metric [34] (see [6] for a discussion). In reference [6], the authors 
derived differential equations for (8.1). We will consider here the scale-dependence 
of this metric. The non-trivial input is that as the area of the CP a goes to infinity the 
curvature goes to zero, so there is no curvature anomaly and we have a conformal 
field theory. So we expect good behavior ofg6as  fi ~ 0. As was discussed in [8] and 
[7], demanding finiteness in this limit can be enough to specify the exact form of 
solution to these equations. 

Let us see how this works. Consider a Z,  orbifold of CP a, as in [8]. In order to 
consider the fl behavior of the theory, we must find the operator corresponding to 
a perturbation in ft. Because we constructed the action from the K~ihler form, X is 
the operator corresponding to fl variation. Actually, - I n  fl = A multiplies the 

1 
X term, so the operator corresponding to fl is properly Cp = - ~ X. The differen- 

tial equation for the metric g is [6] 

8~(98t39- a) = [C~, gC~g-1 ] . (8.2) 

The metric g6 represents a fusion of topological and anti-topological (in which the 
anti-holomorphic maps are instantons) theories. The states in these two theories 
are related by the real structure matrix: 

(Jl = ( ilM~. (8.3) 

The topological metric is q~j = (~b~bj>. From (8.3) and the definition (8.1), we see 

M = r/- a g �9 (8.4) 

The CPT conjugate of Ii> is IF>. Acting twice by CPT is the identity, so we see 

MM* = (r/- lg) (r/- l g) * = 1.  (8.5) 

For our CP1/Z, example, we have two observables in each sector, corresponding to 
the two fixed points (north and south poles). The metric g is block diagonal in each 
sector, while the metric ~/relates h- and h-a-twisted sectors (since it involves no 
"out" states). There is a symmetry (h ~ h-z  or z ~ z-1)  equating the north pole in 
the h-sector to the h-  Z-twisted south pole (analogous to the symmetry giving rise to 
the automorphism (7.4)). Consider h ~ Z,.  On the h and h-a  subspace, with basis 
{lh, a, lh,b, lh-l,a , lh-i,b } we have 
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b 0 00 0 0 1 

c* , t/ , (8.6) 
9 =  0 b 0 0 0 

0 c ! 0 0 

where we have used hermiticity and the aforementioned symmetry (note that a and 
b are real). Applying (8.5), we find ab = 1, c = 0. Note that h = h-  1 ~ a = b = 1. 
Now g depends only on [fll [8], so we can define 

x = 41ill 1/2, u(x) = 21og(alfll ~"-2t)/2") . (8.7) 

We find from (8.2) that u obeys a special form of the Painlev6 III equation: 

1 u' . ( 8 .8 )  u " + -  = 4 s i n h u  
x 

Now we must require that 

u-*r logx+s,  r = 2 ( ~ n  2/)  (8.9) 

in order for a to be finite at x = 0. It turns out [19] that restricting the coefficient on 
the logarithm in (8.9) determines s by the equation 

2r ,81o, 

Resolving the morass, we find 

which we use to derive the proper normalization of the twist fields. 
For CP1/D4, we have already solved for the ring, so we know what multiplica- 

tion by X is recall from (6.9) that X = fll/Ez = ~ - q 5 4  =--~-W4(q~) . For 

example, rX = fl~/2r (r is given in (5.14)), which means that the matrix Cp has an 
invariant subspace of dimension one. We easily see that the right-hand side of (8.2) 
is zero, which, combined with the fact that the metric only depends on [ill, tells us 
that the normalized operator �89 is independent of fl (aside from the normalization 
arising from (1] 1)). The same is true for g and 02. The untwisted observables were 

discussed in [7]. This leaves us with 0A and ~ 0B, where we have chosen 

a convenient normalization. In this subspace, the relevant matrices take the form 

= - ~  3/4 , t / =  ' 9 =  d ' (8.12) 
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where 9 is a general hermitian matrix (with no components outside this subspace 
due to the selection rule). The reality constraint (8.5) gives us c = 0, ad = 1, so there 
is only one real variable, a. It  is now clear that the twist operators reduce to simple 
Z4 twist operators. The reason for this is that the fixed points of 0, for example, are 
fixed by an abelian stabilizer group. In the large limit, we are left with two copies of 
the Z4 orbifold, with operators that create twisted states in both. 

The situation is different for o u r  C P Z / D 4  orbifold. In that case, the point 
p - (1, 0, 0) was fixed under the entire nonabelian group. Now consider the theory 
in a neighborhood of p as we take fl--* 0. As discussed in Sect. seven, this will 
correspond to a nonabelian orbifold of C 2. Consider the 0-twisted sector. We have 

three operators. Let 0'/x/2 represent the fixed point p under 0, with 0A/X/2 and 

0~/x/2 the operators associated to the two remaining fixed points (similarly to 
(5.14)). In this sub-basis we have (0 ~ 0) 

1 0 fli/2 (8.13) 
Cp=-~ /~1/4 0 0 

and the topological metric 

(i ~176 t / =  0 1 . (8.14) 

1 0 

It is clear that t/ is essentially diag(1, 1, - 1 ) ,  which means, from the reality 
condition (8.3), that the hermitian matrix 9 is just a unitary transformation of an 
element in the complexified group S0(2, 1). In general, the equations resulting from 

(8.2) using (8.14) are quite complicated. Similar equations were studied in [22], in 
the context of Landau-Ginzburg  models perturbed away from criticality. It is not 
known whether the requirement of regularity is enough to fix the values of the 
metric (the objects of interest to us) at the point fl -- 0. The equations simplify when 
an extra discrete symmetry requires the metric to be diagonal (e.g. a Z3 symmetry 
for (8.13)). In such a case, the reality condition gives 906 = 1, and gl$g22 = 1, so we 
have one real parameter. Then if we define 

x = 8lfll i/2 b = 291i  (8.15) 

we see that b(x) obeys another special form of the Painlev6 equation: 

1 _ l b ,  1 b2 1 b" = - (  - + - - - (8.16) b "b')2 x x b" 

This is called the Bullough Dodd equation, and was studied in [21]. Requiring 
regularity of b in the limit x ~ 0 again specifies the boundary conditions. We find 
gll  = F(3/4)/F(1/4), so we know that a regular limit exists, though there appears to 
be no symmetry forcing the metric to be diagonal. We leave this question to further 
study. 
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