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Abstract

In this paper, we discuss an SLCP algorithm for the solution of Bilevel Linear
Programs (BLP) which consists of solving a sequence of Linear Complementarity Problems
(LCP) by using a hybrid enumerative method. This latter algorithm incorporates a
number of procedures that reduce substantially the search for a solution of the LCP or
for showing that the LCP has no solution. Computational experience with the SLCP
algorithm shows that it performs quite well for the solution of small- and medium-scale
BLPs with sparse structure. Furthermore, the algorithm is shown to be more efficient
than a branch-and-bound method for solving the same problems.

1. Introduction
A Bilevel Lincar Program (BLP) can be defined as

minimize ¢'y +d'x
x€ R™
subject to x20

L T )
minimize a'y
y € R”

subject to A,y + A, x2 b,
x20, y=20,

where ¢, a€e R", d€ R™, A, € R"*", A,€e R"*™ and b € R".

The BLP has emerged as an important hierarchical optimization problem. A
large number of applications has occurred primarily in economic planning. Examples
of important applications of the BLP or Nonlinear Bilevel Program are described
in [4,10-12].

A number of algorithms have been developed for finding a global optimum
of the BLP. Among relevant procedures, we distinguish a penalty method (2],
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branch-and-bound methods [3,7], and an SLCP approach first introduced in [5].
However, the algorithm was not able to solve the BLP in all cases. Judice and
Faustino [9] modified that algorithm to fulfill such a goal. In this paper, we introduce
some improvements to the latter convergent SLCP algorithm.

Computational experience with our SLCP algorithm on the solution of small-
and medium-scale BLPs (n £ 150, m £ 300) indicates that the modifications stated
in this paper have improved the robustness of the algorithm to solve problems of
these sizes. The SLCP algorithm is shown to be competitive with the branch-and-
bound method for BLPs of small dimensions and becomes much more efficient
when the dimension of the BLP increases.

The organization of the paper is as follows. In sections 2 and 3, the SLCP
method is described together with the improvements presented in this paper. The
Bard and Moore branch-and-bound method is briefly discussed in section 4. Finally,
computational experience with both algorithms and the conclusions drawn from our
study are presented in the last scction.

2. An SLCP algorithm for the BLP
Consider the BLP as stated in (1) and the constraint set
H={(y,x)€IR"™™: A, y+A,x2b,y20, x20}.

A global minimum (Y, x) of the BLP is also an optimal solution of the following
Minimum Linecar Complementarity Problem (MLCP) (5]:

minimize ¢Ty + d'x
subject to a= -b+ A,y +A,x,

B=a-Alu,
x.y.u.a 20, y'B=u"a=0. 3)
In [9], we proposed a modification of the Bialas and Karwan algorithm [5] for the

solution of the MLCP (3). In this method, a parameter A is introduced and the objective
function is replaced by the constraint ¢y + d"x < A to obtain the following parametric

LCP:
a -b 0 0 A A u
Bl=| al+]0 A+ —AxT 0 0 l:y }, 4)
Yo 0 ! 0 —cT —gTjLx

LCP(A):
xyu apu20, y'B=u"a=0.
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The global minimum (y, ¥) of the BLP is the solution of the LCP(1), where 1 is
the smallest value of A such that LCP(A) has a solution. To find (y, x), the method
starts by solving the LCP(Ay) obtained from LCP(A) by omitting the constraint
c"y + d"x < A. This is done by a procedure to be explained in the next section. Let
(y% x°%) be the solution of this LCP and let A= c'y®+ d"x° Then the algorithm
solves a sequence of LCPs(4,), where {4,} is a decreasing sequence defined by

3.,,=cTy""+de""—‘yicTy""-e-de""l. (5)

with (y*~!, x*-1) being a solution of LCP(A,_,) and ¥ a small positive number.
The method terminates at iteration k such that LCP(A,) has no solution. When this
occurs, the solution (y*~!, x*~1) of the LCP(A,_,) satisfies

0<cTy* '+ dTx*" - VAL < y|cTy*- 1+ dTx* 1), (6)

where VAL is the value of the objective function of the BLP at the optimal solution.
Hence, if the BLP has a global optimal solution, the SLCP algorithm finds an &-
optimal solution of the BLP, where:

e=ylcTy V+dTxk . (7

In practice, if y is quite small, the solution (y*~!, xt~1) of the last LCP(4,_,) is
in many cases a global minimum of the BLP. In the last section, we discuss the
value that y should take in practice.

The steps of the SLCP algorithm are as follows:

Step 0: Let £=0.

General step: Solve the LCP(4;). If LCP(4,) has no solution, go to Exit.
Otherwise, let (y*, x*) be the solution of this LCP. Set

A‘k+ = CT)’**' dek_ 71 CT)’*‘* dek” (8)

where 7 is a fixed positive value.
Set k =k + 1 and repeat.

Exit: If k=0, then the BLP is infeasible, that is, H is empty. Otherwise
(y*~', x*~1) is an &-global minimum of the BLP, where € is given
by (D).

The efficiency of the SLCP algorithm depends essentially on the procedure
to solve the LCP(4,). There exist a number of algorithms for the solution of linear
complementarity problems [14]. However, these methods cannot be applied for
solving the LCP(A,), since this last problem is more general than the traditional
linear complementarity problem. In the next section, we describe a hybrid enumerative
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method for the solution of LCP(A,) that arise in the SLCP algorithm, and we discuss
its applicability to the solution of small- and medium-scale BLPs with sparse structure.

3. A hybrid enumerative method for the LCP(4,)

In this section, we first describe a hybrid enumerative method proposed in [9]
capable of solving the LCP(A,) that is required by the SLCP algorithm. Then we
discuss three modifications in the enumerative method that makes the SLCP algorithm
more robust. Consider the LCP(4,) in the form:

w=qg+Mz+ Nx, &)
w20,220,x20, (10)
Z"W"=0. i=1,2....."+n. (11)

where we R"*"*! 2z € IR"*" and x € R™. As in linear programming, a solution
(z, w, x) satisfying the lincar constraints (9) and (10) is called feasible. A solution
is complementary if the variables z, and w, satisfy (11). Variable z, is said to be the
complement (or complementary variable) of w, and conversely. An enumerative method
attempts to find a complementary solution by using only basic feasible solutions of
the system (9). To achieve this, the tree in fig. 1 is explored, where i}, i,,... are

Fig. 1.

integer numbers of {1,...,r+ n}. An initial feasible solution is obtained at node 1
by solving the linear program
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minimize z,
subject t0 w=¢q + pzy+ Mz + Nx (12)
75, 2, x, w20,

where z, is an anificial variable and p is a nonnegative vector satisfying p, >0
for all i such that ¢, < 0. This linear program is solved by a modification of the
Phase 1 with a single artificial variable [13]. This modificd procedure is described
in [9] and consists of minimizing the variable zy in such a way that whenever possible
the entering variable is chosen among the nonbasic variables whose complement is
also nonbasic. By doing this, we control the number of pairs of basic complementary
variables, and even a complementary solution can be obtained at the end of this
procedure.

Each one of the nodes k with k 2 2 is generated by solving a subproblem that
consists of minimizing a variable z, or w; subject to the linear constraints of the LCP
and some constraints z; = 0 or w, = 0. For instance, to generate node 4 of the tree
of fig. 1, it is necessary to solve the linear program

minimize z,

subject to w=q + Mz + Nux, z220,x20, w20, (13)
z,=0.

Such a linear program is solved by a modification of Phase 2 of the simplex method
that exploits the same idea of controlling the number of pairs of basic complementary
variables. Two cases may occur:

(i) If the variable minimized has value equal to zero, then it is fixed at zero in
all descendent paths of the tree.

(i)  If the minimum value of the variable is positive, then the branch is pruned
and the node is fathomed.

The enumerative method attempts to solve the LCP by generating successive
nodes of the tree, according to the process explained above. The algorithm either
finds a solution for the LCP (it is the first complementary feasible solution) or
cstablishes that the LCP has no solution (all the generated nodes of the tree are
fathomed).

The enumerative method is efficient only if few nodes are generated before
a complementary solution is found or it is verified that none exists. There are some
heuristic rules and some procedures that usually improve the efficiency of the
algorithm. The heuristic rules relate to the choice of the node of the tree and of the
branching pair (z,,, ;). These are detailed in [9]. The algorithm for generating

g’
nodes described before is an example of a procedure that reduces the search for a
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complementary solution. Next, we briefly discuss another technique that was introduced
in [1] and is applied in each node for the same purpose of reducing the overall
search.

Al-Khayyal's algorithm [1] is a modified reduced gradient method that finds
a local star minimum of the function

r+n

flz,w,x) =3 ziw;, (14)
i=1
that is, a basic feasible solution (z, w, X) such that

f(z,w,X)Sf(z,w, x)
for all its adjacent basic feasible solutions (z, w, x) of the feasible set of the LCP
{Gw,x):w=qg+Mz+Nx,220,w20, x20). (15)

If (z, w, X) is a basic feasible solution and (z, w, X) is an adjacent basic feasible
solution, then we can write

(z, w, X) = (2, W, X) + po(d®, d”, d*),

where g, is the minimum ratio of the simplex method and d = (d*, d”, d*) is a feasible
direction such that d*, 4™ and d* are the vectors of the components of d corresponding
to the z, w and x variables, respectively. Due to the special structure of the LCP(A;)
presented in (4), then {9]

r+n
fE W%, D) =f(2, W,3) = po Y, (5:di+ Wid]) = —po8;,
i=1
where e, is the reduced-cost of the nonbasic variable of index s associated with the
linear function

r+ana

Z(E“W,"*‘W,‘Z,'). (16)
i=1

Therefore, Al-Khayyal's modified reduced-gradient algorithm is in this case a simplex-
type method in which the reduced costs Ej of the nonbasic variables are associated
with the linear function (16). We also incorporate Bland's rule [6] to avoid the
occurrence of cycling in the degenerate pivot steps [8].

The reader is referred to [9] for a detailed description of the steps of the
hybrid enumerative method that incorporates this last algorithm, the procedures for
generation of nodes, and the heuristic rules for choice of nodes and the complementary
pairs of variables. The hybrid enumerative method can be implemented for solving
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large and sparse LCPs. The implementation uses reinversion and updating techniques
for the LU decompositions of the basis matrices [15] used by the simplex-type
procedures and special data structures. We recommend [8) for a description of this
implementation.

As discussed in section 2, the hybrid enumerative method is used to solve
the LCPs(4,) required by the SLCP algorithm. For any two values 4, < 4,_,, the
LCP(A,_ ) and LCP(4,) differ only in the last component of the vector q. Furthermore,
if B is the basis associated with the solution (z, w, x) of the LCP(4, _) obtained
by the hybrid enumerative method and ¢ is the right-hand side of the LCP(4,), then
the vector g = B~'q satisfies

g;j20 forall j=1,...,r+n and q,,,,;<0. an

Hence, the solution (z, w, x) of the LCP(4, _,) can be used as the initial basic
solution for the LCP(4,). Since the vector B~!q satisfies (17), the vector introduced
in (12) can be defined by

p=8[]]

where 0 € IR"* " is the null vector. The choice of this initial basic solution usually
provides great reductions in the computational effort of the hybrid enumerative
method. In fact, the algorithm quite often requires a small number of pivot operations
to find a solution for the LCP(4;).

Below, we introduce three modifications to the hybrid enumerative method
described above.

(i) In the procedure for finding a local star minimum of the function (14), we
use the same idea of controlling the pair of complementary basic variables
previously discussed. Hence, whenever possible, we choose the entering variable
from among the set of nonbasic variables such that ¢, > 0 and whose complements
are also nonbasic.

(ii) Whenever a solution of the LCP(&,) is found, we try to find another solution
of the LCP(4,) such that cTy + d'x has a smaller value. To do this, we try
to maximize the variable v, in such a way that the complementarity condition
z"w = 0 holds in each iteration. This is done by maximizing v, under the Basic
Restricted Simplex Rule described in [5], that is, we apply the simplex method
to maximize v, but in each iteration the complement of the entering variable
must be nonbasic. This kind of procedure, called MAXVAR, can terminate
in two possible ways:

(a) The maximum value of the variable v, subject to the linear constraints

of the LCP(A;) has been achieved. In this case, a global minimum for
the BLP has been found and the SLCP algorithm terminates (TERM = 1).
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(b) The variable v, can still be increased, but only by destroying the
complementarity condition, that is, all complements of the nonbasic variables
with negative reduced costs arc basic. In this case, 4 is updated by (8)
and another LCP has to be solved in the SLCP algorithm (TERM = 2),

As discussed in [9], in the last stages of the SLCP algorithm the LCPs tend
to be much more difficult to solve. The incorporation of the two proccdures
stated above usually reduces the computational cffort for the solution of the
last LCPs required by the SLCP algorithm. Despite this, the difficulty still
persists, panticularly for BLPs of larger dimensions. Our computational experience
with the SLCP algorithm has suggested that in many cases when an LCP is
quite difficult, if we reduce slightly the value of A, then the resulting LCP
is much easicr. Hence, we have decided to limit the number of pivot steps
that the solution of LCP(A) may requirc by a quantity NMAXPV given by
the user. If this number is achicved, then A, is updated by

Ak:lk“ﬂ’l&ull' (18)

where ¥ is a positive constant greater than y and the LCP(A,) is solved by
starting with the current basic solution. Furthermore, no limit on the number
of pivot steps is assumed for this latter LCP. If this LCP has no solution, then
the last complementary solution obtained by the SLCP algorithm is an £-optimal
solution of the BLP, where

E=YlchytTedid (19)

In the last section, we discuss the value that ¥ should take in practice.
These two latter modifications lead to the following algorithm, which is used

in cach iteration & of the SLCP method:

Step 0: Sct NMAX = NMAXPV, where NMAXPV is a positive number chosen by

the uscr.

Step 1: Apply the hybrid cnumecrative method to solve the LCP(A4,). If the number

of simplex pivot steps required by the hybrid enumecrative method attains
NMAX, updatc A, by (18), set NMAX = +eo (in practice, NMAX is set
cqual to a very large positive number) and repeat step 1. Otherwise, the
hybrid enumecrative method terminates and we go to step 2.

Step 2: If LCP(4;) has no solution, sct TERM =3 and go to Exit. Otherwise,

Exit:

apply the MAXVAR algorithm and go to Exit.
If TERM =1, the solution (obtained by thc MAXVAR algorithm) is a
global minimum for the BLP.

If TERM = 2, the iteration (k + 1) of the SLCP algorithm has to be performed
with 4, ,, given by (8).
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If TERM = 3, the solution obtained in the iteration (k- 1) of the SLCP
algorithm is an £or an £ global minimum for the BLP, depending on NMAX
1o be less or equal to + oo, repectively.

The incorporation of these modifications in the SLCP algorithm has produced
a more robust algorithm. This is reported in the last section of this paper.

4. A branch-and-bound method for the BLP

As stated in section 1, to gain a better idea of the ability of the SLCP
algorithm to solve BLPs, we have decided to compare it with a branch-and-bound
method developed by Bard and Moore [3]. In this section, we briefly describe this
latter algorithm. We write the MLCP (3) in the form

minimize fTz+d'x
subject to w =g + Mz + Nx, (20)

220, w20,x20, 2'w=0,
where

ve[g] e[yl ey G wele] o=[200-[2)

The branch-and-bound method starts by solving the linear program obtained
from (20) by omitting the complementarity condition z"w = 0. If the optimal solution
of this linear program satisfies this complementarity condition, then an optimal
solution of the BLP is at hand. Otherwise, there must exist a pair of complementary
basic positive variables z; and w;. The algorithm chooses a pair of such variables
(z,.w;) and generates the nodes of the tree of fig. 1 by minimizing z; , w; subject
to the linear constraints of the MLCP, respectively. In practice, it is advisable to
choose the pair for which z; w; is maximum.

In any iteration of the branch-and-bound method, a node of the tree is picked
(in practice, it is advisable to choose the node for which the objective function
fTz + d"x has the lowest value). After choosing the node, we solve a linear program
obtained from (20) by relaxing the complementarity condition and adding some
constraints of the form z;, = 0 or w;, = 0 corresponding to the variables that have
been fixed in the nodes belonging to a path from the current node up to the root
of the tree. As before, this linear program is solved by Phase 2 of the simplex
method starting from the basic solution corresponding to this particular node. If the
optimal solution of this linear program satisfies the complementarity condition, then
it is stored as the best solution and is called an incumbent. All the nodes for which
the value of Tz + d"x is larger than or equal to the value of the objective function
corresponding to the incumbent are discarded (they are fathomed). If no unfathomed
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nodes exist, the algorithm terminates with a global solution given by the last incumbent.
Otherwise, the procedurc is repeated.

From this brief description, it is not difficult to see that the implementation
for the hybrid cnumcrative method can be used with minor modifications for the
branch-and-bound method. We developed such an implemenation for solving small-
and medium-scale sparsec BLPs. As before, the lincar programs are solved by an
implementation of the simplex method for large-scale linear programs, which is
described in [15].

In theory, the branch-and-bound method finds a global minimum of the BLP
arc there is no reason to assume that this method is more or less efficient than the
SLCP algorithm. Both methods require an implicit search for a global minimum,
whencee the computational cffort grows exponentially with the dimension of the
BLP. However, in the branch-and-bound method there is a conflict between the
solution of the lincar programs required in cach node and the generation of the
nodes. In fact, when we solve a linear program in a node the value of z'w can be
increased, while the value of the objective function f7z + d7x can be increased when
a node is gencrated. This conflict is not present in the SLCP algorithm, since only
LCPs arc solved in cach iteration of the algorithm. Furthermore, the SLCP algorithm
contains a number of efficient techniques that reduce substantially the search for
a global optimal solution of the BLP. So, it scems that the SLCP algorithm will be
more cfficient than the branch-and-bound method. Computational experience presented
in the next scction confirms exactly this statement, and the gap increases dramatically
with an increasc of the dimension of the BLP.

S. Computational experience

In this section, we present some computational experience with the SLCP and
branch-and-bound algorithms discussed in this paper on the solution of some small-
and mcdium-scale sparsc BLPs. Two scts of test problems have been considered.
The first set contains problems with the same characteristics of those described in
{7]. while the second sct has been described in {9). As discussed in that paper, we
have associated with cach matrix A = [4,, A,] two test problems simulating conflicting
(problems TPG) and nonconflicting (problems TPN) situations.

The characteristics of the test problems and the experimental results for the
SLCP and branch-and-bound algorithms ar¢ presented in tables 1, 2, 3 and 4. All
the tests have been performed on a CDC CYBER 180-830 at the University of
Porto. The paramcters included in the tables have the following meanings:

n = number of sccond-level variables y,
m = number of first-level variables x,
r = number of constraints = number of rows of A = [A,, A,],

rsp = rclative sparsity of A =[A,, A,] = (number of nonzeros of A)/(n + m),
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psp = sparsity percentage of A = [(number of nonzeros of A)/(r x (n + m))] x 100,
nrow = number of rows of thc MLCP =r + n,

ncol = number of columns of the MLCP=r+n+m,

NLCP = number of LCPs(4,) to be solved by the SLCP algorithm,

ND = number of nodes required by the branch-and-bound method,

NI = total number of simplcex pivot operations required by the SLCP or branch-
and-bound algorithms,

NS = the algorithm has not becn able to terminate after 20,000 simplex pivot
steps,

T = CPU time in scconds for the SLCP and branch-and-bound algorithms.

The first aim of our computational study was to investigate the importance
of the modifications stated in this paper on the efficiency of the SLCP algorithm.
To do this, the test problems described in [9] were solved by the modified SLCP
mcthod with NMAXPV =500, y=0.01 and y=0.05. We denote by SLCP
METHOD 1 such an algorithm to distinguish it from the SLCP METHOD 2 in
which y=0.001 and ¥ =0.01.

A comparison between the results of the SLCP METHOD 1 presented in
table 1 and those of the table of [9] leads to the conclusion that the modifications
described in this paper improve the cfficiency of the SLCP algorithm.

The SLCP algorithm is designed to find an €-optimal solution of the BLP.
If the algorithm terminates with the MAXVAR procedure, then a global minimum
is achieved. Otherwise, only e-optimality can be assured in theory. Hence, it is
intcresting to investigate the influence that a reduction of the value of € (y and ¥)
has on the cfficiency of the SLCP method. The SLCP METHOD 2 was considered
for such a purpose. In wable 1, we have added a column hecaded by OPT in which
the valuc a mcans that the SLCP method can assure, in theory, at least a% of the
optimum (o= 0 mecans that a global minimum is at hand). In the case of a#0, it
secems important to verify whether the solution obtained by the SLCP method is a
global minimum. To sce this, we have solved the same problems by the branch-and-
bound method. We have writien Y (N) when the solutions of the two methods agree
(do not agree), that is, when the SLCP algorithm has (has not) found a global
optimum. The branch-and-bound method could not solve the BLPs of larger dimensions
in reasonable time (less than 20,000 simplex pivot operations). Hence, we cannot
scc whether the solution found by the SLCP method is the global minimum for these
BLPs. We write a question mark in the column OPT for these test problems.

The results presented in table 1 lcad to the following conclusions:

(i) Both versions of the SLCP mcthod find an €-optimal solution for all the test
problems. The algorithms are quite fast in obtaining an €-optimal solution (see
the columns headed by OPTIMAL). However, the algorithms face somc
difficulties to terminate for BLPs of larger dimensions.
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(it) The SLCP METHOD 1 performs better than the SLCP METHOD 2. This is
not surprising, since the latter version uses smaller values for yand y. However,
the difference is not very large. Furthermore, the SLCP METHOD 2 can
assure, in theory, a solution that is closer to the global optimum.

(1ii) For all the test problems but one, the SLCP METHOD 2 was able to find a
global minimum (ecven when a> 0.1). The SLCP METHOD 1 has failed in
three cases. There is a test problem in which the SLCP METHOD 1 has found
the global minimum, but the second version failed.

(iv) The value ¥=0.05 had to be used for the SLCP METHOD 2 to terminate
problem TPGS8 in less than 20,000 simplex pivot operations.

These conclusions lcad to our recommendation to usc the version of the SLCP
mcthod in which y=0.001 and ¥ = 0.01. However, when (r + n) is large, it is more
advisable to set ¥ =0.05.

The value NMAXPV = 500 was used in the experimentations whose results are
presented in table 1. To gain a better idea of the value that NMAXPYV should take,
we have decided to allow an increase of this quantity in the SLCP METHOD 2 for
all the test problems in which the algorithm could assure only a percentage of the
optimum superior to 0.1. Wc¢ have run these test problems with NMAXPYV cqual to
1500, 3000, 4500.

The results presented in table 2 show that in terms of speed, too large values
for NMAXPV are not appropriate. However, NMAXPV = 500 is not the best choice
for a problem in which the number (r + n) of complcmentary variables is cqual to
300. So, if we arc only interested in the speed of the procedure, then a relatively
small valuec of NMAXPV (<10 (r + n)) should be used and ¥ should be set equal to
0.05 for large valucs of (r + n). If only precision is at stake, then NMAXPYV can take
larger values and ¥ = 0.01 is a good choice. Based on these and other computational
results, we recommend the SLCP method incorporating the modifications stated in
this paper with the following valucs:

NMAXPV =10 (r+n), y=0.001, 7=00l. 2n

and ¥ =0.05 when (r + n) is large.

In tables 3 and 4, the cfficicncies of the SLCP algorithm with the values given
by (21) and the branch-and-bound mcthod are comparcd. We also test another version
of the branch-and-bound mecthod in which the initial solution (and incumbent) is
given by the SLCP algorithm (it is denoted by Incumbent B.B). To perform the
comparative study, we have gencrated test problems in the following way:

(i) Each test problem TPi has associated certain values of r, n, m and degree of
sparsity.

(ii) For each TPi, five test problems arc considered in which the matrices are
generated by a technique similar to that in [9] (table 3) and in [7] (table 4).
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Table 2
Influence of NMAXPYV on the SLCP algorithm
Total Optimal
Problem r+n NMAXPV OPT
NLCP NI T NI T
500 26 1068 861 730 624 LY
1500 25 212 163 730 624 0.1,Y
TPG4 100 45 25 212 163 730 624  O.LY
4500 25 2212 163 730 624  01,Y
500 3 6657 856 4763 618 Ly
1500 29 5404 691 2541 332 LY
TPN7 300 3509 28 4979 638 2541 332 01 Y
4500 28 4979 638 2541 332 OLY
500 39 4257 776 2498 551 1,?
1500 39 5084 871 2498 551 1,7
TPG7 300 3509 39 6574 1051 2498 551 1.?
4500 38 7018 1090 2498 551 01,7
500 40 6910 1040 2380 382 LN
1500 43 10621 1568 S166 777 1.2
TPNE 300 3500 43 12161 1789 5166 777 1.7
4500 43 9741 1430 5166 777 )
500 69 8843 2123 7879 1980  5.?
1500 69 9854 2340 7879 1980 5.7
TPGE 300 4550 69 11542 2660 7879 1980  5.?
4500 69  13.016 2952 7879 1980  5.?

Tables 3 and 4 contain the information of the behavior of the algorithms for
solving these five test problems of each TPi by showing the best (B), worst (W)
and average (A) performance in terms of simplex pivot operations. As before, the
information conceming the SLCP method contains a column headed by OPT with
similar meanings for the rows B and W. The numbers that appear in the column
OPT and rows A represent the number of times in which the SLCP method has
found the global minimum. If for a TPi there is at least a test problem for which
an algorithm has not been able to terminate in less than 20,000 simplex pivot
opcrations, then we write in row A the number of times that the algorithm has
successfully terminated.

The results presented in tables 3 and 4 lead to the following conclusions:

(i) The SLCP algorithm is quite efficient to find an e-optimal solution (see column
Optimal). However, it faces difficulties to terminate for BLPs of larger
dimensions.
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(i) The branch-and-bound method is competitive with the SLCP method for
BLPs of small dimensions (in some cases, it is even more efficient), but it
is significantly less efficient for BLPs of larger dimensions.

(iii) The use of an incumbent given by the SLCP method improves the efficiency
of the branch-and-bound method for BLPs of larger dimensions. However,
even in this case the branch-and-bound method is not competitive with the
SLCP algorithm.

(iv) The SLCP algorithm has found the global minimum of the BLP in more than
60% of the test problems.

The computational study presented in this paper shows that the branch-and-
bound method as stated in [3] is not an efficient procedure to solve BLPs of
rcasonable dimensions. Furthermore, the use of an incumbent given by the SLCP
algorithm improves the efficiency of the branch-and-bound method. In practice, a
criterion is required that allows the user to move from the SLCP algorithm to the
branch-and-bound method. Since our experience has shown that the hybrid enumerative
method only requires a large number of simplex pivot operations in the last stages
of the SLCP algorithm, then such a criterion can be designed by using the quantity
NMAXPYV introduced in section 3. So, we recommend the user to fix initially
NMAXPYV and to apply the SLCP algorithm. If the number of simplex pivot operations
required by the hybrid enumerative method in an iteration k 2 1 of the SLCP algorithm
attains NMAXPYV, then the solution obtained in the iteration (k — 1) is an incumbent
for the branch-and-bound method and this method starts from this basic solution.
Such a procedure for finding a good incumbent for the branch-and-bound method
can be called a truncated SLCP algorithm. The experience shows that the value of
NMAXPYV should not be chosen either too large or too small. NMAXPV = 10 (r + n)
is probably a good choice.

Computational experience with larger BLPs has shown that the truncated
SLCP algorithm is not sufficient to provide a robust branch-and-bound method for
the BLP. In our opinion, the method lacks good lower bounds. The generation of
good lower bounds for the branch-and-bound method is an important research
aspect and deserves some attention.

Recently, Hansen et al. {7} have developed a new branch-and-bound method
for the BLP. The algorithm is based on the idea of eliminating the variables y in
the follower's problem in order to reduce the complexity of the BLP. This is done
at the expense of the generation of many 0-1 logical variables. A branch-and-bound
method is then applied to solve the resulting 0— 1 mixed integer programming problem.
We have not tested the algorithm, but it seems that in general the method
is more efficient than the Bard and Moore [3] branch-and-bound algorithm, particularly
for sparse BLPs [7]. However, the computational experience in that paper indicates
that the method is not very robust. We believe that the robustness of the method
can be improved if an upper bound is first found by the truncated SLCP algorithm.
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