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Abstract 

The bilevel programming problem (BLPP) is a two-person nonzero sum game in 
which play is sequential and cooperation is not permitted. In this paper, we examine 
a class of BLPPs where the leader controls a set of continuous and discrete variables 
and tries to minimize a convex nonlinear objective function. The follower's objective 
function is a convex quadratic in a continuous decision space. All constraints a r e  

assumed to be linear. A branch and Ix~und algorithm is developed that finds global 
optima. The main purpose of this paper is to identify efficient branching rules, and to 
determine the computational burden of the numeric procedures. Extensive test results 
are reported. We close by showing that it is not readily possible to extend the algorithm 
to the more general case involving integer follower variables. 

!. Introduction 

The bilevei programming problem (BLPP) can be viewed as a static Stackelberg 
game in which control of the decision variables is partitioned between two players 
who seek to minimize their individual objective functions 17,181. Play is sequential 
and noncooperative. Perfect information is assumed in that either player knows the 
objective function and allowable strategies of the other. 

This type of leader-fol lower game can be used to model many hierarchical 
systems in which two autonomous agents make decisions in a prescribed manner. 
Applications can be found in such areas as govemment regulation [ 10l and decentralized 
control [31. In addition, decomposition procedures can be interpreted to fit the 
format of these games II11. 
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Throughout this paper, we examine BLPPs with convex quadratic objective 
functions, linear constraints, and both continuous and binary decision variables. In 
the next section, the BLPP is presented together with its single-level equivalent 
formulation. Here, the leader is given control of all binary decision variables. A 
branch and bound algorithm for solving the resultant problem is given in section 
3. Various branching techniques are examined in section 4 and computational results 
are presented. In section 5, we show that a branch and bound approach may fail if 
binary variables are introduced into the follower's problem. Finally, we conclude 
with an assessment of the methodology. 

2. Single-level equivalent 

In the model, it is assumed that the leader moves first and selects both x, an 
n~-dimensional vector of continuous variables, and w, an n2-dimensional vector of 
binary variables, in an attempt to minimize a nonlinear function F(x, w, y(x, w)). 
This notation stresses the fact that the leader's problem is implicit in the follower's 
variables y. Having observed the leader's choice, the follower reacts by selecting 
y, and n3-dimensional vector of continuous variables, to minimize his nonlinear 
objective function f(x, w, y). Note that the leader's choice of strategy affects both 
the follower's objective and allowable decisions, and that the follower's choice 
affects the leader's objective. 

The BLPP corresponding to this game takes the following form: 

minimize F(x. w. y(x. w)), where y solves (la) 
X.  w 

minimize f(x. w. y) (lb) 
Y 

subject to g(x, w, y) < O, (lc) 

w tE  {0, !}, l =  1 . . . . .  n 2, ( ld)  

where g(x, w, y) is an m-dimensional vector-valued function. 
If F, f and g are linear and n z = 0 (no discrete variables), the resulting 

formulation of (1) has been solved using several approaches. One approach 
involves vertex search 18,91, while a second approach begins by replacing the 
follower's problem (lb) and (lc) with his Kuhn-Tucker  conditions to form a standard 
optimization problem, and then using some type of implicit enumeration to find the 
solution 15,6,131. In addition, a penalty function approach has been examined by 
Anandalingam and White [21 and a variable elimination algorithm was developed 
by Hansen et al. [141. Finally, Jtidice and Faustino [15] reformulated the BLPP as 
a linear complementary problem to obtain a solution. 

A few versions of (1) with continuous variables and nonlinear F, f and g have 
been solved. Aiyoshi and Shimuzu [ I ] developed a penalty method for such problems 
but were able to handle only small test cases. Their approach was hampered by slow 
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convergence and an inability to verify global optimality regardless of  model  structure. 
More recently, Bard [4] proposed an efficient branch and bound scheme for the 
convex case where F and f are quadratic and g is linear;, Edmunds  [1 I1 extended 
this work to deal with more general forms. Others, including Basar and Selbuz [71 
and Tolwinski  [20], have examined the nonlinear  mult i level  formulat ion for opt imal  
control problems with strictly convex quadratic cost functions and linear equali ty 
constraints.  Finally, Luh et al. [16] address the case where all the decision variables 
are discrete. 

To solve (1) with n 2 > 0, we begin by replacing the follower's opt imizat ion 
problem with appropriate K u h n - T u c k e r  conditions. This  leads to 

minimize  F(x, w. y) 
x .w,y . l~  

subject to Vyf(x.  w, y) + I.tVy g(x, w, y) = O, 

g(x, w, y) < O, 

#>_0, 

l.tg(x, w, y) = O, 

w t ~  {0,1},  l =  1 . . . . .  n 2, 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

(21") 

where /.t is an m-dimensional  vector of Lagrange multipliers.  
In the sequel,  we assume F is convex,  f is a convex quadratic function, and 

all the e lements  of  g are linear. This implies that (2b) is linear, and that a global 
solution of  (2) likewise solves (1) [11,181. However,  (2) is a nonconvex program 
and may have saddle points and local optima. We ci rcumvent  this difficulty by 
relaxing the complicat ing constraints (2e) and integrality requirements (2t") in order 
to obtain a convex program in cont inuous variables. Branch and bound is then used 
to enforce feasibility. 

In part icular ,  cons ider  a relaxation of  (2) obta ined by e l imina t ing  the 
complementary  slackness condit ions (2e), and replacing the integrality requirements  
(2f) by the bounds 0 < w t <_. I, l = 1 . . . . .  n2.This results in an easy-to-solve convex 
program. Feasibility with respect to complementary slackness conditions and integrality 
requirements  on w can then be achieved by selectively introducing constraints 
//i = 0 or gi = 0, and w t = 0 or w t = ! to the formulation. 

3. Branch and bound algorithm 

In a previous work, Edmunds [11] solved (1) with only continuous variables 
using branch and bound to satisfy the complementary slackness conditions (2e). We 
now extend this approach by including integer variables in the leader's problem and 
considering constraints of the form w t = 0 or w t = 1 in the search tree. 
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When the convex program described in section 2 is solved, some of  the 
relaxed constraints may be violated. In our procedure, one of the violated complementary 
slackness conditions or integrality requirements is selected and two subproblems 
are set up. If the ith complementary slackness condition is selected, the first subproblem 
corresponds to the case where/1, = 0 and second to g, = O. Similarly, if the lth integrality 
requirement is selected, the first subproblem corresponds to the case where w t = 0 

and the second to w t = i. Solutions to the two subproblems are obtained and the 
procedure is repeated. The search continues until all of  the complementary slackness 
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Fig. t. Branch and hound algorithm. 

conditions (2e) and integrality requirements (2f) are satisfied. The algorithm terminates 
when either all subproblems have been solved, are known to have solutions that are 
suboptimal, or are infeasible. This modified breadth-first branch and bound search 
is implemented in the algorithm described below. Alternative search techniques are 
discussed in section 4. A flowchart of the algorithm is displayed in fig. 1. 
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In the following discussion, we denote the incumbent lower and upper bounds 
on the leader objective function as _F and F,  respectively. A live node refers to a 
subproblem solution which violates one or more of conditions (2e) and (219, and 
has an objective function value lower than F. The variable j indexes the s e t  

of live nodes, while k is an iteration counter. Finally, let D = { 1, 2 . . . . .  m, m + 1, 
m + 2, • • • ,  m + n2} be the index set for the m complementary slackness conditions 
(2e) and the n 2 integrality conditions (2f). 

Step 1" 

Step 2 : 

Srep 3: 

Step 4: 

Step 5: 

(Initialization) Set P = ,,* and k = 0. 

(Relaxed solution) Solve (2) with (2e) relaxed and (2f) replaced by 0 < w t < 1 
for all I. If (2e) and (2f) are satisfied, label the solution (x °, w °, y°) and 
set P = F(x', w', y'); otherwise, this subproblem solution corresponds to 
a live node. 

(Update lower bound) Let j" index the live node with minimum objective 
function value. Set _F= objective function value for subproblem j ' .  

(Objective tolerance) If IF - _F] is within tolerance, terminate with an e- 
optimal solution (x °, w', y°). 

(Branching) For the solution corresponding to live node j ' ,  choose the 
index in the set D corresponding to 

max(I ]z~'g~'l, min(w~', (1 - wtJ')) 1 

Step 6: 

Step 7: 

Step 8: 

Step 9" 

Step 10" 

Step 11" 

and label the index i'. 

(First subproblem) Add one of the two constraints which may be used 
to enforce the condition associated with index i" and solve. 

(Fathom) If the subproblem is infeasible or F(x k, wk, y k) > F, go to 
step 10; otherwise, label solution (x k, w k, yk, i.tk) and add this subproblem 
solution to the set of live nodes. 

(Update upper bound) If (2e) and (2f) are satisfied at (x k, w k. yk), then 
set (x', w', y ' )  ~ (x k, w k, yk), p = F(x k, w k, yk) and remove the subproblem 
solution from the set of live nodes. 

(Objective tolerance) If [F - _F] is within tolerance, then terminate with 
e-optimal solution (x', w °. y') .  

(Backtrack) If both subproblems associated with condition i '  have been 
examined, then go to step 3. 

(Second subproblem) Remove the first constraint added at step 6 and 
append the second constraint associated with condition i'. Solve subproblem, 
set k +--k + 1 and go to step 7. 
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In step 1, the upper bound is set to infinity and the iteration counter is set 
to zero. A relaxed version of (2) is solved at step 2, and the upper bound is updated 
if this solution happens to satisfy constraints (2e) and (2f). At step 3, the lower 
bound is set equal to the minimum objective function value of all live nodes, and 
the upper and lower bounds are compared in step 4. 

A violated complementary slackness condition or integrality requirement is 
selected in step 5 to be satisfied by adding a constraint in step 6. In step 7, this new 
subproblcm is fathomed if it is infeasible or its solution is worse than the incumbent 
upper bound, lp+ step 8, the upper bound is updated when appropriate and compared 
with tile lower bound in step 9. 

If both subproblcms associated with index i" have been solved, step 10 returns 
control to step 3, where a new live node is selected for further exploration. Otherwise, 
the second subproblcm is formulated and solved in step 11. 

4. ( ' omputa t iona l  experience 

Tile basic algorithm has been coded in VS FORTRAN to run on an IBM 
3(181-D mainframe. A successive quadratic programming (SQP) package is used to 
solve the subproblcms at steps 2, 6 and I 1 (see Fan et al. [ 12]). The purpose of the 
Iollowi~lg numerical tests is to identify the most promising branching strategy for 
implementation in step 5. This is done by comparing a variety of breadth-first and 
depth-first search techniques. 

The randomly generated problems used for this testing are characterized by 
convex quadratic objective functions and linear constraints (sec Edmunds 11 II for 
a discu,+sion of the generation procedure). As indicated in section 2, the QPs associated 
~ith the relaxation of these problems are convex, implying that global optima can 
bc obtained at each node in the branch and bound tree. 

The breadth-first search technique outlined in section 3 was the one ultimately 
chosen for implementation. One version of this approach that works well for standard 
mixed-integer linear programs with ze ro -one  variables [19] is to select one or more 
violated conditions in step 5 and generate the associated subproblems. For example, 
if two violated conditions at node k are selected, each of the subproblems derived 
would incorporate two additional constraints. Hence, there would be a total of  four 
subproblcms associated with node k which would be generated and solved. We use 
the parameter q to refer to the number of violated conditions that are selected to 
lk~ml related subproblcms. Tile cases where I/= I and 2 are examined below. 

A depth-first search technique may also be used to explore the branch and 
bound tree. ltcre, the most recently generated node is selected for further exploration 
unless the problem is infeasible or the objective function value is greater than the 
upper bound. 

Branching rules determine which constraint is to be added to form the next 
subproblem in tile depth-first search, and greatly affect the efficiency of the approach 
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(see Bard and Moore [51). If violated complementary slackness condition i is selected 
according to step 5, one branching rule may require that the constraint #i = 0 be 
added to form the next subproblem, while another rule may require the addition of  
g, = 0. The constraint not selected is added later during the backtracking operation. 
We examine the following three branching rules. 

RULE 1 

If a complementary slackness condition has been selected in step 5, include 
constraint u, = 0. If an integrality requirement has been selected, include constraint 
wt=O. 

RULE 2 

If a complementary slackness condition has been selected in step 5, include 
constraint g, = 0. If an integrality requirement has been selected, include constraint 
w t =  1. 

RULE 3 

If a complementary slackness condition has been selected in step 5, and 
~, < - g , ,  include ,u, = 0; otherwise, include g, = 0. If an integrality requirement 
has been selected and w t < 1 - w  t ,  include constraint w t = 0; alternatively, include 
wt= 1. 

Note that rule 3 selects the constraint that is most nearly satisfied by the current 
solution. The idea is that the addition of this constraint will introduce the smallest 
possible perturbation into the problem. 

In tables 1 through 5, ten test problems involving 2 continuous leader variables 
(n I = 2), 3 binary leader variables (n 2 = 3), 5 follower variables (n 3 = 5), and 5 inequality 
constraints (m = 5) are solved. All continuous variables are free. Each table reports 
results using a different search technique. In all, we investigate breadth-first search 
with rI = 1 and r/= 2, and depth-first search using branching rules 1,2 and 3. Output 
statistics include CPU time (seconds), the total number of  nodes in the branch and 
bound tree, and the node at which the optimum is found. The column labeled 
"Funct. calls" indicates the number of times each function in the problem is evaluated. 
The column labeled "Deriv. calls" indicates the number of times the partial derivative 
of each function is evaluated. Table 6 provides a summary of the mean values 
reported in tables I through 5. 

It is clear from the data in table 6 that the breadth-first search technique with 
1"/= 1 provides superior performance with regard to computation time. As opposed 
to depth-first search, this technique offers the flexibility to explore the most promising 
nodes first rather than always branching on the most recently generated candidate. 
Hence, good upper bounds are found quickly and large portions of  the tree can be 
eliminated from consideration. 
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Table 1 

Breadth-first search with 77 = 1 

Virtual Total Opt. Funct. Deriv. 
Prob. CPU sec nodes node calls calls 

1 3.2 5 5 108 1150 
2 7.2 13 8 368 2575 
3 6.0 7 7 137 1575 
4 5.0 7 6 213 1675 
5 5.1 9 6 306 1900 
6 11.8 15 13 349 3250 
7 9.5 15 I 1 413 2950 
8 3.0 3 2 82 800 
9 22.9 9 9 598 4100 

I 0 7.7 7 7 142 1675 

Mean: 8.1 9 7 271 2165 

Table 2 

Breadth.first search with 7/= 2 

Virtual Total Opt. Funct. Deriv. 
Prob. CPU sec nodes node calls calls 

I 3.2 5 5 108 1150 
2 8.0 17 6 644 2925 
3 7.2 9 7 270 2125 
4 5.2 7 6 ! 79 1775 
5 3.6 7 4 177 1400 
6 11.8 15 6 303 3300 
7 9.0 15 I 1 397 2850 
8 3.0 3 2 82 800 
9 40.2 13 13 1258 6100 

10 7.9 7 7 158 1775 

Mean: 9,9 10 7 358 2420 

Table 3 

Depth-first search with rule 1 

Virtual Total Opt. Funct. Deriv. 
Prob. CPU sec nodes node calls calls 

1 5.1 9 9 254 1800 
2 6.6 13 5 402 2425 
3 12.0 17 15 550 3675 
4 88.9 15 13 4745 13325 
5 4.6 9 8 212 1825 
6 18.1 19 9 426 3925 
7 11.3 17 8 545 3350 
8 2.9 3 2 81 800 
9 43.1 21 18 1211 7500 

I 0 23.2 33 32 762 6825 

Mean: 21.6 16 12 919 4545 
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Table 4 

Depth.first search with rule 2 

Virtual Total Opt. Funct. Deriv, 
Prob. CPU sec nodes node calls calls 

1 3,2 5 3 147 1 I00 
2 8.5 17 16 654 3025 
3 151.0 27 26 1825 7675 
4 8.5 i 3 ! 2 421 2825 
5 4.9 9 4 260 1825 
6 40. I 19 18 1792 7025 
7 I 0.0 15 14 429 3050 
8 7.7 15 15 442 2875 
9 18.3 l I 9 531 3925 
I0 38.4 I l 9 760 4025 

Mean: 29. l 14 13 726 3735 

Table 5 

Depth-first search with rule 3 

Virtual Total Opt. Funct. Deriv. 
Prob. CPU sec nodes node calls calls 

1 4.3 9 8 199 1700 
2 6.7 13 5 402 2425 
3 6.4 7 4 186 1775 
4 89.0 15 13 4745 13325 
5 4.8 9 8 212 1825 
6 15.1 15 4 295 3300 
7 I 0.0 15 5 396 2950 
8 2.9 3 2 81 800 
9 43.5 21 17 1208 7375 
10 43.8 27 26 1487 8300 

Mean: 22.7 13 9 921 4378 

Table 6 

Comparison of techniques 

Strategy: 

Mean Mean Mean Mean Mean 
virtual total opt. funct, deriv. 

CPU sec nodes node calls calls 

= I (breadth-first) 8.1 9 7 271 2165 

77 = 2 (breadth-firsO 9.9 I0 7 358 2420 

Rule 1 (depth-firsO 21.6 16 12 919 4545 

Rule 2 (depth-first) 29.1 14 13 726 3735 

Rule 3 (depth-first) 22.7 13 9 921 4378 
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We now investigate some larger problems using this strategy. In table 7, 
results from test problems with 5 continuous leader variables, 5 binary leader 
variables, 10 follower variables, and 10 inequality constraints are reported. The 
wide variation in computation time is due to the variation in the number of nodes 
examimed. 

Table 7 

Breadth-first search, problem set l. r/= 1 (n I = 5, ~ = 5, ~ = 10, m = 10) 

Virtual Total Opt. Funct. Deriv. 
Prob. CPU sec nodes node calls calls 

1 463 7 7 270 4000 
2 142.4 33 32 679 15050 
3 147.7 15 8 329 7350 
4 109.4 21 12 479 10400 
5 406.1 71 16 1653 35350 

Mean: 170.4 29 15 686 14430 

Table 8 

Breadth-first search, problem set 2, r/= 1 (n I = 7, n 2 = 7, ~ = 12, m = 12) 

Virtual Total Opt. Funct. Deriv. 
Prob. CPU sec nodes node calls calls 

1 573.5 17 17 492 13702 
2 278.9 9 9 223 6138 
3 606.1 23 22 549 15066 
4 465.6 19 19 454 12586 
5 ") 900.0 . . . .  

Meanb): 481.0 17 17 430 11837 

')Solution not found in 900 CPU seconds. 
b)Mean excluding problem 5. 

Finally, results from a third problem set are shown table 8. These problems 
involve 7 continuous leader variables, 7 binary leader variables, I2 follower variables, 
and 12 inequality constraints. We have added two more binary variables and two 
more constraints, thus increasing the size of the corresponding tree by a factor of 
sixteen. The results indicate an approximately threefold increase in computational 
effort, indicating that the algorithm is not necessarily exponential. Nevertheless, as 
n 2 and m grow, it is less likely that we will be able to obtain optimal solutions in 
a reasonable amount of time. Given the inherent difficulty of the problem, larger- 
scale instances may prove to be totally intractable. 

Note the wide variation in computation times. As in most branch and bound 
approaches, there is an element of chance involved in the success of the search 



T.A. Edmunds. J.F. Bard. Algorithm for nonlinear BLPP 159 

procedure. If there are many promising branches in the tree which must be explored, 
then the procedure will be time consuming. In such cases, a tradeoff of  computation 
time for an &optimal solution may be a prudent choice. 

5. Integer follower decision variables 

In this section, we consider BLPPs in which some of the follower's decision 
variables are discrete. The purpose is to show through illustration that it is not 
possible in general to extend the above ideas to this case. This result is to be 
expected because the follower's Kuhn-Tucke r  conditions identify the optimum only 
for continuous functions. Discrete variables in the follower's problem introduce 
discontinuities that preclude the use of  Kuhn-Tucke r  conditions. Similar findings 
are reported by Moore and Bard [17] for the linear BLPP. 

In the first example, we demonstrate the fact that the relaxed problem may 
not provide a valid lower bound on (1). Toward this end, consider the following 
BLPP: 

minimize F = (x - 2) 2 + (y - 2) 2 where y solves (3a) 
x 

minimize f =  y2 (3b) 
Y 

subject to 2x + 2y > 5, (3c) 

x - y < 1, (3d) 

3x + 2y <_ 8, (3e) 

y ~. {0, 1, 2}, (3t") 

where x is a continuous variable under the leaders control, and y is restricted by 
(3f) to take on one of  three values. 

In this problem, the leader attempts to attain a point as close as possible to 
(2, 2) by selecting a permissible value o fx  in accordance with constraints (3c), (3d) 
and (3e). The follower observes this value and chooses the smallest feasible integer 
for y. The geometry of this problem is illustrated in fig. 2. 

Now consider problem (3) with (31") relaxed. The set of  attainable points for 
the leader is shown by the darkened line in fig. 2, and is known as the inducible 
region. The continuous solution for this problem is point A, where x = 2, y = 1, and 
F(2, 1) = 1. Because these values satisfy (30,  we might conclude that a valid lower 
bound to (3) is F = 1. However, this conclusion is incorrect. If the leader chooses 
x = 4/3, the follower must choose the integer y = 2 and we attain the point B, where 
F(4/3, 2) = 4/9. Hence, the solution to the relaxed problem is worse than the solution 
to the original problem. This implies that the branch and bound procedure o f  
section 3 is no longer valid when some of  the follower's variables have integer 
restriction. 
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Fig, 2, Geometry for problem (3). 

The second example illustrates a situation in which the minimum of  F(x, y) 
does not exist. Consider the following BLPP: 

minimize F = ( x -  2) 2 + ( y -  2) 2 where y solves (4a) 

minihaize f =  y2 (4b) 
y 

subject to 2x + 3y > 6, (4c) 

x < 2, (4d) 

y E {0, 1, 2}, (4e) 

where x is a continuous variable under the leader's control. 
In this example, the leader attempts to induce the follower to choose y = 2 

while making x as large as possible. The constraint (4c) aids the leader by forcing 
y = 2 if x < 1.5. However, at x = 1.5, the follower changes his choice to y = !. Thus, 
the leader can never attain the value F(1.5, 2) = 0.25 but can get arbitrarily close; 
i.e. F ( I . 5 -  e, 2 ) =  0 . 2 5 -  e +  e 2, where e is an arbitrarily small constant. Hence, 
min{F(x,  y)} does not exist for (4). This situation is illustrated in fig. 3. 
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Fig. 3. Geometry for problem (4). 
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5. Summary and conclusions 

The main purpose of this paper has been to present a branch and bound 
algorithm that will solve linear-quadratic BLPPs containing integer decision variables 
under the leader's control. Breadth-first search techniques appear to be more efficient 
than depth-first search techniques in solving such problems. Test results confirm 
that setting up and solving two new subproblems at each iteration gives the best 
performance. More research is needed, though, to find ways of  cutting down the 
overall computational effort. 

Two examples are included in the final section to underscore some of  the 
difficulties associated with solving BLPPs in which both players have control of  
integer decision variables. One example illustrates the problem of finding valid 
lower bounds, while the other demonstrates that the minimum of the leader's objective 
function may not always exist. Together, these difficulties indicate that the branch 
and bound techniques developed in section 3 are not guaranteed to solve BLPPs in 
which the follower controls integer decision variables. 
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