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Abstract 

In this paper, we discuss an SLCP algorithm for the solution of Bilevel Linear 
Programs (BLP) which consists of solving a sequence of Linear Complementarity Problems 
(LCP) by using a hybrid enumerative method. This latter Mgorithm incorporates a 
number of procedures that reduce substantially the search for a solution of  the LCP or 
for showing that the LCP has no solution. Computational experience with the SLCP 
algorithm shows that it performs quite well for the solution of  small- and medium-scale 
BLPs with sparse structure. Furthermore, the algorithm is shown to be more efficient 
than a branch.and-bound method for solving the same problems. 

I. In t roduct ion  

minimize 
xE IR m 

A Bilevel Linear Program (BLP) can be defined as 

cTy + dTx 

subject to x > 0  

minimize aVy 
yE ~n 

subject to A t y + A z x > b ,  

x > 0 ,  y > 0 ,  

(l) 

where c, a E IR", d E IR", A a E IR" x ,,, A2 E IR" x tn and b E IR'. 
The BLP has emerged as an important hierarchical optimization problem. A 

large number of  applications has occurred primarily in economic planning. Examples 
of important applications of  the BLP or Nonlinear Bilevel Program are described 
in [4 .10-  12]. 

A number of  algorithms have been developed for finding a global optimum 
of the BLP, Among relevant procedures, we distinguish a penalty method [2], 



90 Jd. J~lice, A.M. Faustino, Sequential LCP method for BLP 

branch-and-bound methods [3,71, and an SLCP approach first introduced in [5]. 
However, the algorithm was not able to solve the BLP in all cases. Jtidice and 
Faustino [9] modified that algorithm to fulfill such a goal. In this paper, we introduce 
some improvements to the latter convergent SLCP algorithm. 

Computational experience with our SLCP algorithm on the solution of small- 
and medium-scale BLPs (n < 150, m < 300) indicates that the modifications stated 
in this paper have improved the robustness of the algorithm to solve problems of  
these sizes. The SLCP algorithm is shown to be competitive with the branch-and- 
bound method for BLPs of small dimensions and becomes much more efficient 
when the dimension of the BLP increases. 

The organization of the paper is as follows. In sections 2 and 3, the SLCP 
method is described together with the improvements presented in this paper. The 
Bard and Moore branch-and-bound method is briefly discussed in section 4. Finally, 
computational experience with both algorithms and the conclusions drawn from our 
study are presented in the last section. 

2. An SLCP algorithm for the BLP 

Consider the BLP as stated in (1) and the constraint set 

H =  {(y,x) E I R n × m : A l y + A 2 x > b , y > O , x > O  }. 

A global minimum (.~, .~) of the BLP is also an optimal solution of the following 
Minimum Linear Complementarity Problem (MLCP) [5]: 

minimize c'ry + dTx 

subject to a =  - b + A l y + A 2 x ,  

P--,,-AN, 
x, y, u, or, fl> O, yT fl= uT a= O. (3) 

In [9], we proposed a modification of  the Bialas and Karwan algorithm [5] for the 
solution of the MLCP (3). in this method, a parameter ;t is introduced and the objective 
function is replaced by the constraint c'ry + d'rx < ,,1. to obtain the following parametric 
LCP: 

LCPO0:  

t, 1 E ]Eo] [o o lE,] = + 0 2,+ - A  T 0 y , 

v o 1 0 _c  T _dTJ x 

x , y , u , a ,  fl, vo>O, yTfl=UTCt=O. 

(4) 
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The global minimum (.~, ~') of the BLP is the solution of the LCP(~[), where ~[ is 
the smallest value of ;t such that LCP(;t) has a solution. To find (.~, i ) ,  the method 
starts by solving the L C P ( ~ )  obtained from LCP(~.) by omitting the constraint 
c'ry + d'rx < / L  This is done by a procedure to be explained in the next section. Let 
(y0, x o) be the solution of this LCP and let/1.o = c r y  ° + d r x  °. Then the algorithm 
solves a sequence of LCPs(A. D, where {,1.k} is a decreasing sequence defined by 

Ak = cTy j' - I + dT x k - I _ ~1 cTy  k - ! + dTx  k - ! l, (5) 

with (yk-1, x k- l) being a solution of LCP(~k_ I) and 7 a small positive number. 
The method terminates at iteration k such that LCP(A, k) has no solution. When this 
occurs, the solution ( y k - i  x k- 1) of the LCP(~I_ l) satisfies 

0 < c'ry k -  l + d'rx k -  1_ VAL < YI crY k -  l + dTx k- 11, (6) 

where VAL is the value of the objective function of the BLP at the optimal solution. 
Hence, if the BLP has a global optimal solution, the SLCP algorithm finds an e- 
optimal solution of the BLP, where: 

e = Y lc'ry k - l + d'rx k - i i. (7) 

In practice, if 7' is quite small, the solution (yk- l, x k- 1) of the last LCP(~,k_ t) is 
in many cases a global minimum of the BLP. In the last section, we discuss the 
value that y" should take in practice. 

The steps of the SLCP algorithm are as follows: 

Step 0: 
General step: 

Exit: 

Let k = 0. 

Solve the LCP(Ak). If LCP(~. k) has no solution, go to Exit. 
Otherwise, let ( y k  X k) be the solution of this LCP. Set 

~k + I = crY  k + d'rxk - Yl c r y  k + d 'rxk l ,  (8) 

where ~, is a fixed positive value. 

Set k = k + 1 and repeat. 

If k = 0, then the BLP is infeasible, that is, H is empty. Otherwise 
(yk- l, xa - l) is an e-global minimum of the BLP, where e is given 
by (7). 

The efficiency of the SLCP algorithm depends essentially on the procedure 
to solve the LCP(~.k). There exist a number of algorithms for the solution of linear 
complementarity problems [14]. However, these methods cannot be applied for 
solving the LCP(A.k), since this last problem is more general than the traditional 
linear complementarity problem. In the next section, we describe a hybrid enumerative 
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method for the solution of  LCP(/'I, k) that arise in the SLCP algorithm, and we discuss 
its applicability to the solution of  small- and medium-scale BLPs with sparse structure. 

3. A hybr id  enumera t i ve  method  for the L C P ( ~ )  

In this section, we first describe a hybrid enumerative method proposed in [9] 
capable of  solving the LCP(,;tk) that is required by the SLCP algorithm. Then we 
discuss three modifications in the enumerative method that makes the SLCP algorithm 
more robust. Consider the LCP(~k) in the form: 

w = q + Mz + Nx, (9) 

w > 0 ,  z > 0 ,  x > 0 ,  (10) 

zi w, = 0, i =  1,2 . . . . .  r + n .  (11) 

where w ~ IR' * '1 * t, z ~ IR' ÷" and x ~ IR". As in linear programming,  a solution 
(z, w. x) satisfying the linear constraints (9) and (10) is called feasible.  A solution 
is complementary if the variables z, and w, satisfy (1 I). Variable z, is said to be the 
complement (or complementary variable) of  w, and conversely. An enumerative method 
attempts to find a complementary solution by using only basic feasible solutions of  
the system (9). To achieve this, the tree in fig. 1 is explored, where i l, i 2 . . . .  are 

{ ' %  
Fig. I. 

integer numbers of  { 1 . . . . .  r + hi .  An initial feasible solution is obtained at node 1 
by solving the linear program 
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minimize Zo 

subject to w =  q + p z  o + M z  + N x  

z o, z ,x.  w > 0 ,  

where z 0 is an artificial variable and p is a nonnegative vector satisfying p, > 0 
for all i such that q, < 0. This linear program is solved by a modification of  the 
Phase 1 with a single artificial variable [131. This modified procedure is described 
in [9] and consists of minimizing the variable z 0 in such a way that whenever possible 
the entering variable is chosen among the nonbasic variables whose complement  is 
also nonbasic. By doing this, we control the number of pairs of basic complementary 
variables, and even a complementary solution can be obtained at the end of  this 
procedure. 

Each one of the nodes k with k > 2 is generated by solving a subproblem that 
consists of minimizing a variable z, or w, subject to the linear constraints of the LCP 
and some constraints zj = 0 or wj = 0. For instance, to generate node 4 of  the tree 
of fig. 1, it is necessary to solve the linear program 

minimize z,2 

subject to w = q + M z  + Nx, z > O, x > O, w > O, (13) 

z,I = 0. 

Such a linear program is solved by a modification of Phase 2 of the simplex method 
that exploits the same idea of  controlling the number of pairs of  basic complementary 
variables. Two cases may occur: 

(i) If the variable minimized has value equal to zero, then it is fixed at zero in 
all descendent paths of the tree. 

(ii) If the minimum value of the variable is positive, then the branch is pruned 
and the node is fathomed. 

The enumerative method attempts to solve the LCP by generating successive 
nodes of  the tree, according to the process explained above. The algorithm either 
finds a solution for the LCP (it is the first complementary feasible solution) or 
establishes that the LCP has no solution (all the generated nodes of  the tree are 
fathomed). 

The enumerative method is efficient only if few nodes are generated before 
a complementary solution is found or it is verified that none exists. There are some 
heuristic rules and some procedures that usually improve the efficiency of  the 
algorithm. The heuristic rules relate to the choice of the node of  the tree and of the 
branching pair (z,,, wik). These are detailed in [91. The algorithm for generating 
nodes described before is an example of  a procedure that reduces the search for a 
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complementary solution. Next, we briefly discuss another technique that was introduced 
in [1] and is applied in each node for the same purpose of reducing the overall 
search. 

AI-Khayyars algorithm [11 is a modified reduced gradient method that finds 
a local star minimum of the function 

r-l- tl 

f ( z , w , x )  = z i w i ,  (14) 
i=l  

that is, a basic feasible solution (~, ~,, .~) such that 

f ( - i ,  if:, <_ f ( z ,  w, x) 

for all its adjacent basic feasible solutions (z, w, x) of the feasible set of the LCP 

{(z, w , x )  " w = q  + Mz + Nx, z >O, w>O,  x>O}.  (15) 

If(F, ~,, £.) is a basic feasible solution and (~', ~,, ~) is an adjacent basic feasible 
solution, then we can write 

( "~, if:, ~, ) = ( -~ , ~, ~ ) + iZo ( d*, d TM, d" ), 

where/z o is the minimum ratio of the simplex method and d = (d z, d", d x) is a feasible 
direction such that d*, d TM and d ~ are the vectors of the components of d corresponding 
to the z, w and x variables, respectively. Due to the special structure of the LCP(X k) 
presented in (4), then [91 

r + n  

f ( 7 ,  f f : , x ) - f ( ~ ,  ~: ,5c) = I.to ~ (zid ':  + wid l )  = -btoe,, 
i=!  

where ~, is the reduced-cost of the nonbasic variable of index s associated with the 
linear function 

r + n  

~-"~ (ziwi + ~'izi). (16) 
i = 1  

Therefore, AI-Khayyars modified reduced-gradient algorithm is in this case a simplex- 
type method in which the reduced costs ~j of the nonbasic variables are associated 
with the linear function (16). We also incorporate Bland's rule [6] to avoid the 
occurrence of cycling in the degenerate pivot steps [8]. 

The reader is referred to [9] for a detailed description of the steps of the 
hybrid enumerative method that incorporates this last algorithm, the procedures for 
generation of nodes, and the heuristic rules for choice of nodes and the complementary 
pairs of variables. The hybrid enumerative method can be implemented for solving 
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large and sparse LCPs. The implementation uses reinversion and updating techniques 
for the LU decompositions of the basis matrices [15] used by the simplex-type 
procedures and special data structures. We recommend [8] for a description of this 
implementation. 

As discussed in section 2, the hybrid enumerative method is used to solve 
the LCPs(/q.k) required by the SLCP algorithm. For any two values ,~ < ~,k-1, the 
LCP(~,k- I) and LCP(2 t) differ only in the last component of the vec to r  q. Furthermore, 
if B is the basis associated with the solution (~, ~,, ~') of the LCP(At _ 1) obtained 
by the hybrid enumerative method and q is the right-hand side of the LCP(~,k), then 
the vector ~" = B-lq satisfies 

~j_>0 forall  j = l  . . . . .  r+n  and ~ , + , , ÷ l < 0 .  (17) 

Hence, the solution (~, if, ~,) of the LCP(:t k _ ~) can be used as the initial basic 
solution for the LCP(~k). Since the vector B-lq satisfies (17), the vector introduced 
in (12) can be defined by 

1 ' 

where 0 ~ IR' ÷" is the null vector. The choice of this initial basic solution usually 
provides great reductions in the computational effort of the hybrid enumerative 
method. In fact, the algorithm quite often requires a small number of pivot operations 
to find a solution for the LCP(2k). 

Below, we introduce three modifications to the hybrid enumerative method 
described above. 

(i) 

(ii) 

In the procedure for finding a local star minimum of the function (14), we 
use the same idea of controlling the pair of complementary basic variables 
previously discussed. Hence, whenever possible, we choose the entering variable 
from among the set of nonbasic variables such that ~ > 0 and whose complements 
are also nonbasic. 

Whenever a solution of the LCP(2 k) is found, we try to find another solution 
of the LCP(2 k) such that cTy + drx has a smaller value. To do this, we try 
to maximize the variable Vo in such a way that the complementarity condition 
zTw = 0 holds in each iteration. This is done by maximizing Vo under the Basic 
Restricted Simplex Rule described in [51, that is, we apply the simplex method 
to maximize Vo, but in each iteration the complement of the entering variable 
must be nonbasic. This kind of procedure, called MAXVAR, can terminate 
in two possible ways: 

(a) The maximum value of the variable Vo subject to the linear constraints 
of the LCP(~. k) has been achieved. In this case, a global minimum for 
the BLP has been found and the SLCP algorithm terminates (TERM = 1). 
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(iii) 

in each 

Step 0: 

Step 1 : 

Step 2: 

Exit: 

(b) The variable Oo can still be increased, but only by destroying the 
complementarity condition, that is, all complements of the nonbasic variables 
with negative reduced costs are basic. In this case, ~ is updated by (8) 
and another LCP has to be solved in the SLCP algorithm (TERM = 2). 

As discussed in [91, in the last stages of the SLCP algorithm the LCPs tend 
to be much more difficult to solve. The incorporation of the two procedures 
stated above usually reduces the computational effort for the solution of  the 
last LCPs required by the SLCP algorithm. Despite this, the difficulty still 
persists, particularly for BLPs of larger dimensions. Our computational experience 
with tile SLCP algorithm has suggested that in many cases when an LCP is 
quite difficult, if we reduce slightly the value of A, then the resulting LCP 
is much casicr. Hence, we have decided to limit the number of  pivot steps 
that the solution of LCP(&) may require by a quantity NMAXPV given by 
the user. If this number is achieved, then ~.k is updated by 

;tk = )~k - ~ l A k - i I .  (18) 

where y is a positive constant greatcr than y and the LCP(&k) is solved by 
starting with the current basic solution. Furthermore, no limit on the number 
of pivot steps is assumed for this latter LCP. If this LCP has no solution, then 
the last complementary solution obtained by the SLCP algorithm is an F-optimal 
solution of the BLP, where 

e = y l c r y  k - l + d r x  k - i I. (19) 

In the last section, we discuss the value that ~ should take in practice. 
These two latter modifications lead to the following algorithm, which is used 

iteration k of the SLCP method: 

Set NMAX = NMAXPV, where NMAXPV is a positive number chosen by 
the user. 

Apply the hybrid cnumerative method to solve the LCP(3tk). If the number 
of simplex pivot steps required by the hybrid enumerative method attains 
NMAX, update ~-k by (18), set NMAX = +~, (in practice, NMAX is set 
equal to a very large positive number) and repeat step 1. Otherwise, the 
hybrid enumerative method terminates and we go to step 2. 

If LCP(,~k) has no solution, set TERM = 3 and go to Exit, Otherwise, 
apply the MAXVAR algorithm and go to Exit. 

If TERM = 1, the solution (obtained by the MAXVAR algorithm) is a 
global minimum for the BLP. 

If TERM = 2, the iteration (k + 1) of the  SLCP algorithm has to be performed 
with A~ + t given by (8). 
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If TERM = 3, the solution obtained in the iteration ( k -  I) of the SLCP 
algorithm is an e or an ~ global minimum for the BLP, depending on NMAX 
to be less or equal to +**, repectively. 

The incorporation of these modifications in the SLCP algorithm has produced 
a more robust algorithm. This is reported in the last section of this paper. 

4. A branch-and-bound method for the BLP 

As stated in section 1, to gain a better idea of the ability of the SLCP 
algorithm to solve BLPs, we have decided to compare it with a branch-and-bound 
method developed by Bard and Moore [3]. In this section, we briefly describe this 
latter algorithm. We write the MLCP (3) in the form 

minimize fTz  + drx 

subject to w = q + Mz + Nx, 

z > 0 ,  w > 0 ,  x_>0, zTw=0, 
where 

W =  [ ] [ ] [ 0 A , ]  [ 02 ]  I - b ]  [ 0 ]  a u M =  N =  q =  f =  fl , z =  y ,  - A  T 0 . . . .  

(20) 

The branch-and-bound method starts by solving the linear program obtained 
from (20) by omitting the complementarity condition zTw = 0. If the optimal solution 
of this linear program satisfies this complementarity condition, then an optimal 
solution of the BLP is at hand. Otherwise, there must exist a pair of complementary 
basic positive variables z, and wi. The algorithm chooses a pair of such variables 
(z,,, wi, ) and generates the nodes of the tree of fig. l by minimizing zis, wi~ subject 
to the linear constraints of the MLCP, respectively. In practice, it is advisable to 
choose the pair for which ziwi, is maximum. 

In any iteration of the branch-and-bound method, a node of the tree is picked 
(in practice, it is advisable to choose the node for which the objective function 
fZz + dTx has the lowest value). After choosing the node, we solve a linear program 
obtained from (20) by relaxing the complementarity condition and adding some 
constraints of the form zik = 0 or wi~ = 0 corresponding to the variables that have 
been fixed in the nodes belonging to a path from the current node up to the root 
of the tree. As before, this linear program is solved by Phase 2 of the simplex 
method starting from the basic solution corresponding to this particular node. If the 
optimal solution of this linear program satisfies the complementarity condition, then 
it is stored as the best solution and is called an incumbent. All the nodes for which 
the value o f f r z  + dTx is larger than or equal to the value of the objective function 
corresponding to the incumbent are discarded (they are fathomed). If no unfathomed 
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nodes exist, the algorithm terminates with a global solution given by the last incumbent. 
Otherwise, the procedure is repeated. 

From this brief description, it is not difficult to see that the implementation 
for the hybrid enumerative method can be used with minor modifications for the 
branch-and-bound method. We developed such an implemenation for solving small- 
and medium-scale sparse BLPs. As before, the linear programs are solved by an 
implementation of  the simplex method for large-scale linear programs, which is 
described in 1151. 

In theory, the branch-and-bound method finds a global minimum of  the BLP 
are there is no reason to assume that this method is more or less efficient than the 
SLCP algorithm. Both methods require an implicit search for a global minimum, 
whence the computational effort grows exponentially with the dimension of  the 
BLP. However, in the branch-and-bound method there is a conflict between the 
solution of the linear programs required in each node and the generation of the 
nodes. In fact, when we solve a linear program in a node the value of  zTw can be 
increased, while the value of the objective functionfTz + dTx can be increased when 
a node is generated. This conflict is not present in the SLCP algorithm, since only 
LCPs are solved in each iteration of the algorithm. Furthermore, the SLCP algorithm 
contains a number of efficient techniques that reduce substantially the search for 
a global optimal solution of the BLP. So, it seems that the SLCP algorithm will be 
more efficient than the branch-and-bound method. Computational experience presented 
in the next section confirms exactly this statement, and the gap increases dramatically 
with an increase of the dimension of the BLP. 

5. Computa t iona l  experience 

In this section, we present some computational experience with the SLCP and 
branch-and-bound algorithms discussed in this paper on the solution of  some small- 
and medium-scale sparse BLPs. Two sets of  test problems have been considered. 
The first set contains problems with the same characteristics of  those described in 
171, while the second set has been described in [91. As discussed in that paper, we 
have associated with each matrix A = [A I, A 2] two test problems simulating conflicting 
(problems TPG) and nonconflicting (problems TPN) situations. 

The characteristics of  the test problems and the experimental results for the 
SLCP and branch-and-bound algorithms are presented in tables 1, 2, 3 and 4. All 
the tests have been performed on a CDC CYBER 180-830 at the University of 
Porto. The parameters included in the tables have the following meanings: 

n = number of second-level variables y, 

m = number of  first-level variables x, 

• = number of constraints = number of rows of A = [A I, A2], 

rsp = relative sparsity of  A = [a 1, A2] = (number of  nonzeros of  A)/(n + ra), 
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psp  = 

l l r O w  = 

noel  = 

N L C P  = 

ND = 

NI = 

NS = 

T = 

sparsity percentage ofA = [(number of nonzeros o f A ) / ( r  x (n + m))l x 100, 

number of rows of the MLCP = r + n, 

number of columns of the MLCP = r + n + m, 

number of LCPs(2. k) to be solved by the SLCP algorithm, 

number of nodes required by the branch-and-bound method, 

total number of simplex pivot operations required by the SLCP or branch- 
and-bound algorithms, 

the algorithm has not been able to terminate after 20,000 simplex pivot 
steps, 

CPU time in seconds for the SLCP and branch-and-bound algorithms. 

The first aim of our computational study was to investigate the importance 
of the modifications stated in this paper on the efficiency of the SLCP algorithm. 
To do this, the test problems described in 191 were solved by the modified SLCP 
method with NMAXPV=500,  y=0.01 and 7=0.05.  We denote by SLCP 
METHOD I such an algorithm to distinguish it from the SLCP METHOD 2 in 
which 7= 0.001 and ~'= 0.01. 

A comparison between the results of the SLCP METHOD 1 presented in 
table 1 and those of the table of [91 leads to the conclusion that the modifications 
described in this paper improve the efficiency of the SLCP algorithm. 

The SLCP algorithm is designed to find an e-optimal solution of the BLP. 
If the algorithm terminates with the MAXVAR procedure, then a global minimum 
is achieved. Otherwise, only e-optimality can be assured in theory. Hence, it is 
interesting to investigate the influence that a reduction of the value of e (~ and ~') 
has on the efficiency of the SLCP method. The SLCP METHOD 2 was considered 
for such a purpose. In table 1, we have added a column headed by OPT in which 
the value a means that the SLCP method can assure, in theory, at least or% of the 
optimum ( a =  0 means that a global minimum is at hand), in the case of a ~ 0 ,  it 
seems important to verify whether the solution obtained by the SLCP method is a 
global minimum. To see this, we have solved the same problems by the branch-and- 
bound method. We have written Y (N) when the solutions of the two methods agree 
(do not agree), that is, when the SLCP algorithm has (has not) found a global 
optimum. The branch-and-bound method could not solve the BLPs of larger dimensions 
in reasonable time (less than 20,000 simplex pivot operations). Hence, we cannot 
scc whether the solution found by the SLCP method is the global minimum for these 
BLPs. We write a question mark in the column O P T  for these test problems. 

The results presented in table 1 lead to the following conclusions: 

(i} Both versions of the SLCP method find an e-optimal solution for all the test 
problems. The algorithms are quite fast in obtaining an &optimal solution (see 
the columns headed by OPTIMAL). However, the algorithms face some 
difficulties to terminate for BLPs of larger dimensions. 
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(ii) The SLCP METHOD 1 performs better than the SLCP METHOD 2. This is 
not surprising, since the latter version uses smaller values for ~,and 9. However, 
the difference is not very large. Furthermore, the SLCP METHOD 2 can 
assure, in theory, a solution that is closer to the global optimum. 

liii) For all the test problems but one, the SLCP METHOD 2 was able to find a 
global minimum (even when a >  0.1). The SLCP METHOD 1 has failed in 
three cases. There is a Lest problem in which the SLCP METHOD 1 has found 
the global minimum, but the second version failed. 

(iv) The value ~= 0.05 had to be used for the SLCP METHOD 2 to terminate 
problem TPG8 in less than 20,000 simplex pivot operations. 

These conclusions lead to our recommendation to use the version of the SLCP 
method in which y= 0.001 and ~ = 0.01. However, when (r + n) is large, it is more 
advisable to set ~= 0.05. 

The value NMAXPV = 500 was used in the experimentations whose results are 
presented in table 1. To gain a better idea of the value that NMAXPV should take, 
wc have decided to allow an increase of this quantity in the SLCP METHOD 2 for 
all the test problems in which the algorithm could assure only a percentage of  the 
optimum superior to 0.1. We have run these test problems with NMAXPV equal to 
1500, 3000. 4500. 

The results presented in table 2 show that in terms of speed, too large values 
for NMAXPV are not appropriate. However, NMAXPV = 500 is not the best choice 
for a problem in which the number (r + n) of complementary variables is equal to 
300. So, if we are only interested in the speed of the procedure, then a relatively 
small value of NMAXPV (< 10 (r + n)) should be used and ~ should be set equal to 
0.05 for large values of (r + n). If only precision is at stake, then NMAXPV can take 
larger values and ~' = 0.01 is a good choice. Based on these and other computational 
results, we recommend the SLCP method incorporating the modifications stated in 
this paper with the following values: 

N M A X P V =  10 ( r + n ) ,  "y= 0.001, 9=0 .01 .  (21) 

and ~ = 0.05 when (r + n) is large. 
In tables 3 and 4, the efficiencies of the SLCP algorithm with the values given 

by (121) and the branch-and-bound method are compared. We also test another version 
of the branch-and-bound method in which the initial solution (and incumbent) is 
given by the SLCP algorithm (it is denoted by Incumbent B.B). To perform the 
comparative study, we have generated test problems in the following way: 

c'i) Each test problem TPi has associated certain values of r, n, m and degree of 
sparsity. 

(ii) For each TPi, five test problems are considered in which the matrices are 
generated by a technique similar to that in 191 (table 3) and in [71 (table 4). 
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Table 2 

Influence of NMAXPV on the SI.,CP algorithm 

Total Optimal 
Problem r +n  NMAXPV OPT 

NLCP N! T N! T 

TPG4 100 

TPN7 300 

TPG7 300 

TPN8 300 

TPG8 300 

500 26 1068 86.1 730 62.4 1, Y 
1500 25 2212 163 730 62.4 0.1, Y 
3000 25 2212 163 730 62.4 0 . I , Y  
4500 25 2212 163 730 62.4 0 . I , Y  

500 31 6657 856 4763 618 1, y 
1500 29 5404 691 2541 332 1, Y 
3000 28 4979 638 2541 332 0.1, Y 
4500 28 4979 638 2541 332 0.1, Y 

500 39 4257 776 2498 551 1,? 
1500 39 5084 871 2498 551 1,7 
3000 39 6574 1051 2498 551 1,? 
4500 38 7018 1090 2498 551 0.1.?  

500 40 6910 1040 2380 382 I . N  
1500 43 10.621 1568 5166 777 1,? 
3000 43 12,161 1789 5166 777 l,  ? 
4500 43 9741 1430 5166 777 l , ?  

500 69 8843 2123 7879 1980 5 ,?  
1500 69 9854 2340 7879 1980 5 , ?  
3000 69 11.542 2660 7879 1980 5 ,?  
4500 69 13,016 2952 7879 1980 5 ,?  

Tables 3 and 4 contain the information of the behavior of the algorithms for 
solving these five test problems of each TPi by showing the best (B), worst (W) 
and average (A) performance in terms of simplex pivot operations. As before, the 
information concerning the SLCP method contains a column headed by OPT with 
similar meanings for the rows B and W. The numbers that appear in the column 
OPT and rows A represent the number of times in which the SLCP method has 
found the global minimum. If for a TPi there is at least a test problem for which 
an algorithm has not been able to terminate in less than 20,000 simplex pivot 
operations, then we write in row A the number of times that the algorithm has 
successfully terminated. 

The results presented in tables 3 and 4 lead to the following conclusions: 

(i) The SLCP algorithm is quite efficient to find an e-optimal solution (see column 
Optimal). However, it faces difficulties to terminate for BLPs of larger 
dimensions. 
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(ii) The branch-and-bound method is competitive with the SLCP method for 
BLPs of small dimensions (in some cases, it is even more efficient), but it 
is significantly less efficient for BLPs of larger dimensions. 

(iii) The use of an incumbent given by the SLCP method improves the efficiency 
of the branch-and-bound method for BLPs of larger dimensions. However, 
even in this case the branch-and-bound method is not competitive with the 
SLCP algorithm. 

(iv) The SLCP algorithm has found the global minimum of the BLP in more. than 
60% of the test problems. 

The computational study presented in this paper shows that the branch-and- 
bound method as stated in [3] is not an efficient procedure to solve BLPs of 
reasonable dimensions. Furthermore, the use of an incumbent given by the SLCP 
algorithm improves the efficiency of the branch-and-bound method. In practice, a 
criterion is required that allows the user to move from the SLCP algorithm to the 
branch-and-bound method. Since our experience has shown that the hybrid enumerative 
method only requires a large number of simplex pivot operations in the last stages 
of the SLCP algorithm, then such a criterion can be designed by using the quantity 
NMAXPV introduced in section 3. So, we recommend the user to fix initially 
NMAXPV and to apply the SLCP algorithm. If the number of simplex pivot operations 
required by the hybrid enumerative method in an iteration k > 1 of the SLCP algorithm 
attains NMAXPV, then the solution obtained in the iteration (k - 1) is an incumbent 
for the branch-and-bound method and this method starts from this basic solution. 
Such a procedure for finding a good incumbent for the branch-and-bound method 
can be called a truncated SLCP algorithm. The experience shows that the value of 
NMAXPV should not be chosen either too large or too small. NMAXPV = 10 (r + n) 
is probably a good choice. 

Computational experience with larger BLPs has shown that the truncated 
SLCP algorithm is not sufficient to provide a robust branch-and-bound method for 
the BLP. In our opinion, the method lacks good lower bounds. The generation of 
good lower bounds for the branch-and-bound method is an important research 
aspect and deserves some attention. 

Recently, Hansen et al. [7] have developed a new branch-and-bound method 
for the BLP. The algorithm is based on the idea of eliminating the variables y in 
the follower's problem in order to reduce the complexity of the BLP. This is done 
at the expense of the generation of many 0 -  1 logical variables. A branch-and-bound 
method is then applied to solve the resulting 0-1  mixed integer programming problem. 
We have not tested the algorithm, but it seems that in general the method 
is more efficient than the Bard and Moore [3] branch-and-bound algorithm, particularly 
for sparse BLPs [7]. However, the computational experience in that paper indicates 
that the method is not very robust. We believe that the robustness of the method 
can be improved if an upper bound is first found by the truncated SLCP algorithm. 
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