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Abstract  
The weakly nonhnear theory has been wMely apphed m the problem of  hydrodynamw 

stabdtty and also m other fields However although tts apphcatton has been successful for 

some problems, yet,for other problems, the results obtamed~re not satlsfactor) , espectally 

for problems hke transttton or the evolutlon of  the vortex m the free shear flow, for whwh 

the goal o f  the theorettcal snvesttgatlon ts not seekmg for a steady state, but predwtmg an 

e voluttonal process In thts paper we shah examme the reason for the unsuccessfulness and 

suggest ways for its amendment 
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I. The Landau-Stuart Amplitude Equation 

For  the convenience of  &scusston, let us take the 2-D,parallei flow as anexample TheNawer-  

Stokes equation and the con tmmty  equation read 

0- @ 
o--T+(U.y)u+yp-- v~u, y.u--o (l.1) 

where u----{u,v} r is the velocity, u and j are its components  m the &rectlon of  x and y , the 

Cartesmn coordinates, t ~s the t~me, p ~s the pressure, and V ~s the gra&ent operator  All variables 

have been smtably non-&menslonlzed, and R is the Reynolds number  

Assuming that the solution can be expanded m a power series of  a certain small parameter,  say, 

the small amphtude a of  the fundamental ,  such that 

{u , p } r =  { u0 ,P0} T + a{ u! ,Pt  }r + aZ{ uz ,ps} r + ... ( 1 . 2 )  

where u 0 -----~u0(y), 0} r and P0 is the basic laminar flow, ujls the soluUon of  the hneanzed problem, 

smtably normahzed 

In most  cases, we assume 

{U, ,p tk  ~ = ~fal(Y) , P l ( Y ) ~  r e xpEs (  a x - c o t  ) 3 + C . C .  ( ] .  3)  

and m what follows, we write 0 ~ ax - -co t  , and depending on whether we use temporal mode or 

spatmi mode, either a or o9 ~s assumed to be real and given, and then the other one will be obtained 
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together with u t as the solution of an elgenvalue problem In th~s paper, we use the temporal mode 

as the prototype problem 

According to the weakly nonlinear theory, a and 0 sat,sfy the Landau-Stuart  equation 

-~t  ----co~a + A3a3 + Asa~ + "" (1 4)  

dO ~ = - c - o , + C 2 a ~ + C ( a ( +  (1 5) 

where co, and co, are the real and imaginary parts of  co respectively, and A and C are constants 

to be determined during the course of  solution by a certain condltlon, say, the solvablhty condlt,on 

By closely examining (l 2), (l 4) and (l 5) It is not difficult to see that once a is given, the 

solution depends only on one essential parameter, I e the amplitude of the fundamental On the 

other hand, assummg the flow field is periodic m ,r with a period 2~r/a, , any velocity field 

sat~slymg the continuity equation and boundary conditions, and having the same period in x'can be 

an mltlal condition for an actual flow realization Apparently, the flow field is in general not the 

same as those given by the solution of  the weakly nonlinear theory 

Even ff we start with an initial condition g~ven by 

~u,p}r----~u0,P0}a" + a~u, ,pl} ~" (1 .6 )  

which apparently xs permissible because it satisfies the continuity equation and the boundary 

condmon, then for (! 2), (l 4) and (1 5) to be vahd, terms in (l 2), starting with order a:, must be 

generated spontaneously which in a real SltUatmn, say, in an experimental realization, IS 

impossible If we examine the data given by Kachanov (t), the amplitude of  the second harmonics at 

different locations are always slgmficantly smaller than those calculated by us by applying the 

~eakly nonlinear, perturbation scheme, with a taken from the experiment For  example, the 

calculated values were two or three times larger than those observed m the experiment, and the 

closer the location was to the vibrating ribbon, whmh generated the mstabdlty wave, the larger was 

)he descrepency If we consider the problem from the physical point of  wew, then for the 

experiments of Nlshmka et al t2) or Kachanov( tl, at the imtlal stage of  the development, there was no 

harmonics So the harmomcs must be generated through nonhnear process, which can not be 

spontaneous Therefore, the second harmomcs is not necessarily proportmnal to a 2, the third 

harmonics is not necessarily proportmnal to a 3, e tc ,  as the weakly nonlinear theory predicted The 

way of  the amendment of  this dlscrepency is that we should assign an independent amphtude for 

each harmonics, and to find the evolution equation for each of  them, so that the gradual evolutmnal 

process of  them can be taken into cons~deratmn 

If we follow Stuartt31 or ZhoutS], then m the frame work of  the weakly nonlinear theory, we can 
write 

{u~, p : ] . r ={ f i~a (y ) , p20 (y ) ] . r exp [  20,] + ~fa2z(y),[~2z(y)}rexp[2:0] 

----" ~ u'~ 'P:a]'r ' t" ~ uz~ ,P~z} (1 7) 

where the appearance of 0~ m the exponent Is due to the fact that the e]genvalue problem for the 

hnearlzed problem may correspond to a non-neutral case, otherwise O~ = 0 Since the amplitude 

of u20 , etc is not necessarily proportional to a 2, in place of  the third term on the right-hand side of  
eq (1 2), we should write 
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bz, {fizo, p,,} ~'expl- - 20,-1 + bzz{•zz ,)zz } rexpl-2:S3 ( 1 . 8 )  

According to the perturbation method of the weakly nonhnear theory, the equations satisfied 

by %0, etc are 

Ou:o auzo duo + . 
Ot - t - U * ~ - I ' v ' ~  VPz*---~ --V"uz~ - zReE(u' V)u~] (1.9) 

J 
V.uzo=O 

Ouz: au:z du o 1 z "[ 

J V" uzt~O 

where the* stands for the complex conjugate, Re stands for the real part of a complex variable 

Following Zhout5l, the actual equations for ~o  , etc are 

1 d~a2o R I do'~ \ ~ 
p ) (1.11) J 020=0 

duo d ~' 

"~-y  ) 1  ] (1 12) 

{2,a, d --~--v }u,,~,0 

and if we let the amplitude factor for fizo , etc be a 2, then the result of the weakly nonlinear theory Is 

restored 

As stated above, independent amphtudes should be allowed for ~z0 , etc But we assume that 
the shape of their velocity distribution can be borrowed from the perturbation method In this case, 

the following expressmn can be the preper expression for the terms replacing the third term on the 

right-hand side of eq (1 2) 

b2o(t){f~o(y), ~o (y ) }  r + b~,(i){fa22(y), tz~(a)} ~ ( l  ZS) 

where tne shape ~s given but the amplitudes b20 and b22 are allowed to vary m t:me with a slow tsme 

scale as for a 
If now we put the first term of(l  1 3) into eq (1 9 .  scalarly multiply the first equatmn of( l  9) by 

b,00z0 (Y) and integrate, following the procedure for the denvatmn of the energy equatmn m the 

theory of hydrodynamic stabd~ty, we shall arrive at an evolutmn equatmn for b20 as 

---dT-- =/$olb2o -I - o2a 

and In the same way. an equation for b~2 can be derived as 

db2z 
dt = B~sb~z + Bzza 2 

(1 .14)  

(1.15) 

and in account of eqs fi 11) and (I 12), it is readily shown that 

Bot + B,2 = B2t + Bzz----2cm (1.16) 
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If we continue the perturbation calculation to the next step, then the Landau-Stuart  amphtude 

equation would appear as 

da ~cola + ( Assbz, +.As~bzz)a (1.17) 
dt 

and a slmdar equation can be derwed for 8 Therefore, up to this order, we should h'ave three 

amphtude equations (1 14), (1 15) and (I 17) m place of  a single equation (I 4), and the evolution of  

the second harmomcs and the mean flow &stortmn has been taken into consideration 

Apparently, the above procedure can be continued and more and more amplitude equatzons 

wdl appear for more and more harmomcs, etc 

Eqs (1 14), (1 15) and (1 17) can also be used to determine the equfllbrmm state by putting the 

right-hand s~de of  them equal to zero Here we notice that if m eq (I 17) we put 

bzo~bzz----a z 

then the original Landau-Stuart equation is recovered However, m view of  eq (1 16), when 

b20 = b:2 = a 2, eqs (1 14) and (l 1 5) do net yield db2o/dt~-O and db:Jdt~-O Therefore, the eqmhbrmm 

state determined byeqs.  (l 14),(1 15) and (1 17) is different from those determined by the original 

Landau-Stuart equation, except when co~ =0  Since the orlgmal Landau-Stuart  equation Is a 

specml case of  the present formulation, and eqs (l 14) and (l 15) were obtained from the energy 

consideration wlth a shape assumption, which ~s apparently correct for the weakly nonhnear theory 

~tself, so one would reach a conclusion that for the weakly nonlinear theory, only a formulation 

starting w~th a hnear problem corresponding to a neutral case, either really being so as Stuartt31 and 

Watson [4), or artlficmlly made to be so as ZhouISI, can y~eld a result consistent both from the 

analytical point ofwew and the energy trasfer point ofwew Of  course, ffwe can really carry out the 

perturbation calculation to the mfimte order and the resulting series converges, perhaps a consistent 

solution can be clmmed to be found even for co~a~ 0 ,  but so far, no one can prove It does work m thzs 

way 

Once the eqmhbnum state has been determined, we can readily determine its stablhty by the 

method of  small perturbatlon from the eqmhbrlun~ state We have calculated a number of  cases for 

plane Po~seudle flow w~th parameters close to the neutral curve so that the weakly nonhnear 

calculations can start from a hnearly neutral case So far, the stablhty analysis yield the same 

conclusions as those obtained from the original Landau-Stuart  formulation, and the cases studied 

include both the supercrmcal and subcrmcal eqmhbrxum states 

We have also trxed to calculate the evolutmn of the second harmonics of  Kachanov's  

experiment, by using eq (1 15) with a taken from the measured value of  the experlment.Ka~hanov's 

wbratlng ribbon ~s at the location x = 250mm, so we assume the amphtude of  the second harmomcs 

is nfl there We calculated the coefficients of  eq (1 15), and then integrated numerically to obtain 

b22, the amphtude of  the second harmomcs We find the result is qmte good up to x =  350mm, 

compared w~th the experimental observations Notice that since ~t ~s an evolutxonal process, the 

shape of  the second harmomcs can not be s~mply the shape calculated at the local station e~ther, so a 

certain kind of  evolut~onal accumulation effect has been taken into consideration, otherwxse the 

result will not be so good 

We have not carned out the calculation further downstream, because the measured shape of  

the second harmomcs has already been distorted there 
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II .  The Resonant  Idea in the Weakly  Nonl inear  Theory 

Resonant idea has played an Important role m the theory of  hydrodynamm stabdlty, probably 

m other fields as well In the context of  the above section, two questions may be raised 

Let us take the idea of  resonant triad as an example~-SIThe following three waves are said 

to be in resonance, 

r  O~lt)l, e z (y )expEz(a~x  + flz--co~t)3 
(2 l )  

r expI-l ( azx- -  f ly - -  ogzt ) 3 

ff their wave number and frequency saUsfy the so-called resonant condition, 

al ----- 2a~ , w1, ~- 2co2, , col ~ -~wz~ ~ O ( 2 . 2 )  

Some authors d~d not ask the third equation to hold to form a resonant triad, but the first two were 

thought to be necessary by every one The reason ,s, among other things, that only under this 

condlUon, all the three waves can travel w,th the same phase speed, so their relative phase remains 

unchanged, and thus guarantees the mutual exc~tation 

However, such a stringent condltmn is only needed if we want to follow the evolutmn of  the 

triad mdefimtely, a situation only possible for strmtly parallel flow, and as plane Polsemlle flow, 

bes,des, temporal mode must be used While m a real sltuat,on, the spatial mode is more suitable, 

and the t~me for evolution only lasts for a short period, say, several wavelengths or cycles, as m the 

problems of t ransmon or the evolution of the vortex m a developing free shear flow In such cases, a 

slight difference of  the wave speed will not cause much difference For  example, a 3% d,fference of 

the wave speed will cause to the relatwe phase a change of  0 3 ~ w~thm an interval of  five 

wavelengths,whmhwlll not slgmficantly change the energy transfer rate between different modes, 

while within that period, transition may have already taken place 

On the other hand, the resonant ~dea gwes people the lmpressmn that once the resonant 

conditmn ~s satisfied, the growth rate of  the resonant waves would be enormously larger than those 

waves w~th other parameters However, calculatmns show that the energy transfer rate between 

d,fferent modes and the mean flow does not have a sharp peak around the resonant parameter, 

rather, it is qmte flat Therefore, the first modification which should be appl,ed to the resonant idea 

~s that ,t does not prowde a cntereon which can single out one set of parameters as the mechanism of  

wave number selection Rather, we must test for a certam band, though narrow, of  waves forming 

nearly resonant triads, and compare their growth rate 

The second modlficatmn to apply the resonant idea Is relevant to the calculation of  its 

evolutmn process In [6,8], the weakly nonhnear theory was proposed However, as stated in the 

preceding sectmn, for an evolutmnal problem, the evolutmn equatmn, 1 e the ampl,tude equatmn, 

should be reformulated, then perhaps we can prowde a mechamsm of  wave number selection which 

might be different from the prev,ous result 

A correct formulatmn could be as follows First, we may start with three waves as in (2 l), but 

we may allow a certain degree of  d,fference of  the phase speed Then through nonhnear lnteractmn 

of d,fferent modes, new waves may be generated having the foUowmg form, 

r  - a z ) x -  (o) 1 -co~) t  q-flz]~, r  l - a ~ ) x  

- - ( w  t - c a ~ ) t - f l z ] ~ ,  ee (y )exp[2z (a2x -coa t ) ]  ( 2 . 3 )  

Then the newly exc,ted waves may ,nteract w,th the or,gmal waves to re,nforce or weaken the energy 

transfer to or from other exlst,ng waves or the mean flow If now we apply the idea proposed m 
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section I, we may get evolution equations for each mode Then through their lntegratxon, we can 

find the waves having the largest growth rate, which should provide a mechalsm of  wave number 

selection 

I I I  O n  t h e  M e a n  F l o w  D i s t o r t i o n  m D e v e l o p i n g  F r e e  S h e a r  F l o w s  

In applying the weakly nonlinear theory to problems such as developing free shear flow, 

another difficulty may arise That Is, if quasi-parallel assumption is made, then we will arrive at the 

following equations for the second order mean flow distortion a2o , 

1 dZa2o d _ . 
R a--fir- (3 .1)  

where the right-hand slde represents the force resulting from the Reynolds stress generated through 

nonlinear action by the fundamental I f  we Integrate this equation, we will get a mean flow 

distortion which decays algebraically when t / ~ o o ,  obviously Incorrect compared with the 

experimental observations This difficulty arises from the fact that eq (3 I) is an equation only valid 

for steady state, while for a real free shear flow it is evolutlonal, the mean flow distortion at a certain 

location is actually the accumulated effect of  the Reynolds stress generated by the disturbance 

upstream from that location within a finite tlme interval Thus, this is an evolutlonal process rather 

than a steady state situation The way to overcome this difficulty is to derive an equation for the 

unsteady, evolutlonal process In a frame moving wlth the convective speed of the disturbance, we 

would see an unsteady shear flow with its thickness growing But if we assume the growth rate is 

small, then after certain slmplxficatlons we will arrive at the following equation for the mean flow 

distortion, 

Ou~o( y , f )  1 02U2o 0 
= - -  - -  (•IUI> ( 3  2 )  

Ol R O,2- 0,d 

Since this is an equation of diffusion, its solution can be written as 

Oy ulvl'> 

but in actual integration, say. for a problem of  mlxmg layer, we should start from a certain location 

where the mean flow distortion is supposed to be nil, and then calculate the fundamental 

d~sturbance, l e the T - S  waves at each location, with Its amplitude either taken from the 

experiment, or calculated by a certain kind of evolution equation Find the convective speed of  the 

disturbance, convert the time variable to space variable according to the speed, and then integrate 

eq (3 3) step by step with a step length which can guaranttee the required accuracy In this way, we 

can get a mean flow distortion which decays exponentially when y---> oo 

One objection which people may raise to this scheme is that the effect of  the growth of  the 

thickness of  the layer has not been taken Into consideration in forming eq (3 2) The answer is that 

when we itategrate the equation step by step, the thickness of  the layer is assumed to be known, either 

from the experiment, or from some other equations which may be solved in advance or 

simultaneously So in fact, the effect of  the growth of  the thickness has already b~en included in the 

calculation 
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