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Abstract  

In this paper, we present an efficient implementation of heuristic procedures for 
solving the continuous network design problem where network users behave according 
to Wardrop's first principle of traffic equilibrium. Numerical results involving a "standard" 
benchmark problem are given. Also. it is shown that the cost mapping arising in the 
herative-Optimization-Assignment algorithm is integrable if and only if the volume-  
delay function is of either the BPR or some logarithmic form. 

1. In t roduct ion  

In this paper, wc address a network design problem involving design parametcrs, 
referred to as capacities, and private vehicle flows. It is assumed that the network 
is subject to congestion and that users behave according to Wardrop's first principle 
of traffic equilibrium, i.e. that, at equilibrium, no user can decrease his/her travel 
time by a unilateral change of route. This formulation is similar to that used in 
Abdulaal and LeBlanc I !1, Friesz, Suwansirikul and Tobin 121, or Marcotte [8,91. In 
the latter papers, several efficient heuristics were compared on networks where all 
arcs were subject to improvements and had zero capacities. In this paper, we show 
that those heuristics perform equally well on networks where only a subset of  the arcs 
are considered for improvement, and might have positive initial capacities. The main 
difference to the previous analysis results from the fact that the capaci ty-f low 
relationship is not as simple, and might even be nondifferentiable. The paper is 
organized as follows. First we give a mathematical formulation of the problem, then 
we describe the algorithms and their implementation. Next, numerical results on a 
small network and the benchmark "Sioux Falls" network are presented. Finally, we 
give necessary and sufficient conditions under which the popular Iterative-Optimization- 
Assignment (IOA) algorithm yields implicitly a descent direction for a related convex 
objective function. 
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2. Notation and problem formulation 

Consider a transportation network G = ( N ,  A), where N is a node set and 
.,q an arc set. To each pair of  nodes k = (i , j)  E N x N i s  associated a demand 6 k. 
A mult icommodity flow vector F = { fok}o e ,~. J, a N ,, N isfeasible if it is nonnegative 
and satisfies the flow conservation equations: 

f k = £ a= i,j)-- ~ f a t = | ] , l }  

- 6  k, i f k = ( i , / ) ;  

5 k, i f k = ( l ' , 0 ;  

0 otherwise. 

where 1 6 N represents a destination node and 1 ' 6  N an 
network. The polyhedron of  feasible flow vectors F will 
symbol O. 

We will make use of  the following notation: 

origin node of the 
be denoted by the 

L = 0,, x " 

f =  {f~}a,z _':1 

.V a 

Y= {Y~}~ ~ a 

CoC f 
C = I C , , } , ,  ~ .~ : 

total flow on arc a; 

total flow vector; 

capacity of arc a; 

capacity vector; 

congestion (delay) function on arc a; 

congestion vector. 

For a given capacity vector y, a mult icommodity flow vector F (y) ,  together 
with the total flow vector f (y) ,  is in equilibrium (see Smith [121 or Dafermos [21) 
if it satisfies the variational inequality: 

(VIP) ( f ( y ) - f . C ( f ~ y ) , y ) ) < O  for all feasible total flow vec to r s f .  

The continuous network design problem (NDP) consists of  choosing a capacity 
vector y in a feasible set Y which is optimal for the generalized bilevel program: 

(NDP) minimize ( f ( y ) .  C(f (y ) , y ) )  
y~:Y 

+ Zg(y )  

{ transportation cost } 

{investment cost}, 

where g represents the cost associated with the capacity vectory,  f ( y )  the equilibrium 
total flow corresponding to y, and a. a t ime/money conversion factor. The problem 
NDP is well defined if the total flow f corresponding to the F-solution to VIP is 
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unique. A sufficient condition for uniqueness is that the cost function C(f, y) be 
strictly monotone in f. 

In this paper, we will make the following assumptions: 

ASSUMPTION I 

Ca is a positive, strictly increasing and continuously differentiable function 
/ ,  of the ratio fo )o. 

ASSUMPTION 2 

g is separable, i.e. g(y) = ~.°~ ~ga(Yo). where each function g,, is nonnegative, 
increasing and twice continuously differentiable. 

Under the previous assumptions, NDP can be written as the biicvel programming 
problem 

(BLP) minimize ~faCa(fa/ya)+ )'ga(Ya) {upperlevel} 
F e O , y ~ Y  a~.~ 

subject to 

fa 

F~ arg F~min a ~  fc,(,/yo)d, t,ower,eve, I. 
0 

It is also possible to express NDP as a mathematical program with nonlinear, non- 
convex but finitely many constraints (see Marcotte 19]). 

3. tteuristics for BLP 

NDP is theoretically a difficult problem. Indeed, its objective is nonconvex 
and nondiffcrcntiablc. Furthermore, each evaluation of the reaction function F(y) 
requires the exact solution of a fixed demand traffic assignment problem. Below, 
v,c describe two members of the family of algorithms previously introduced by 
Marcotte 18,91. 

(i) Consider the normative mathematical program: 

min ~'Lco(Llyo)+ ]tg,.(ya). (NORM) 

This is a convex program whose optimal value obviously provides a lower bound 
for BLP. Let (f.~o~M, ySoRM) be optimal for NORM. We can then extract the 
suboptimal solution: 

(fo, yO) e__ef (f(yXOR.M), y.~ORM) 
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by performing a traffic assignment on the network with capacity v e c t o r  yNORM. 
A sufficient condition under which (fO, yO) is optimal for BLP is given in 
Marcotte 181. 

(2) Consider the convex mathematical program: 

/. 

min a~ f Ca(t/ya)dt+ ~2tga(Ya) (H5) 
FE~.y~Y 

0 

whose solution is ( f s ,  y5). By construction of  H5, we have that f5  = f ( y S ) ,  i.e. that 
f s  is the equilibrium total flow corresponding to the capacity vector yS. The reason 
for the code name tt5 is historical (see Marcotte [81). 

4. An efficient implementation of  NORM and H5 

Wc will concentrate on the implementation of H5. The numerical implementation 
of NORM is similar, with the exception of an added traffic assignment on the 
network with capacity vector y,~ORM 

The constraint y ~ Y on the capacity vector will in general assume a simple 
form, such as 3~ > O. We make: 

ASSUMIWI( )N 3 

Y = { Y I .',~ >- 0, a E .ql, ~ = 0, a E ..q2 J, where A 1 represents the set of  arcs 
subject to capacity improvement and .q2 = ."4- .ql .  

It is then possible, for fixed total flow vector f, to solve optimally for y as 
a function o f f .  More precisely, one has, for each a ~ A1, to solve the equation: 

3y,, ~,~( .',',, ) = o, 

where 
/. 

t" G ¢,.~(./~,.y,,) = ( t ly, , )dt+ ~Xg.(yo).  (1) 
0 

I t "  
Note that ¢,~(f,~, y,,) is strictly convex. Indeed, the Hessian matrix of  Jo°C(t/ya)dt is 
the positive semidefinite matrix 

i l/ ,o -Ioty  ] 
C s t ~  n ~ (2) 
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Strict convexity then follows from the strict convexity of g,,. We will denote by 
y~(f°) the unique positive solution to the equation: 

oyS' a ~a(fa, Ya ) = O. 

Remark 
From the definition of the objective function, it is implicit that the cap°. city 

of an arc can actually be decreased below its present value at no extra cost. This 
could actually improve the design in certain circumstances such as the Braess 
paradox situation. [ ]  

After substituting expression (2) for yo in H5, we obtain the network constrained 
convex program: 

/o 

min °~:~ f Co(t/Ya(fa))dt+ ~;tg,(y,(fo)) (3) 
F~ O 

that can be solved by any standard multicommodity convex flow algorithm, most 
of which are based on the Frank-Wolfe algorithm or some of its variants 
(PARTAN [41, simplicial decomposition [71, Fukushima's algorithm [51, etc.). The 
function yo(fo) is often, in practice, nondifferentiable, due to possible non- 
differentiability of the function g.,(y,,); this occurs for instance when improvements 

9oCyo) 

0 

a p p r o x i m a t i o n  / 

d°(k I - y.) 

k. Yo 
Fig. I. Linear investment function. 

are made on an existing network (see fig. I). This difficulty is best handled by 
approximating g° by a smooth function. The most important case arises when ga is 
piecewise linear: 
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go(Yo) = max 10, do(y, - k°)}. (4) 

In this case, since go is not continuously differentiable, we use as an approximating 
function the branch of hyperbola whose equation is given by: 

da I ¢62+ ka) 2 ] y a - k . +  ( y a -  , (5) 

where e represents a small positive number and k° the initial capacity of arc a (see 
fig. 1). Henceforth, it is assumed that such an approximation has been performed, 
and hence that ga(Ya) is a twice continuously differentiable function. It is to be 
noted that the nonnegativity constraint y,, > 0 is automatically enforced, 

Remark 

An implicit advantage of the approximation scheme is that, whenever given 
the choice, the algorithm will favor low over high capacities. For instance, if some 
sort of Braess paradox phenomenon occurs, the algorithm could prevent it by lowering 
the capacities of arcs unused in the system-optimal solution. [] 

The minimization of (3) has been achieved using the linearization algo- 
rithm of Frank and Wolfe adapted to the traffic assignment problem (see LeBlanc 
c ta l .  II1]). When not available in closed form, the function yo(fo) was evaluated 
using the method of the false position Cregula falsi"). The first derivative of Ya(f°) 
was obtained by implicit differentiation of ¢~o: 

  °aYe (fo.y°(L)) = o. (6) 

One step of the algorithm is summarized below: 

( 1 ) Find a descent direction. Let 

F e  arg min ~ f )  a~=r ~..Ja " -~x Ca(t/Ya(X))dt+ ~2tga(ya(x)) (7) 

and .[ be the total flow vector corresponding to the multicommodity vector ft. 

(2) Perform linesearch (regula falsi or safeguarded Newton). Let 

a e arg min ~ [ f +  0( . ,7-f) l ,  
o,E IO, i 1 

f ~"- f + a ( f  - f ) .  
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The algorithm is stopped as soon as the gap function (see Hearn [61) becomes 
less than a predetermined small value. 

The computational burden of  the algorithm consists mainly of  two things: 

(1) Solving eq. (7) by shortest path methods. This can be achieved in O(Kn 2) 
or O(Km log n) operations (where K denotes the number of  origins or destinations, 
n the number of nodes in the network, and m the number of arcs) using Dijkstra's 
label setting algorithm. 

(2) Evaluating y°(fo) and y~(fo) for a ~ A1 in the linesearch. This implies 
O(Lmt)  operations, where L denotes the (usually small) number of regula falsi 
steps. 

The overall one-step complexity is therefore O(Kn 2 + Lm I) or O(Kn log n + Lm 0 
if one implements Dijkstra's algorithm using a heap structure. The latter implementation 
is more efficient if m is of the order of n, which is usual for urban transportation 
networks. If the network is large and m~ small, two things likely to occur in 
practice, then the term Km log n dominates, and solving H5 is computationally 
comparable to performing a single traffic assignment on the network. 

5. Numerical examples 

i.e.: 
In the following test problems, the congestion functions are of the BPR type, 

Co(f°, y°) = ao + ~o(fo/Yo)P, 

where ao is usually referred to as the free flow travel time on arc a. It is worth 
noting that, in this particular case, heuristic H5 subsumes the lterative-Optimization- 
Assignment algorithm (see remark at the end of the appendix), the latter corresponding 
to ~ = l / ( p  + 1). In the appendix, it is shown that the only functional forms for 
which the IOA actually solves (implicitly) a convex program are the BPR form and 
the logarithmic form. 

In the test problems, investment functions are either linear or quadratic. As 
mentioned previously, linear investment functions are approximated by branches of  
hyperbola. In the quadratic case, we have: 

g=Cy°)  = min {0, doCY. - t . )21 ,  (8) 

which is once but not twice continuously differentiable. However, we can replace 
18) by the smooth function 

g°(yo) = doCY° - k=) ~ 

without modifying the optimal solution, since values of), ,  less than k,, are dominated 
by yo = 0 in the solution of (7) (see fig. 2). 
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g,(~°) 

0 Y° 

x \ \ \d. (y. 

k° 

Fig, 2. Quadratic investment funclion. 

2 

3 

Fig. 3. 

4 

5 

Network for the first example. 

6 

The first example, taken from 131, consists of the network shown in fig. 3. 
Demand is equal to D from node i to node 6, and 2D from node 6 to node 1. 
Coefficients a,,,/3,,, k,, and I a (the investment functions are linear) are given in [3]; 

has been set to 1. The first column (EDO) corresponds to the Equilibrium Decomposed 
Optimization algorithm of Friesz et al. [3]. 

The objective function values in table 1 differ slightly from those reported 
in [31. Our values have been computed by performing a very accurate assignment, 
using the y-values given in [3]. The precision with which the assignment has been 
performed might also explain the (small) discrepancies observed between the IOA 
results given in [31 and the results obtained by setting ~ to 0.2 in H5. These results 
should be identical. 

Algorithms NORM and H5 were stopped after 50 iterations. At this point, the 
relative gap value was less than 0.003. On this small example, the best results were 
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Table ! 

Objective function values and number of Frank-Wolfe iterations for the first example 

Demand E D O  IOA NORM 1-15 !"!5 

= 0.2 ~ = ~*~ 

2.5 91.8 100.4 91.07 101.2 93.5 (~ = 0.45) 
iter --~ (57) (50) (50) (50) (50) 

5 200.89 214.3 199.7 213.3 213.3 (d~ = 0.3) 
iter --~ (71) (50) (50) (50) (50) 

I0 540.1 557.8 534.8 559.6 558.7 (~ = 0.22) 
iter ---, (68) (50) (50) (50) (50) 

consistently obtained by NORM. It is to be noted that the number of Frank-Wolfe  
steps could be lowered significantly without greatly affecting the quality of the 
solution. 

The second example, first considered by Abdulaal and LeBlanc [1 ], was also 
considered in [3], where the complete data may be found. It is the network of the 
city of Sioux Falls and is composed of 24 nodes, 76 arcs, and the origin-destination 
matrix is full. A subset of 10 arcs is subject to improvements. Investment functions 
are quadratic. An absolute lower bound of 79.53 has been obtained by solving the 
system-optimal problem. Numerical results are summarized in table 2. 

Table 2 

Results for the Sioux Falls network 

EDO HJ 1 *) H J2 ") NORM H5 H5 

~j = 0.25 ~ = 0.2 

objective 83.68 82.32 82.06 81.61 81.78 81.84 
iter --~ (89) (247) (147) (56) (54) (53) 

')Results obtained by Hooke and Jeeves algorithm as reported in [3]. 

The names HJ1 and HJ2 refer to two different settings for the upper bounds 
of the improvement vectors (see [3]). The best solution was obtained by the heuristic 
NORM with an objective value very close to the lower bound. The improvement 
vector ( y -  k)'s entries were: (5.48, 2.08, 5.49, 2.09, 2.85, 4.23, 4.27, 4.24, 4.27) 
to be contrasted with the solution (4.59, 1.52, 5.45, 2.33, 1.27, 2.33, 0.41, 4.59, 
2.71, 2.71) reported in [3]. For heuristic NORM, about one half of the iterations 
were used to solve the normative problem and the remaining half to obtain a very 
accurate (0.003 relative gap value) feasible (equilibrium) solution. 

To assess the efficiency of algorithm H5, it was decided to check the quality 
of the solution obtained when stopping the procedure prematurely. For a given 
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Table 3 

Evolution of optimal solution for algorithm H5 (dj = 0.25) 

her ~ 5 l0 15 20 30 40 

Yl 4.41 4.75 4.73 4.83 4.82 4.85 

Y2 1.90 1.50 1.39 1.47 1.36 1.33 

Ys 4.36 4.60 4.72 4.82 4.87 4.85 

Y4 1.45 1.58 1.40 1.44 1.36 1.32 

Ys 2.62 2.30 2.48 2.37 2.42 2.39 

Y6 2.27 2.47 2.35 2.40 2.40 2.4 l 

Y7 4.73 4.36 4.28 4.21 4.22 4.20 

Ye 4.23 4.06 4. I I 4.05 4.02 4.23 

Y0 4.75 4.47 4.38 4.27 4.21 4.23 

YJo 4.27 4.07 4.04 4.04 3.98 3.96 

objective 82.04 81.81 81.79 81.79 81.81 81.80 

iteration count, the objective has been computed to within 0.003 relative gap. The 
results are given in table 3 for H5 (~ = 0.25). 

From the above results, it is clear that a very good solution can be obtained 
with very little effort (5 to 10 iterations). Actually, the quality of the solution 
decreases when the number of Frank-Wolfe  iterations increases from 20 to 30. This 
was to be expected, since the problem solved by H5 is related but distinct from the 
original bilevel program. Similar results were obtained for heuristic NORM. Finally, 
table 4 illustrates the behavior of the objective as a function of the parameter ~. The 
resulting curve is convex-shaped. This feature could be exploited if one is looking 
for the optimal value of ~. 

Table 4 

Evolution of the objective of algorithm H5 as a function of d~ 

: 0.15 0.20 0.25 0.30 ' 0.35 0.40 0.45 1.0 

objective : 82.38 81.84 81.78 81.95 82.20 82.59 82.83 86.18 

Remark 

The algorithm was also tested on a five-arc network (Braess paradox network). 
Heuristic H5, with ~j set to 0.2, converged in three iterations to the optimal solution 
obtained using the MINOS nonlinear programming code, and reported in [3]. On 
this same example, slightly suboptimal results were obtained by EDO and Hooke -  
Jeeves in a number of iterations ranging from 24 to 38. [] 
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6, C o n c l u s i o n s  

In this paper, we showed that algorithms initially designed for solving NDP, 
where all arcs are subject to improvement and have zero initial capacities, could 
also solve very efficiently NDPs under more general conditions. The efficiency of 
the proposed methodology relies on deriving, in explicit or implicit form, the functional 
relationship relating optimal capacities to flows, thus reducing the initial problem 
to a convex traffic assignment problem. The heuristics are robust and easy to 
implement. In particular, no initial lower or upper bounds on the design variables 
are required. Indeed, the number of Frank-Wolfe steps required to obtain a good 
solution is so low that, facing a difficult problem, one should solve NDP using 
NORM and H5 with several different values for the parameter ~. 

Appendix 

INTEGRABILITY OF THE COST FUNCTION ARISING IN THE IOA ALGORITHM 

The IOA algorithm consists of iteratively repeating the following two steps: 

( 1 ) Optimization step 

min ~foCa(f,,lYo)+ )'ga(Yo)" Y~Y a~Yl 
(2) Assignment step 

It 

min a ~  f Co(t/Yo)dt. 
0 

"['he IOA algorithm can be viewed as a block Gauss-Seidel scheme for finding a 
solution ( y ' , f ' )  to the variational inequality 

~(Ya-Ya)[ (fa t 2 (f~.l ] " - C~ + ~.g'~ ( y~ ) (optimality conditions) 
a~ J! Ya ) \ Ya ) 

+ 7' ~ (f." -fo)Ca (equilibrium ~ndit iom) (9) 

<_0 V y e  Y ,F~ q~, 

where ~, is an arbitrary positive constant. Indeed, the solution set to (9) r e m a i n s  

unchanged, and the IOA iterates are unchanged, if the second inequality is premdtiplied 
by 7. This merely multiplies all path lengths by a positive constant. 
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We want to show that the only functional forms for which the cost function 
of the variational inequality (9) is integrable, i.e. is the gradient of  some function 
convex in both y and f, are of  the BPR form: 

ao + &(glyo) p. (1o) 
where p is a nonnegative constant identical for all arcs of the network, and the 
logarithmic form: 

ao + & In (g/yo). 

A direct consequence of this result is that, if the delay functions are of  the form 
(I0). then IOA converges from an arbitrary feasible starting point (y0 fo) to the 
Nash equilibrium solution corresponding to (9). 

The cost function of (9) will be integrable if there exist functions @,,(f,,, y,,) 
satisfying the system of partial differential equations: 

fa )+ 2tg,a(ya) ' 
byo ~ 

a~. = rco(L a~o 7 )  
(11) 

To simplify the notation, we omit the separable term gf,(yo) and the arc 
indices from (I1) and obtain the system: 

) 2 c , ( )  s 
7 7 ay (12) 

°°' ;ac Let h(x) = (t)dt. We have: 

/ 

L)dt ~Kf,>') = rf C(y 
0 

Hence: 

= 

Y +K(y). 

a~ rh ( f f + K ' (y )  

= y) 
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From the above identity, we have K ' ( y )  = O. Also. after setting x = f l y .  we obtain 
the Euler equation: 

x2h"(x)  - yxh ' ( x )  + ")'h(x) = 0, (13) 

which admits the two linearly independent  solutions: 

hi(x)  = x. hz(x) = x I/r. 

For 7'4 1, the general solution to (13) is: 

h(x) = ax  +/3x r 

and we have: 

C(x) = h ' (x )  = a + fix r- i 

which is of  the form (10) with p = 7 '-  1. Also, p must  be nonnegat ive since C,,(fa/  
Ya) has to be an increasing function off , ,  over  the nonnegat ive axis. 

If 7'= 1, then the general solution to (13) is: 

h(x) = tax + fix In x 

and: 

C ( x ) =  a + fl + fl ln x, 

which is of  the required logarithmic form. [ ]  

Remark 

If delay functions are of the BPR type with exponent  p, or of  the logari thmic 
form ct + fl In x 7'= p + 1, we have 7'= p + 1 and IOA solves the optimization problem: 

Io 

min )-" f C a ( t / y a ) d t +  ..... ! Xga (ya ) ,  
a~a p +  1 

0 

which is a member  of the H5 family of  optimization problems. We therefore conclude 
that H2 is subsumed by H5 in those cases. Finally, note that the logari thmic form 
yields negative values for small flows, and is therefore of  limited interest. 
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