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Abstract 

The topic of channel structure has recently attracted much attention among researchers 
in the marketing and economics area. However, in a majority of the existing literature 
the cost considerations are extremely simplified with the major focus being pricing 
policy. What happens when cost incurring decisions are strongly connected with pricing 
policies? This is the theme we wish to explore in the present paper. The non-trivial costs 
considered are production, inventory, and retailer effort rate, i.e. we seek to explore the 
marketing-production channel. We have used the methodology of differential games. 
The open-loop Stackelberg solution concept has been used to solve the manufacturer 
and retailer's problem. The Pareto solution concept has been used to solve the problem 
of the vertically integrated firm. The production, pricing, and effort rate policies thus 
derived have been compared to obtain insights into the impact of  channel structure on 
these policies. Also. to examine the relation between channel structure and the retailing 
operation requiring effort, we derive the Stackeiberg and Pareto solutions with and 
without effort rate as a decision variable. We show that once the production rate 
becomes positive, it does not become zero again. This implies production smoothing. 
However. none of the gains of production smoothing are passed on to the retailer. The 
optimal production rate and the inventory policy are a linear combination of the nominal 
demand rate, the peak demand factor, the salvage value, and the initial inventory. Also, 
as opposed to some of the existing literature, the optimal policies need not necessarily 
be concave in nature. In the scenario where the relating operation does not require 
effort, the pricing policies of the manufacturer and the retailer, and the production 
policy of the manufacturer have a synergistic effect. However, in the scenario where 
the retailing operation does benefit from effort, the retailer's pricing policy need not 
necessarily be synergistic with other policies. With regard to channel structures, it 
seems that production smoothing will be done more efficiently in the integrated setup. 
Also, we show that the price paid by the consumer need not necessarily be lower in the 
integrated setup. But despite higher prices, the channel profits are higher in the integrated 
setup. This implies a conflict between the interests of the consumers and the firm. Also, 
this contradicts the results of some of the earlier papers that have used simple static 
models. 

1. Introduction 

Starting as a raw material and ending with the final consumer, goods pass 
through many stages of  transfer. One or more of  these stages of  transfer may be 
controlled by a single agent. How do these agents interact.'? Which stages should bc 
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grouped together under one agent and under what circumstances? The present paper 
attempts to answer some of these questions in the context of  a market ing-product ion 
channel. In the case of  a single manufacturer and a single retailer, Spengler [23] 
proved that the price paid by the consumer will be higher under a decentralized 
channel structure. He argued that this happens because of what is known as "double 
marginalization", i.e. the manufacturer as well as the retailer add their profit margins 
to the cost of the product before arriving at the price to be charged to the consumer. 
As a result of the higher prices under the decentralized structure, the quantity sold 
is less and the total channel profits might actually be lower. Thus, an integrated 
channel structure will be preferred by the consumers as well as the manufacturer. 
Under a very similar setting, Jeuland and Shugan [10l showed that the efficiency 
of an integrated channel structure can be achieved in a decentralized setting if the 
manufacturer adopts a nonlinear pricing policy, for example, offers quantity discounts. 

Research in this area was further enriched by introducing competition. In the 
case of two manufacturers and two retailers, with each retailer carrying only one 
manufacturer's product. McGuire and Staelin [141 show that if the products of the 
two manufacturers are highly substitutable, both the manufacturers will prefer a 
decentralized structure to a vertically integrated structure. They suggest that this 
happens because the manufacturers want to shield themselves from the competition 
and hence they insert privately owned profit maximizers between themselves and 
the ultimate retail markets. More recently, Coughlan and Wernerfelt [4] have examined 
the robustness of channcl decisions under competition by allowing nonlinear pricing 
within the channel. They show that if intra-channel contracts are observable to 
competitors, the existence of  "more vertical middlemen levels always enhance 
profitability", ttowever, if the intra-channei contracts are not observable, the external 
channel structure ceases to be of relevance, and they conclude that reasons other 
than strategic ones must be reponsible for the existence of decentralized channels. 

While these and other papers along these lines make interesting contributions, 
their main focus is on pricing and profit sharing. With the exception of Moorthy [ 15], 
they completely ignore questions that might arise due to cost considerations. For 
example, McGuire and Staelin I141, Jeuland and Shugan [101, and Couglan 131 all 
assume constant marginal costs at the manufacturer as well as the retailer level. 
Under this assumption, tile cost-incurring decision is highly simplified, and the 
pricing policy has no bearing upon the per unit cost of the product. Moorthy [151 
considers an example in which the retailers have decreasing marginal costs. The rest 
of the model is the same as McGuire and Staelin 1141. Moorthy shows that 
decentralization is never a Nash equilibrium strategy, no matter how high the 
demand substitutability. This is exactly the opposite of the result obtained by McGuire 
and Staelin 1141. Hence, it seems reasonable to suspect that other situations in 
which price and cost decisions are interrelated might produce interesting results. In 
fact, as we show in this paper, when cost-incurring decisions such as production 
rate and retailer effort rate are interrelated with the pricing policy, the price charged 
by the vertically integrated firm need not be less than the price charged by the 
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retailer throughout the season. Also, despite higher prices, the channel profits can 
bc higher under the integrated setup. This represents a conflict between the interests 
of the consumer and the firm. 

What happens when cost-incurring decisions arc strongly connected with 
pricing policies? This is the theme we seek to explore in the current paper. We bring 
in cost-incurring decisions that might be influenced by prices and profit margins by 
introducing the time element into the channel problem. We assume that demand for 
the product is seasonal. The manufacturer has to decide how much to produce and 
at what price to sell the product to the retailer. The unsold amount is carried as 
inventory. Evidence of the linkage between price and production decisions in these 
types of settings is well documented in the production literature. For example, 
Feichtinger and Hartl [8] consider a simultaneous price-production decision model 
with general functional forms and static demand. They show that price as well as 
production rate have a "synergistic" effect (i.e. an increase in price or an increase 
in production rate both increase inventory; cf. Fcichtinger [7] for more details on 
"synergy"). In the case of seasonal demand, they present a heuristic argument that 
the optimum inventory level will change in a dynamic way. Thus, i f  the channel 
.~tructurc has an influence on the prices and proft margins, one might expect the 
channel structure to affect the production and inventory decision also. Conversely, 
inventory decisions can also affect the pricing policy and hence the channel structure. 
Since inventories are an important feature in many markets, exploring a channel 
problem with inventories can provide insights for such markets. Another feature 
commonly observed in many markets is the active role played by the retail level 
in promoting and selling producL~. The marketing literature is abundant with articles 
that examine simultaneous price-advertising decisions. Hence once again, i f  the 
level of promotion effort (for example, advertising) is influenced by the profit 
margin at the retail icvcl, the channcl structure will have an affect on the level of 
promotional effort, and vice versa. 

To answer the questions raised by the above discussion, we have formulated 
thc problems as differential games. The Stackelberg solution concept has been used 
to solve the manufacturcr and retailer's problem, with the manufacturer acting as 
a leader. The problem of the vertically integrated firm has been solved using the 
Pareto solution concept. The production, pricing, and effort policies thus derived 
have been compared to obtain insights into the impact of channel structure on these 
policies. Also, to examine the relation between channel structure and the retailing 
operations requiring effort, we derive the Stackelberg and Pareto solutions with and 
without effort rate as a decision variable. 

There am two papers that we know of that look at the dynamic pricing- 
production problem under a channel setting. However, they do not compare pricing, 
production, or inventory policics under the different channel structures. We briefly 
describe their main results here so that comparisons can b¢ made with our policies. 
Jorgensen [1 l ]  derives open-loop Nash equilibrium solutions for the case of  a 
bilateral monopoly under static demand. The optimal price for the manufacturer is 
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the maximum price it can quote. The optimal price for the retailer is either monotonically 
increasing as a function of  time, or first increasing and then decreasing. The optimal 
ordering policy for the retailer is zero throughout or zero in the initial as well as 
terminal interval, with a positive purchase rate during an intermediate interval. The 
production policy either resembles the purchase policy, in which case the intermediate 
interval where production rate is positive, it simply equals the ordering rate. In the 
other case where the ordering rate exceeds the production rate in some intermediate 
interval, the production rate is a sequence of zero, singular, and maximal rate. As 
Jorgensen admits, some of these results arise because of  the special structure of  the 
model (i.e. because the objective function is linear in controls). He suggests that 
the derivation of Stackelberg as well as Pareto solutions would be an interesting 
extension [ l i, p. 76]+ In contrast to these results, the optimal policies obtained by 
the paper we discuss next are more smooth. This is the case with the optimal 
policies derived in our paper also. 

Eliashbcrg and Steinberg [61 were perhaps the first to consider a Stackelberg 
market ing-product ion game with time-dependent demand. The optimal processing 
policy for the retailer is to first process at a constantly increasing rate, and then 
precisely at the market demand rate. The price charged by the retailer is first 
increasing at a decreasing rate and then decreasing at an increasing rate. The inventory 
builds up for a while and then reaches zero; from then on, the retailer processes just 
enough to meet demand. 

For the manufacturer, the optimal production policy is to first produce at a 
constantly increasing rate, and then precisely at the retailer's processing rate. Thus, 
the inventory first goes up and then down. Like Jorgensen, Eliashberg and 
Steinberg suggest that it might be interesting to look at cooperation and bargaining 
modes of behavior in the distribution channel 16, p. 9961. 

The latter paper is of special relevance to our work, and hence we discuss 
it in some detail. There are three very important differences. First, as Eliashberg 
and Steinberg (ES) point out, their "optimal control solution procedure involves the 
'indirect adjoining' approach, which has not often been used in the literature" [6, 
p. 9831. The models in our paper are formulated as differential games, and the 
solution procedure used gives a standard open-loop Stackelberg solution (e.g. Simaan 
and Cruz, Jr. 121,221, Dockner and Jorgensen 151, and Karp [121). Second, in ES, 
even though the demand is seasonal and all other variables are allowed to change 
with time (including the retailer's price), the manufacturer's price remains constant 
throughout the season. In our models, even the manufacturer is allowed to change 
its price with time. Thus, the manufacturer's problem is more complicated in our 
problem formulation. As we mentioned earlier, the interactions between channel 
members as well as channel structure and the production inventory policies occur 
through the price variable. Hence, we believe that this is an important difference. 
However, we find that these modifications complicate the solution procedure 
considerably. Hence, in order to keep the problem mathematically tractable, we 
simplify the retailer's problem by not allowing any inventory at the retail level. As 
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evidenced by the results, the formulations still provide many interesting answers. 
There are two other differences. ES assume that the starting and closing inventories 
for the manufacturer as well as the retailer are zero. In our case, we start with a 
nonzero initial inventory and have a nonnegative salvage value for the ending 
inventory. ES specifically assume that the price charged by the manufacturer is such 
that the quantity demanded by the retailer is always positive. In our models, we 
discuss the circumstances in which this is optimal for the manufacturer. Hence, our 
models produce results that are quite different from ES. For example, all the policies 
derived by ES have a concave shape, i.e. the optimal production rate, or processing 
rate, or retail price, first increase and then decrease in a concave manner. Thus, they 
essentially have the same shape as the seasonal component of  the demand function. 
In contrast to these results, the optimal policies we derive need not necessarily be 
concave or convex. Of course, we also discuss the cooperative solutions that ES 
suggest as fruitful future research. 

2. Model I 

As already mentioned, we have used the Stackelberg solution concept to 
solve the manufacturer and the retailer's problem. The manufacturer acts as the 
leader and the retailer acts as the follower. In real life, one would expect the retailer 
to wait for the manufacturer to announce its price before deciding its own price. 
This is exactly what happens in the Stackelberg solution. Thus, the Stackelberg 
solution concept seems appropriate to use. 

We derive an open-loop Stackelberg and a Pareto optimal solution for each 
of the models studied. Other control structures such as closed loop and feedback 
loops are possible. Which structure is desirable, and when, has been widely 
discussed 12,241, but in general there is as yet no firm answer. Closed loop and 
feedback structures may look more attractive, but it has been shown that in certain 
cases, payoffs for each player are higher when they choose open-loop controls 
rather than feedback or closed-loop controls [ 16, 251. This might be the case because 
the game is non-cooperative and the more information a player has about the 
opponent, the more harm it can inflict. Also, when players choose feedback controls, 
neither existence nor uniqueness of  the solution to the state equation is guaranteed 
in general I 11. Lastly, open-loop solutions are easier to derive because one has to 
solve only a system of ordinary differential equations rather than a system of partial 
differential equations. Even when one uses open-loop controls, solutions are possible 
only for limited classes of problems. If the state equations are linear and the objective 
functions are quadratic, one obtains a system of linear differential equations which 
is possible to solve. In the present paper, we have used a linear demand function 
and quadratic cost functions, which gives us the desired l inear-quadratic structure. 
The linear demand function is quite commonly found in the research literature since 
it leads to mathematical tractability. For example, McGuire and Staelin [141 and 
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Moorthy [ 15] use a linear demand function that is dependent upon the prices of  both 
the retailers. Among dynamic models, Pekelman [ 181, Jorgensen [ 1 i l, and Eiiashberg 
and Steinberg 161 all use linear demand functions. Note that while we will be 
referring to it as a demand function, it is actually the rate at which quantity is 
demanded by consumers at time t. Pekelman [18] uses a general time varying 
demand function of the type q(t) = a(t) - b(t)p(t), where q(t) is the demand rate at 
price p(t). Jorgensen [ l l l  assumes both a(t) and b(t) are constant. Eliashberg 
and Steinberg 161 assume b(t) is constant. In the present paper, we assume that 
q(t) = o~ t + %sin  o~3t - bp(t), with a3T = n. Here, T is the duration of  the season and 
a(t)  is the potential demand at time t. Quadratic total production and holding cost 
functions of the form cx2(t) and hsZ(t), respectively, have been considered. Here, 
c and h are constant, x(t) is the production rate, and s(t) is the inventory at time t. 
The use of quadratic cost functions is common and has a long history, including 
one of the earliest models 191, where production and holding costs are simultaneously 
considered in a planning problem. A model of recent vintage is a stochastic production 
planning model by Parlar 1171. Jorgensen [ 1 11 uses a linear production cost function 
and a quadratic holding cost function to obtain bang-bang control solutions. Pekelman 
1181 and Eliashberg and Steinberg 161 use a linear holding cost function. This, 
together with a state constraint on the inventory, leads to better mathematical tractability 
for both. Pckelman uses a strictly convex increasing production cost function, 
whereas Eliashbcrg and Steinberg 161 use a quadratic production cost function. 

2.t STACKELBERG PROBLEM SPECIFICATION 

The retailer (R) buys the goods from the manufacturer at price pro(t) and sells 
it to the consumer at price p,(t) at time t. The demand faced by the retailer is given 
by a, + a2 sin ajt  - hp,(t). Thus, as the season progresses, the potential demand 
first rises and then falls. The retailer does not carry inventory. This gives us the 
retailer's objective function: 

R. 

7" 

maximize Jk = ~(p, ( t ) -p , , ,  ( t ) ) (a ( t ) -bp , ( t ) )d t .  
~ r t  p,. 

0 

The manufacturer (M) produces xm(t) units at a cost of  c,,x~(t). The 
difference between the amount sold and amount produced is carried as inventory 
s,,(t). The inventor), holding cost is h,,s~(t). At the end of  the season, unsold 
inventory fetches a salvage value v,,, per unit. This gives us the manufacturer 's  
objective function: 

T 

M" maximize Ju = f (P,,, ( t ) ( a ( t ) - b p , ( t ) ) - c , , x ~ ( t ) - h , , , s ~ ( t ) ) d t +  vmsm(T). 
w . r l  Pm . x ~  J 

0 
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The state dynamics are as follows: 

dsm 
J,n  = d t  = x '~( t ) -a( t )+bPr( t )"  

The initial condition is s,,,(0)= s,,,o. 
The nonnegativity conditions are x , ( t ) ~  0 (i.e. production rate cannot be 

negative) and a ( t ) i b -  p , ( t )~  0 (i.e. quantity purchased cannot be negative). 
Finally, we will assume that al lb  > v,, ~ 0 (to avoid a situation where the 

salvage value is so high that consumers will buy a negative quantity if charged a 
price equaling the salvage value). 

We will omit the time argument in the rest of the discussion unless otherwise 
required to clarify a point. Also. the optimal policies will be indicated by an * 

STACKELBERG SOLUTION 

The necessary conditions to be satisfied by a Stackelberg solution have been 
obtained by Simaan and Cruz. Jr. [21.221. The solution procedure involves formulating 
Hamiltonians for each player as follows: 

H R = (p, -p,, ,  ) ( a - O p t ) +  X,(x,,, -a+bp,). (1) 

2 H M = (p,,, ( a -  b p , ) -  cmx~ - h,,,s,,, )+ ~.,,,(xm - a+ bpr). (2) 

To account for constraints on some of the control variables, one attaches Lagrange 
multipliers to form Lagrangians as follows: 

LR = HR + rl , (  ~ - p r ) ,  (3) 

L M = H M + rl,,,x m . (4) 

To obtain the necessary conditions, we first solve the retailer's (the follower's) 
problem, taking the manufacturer's control variables p,,, and x,,, as parameters. We 
set L R = 0 to obtain 

Pr 

• ! 
p, = ~-~ (a+ bp,. + b~., - 11,). (5) 

Also, setting ~, = d~.,/dt = - H  R we obtain ~ = 0. Using the transversality condition, 
, I  s I 

we obtain X~(T)= 0. Therefore. 

Z~(t) = 0. (6) 
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Next, we solve the manufacturer 's  (the leader's) problem by substituting into the 
retailer's variables. 

Substituting (5) and ('6) into (2) gives 

2 2 I ( a - b p , , ,  + 17,))  L M = (p,~ -~l(a-bp,~ + 1 7 , ) - c , , , x , , - h , ~ s m ) + l , , , ( x , , ,  - -~ . 

Setting L M = 0. we obtain 
.1[ m 

x~ = ,;t,,, + 17,, (7) 
2c,, 

Also, setting L M = 0. we obtain 
Pm 

I 
P':' = 2~ (a+ ba~ + 0,) (8) 

and substituting (8) into (5), we obtain 

I ( 3 a +  b ; t ~  - rh) .  (9 )  

The complementary  slackness conditions are 

(° / O,>o, rl, -fi-p: = 0  and O,>_O,o,.x~=O. (10) 

Also. using ~.,,, = d;t,~/dt = - H ~ ,  we obtain 

~.,,, = 2 h,,, s,,,, ( 11 ) 

and using the transversality condition ~.,,,(T) = ~(v,,s, ,)/Os,, ,  we obtain ;I.~(T) = v,,,. 
The sufficiency condit ion requires the Lagrangians to be concave in the state 

and control variables 120. p. 46]. As shown below, this condit ion is satisfied, and 
hence the solutions satisfying the necessary conditions will indeed be optimal solutions 
to the Stackelberg problem. 

c~L R OL M OL M 
- - 2 b  < O, = - 2 c , , ,  < O, ~ = - b < O .  

The necessary condit ions derived above give rise to a system of  two ordinary 
linear differential equations. We first discuss the significance of  the equations 
derived using the adjoint variables. Next, we present results derived after solving 
the system of differential equations. 
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Adjoint variables give shadow prices of the corresponding state variables. 
More precisely, Z , ( t )=3J~/~sm(t ) ,  i.e. 2,,(t) represents an increase in the 
manufacturer's profit for a unit increase in the manufacturer's inventory at time t 
119, p. 2121. Similarly, 2,(0 represents an increase in the retailer's profit for a unit 
increase in the manufacturer's inventory at time t. 

According to (6). the shadow price of the manufacturer's inventory to the 
retailer is zero. As we show in lemma 1, the manufacturer carries the inventory to 
smooth production. However, none of the gain from production smoothing is passed 
on to the retailer. 

According to (10) and (7), if 2~(t) < 0, rl,,,(t) = -Z~(t )  and x:,(t)  = O, i.e. if 
the manufacturer's profit decreases when there is a unit increase in the manufacturer's 
inventory, the production rate will be zero. 

According to (10) and (9), if Z~(t) ~ alb, rl,(t) = b2"m(t) - a and a - bp~(t) = O, 
i.e. if the manufacturer's profit increases beyond a(t) lb when there is a unit increase 
in the manufacturer's inventory, the amount sold by the retailer and hence also the 
manufacturer will be zero. 

Based on the above, one can say that there are three situations possible. 
Either the production is zero (i.e. when 2~(t) '; 0), or the production rate and amount 
sold are both positive (i.e. 0 < 2~(t) < a(t)/b),  or the production rate is positive but 
the amount sold is zero (i.e. when a(t) lb < ~.',,,(t)). One can imagine any of these 
situations arising during the beginning, middle or the end of the season. However, 
as elaborated in lemma 1 below, once the production rate and amount sold become 
positive, they remain positive throughout the season (this implies production smoothing 
by the manufacturer). Thus, three cases are possible and are described in the following 
lemma. 

LEMMA 1 

Only three cases are possible. During a season, only one of the three cases 
will occur. 

Case ! : 

Case 2: 

Case 3: 

Initially, the production rate is zero but the amount sold is positive (i.e. 
A.~(0) _< 0). Eventually. even the production rate becomes positive. Once 
the production rate and the amount sold become positive, neither become 
zero again during the rest of the season. 

Initially, the production rate and the amount sold are both positive (i.e. 
0 < ~ ( 0 )  < cq Ib). The production rate and the amount sold will remain 
positive during the rest of the season. 

Initially, the production rate is positive but the amount sold is zero (i.e. 
a t l b  < ~,(0)) .  Eventually, even the amount sold becomes positive. Once 
the production rate and the amount sold become positive, neither become 
zero during the rest of the season. 
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Proof 

See appendix 1. 

Thus, situations wherein the production rate is intermittently zero are not 
going to occur. Also eliminated are situations in which the amount sold will be zero 
in an intermittent manner. 

In the first case, we have to solve two two-point boundary value problems 
(TPBVPs). one for the period when production rate is zero and one for the period 
when production rate becomes positive. In the second case, production rate and 
amount sold are positive throughout the season; hence, we have to solve only one 
TPBVP. In the third case, once again we have to solve two TPBVPs, one for the 
period when amount sold is zero and one for the period when amount sold becomes 
positive. The derivations of  solutions of these TPBVPs are lengthy, and are 
available from the author upon request. The final solution to each of  these 
cases has been given in appendix 1, Based on these solutions for the pricing 
policies, the production policy, and the inventory policy can be characterized 
as follows. 

PROPOSITION I 

Characteristics of the production policy: 

(1) Initially, the production rate is zero if the nominal demand ( a  l) is low, 
and/or the initial inventory (s,,,o) is high. 

(2) Initially, the amount sold is zero if the peak demand factor (tz 2) is high, 
and/or thc nominal demand (ct I) is low, and/or the initial inventory (s,,,0) is 
low. 

(3) During the period when production rate is positive, the optimal production 
ratc is a linear combination of the nominal demand rate (al) ,  the peak demand 
factor ( ~ ) ,  and the salvage value (v,,). If the production rate is positive 
throughout the season, the optimal policy is also a function of  the initial 
inventory (s,,,o). 

The weights are functions of time such that: 

(a) During the initial stage of  the season, the manufacturer decides its production 
rate primarily on the basis of the initial inventory s,,,o, the peak demand factor 
a 2, and the "nominal" demand a~. As the season progresses, the importance 
of  s,,,o declines. However, the importance of  oq may increase before becoming 
zero at the end of  the season. 

(b) Towards the end of the season, the manufacturer decides his production rate 
primarily on the basis of the salvage value v,,,. 
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Proof 

See appendix 1. 

It is interesting to note that the optimal production policy need not necessarily 
be concave or convex, e.g. it can be a combination of both. This happens because 
of the four different factors driving the optimal policy and the change in weight on 
these factors as the season progresses. Also, the weight of nominal demand ¢x t does 
not again start increasing towards the end of the season when the seasonal component 
of the demand rate function vanishes. 

PROPOSITION 2 

Characteristics of the inventory, policy : 

( 1 ) If the production rate is initially zero, the inventory decreases until the production 
rate becomes positive. The higher the nominal demand, the faster is the 
decrease in inventory. 

(2) If initially the amount sold is zero, the inventory will increase until the 
amount sold becomes positive. The higher the nominal demand rate, and the 
higher the peak demand factor, the faster will be the increase in inventory. 

13) During the period when the production rate and the amount sold are positive, 
the inventory is a linear combination of the nominal demand rate, the peak 
demand factor, and the salvage value. If the production rate and the amount 
sold are positive throughout the season, the inventory is also a function of 
the initial inventory. 

The weights are functions of time such that: 

l a) During the initial stage of the season, the manufacturer's inventory is determined 
primarily by its initial inventory and the peak demand factor. As the season 
progresses, the significance of the initial inventory in determining the 
manufacturer's current inventory declines. 

(b) Towards the end of the season, the manufacturer's inventory is determined 
primarily by the nominal demand and the salvage value. 

Proof 

See appendix 1. 

Once again, the shape of the inventory policy need not necessarily be concave 
or convex. It is interesting to note that the weight of the nominal demand increases 
with time throughout the season, and does not decrease and then again increase as 
would have been expected. 
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PROPOSITION 3 

Characteristics of the manufacturer and retailer pricing policies: 

(1) If the change in the production rate is in the same direction as the change in 
the potential demand,  the pricing policies of the manufacturer  and the retailer 
and the production policy of the manufacturer have a "synergistic" effect, i.e. 
an increase in the manufacturer 's price or production rate or the retailer's price 
leads to an increase in the rate of change of inventory in all three c a s e s .  

(2) The manufacturer 's pricing policy is based on equal weights on the coefficients 
of the demand rate function a(t)/b and the value of inventory R,,,(t). whereas 
the retailer's pricing policy is based on a 0.75 weight on the coefficients 
a(t)/b and a 0.25 weight on the value of inventory ~.,,,(t). Thus,  the retailer is 
more sensitive to the consumer  demand than the manufacturer.  

Proof 

See appendix i. 

Note that the results obtained here arc different to those of  Jorgensen [ 1 1 ] and 
Eliashberg and Steinberg 161. One reason for this is the fact that the optimal production 
and inventory policies in our model are a linear combination of the nominal  demand 
rate, the peak demand factor (in Jorgensen, the demand is static), the initial inventory 
and the salvage value (in ES, the initial and final inventory are assumed to be zero). 
The manufacturer  places more weight upon one factor than the others at different 
times during the season, resulting in the different possible shapes of the optimal 
production and inventory policies. For example, if the nominal demand is low, the 
optimal policy might bc to keep the production rate zero and create a backlog of 
inventory during the initial part of the season, and make the production rate positive 
once the demand has reached a significant level (in ES, the inventory is constrained 
to be nonnegative). If the nominal demand is low and the peak demand factor is high, 
the manufacturer  will have a positive production rate, but the price charged to the 
retailer during the initial part of the season will be so high that the amount  sold 
during the initial part of the season will be zero. Thus, the manufacturer  will hoard 
the goods for sale during the peak of  the season (this is not possible in ES because 
the manufacturer 's price is constant throughout the season). In essence, the model  we 
consider is less restrictive and hence leads to a richer set of  optimal policies. 

2.2. PARETO PROBLEM SPECIFICATION 

To apply the necessary and sufficient conditions [ 13,241, one solves an associated 
optimal control problem where 

Jp=flIJM +fl2JR, f l l , f l2  >-0, fll +f12 = 1. 
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In the present paper, we have assumed that/It, ~ = 0.5, i.e. in the vertically integrated 
firm the bargaining powers of the manufacturing division and retailing division are 
identical. Thus, the integrated firm's (P) problem can be stated as follows. 

T 

P: maximize J ,=  l(pp(a-t, pp)-C,.x~-h,.s~)dt+v.,sp(r). 
W, f . l .  pp,Xp 

The state equation is as follows: 

sp = Xp - a+ bpp . 

The initial condition is sp(0) = s,. o. The nonnegativity constraints arc xp(t) > 0 and 
a/b > pp. Finally, we assume a j / b  > v,. > O. 

PARETO SOLUTION 

Hamiltonian: 

2 H P = (pp (a - bpp ) - c,. x~ - h,. sp ) + Xp (xp - a+ bpp ), 

Lagrangian: 

/ ° / L P = H P +  r/ ix  p +17 2 "~ - P p  . 

Necessary conditions for the control variables: 

We set Lpep = 0 to obtain 

1 X ; b  - 02 ). p;  = "~  (a+ 

We set L~, = 0 to obtain 

x~ = (;t; + o j )  
2C,n 

Also, the complementary slackness conditions are 

Using Z = - " ~ '  

)'e = 2h, .s , .  

The boundary conditions are se(O) = s,. o, g'e(T) = v,.. 

(12) 

(~3) 

(14) 

(15) 

(16) 

(17) 
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The complete solution is given in appendix 1. We find that lemma 1, as well 
as propositions 1 and 2 are still valid. Also, part 1 of  proposition 3 is valid. Part 2 
is different in that the integrated firm's pricing policy is based on equal weights on 
the coefficients of  the demand function and the value of  inventory. The main 
difference between the optimal policies under the two structures is the weights of 
the nominal demand rate, peak demand factor, initial inventory, and the salvage 
value. As wc show in the numerical example, this leads to some interesting answers. 
As discussed earlier, the static case of  vertical integration was first studied by 
Spengler 1231. He showed that the price charged by the vertically integrated firm 
will always be less than the price charged by the retailer (in the case where the 
manufacturing and retailing operations are conducted by independent firms). Similar 
results for bilateral monopolies have also been derived by Jeuland and Shugan [10l, 
McGuire and Staclin I141 and references quoted therein. Spengler argued that this 
happens because of "double marginalization", i.e. the manufacturer as well as the 
retailer add their profit margins to their respective costs in arriving at the retail 
price. 

In the present case, the price charged by the vertically integrated firm need 
not bc less than the price charged by the retailer throughout the season. As claimed 
earlier in the paper, wc show that this happens because of the interaction between 
the pricing and production- inventory policies. We show this using a numerical example. 

2.3. A COUNTEREXAMPLE 

The paramete~ used are a l  = 4, a 2 = 16, a 3 = 0.5235 (i.e. 6a3 = rr), b = 0.4, 
c',,, = 4, h,,, = !, ~,,,, = 10. s,,,o = 3. 

As can bc sccn from table 1. the retailer's price is less than the integrated 
firm's price for the first of  the fifteen periods of the season. The inventory decreases 
for the first thirteen periods and then increases during the last two periods of  the 
season. These results are also illustrated in fig. 1. 

One ix)ssiblc explanation for this behavior is as follows. In the decentralized 
structure, the total channel profits are shared between the manufacturer  and the 
retailer. Also. due to lack of cooperation, the manufacturer  does not pass on the gain 
from production smoothing (/].,'(t) = 0). As opposed to this, in the centralized structure, 
profits do not have to be shared. Thus, the inventory carrying costs can be offset 
more easily under the centralized structure. This has an impact upon the tradeoff  
between selling the goods at a point in time and carrying it as inventory and selling 
it later during the season. In our example, during the beginning of  the season this 
tradeoff is more in the favor of carrying inventory under the centralized structure. 
Thus, the value of inventory during the beginning of the season is much higher 
under the centralized structure, leading to higher prices during the beginning of  the 
season. Also, in our model the peaks occurs exactly in the middle of  the season. 
If the peak were to occur later in the season, the periods for which the integrated 
firm's price is higher will almost certainly be higher. 
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T a b l e  I 

3.0000 3.0000 4.3272 9.9865 8.5818 9.9932 7.1636 

2.9295 2.7599 6.7069 12.5413 15.4141 15.4289 12.5117 

2.7427 2.4799 8.9833 15.2344 21.9479 20.7519 17.6264 

2.4476 2.1524 11.9662 17.8368 27.9001 25.6741 22.2888 

2.0582 1.7782 12.8742 20.1556 33.0129 29.9407 26.3000 

1.5930 1.3652 14.3389 22.0344 37.0655 33.3377 29.4900 

1 . 0 7 5 3  0.9270 15.4088 23.3541 39.8839 35.6982 31.7255 

O, 5316 0.4819 16.0522 24.0343 41.3487 36.9076 32,9165 

- 0.0086 0.0523 16.2599 24.0347 41.4006 36.9078 33.0204 

- 0.5143 - 0.3367 16.0471 23.3553 40.0435 35,6988 32.0447 

- 0.9535 - 0.6570 15.4541 22.0365 37,3443 33.3388 30.0476 

- 1.2939 - 0.8778 14.5471 20.1589 33.4311 29.9424 27.1364 

- 1.5031 - 0.9653 13.4178 17.8417 2 8 . 4 8 8 0  256765 23.4646 

- 1.5496 -0.8815 12.1841 15.2413 22.7481 20.7554 19.2268 

- 1.4014 - 0.5826 10.9886 12.5510 16.4845 15.4337 14.6525 

- 1.0261 - 0.0154 I0.0000 I0,0000 I0.0000 10.00013 I0.0000 

I 
1,t 

0 .  

I 0  

3~ 

20 

10 

u Iqttail~. 

MODEL I 

I ! ! ! ! ! ! ! ! ! i ! ! """" ! 

0 0.4 0.8 1.2 ! .6 2 2.4 2.B 3.2 3.6 4 4.4 4.B ~-2 1111.6 6 

l"m,'m 
• t ~ u m r  • Inl,mlp'~md 

Fig. I. 
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The above result implies that cost considerations should indeed be given 
importance while examining the channel problem; that cost considerations can 
change the generally accepted results in significant ways. We further reinforce this 
conclusion by adding one more cost consideration to the problem, namely retailer 
effort. 

3. Model II 

In this model, the retailer has an additional decision variable. It can exert 
effort to attract additional customers. Also. returns on this expense are diminishing. 

3.1. 

R. 

S T A C K E L B E R G  P R O B L E M  S P E C I F I C A T I O N  

The retailer's (R) problem is as follows: 

1 

maximize Jn = f ( ( p , ( t ) -  p,. (t)) (a(t)+ v ( t ) -  bp, (t)) - CaU2(t)) dt. 
w . r . t  p,,t~ 

0 

The manufacturer's (M) problem is as follows: 

M: maximize JM 
w f l  p,N ,X ~ 

T 

: f {Pro ( t ) (a( t )+ t ' ( t ) -bp , ( t ) ) -c ,nx2m( t ) -h , , s2m( t ) }  dt+ VmS,n(T). 
0 

The state dynamics are as follows: 

ds,, 
J,~ = = Xm (t) - (a(t) + V(t) - bp,(t))  

dt 

The initial condition is s,.(0) = S,.o. The nonnegativity conditions are xm(t) > 0 and 
(a(t) + u(t))/b > p,(t). Finally. we assume a t /b  > v,, > O. 

STACKELBERG SOLUTION 

Hamiitonians: 

H k = ( ( p , - p , , , ) ( a +  o - b p , ) - c a v 2 ) +  X,(x, , ,  - ( a +  o - b p , ) ) ,  

2 h~ s ~ ) +  X,,, ( x ,  ( a + v - b p , ) ) .  H M = (p,,, (a+ o - b p , ) - c m x , .  - 

(18) 

(19) 
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Lagrangians: 

LR = HR + rl ,(  a+ v ) 
- - K - - p ,  , 

L M = H M + rlmx ~ . 

Necessary conditions: 

Setting L R = O, we obtain p, 

(20) 

(21) 

a+ v + bp,~ - rl, + hA ,  (22) p, = 
2b 

Setting L~ = 0, we obtain 

p, - p , .  - :t,,, + 17, Ib 
v = (23) 

2ca 

Setting ~, = - H  R we obtain/~, SJl  ~ 

we obtain 
= 0, and using the transversality condition X,(T) = 0, 

A,'( t )  = O. (24)  

Substituting (24) into (22) and (23), and solving to determine p, and v independently, 

p: = 2abc a + b(2bc  a - 1 )p,,, - (2bc,  - 1 ) r / , ,  (25) 

b(4bca - I ) 

. a -bp , , ,  +rl ,  
v = (26) 

(4bca - 1 ) 

Substituting (25) and (26) into (19) gives 

HM = ( p"  2 b c a ( a -  - ~ + rl') - c'nx2~ - h~s~  ) + X"  ( xm - 2 b c a ( a -  bp#t + "l ) !" 

Setting L M = 0, we obtain 

1 
x~, = (,,I,,, + 17,, ). (27) 

2c,,, 
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Setting H u = 0, we obtain P= 

. .  = a +  b~,,, + r/, 
(28) Ym 

2b 

Also. the complementary  slackness condit ions are 

rlm > O, rl,,,x~ = 0, (29) 

a + v "  p : )  = 0. (30) q, > 0, r/, b 

Setting J.,,, = - H  M we obtain Sin' 

~[,,, = 2hmsm. (31) 

Using the transversality condit ion,  k ' , , (T)= v,,. Substi tuting (28) into (20) gives 

• ! 
v - ( a -  k,~ b + I/,). (32) 

2(4bca - l ) 

Substi tuting (28) into (25), 

p:  = a(6bco - 1 ) + (2be ,  - 1 ) ~ ,  - (2be,, - 1 )0,  

2b(4bca - 1 ) 
(33) 

Based on the above, like model  I one can once again say that there are three 
situations possible. Either the product ion rate is zero (i.e. when X~,(t) <~ 0) or the 
produc t ion  rate, effort  rate, and the amount  sold are all posi t ive  (i.e. when  
0 < ;t'm(t) < a(t) lb) ,  or the production rate is positive but the amount  sold and effort 
rate are both zero. Also, it can be easily seen that lemma 1 is still valid. The  
complete  solution is given in appendix 2. From the solution, one can also see that 
proposi t ions i and 2 are still valid. However,  the pricing policy of  the retailer will 
be different. Proposit ion 4 below describes the pricing policies of  the manufacturer  
and the retailer, and the effort rate of  the retailer. 

PROPOSITION 4 

Characterist ics o f  the manufacturer and retailer pricing policies and the retailer 
effort rate policy: 

(1) If the change in the product ion rate is in the same direction as the change in 
potential demand,  the pricing and product ion policies of  the manufacturer ,  
and the effort rate of  the retailer have a "synergistic" effect. 
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(2) If the change in the production rate is in the same direction as the change in 
the potential demand, and the proportionate cost of  effort rate is high 
and/or the demand is price sensitive, the retailer's pricing policy will also be 
"synergistic" with the manufacturer's pricing and production policies, and tim 
retailer's effort rate. 

(3) If the proportionate cost of the effort rate is not high and/or the demand is 
not price sensitive, an increase in production rate or manufacturer's price can 
lead to a decrease in the retailer's price and may lead to decrease in inventory. 

Proof  

See appendix 1. 

Proposition 4 is interesting because it says that it is possible to have a 
situation in which, if the manufacturer r a ins  his price, the retailer will reduce his 
price. This is exactly the opposite of  the result obtained in model 1. A possible 
explanation is as follows. The effort rate of the retailer depends upon his profit 
margin. If the manufacturer increases his price, the retailer's profit margin reduces. 
Hence, he will reduce his effort rate. If the proportionate cost of  effort rate is not 
high, this will not lead to much savings in cost. Thus, the retailer will have to 
maintain sales despite lower effort rate by reducing the price. Also, using (32) one 
can see that du(t)/db < 0. Thus, if the demand is not price sensitive, once again the 
effort rate will be low. 

32. PARETO PROBLEM SPECIFICATION 

The integrated firm's (P) problem is as follows: 

T 

P: maximize Jp= f ( p p ( a + v - b p p ) - c , , x ~ - c ,  v 2 - h , , s ~ ) d t + v , , , s p ( T ) .  
w , t . t ,  pp,Xp,V 0 

The state dynamics are as follows: 

jp = dsp 
dt = xp - (a+ v - bpp ). 

The initial condition is Sp(O) = sin0. The nonnegativity conditions are xp > 0 
and (a + v)lb - pp > O. Finally, we assume al lb  > up > O. 

PARETO SOLUTION 

Hamiltonian: 

HP= cpp Ca+ u - pp c.v2- h.s ) + ,, -bp,  ). (34) 
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Lagrangian: 

O + V  
Le = H e +  rhxp + 02 b 

Necessary conditions: 

Setting L p = O, we obtain pp 

a + v + b,~p - 172 
P t ' =  2 b  

-pp). (35) 

Setting Lt~ " = O. we obtain 
p 

(36) 

(,;tp + r h ) (37) 
xp  - 2c . ,  

Setting Le~ = O, we obtain 

(& + ;tp + 02/b) 
v = ( 3 8 )  

2 C 0 

The complementary slackness conditions are 

/ " / r/j.r/, _>(I, 01x~ =0,  02 a+bv p~ =0. (39) 

Solving (361 and (38) to determine Pe and v independently, 

p~ = 2 a h %  + b ( 2 b %  - 1 );t'p - ( 2 b c o  - ! )02 (40) 

b ( 4 b %  - 1 ) 

. a -  b~.~ + r/2 
v = (41) 

(4b% - 1 ) 

From the above-mentioned conditions, one can easily show that lemma 1 and 
propositions ! and 2 are still valid. Once again, we compare the Pareto solution with 
the Stackelberg solution, in the previous model, we showed that the price charged 
by the vertically integrated firm may be more than that charges by the retailer for 
at least a small part of  the season. For model ti, we give an example in which the 
price charged by the vertically integrated firm is higher for almost the entire duration 
of  the season. 
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Table 2 

s. s, ~. ~ p, Pv P- v. 

3.0000 3.0000 7.3411 9.8779 10.2099 10.0193 8.6705 0.6997 0,0643 
3.4769 4.1571 11.0135 14.4858 18.8930 18.9213 14.6650 !.9218 2.0162 
3.5907 4.5724 14.5871 19.1106 27.1918 27.3998 20.4283 3.0743 3.7678 
3.4050 4.4268 17.8808 23.4436 34.7454 35.101 ! 25.6961 4.1133 5.2989 
2.9801 3.8567 20.7342 27.2267 41.2251 41.6993 30.2300 4.9978 6.5784 
2.3762 2.9729 23.0126 30.2512 46.3485 46.9131 33.8268 5.69 ! 7 7.5736 
1.6557 1.8720 24.6123 32.3578 49.8920 50.5187 36.3273 6.1658 8.2550 
0.8846 0.6435 25.4640 33.4392 51.7006 52.3611 37.6224 6.3992 8.6009 
0.1339 - 0.6261 25.5361 33.4413 51.6949 52.3608 37.6585 6.3802 8.5998 

- 0.5197 - 1.8512 24.8369 32.3644 49.8743 50.5177 36.4396 6.1067 8.2515 
- 0.9921 - 2.9449 23.4156 30.2636 46.3167 46.9111 34.0283 5.5856 7.5671 

- 1.1884 - 3.8161 21.3619 27.2473 41.1756 41.6961 30.5438 4.8326 6.5676 
- 0.9993 - 4.3658 18.8056 23,4762 34.6724 35.0959 26.1585 3.8699 5.2817 
- 0.2938 - 4.4792 15.9156 19.1615 27.0869 27.3918 21.0925 2.7247 3.7410 

1.0909 - 4.0140 12.8986 14.5647 18.7442 18.9089 15.6075 1.4258 1.9746 
3.3649 - 2.7797 I0.0000 10.0000 10.0000 10.00(~ 10.0000 0.0000 0.00(30 

a .  

70 

I0 

MODEL II 

I ! ! I ! I | ! I I | | | | 

0 0.4 041 1.2 1.6 2 2.4 2.8 3.2 & 6  4 4.4 441 I ~  ~ 6 

0 ~ , I ~ n u ~ l  ~ Q I ~ q ~ m l  Rm~ 

Fig. 2. 
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3.3. A COUNTEREXAMPLE 

The additional parameter used in this model is c, = 1.1. All the other parameter 
values are the same as the previous example. As can be seen from table 2 (note that 
v,,, refers to the effort rate in the independent setup and Vp refers to the effort rate 
in the integrated setup) as well as fig. 2, the retailer's price is higher than the 
integrated firm's price only during the initial period. A possible explanation for this 
behavior is the fact that the pricing policies of the manufacturer and the retailer do 
not have a "synergistic" effect. Note that 2be, - 1 = -0 .12 < 0 in our example. Thus, 
an increase in the manufacturer's price, or production rate, leads to a decrease in 
the retailer's price. 

Lastly, we compare the profit and the costs under the two structures for both 
the models using the numerical example. As can be seen from table 3, the total 
channel profits are higher under the centralized channel structure. Also, the inventory 

Table 3 

Profit Costs 

Model i 

Manufacturer 
911.91 

Integrated firm 
1782.75 

Retailer Invento~ Production Ef~rt 
372.15 16.47 77.67 - 

12.43 171.11 

Model II 

Manufacturer 
1563.17 

Integrated firm 
2818.32 

Retailer 
579.2 133.76 352.4 762.12 

398.39 1240.29 1983.7 

carrying costs are lower under the centralized channel structure. This implies more 
efficient production smoothing under the centralized structure. Since the prices are 
higher under the centralized structure for a part of the season in model I, and during 
almost the entire duration of the season in model II, this implies a conflict between 
the interests of the consumer and the firm. This is an interesting result because in 
the existing literature the interests of the two parties always seem to be aligned in 
the sense that integration leads to higher profits and lower prices. 

4. Conclusions and future research 

In this paper, we have attempted to examine the relationship between channel 
structure and optimal pricing and production-inventory policies. Towards this end, 
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we first derived and then compared the policies for independent and integrated 
channel structures. Also, we tried to examine the impact of effort rate on the other 
policies under different structures. We showed that i f  the nominal demand is low, 
or the initial inventory is high, initially the production rate wil l be zero. Alternatively, 
i f  the initial inventory is low, or the peak demand is high, initially the amount sold 
will be zero even i f  the production rate is positive. Once the production rate becomes 
positive, it does not become zero again. This implies production smoothing. However, 
none of the gains of production smoothing are passed on to the retailer. This seems 

to provide a rationale for the retailer to carry his own inventory. While the retailer 
does not carry inventory in the model studied in the present paper, we are currently 
investigating that problem. Also, we show that the optimal production rate and 
inventory are a linear combination of the nominal demand, peak demand factor, 
salvage value, and the initial inventory. In the scenario where the retailing operation 
does not require any effort, the pricing policies of the manufacturer and the retailer 
and the production policy of the manufacturer have a synergistic effect, i.e. an 
increase in the manufacturer's price or production rate or the retailer's price leads 
to an increase in the rate of change of inventory. However, in the scenario where 
the retailing operation does benefit from effort, the retailer's pricing policy need not 
necessarily be synergistic with the other policies. I f  the proportionate cost of effort 
rate is not high, and/or the demand is not price sensitive, an increase in the production 
rate or the manufacturer's price leads to a decrease in the retailer's price. With 
regard to channel structure, the numerical example seems to suggest that production 
smoothing will be done more efficiently in the integrated setup. Also, we showed 
that the price paid by the consumer need not necessarily be lower in the integrated 
setup. If the proportionate cost of effort rate is not high, and/or the demand is not 
price sensitive, the price paid by the consumer is lower in the independent setup. 
However, despite higher prices, the channel profits are higher in the integrated 
setup. 

Appendix I: Model I 

STACKELBERG SOLUTION 

The two-point boundary value problem (TPBVP) can be stated as follows: 

sn = 2c~ (rlm + A ~ ) -  "~ a - b  (a+ b,~,,t + r/,) + ,7,1 

1 1 
= 2c,. (~7., + ~ , . ) -  ~ ( a - Z m b + r l , ) ,  (42) 

~.m = 2h,,,s,,,. (11) 

The boundary conditions are s,,(0) = s,,,o, Zm(T) = v,,. 
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For the time intervals when /1.,,,(t) < 0 using (7) and (10). we obtain rl#,(t) = - ;t,,,(t) > O. 
Also. using (9) and (10), r / , ( t )= 0. Therefore, 

b a Jm = ~ I m -  ~ and x,, ,(t)= 0, a ( t ) - b p , ( t ) > O .  (43) 

For the time intervals when a(t)/b > 1,,,(t)> 0, using (7), (9) and (10) we obtain 
r/,,,(t) = 0, r/,(t) = 0. Therefore, 

° 
s'~ = ~c~ + "4 i n , -  -~ and x,, ,(t)>O, a ( t ) - b p , ( t ) > O .  (44) 

For the time intervals when 1,,,(t) ~ a(OIb, using (7) and (10), r/,,,(t) = 0. Also. using 
(9) and (10). r l , ( t ) - - b 1 , ~ - a .  Therefore, 

1 
s,M = 2c---~ 2~r~ and x,~(t) > O, a ( O - b p , ( t ) =  O. (45) 

Proof of temma 1 

The proof involves showing three things. 

First, we must show that if the production rate is initially zero, it eventually 
becomes positive. From ( ! ! )  and (43), 

J.',,,=2h,,, ~ i , , , - ~  < 0 ,  (46) 

i.e. 1,,,(t) is concave for 2,,,(0 -< 0 and hence it is possible for 2,,,(t) to become positive. 
Since 2,,,(1") = v,,, a 0 is required, ~.,,,(t) must become positive before the end of the 
season. 

Second. we must show that if the amount sold is initially zero. it eventually 
becomes positive. From (11) and (45), 

~t,, = 2h,, 1,, > 0, (47) 

i.e. Am(t) is convex for 2,,,(t) ~ a(t)/b. Since a(t)/b is concave forthecomplete season. 
it is possible for 1,,,(t) to become less than a(t)lb. Since ;tin(T)= v#, < a l /b  is 
required, A,,,(t) must become less than a(t)lb before the end of  the season. 

Third, we must show that once the production rate and the amount sold 
become positive (i.e. 0 < 2,,,(0 < a(t)lb) they remain positive. The method we use 
involves showing that if either become zero, the end point condition 2,,,(7") = v,,, 
(a l lb  > v,,, > 0) will not be satisfied. Suppose at some point during the season the 
amount sold becomes zero, i.e. :t,,,(t) > a(t)/b. After this point, we know from (47) 
that 2,,,(t) is convex. Also, for 2,,,(t) to become greater than a(t)lb, the slope must 
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be positive. However, if this is the case,/l~,(t) will never decrease to become equal 
to v,, at the end of the season. Similarly, suppose at some point during the season 
the production rate becomes zero, i.e. 2,,,(0 < 0. After this point, we know from (46) 
that 2,,,(0 is concave. Also, for 2 , ( 0  to become less than zero, the slope must be 
negative. However, if this is the case, 2,,,(t) will never increase to become equal to 
v,. at the end of the season. F'I 

Given below are the solutions of the TPBVPs that arise for each of the cases: 

Case 1 (2,.(0) S O) 

For the period [0, q], using (43) and (1 I) with boundary conditions s,,,(O) = s,,,o, 
2,.(t~) = O, we obtain: 

( ctza3)cosh((t,-t) sinh ( t  ( _ ~  hmazsina3t,) 
S,,,(t)= S,.0 4e ~-"~sh'~t / cosh~'tl 0 + 2e 

0[ 20t 3 COS O[3 l 
+ (48) 

4£ 

1 ( ~2 t;t3 
/l,, (t) = ~ 4e 

s"o]sinh~(tt-t) a l  ( c o s h ( t )  
, cosh ~'tt + T I cosh (tl 

hma2(sina3t-sina3t cosh(t ) (49) 
+ 2--'e- cosh ~'tl " 

For the period [q. 7"] when a(t)/b > ,a.,,,(t) > O. using (44) and (11) with boundary 
conditions 2,,,(tl)= O. 2,,,(T)= v,,,. we obtain: 

So, (t) = Vm t 
cosh r ( t -  t~ ) 

sinh r ( T -  tl ) 
+ (e + I) 

cosh r ( T -  t) I~a2sina3t a2a3cosa3t 
+ t + , (50) 

sinh r ( T -  tt ) 2p 4p 

2., (t) = v,. 
sinh r (  t - q ) 

sinh r ( T -  t, ) 

¢ ' l  

] sinh r (T - t! ) - sinh r(T - t) - sinh ~ t -  t! ) [ 
+ 

l f 
t" '1 

/~  a2 s ina3 t | sinh r ( T -  t) | 
+ 2p l I - sinh r ( T -  tt ) I" (51 ) 

Using (49). /l,,(0) < 0 if and only if 
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011 
-'b-" (cosh ~'tl - 1 ) < 

h"a2sinct3ti ( 012a3 )  1 
2e + s,,,o 4e -~ s i n h ( q .  (52) 

Case 2 (ot,/b >/1.,.(0) > 0) 

Using (44) and (1 l) with boundary conditions s"(0) = s" o, ;I~(T) = v". we obtain: 

s , . ( t )  = ( v "  - ~ ) ~  - -  
sinh r t  

cosh ~'T 

ct2ot3)coshr(t_T ) ct2 a3  cosct3 t 
+ , (53) 

+ s " °  4p cosh rT  4p 

2,., (t) = ~(1 cosh cosh pet ) ~¢T 

a 2 a 3  ) 1 r/') h~°t2sina3t cosh r t  
+ 4p s,.o -~ ( e - m - e  - + + - -  o,,i. (54) 

2p cosh ~¢T 

Case 3 (2p(O) > ctl/b) 

For the period 10, ttl. using (45) and (11) with boundary conditions s"(0) = s,,,o, 
2..(t I) = a(t t )/b. we obtain: 

sinhcrt ( a t + a 2 s i n a 3 q )  s,,,o cosh c r ( t -  tl ) + , (55)  
s "  (t) = cosh crq cosh o'q 2by 

a l  + a 2  s ina3 t t  coshcrt s i n h c r ( q - t )  
2,. (t) = 2v s,,.o (56) 

b cosh o-q cosh trtt 

For thc period [q. 7"1 when a(t)/b > 2,.(0 > 0. using (44) and (11) with boundary 
conditions 2,.(t s) = a(t:)/b and 2 , . (T)= v". we obtain: 

S"(I)~{ ¢Osh~(T-t)-cOSh~c(t-ll) } =  girth K'(T- l I ) [+'Urn { cOSh K'(/- tl ) } s i l l h  If(T- l I ) 

- !  c°shtc(T-t) { al +°t2 sina3tl _ h , .o [2s in° t3 t}  
sinh ~ T -  q ) b 2p 

0[20[ 3 COS a3 l + 
4 p  

(57) 
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A . ( t ) :  v,,, sinhrCr-t,) 2/9 1 -  s ~ r - - ~ - t / ) j  

a t  + a2 sin a3tt s i n h r ( T - t )  

+ b sinh r ( T -  tt )" 

Using (56). ~.,~(0) 2 a(O)/b if and only if 

a2 Ctl 
T sinct3tl > --b--(coshcrtl- 1)+ 2VS~o sinhcrtl , 

where 

(58 )  

(59) 

4= 2+crab' p=  cm 

Proof of proposition I 

(1) Using (49), 

c3Z,,,(O) 1 ( 1 ) 
i9al = ~ 1 cosh~'tt 

> 0  

because cosh(v) > 1 for -** < v< **. Thus, keeping everything else constant, 2y,,(0) ,: 0 
is more likely to be satisfied if a~ is low. 

Again, using (49), 

O~Am(O) 1 sinh Ot 
= < 0  

t)Sm0 0 cosh ~'t I 

because sinh(v) > 0 for 0 < v < 0o. Thus, keeping everything else constant, ,~(0)  < 0 
is more likely to be satisfied if s., o is high. This can be verified from (52). 

(2) Using (56), 

~)X,n (0) sinh o71 
= - 2 v  s,,,o < O. 

c)S,no cosh 071 

Thus. A,,(O) >_ cq/b is more likely to be satisfied if s,,,o is low. 
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Again, using (56), 

aAm (0) sin ct3 tm 1 
a a  2 b cosh 071 

> 0 .  

Thus,  Am(0) > atlb is more likely to be satisfied if o h is high. 
Lastly. using (56), 

a ( , ~ m ( 0 ) - a l / b )  i ( 1 1 ) < 0 .  
Oat = b cosh-o'tl 

Thus,  Am(0) > at/b is more likely to be satisfied if a t is low. This  can also be 
verified from (59). 

(3) If the product ion rate and amount  sold are nonnegat ive throughout  the 
season, the production rate is given by (54). In the case where the initial product ion 
rate is zero, the product ion rate, once it becomes positive, is given by (51). In the 
case where the initial amount  sold is zero, the production rate, once it becomes 
positive, is given by (56) and (58). As can be readily seen in each of  the cases, the 
product ion rate, which equals ~.m(t), can be written as 

~.,,,(t) = al fl (t)+ o~2f2(t)+ S,,,of3(t)+ vmf4(t ). (60) 

Here, f l( t) ,  f2(t), fa(t), and f4(t) are functions of  time with some or all of  parameters 
a 3, b. h,~ and Cm. 

(a) In the first two cases, a21fl(t) l /at  2 < o. In the third case, a21fl(t) l /at  2 > O, 
but alfz( t ) l /at  > 0  for [0, tl] and a l f l ( t ) l / a t<o  for [t~,T]. Thus,  the weight  of  
If~(t) I increases and then decreases over time, and becomes zero at the end of  the 
season. 

a ifa(t) I / at  < o in all three cases. Thus, Ira(t) I decreases over time, and becomes 
zero at the end of  the season. 

(b) a lf4(t) I / a t  > o in all three cases. Thus,  [f4(t) I increases with time, and 
becomes one at the end of  the season. O 

Proof of proposition 2 

(1) if the initial product ion rate is zero, the inventory policy is given by (49). 
As can be readily seen from (44), the inventory decreases with time. 

From (43) and (49), 

a.~,,, (t) cosh ~'t 
cosh (tt 

< 0 .  
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Thus.  one can see that the higher the value of  ¢x~, the faster will be the decrease 
in the inventory.  

(2) If the initial amount  sold is zero, the inventory policy is given by (55). 
From (45), one can see that the inventory increases with time. 

From (45) and (56), 

3.~,,, (t) 1 cosh ~'t 
c9 o~ I b 2 cA cosh ~t! 

c3.~,,, (t) sin or:3 tl cosh ~'t 
~ =  > 0 .  

> 0 ,  

~ot2 b 2c~ cosh ~'tl 

Thus,  the higher the value of a I and a 2. the faster will be the increase in 
inventory. 

(3) If the initial production rate is zero, the inventory policy is given by (48) 
and (50). If the product ion rate and the amount  sold are nonnegat ive  throughout  
the season, the inventory policy is given by (53). If the initial amount  sold is zero, 
the inventory policy is given by (55) and (57). As can be readily seen in each of these 
cases, the inventory policy can be written as 

s~(t)  = al  gl (t)+ a2 g2(t)+ S,~og3(t)+ r:,, g4(t), (61) 

where gl(t), g2(t), g3(t), and g4(t) are functions of  time with some or all of  parameters 
a 3, b, h,,,, and c,,,. 

(a) In all three cases, ~ I g3(t) I / 3t < 0. Thus,  I g3(t) I decreases over  the entire 
season, and becomes zero at the end of the season. 

(b) In all three cases, c31 g l ( t ) t / ~ t ,  c3 I g4( t ) l /c l t  > 0. Thus,  I gt( t ) l  and I g4(t)l 
increases over  the entire season. 

(c) One cannot say anything in general about g2(t). 

Proof o f  proposition 3 

( 1 ) The state equation is .~,,, = x',,,(t) - a(t) + bp:(t). Also. from (8) and (9), we 
have p:(t)  = ( l /4b) (3a  + b:t',, - 11,) and p',,(t) = ( l /2b) (a  + bZ:, - I'/,). 

Since r/, = 1"/,,, = 0 if the production rate and amount  sold are posit ive,  x , ( t )  
= (l/2c,,)3t,,,(t), and 

dpr'(t) I ( da 1 
dx~,(t) = 4~ 3-~--~ + b2c,~ >0, 
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dx~( t )  = 2"b + b2c,,, > 0 

if daldx,~ > O. 

(2) This is obvious from (8) and (9). [] 

PARETO SOLUTION 

As can be seen from the necessary conditions, the system of equations generated 
for the Pareto solution is very similar to the one generated for the Stackelberg 
solution. It can be easily shown that lemma 1 is valid for the Pareto solution also. 
The only difference is in e, (, 0, t, r, 4, P, crand t,. Hence, the various policies are 
the same with I,I,,c.,I,. 

, - - ,  r =  - -  + b h ~  C.= (bi~ + a32)/2, ~'= ~. 0 = ~- t= 4h,,tc,,, c ,  ' 

~J= l+c , , , b '  p =  + b ~ , + a ~  /2, or= 7"~'~' v =  ~,~--C~. 

A p p e n d i x  2: Model  II 

STACKELBERG SOLUTION 

Once again, it can be easily shown that lemma 1 is valid for the Stackelberg 
solution of model I1 also. The only difference is in e, (, O, to, ~, p, or, and v. Hence, 
the various policies are the same with 

,t ,/ b=c° 
e" = 4bc'a ' ~ = | (4bca - I ) '  O = | 2h,n (4bca - 1)' 

I ( 4 b o a -  1)+2b2c.acm l h ~  b2ca2h, n 2c,nbcaCtl 

l= 4h, ,c ,~(4bca-  1) , I¢= "~ + ( 4 b c a - l ) '  ~ = 4 b c a - l + 2 b 2 c a C , , '  

P =  ( ( a ] 2 c "  + 2h"t)(4bca- l )+4b2cah"c 'n )  I h,,, 
8 b c .  c .  , a =  7 , , , =  . 

Proof o f  proposition 4 

The state equation is ~,,, = x~(t) - a(t) - v'(t) + bp~(t). Also from (28), (32) 
and (33), we have 
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v "(O = 
a - b , ~  + 1/, 

2(4bc ,  - 1) ' 

and 

p : ( t )  = 

P~, (0 = 

a(6bc,  - ! ) + (2bc, - I )Z~ - (2bc.. - ! )fir 

a +  A~( t )+  r/, 

2b 

2b(4bc,  - 1 ) 

Since r/,. r/,, = 0 if the production rate and amount sold are positive. 

if 

I Z~,(t) and dp~(t) dp:'(t) 
x'..(t) = ~c~ dx~(t) > 0, dx~,(t) 

da du(t) 
2bc°-I >0, >0 and <0. 

dx,,, dx,,, (t) 

> 0  

(1) Thus, an increase in production rate of  manufacturer 's price will lead to 
an increase in inventory. If the production rate increases, effort  rate will decrease 
and once again lead to an increase in inventory. 

(2) If 2bCo - 1 > 0, an increase in production or retailer's price will lead to 
an increase in inventory. 

(3) If (2bco - 1) < 0, dp,(t)/dx',,(t) < 0 is possible. Thus, an increase in production 
rate will lead to a decrease in price and thus may lead to a decrease in inventory. 

PARETO SOLUTION 

Again, it can be easily shown that iemma i is valid for the Pareto solution 
also. The only difference is in e, (, 0, l, x', ~j, p, tr, and v. Hence, the various policies 
are the same with 

E= 
(Ot23(4bca- l)+b2ca4hm) t b2ca4hm , I b2ca 

8bco ' ( = (4--ff~c.-]) 0 = h,. (4t, Co - I)' 

! = 
I (4bca - I ) + 4b2c=c,,, 

: i; ' 

l h,,, b2ca4h,,, 4cmbcaOt! 

= ~ + (4bca-l)" ~ = 4bc..-l+4b2cacm" 

((ot~2c,,, + 2hm)(4bca- l)+8b2cah,.c,.) 
P = 16bca c,,, , cr = ! c'~' " 
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