Applied Mathematics and Mechanics Published by SUT,
(English Edition, Vol 12, No 3, Mar 1991) Shanghai, China

THE RE-EXAMINATION OF THE WEAKLY NONLINEAR THEORY
OF HYDRODYNAMIC STABILITY*

Zhou Heng (F] 1)
(Department of Mechanics, Tranpin University, Tianjin)

(Recerved Apnl 14,1990)

Abstract
The weakly nonlinear theory has been widely appled in the problem of hydrodynamic
stabuity and also in other fields However although its application has been successful for
some problems, yet, for other problems, the results obtained hre not sanisfactory, especially
Jor problems like transition or the evolution of the vortex in the free shear flow, for which
the goal of the theoretical investigation is not seeking for a steady state, but predicting an
evolutional process In this paper we shall examine the reason for the unsuccessfulness and

suggest ways for its amendment
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I. The Landau-Stuart Amplitude Equation

For the convenience of discusston, let us take the 2-D,parallel flow as anexample TheNavier-
Stokes equation and the continuity equation read

ou =1 v, you=
—5r T(U-V)u+vp =45V, y-u=0 (1.1)

where u={u,v}T 1s the velocity, u and u are its components in the direction of x and y , the
Cartesian coordnates, f 1s the time, p 1s the pressure, and V 1s the gradient operator All variables
have been suitably non-dimenstonized, and R is the Reynolds number

Assuming that the solution can be expanded 1n a power series of a certain small parameter, say,
the small amplitude a of the fundamental, such that

{u, YT ={Ug, po}T +a{uy, py}T +a®{uy, pg}T + oo (1.2)

where U, ={1,(y),0}" and p, 1s the basic lamnar flow,u,1s the solution of the linearized problem,
suitably normalized
In most cases, we assume

{u,, 01T =1{0,(y), p1(y)} exp[s(ax—wt)]+C C, (1.3)

and 1n what follows, we write §=agx—w¢ , and depending on whether we use temporal mode or
spatial mode, either a or w 1s assumed to be real and given, and then the other one will be obtained
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together with u, as the solution of an eigenvalue problem In this paper, we use the temporal mode
as the prototype problem
According to the weakly nonlinear theory, a and ¢ satisfy the Landau-Stuart equation

da

—T=w¢a+A3a3+Aaas+ . (19
tzi =-w,+Cia*+C,a*+ (1 5)

where @r and @ are the real and imaginary parts of @ respectively, and 4, and C, are constants
to be determined during the course of solution by a certain condition, say, the solvability condition

By closely examining (1 2), (1 4) and (1 5) 1t 1s not difficult to see that once o 1s given, the
solution depends only on one essential parameter, t e the amplitude of the fundamental On the
other hand, assuming the flow field 1s periodic 1n x with a pertod 2x/a, , any velocty field
satistying the continuity equation and boundary conditions, and having the same period 1n x'can be
an mitial condition for an actual flow realization Apparently, the flow field 1s 1n general not the
same as those given by the solution of the weakly nonhnear theory

Even if we start with an initial condition given by

{uvp}Tz‘{ulhpo}T'l_a{ulvpl}T (1,6)

which apparently 1s permissible because 1t satisfies the continuity equation and the boundary
condition, then for (1 2), (1 4) and (1 5) to be valid, terms 1n (1 2), starting with order a?, must be
generated spontaneously which 1n a real situation, say, in an experimental realization, 1s
impossible If we examine the data given by Kachanov!Y, the amplitude of the second harmonics at
different locations are always sigmficantly smaller than those calculated by us by applying the
weakly nonlinear, perturbation scheme, with a taken from the experiment For example, the
calculated values were two or three times larger than those observed in the experiment, and the
closer the location was to the vibrating ribbon, which generated the instability wave, the larger was
the descrepency If we consider the problem from the physical point of view, then for the
expermments of Nishioka et al 2 or Kachanovll, at the imitial stage of the development, there was no
harmonics So the harmonics must be generated through nonlinear process, which can not be
spontaneous Therefore, the second harmonics 1s not necessartly proportional to a2, the third
harmonics 1s not necessarily proportional to @, etc , as the weakly nonlinear theory predicted The
way of the amendment of this discrepency 1s that we should assign an independent amphitude for
each harmonics, and to find the evolution equation for each of them, so that the gradual evolutional
process of them can be taken into consideration
If we follow Stuart® or Zhou'*, then in the frame work of the weakly nonlinear theory, we can
write
Uz, Pa}T ={820(y), P20(y)}Texpl 20,0+ {055(y), h22(y)}Texp[2:0]
={Uz, P20} T + {2, D22} (17

where the appearance of §; n the exponent 1s due to the fact that the eigenvalue problem for the
linearized problem may correspond to a non-neutral case, otherwise g, =0 Since the amplitude
of uy, , etc 1s not necessarily proportional to a?, in place of the third term on the right-hand side of
eg (1 2), we should write
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b30{l30, 2o} Texpl — 201+ byp{ 8, ,?zz}’rexp[&e] (1.8)

According to the perturbation method of the weakly nonlinear theory, the equations satisfied
by U, etc are

du du du 1

35—t ~—gn—+ 00 g;+vpu—-R—vzuzo-:—2ReE(ul-v)u:J} (1.9)
V~u;°=0

du du dyu 1

Bt Tyt Un g Vo vzuzz=—2R°E(“1'V)“l]} (1.10)
Vo lUzg=0

where the # stands for the complex conjugate, Re stands for the real part of a complex vanable
Following Zhoul, the actual equations for @,, , etc are

1 d*a
20ty ———~ -8 — _9Re (o
COR (‘ )} (1.11)
N

dy*
L

=—2Re [(taa,-{-b, ———)0 ] » (112)

{Zsa '

y }"“”0

D20 =0

. " du d 7
—2100,; + 2104,0,, + "zzd_;+{23a ,"@—} P2 —%

J

and 1f we fet the amplitude factor for @, ,etc be a?, then the result of the weakly nonlinear theory is
restored

As stated above, independent amphitudes should be allowed for @, , etc But we assume that
the shape of their velocity distribution can be borrowed from the perturbation method In this case,
the following expression can be the praper expression for the terms replacing the third term on the
right-hand side of eq (1 2)

b2o($){020(Y) » P20y T + bzz(f){ﬁzz(y) sPaaly)}” (113)

where tne shape 1s given but the amplitudes b,, and b,, are allowed to vary in time with a slow time
scale as for a

If now we put the first term of (1 13) mntoeq (1 9,, scalarly multiply the first equation of (1 9) by
b1, (y) and integrate, following the procedure for the derivation of the energy equation n the
theory of hydrodvnamic stability, we shall arrive at an evolution equation for b, as

db
_T___zo =By byo + By.a* (1.14)
and n the same way, an equation for b,, can be dertved as
db
d;’ =By by, + Byia* (1,15)

and 1n account of eqs (1 11) and (1 12), 1t 1s readily shown that
By + Boy=B1 + By =20ws (1.16)
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If we continue the perturbation calculation to the next step, then the Landau-Stuart amplitude
equation would appear as

%"—'wla""(Aslbzo'i'Aazbn)a (1.17)
and a similar equation can be dertved for § Therefore, up to this order, we should have three
amplitude equations (1 14), (1 15) and (1 17) in place of a single equatton (1 4), and the evolution of
the second harmonics and the mean flow distortion has been taken into consideration

Apparently, the above procedure can be continued and more and more amplitude equations
will appear for more and more harmonics, etc

Egs (1 14),(1 15)and (1 17) can also be used to determine the equilibrium state by putting the
right-hand side of them equal to zero Here we notice that 1f in eq (1 17) we put

bzo="'1-"z::‘=‘-7z

then the original Landau-Stuart equation 1s recovered However, in view of eq (1 16), when
by,=b,,=a’,eqs (1 14)and (1 15)do nct yield db,/dt20and db,,/dt20 Therefore, the equilibrium
state determined byeqs. (1 14),(1 15) and (1 17) 1s different from those determined by the original
Landau-Stuart equation, except when @; =0 Since the origmal Landau-Stuart equation 1s a
special case of the present formulation, and eqs (1 14) and (1 15) were obtained from the energy
consideration with a shape assumption, which 1s apparently correct for the weakly nonlinear theory
itself, so one would reach a conclusion that for the weakly nonlinear theory, only a formulation
starting with a linear problem corresponding to a neutral case, either really being so as Stuart?® and
Watsonl, or artificially made to be so as Zhoull, can yield a result consistent both from the
analytical point of view and the energy trasfer pomnt of view Of course, if we can really carry out the
perturbation calculation to the infinite order and the resulting series converges, perhaps a consistent
solution can be claimed to be found even for @;= 0 , but so far, no one can prove 1t does work in this
way

Once the equilibrium state has been determined, we can readily determine 1ts stability by the
method of small perturbation from the equilibrium state We have calculated a number of cases for
plane Poiseuille flow with parameters close to the neutral curve so that the weakly nonlinear
calculations can start from a linearly neutral case So far, the stability analysis yield the same
conclusions as those obtained from the original Landau-Stuart formulation, and the cases studied
include both the supercritical and subcritical equilibrium states

We have also tried to calculate the evolution of the second harmonics of Kachanov’s
experiment, by usingeq (1 15) with a taken from the measured value of the experiment K achanov’s
vibrating ribbon 1s at the location x = 250mm, so we assume the amplitude of the second harmonics
1s nil there We calculated the coefficients of eq (1 15), and then integrated numerically to obtain
by,, the amplitude of the second harmonics We find the result 1s quite good up to x =350mm,
compared with the experimental observations Notice that since 1t 1s an evolutional process, the
shape of the second harmonics can not be simply the shape calculated at the local station erther, so a
certain kind of evolutional accumulation effect has been taken into consideration, otherwise the
result will not be so good

We have not carried out the calculation further downstream, because the measured shape of
the second harmonics has already been distorted there
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II. The Resonant Idea in the Weakly Nonlinear Theory

Resonant 1dea has played an important role 1n the theory of hydrodynamic stability, probably
n other fields as well In the context of the above section, two questions may be raised

Let us take the idea of resonant triad as an example®-8The following three waves are said
to be 1n resonance,

¢1(y)expls(ayx— o1t)], du(y)expli{aX+ Pz—w,t)] } (2 1)
P (y)expl1(ayx— By —wyt)]
if thetrr wave number and frequency satisfy the so-called resonant condition,
ay=2a;, Wr=20W3r, Wi=wWy =0 (2,2)

Some authors did not ask the third equation to hold to form a resonant triad, but the first two were
thought to be necessary by every one The reason 1s, among other things, that only under this
condition, all the three waves can travel with the same phase speed, so their relative phase remains
unchanged, and thus guarantees the mutual excitation

However, such a stringent condition 1s only needed 1f we want to follow the evolution of the
triad indefinitely, a sttuation only possible for strictly parallel flow, and as plane Poisewille flow,
besides, temporal mode must be used While 1n a real situation, the spatial mode 1s more suitable,
and the time for evolution only lasts for a short pertod, say, several wavelengths or cycles, as in the
problems of transition or the evolution of the vortex in a developing free shear flow In such cases, a
slight difference of the wave speed will not cause much difference For example, a 39, difference of
the wave speed will cause to the relative phase a change of 03 # within an interval of five
wavelengths, which will not significantly change the energy transferrate between different modes,
while within that period, transition may have already taken place

On the other hand, the resonant 1dea gives people the impression that once the resonant
condition 1s satisfied, the growth rate of the resonant waves would be enormously larger than those
waves with other parameters However, calculations show that the energy transfer rate between
different modes and the mean flow does not have a sharp peak around the resonant parameter,
rather, 1t 1s quite flat Therefore, the first modification which should be applied to the resonant 1dea
1s that 1t does not provide a critereon which can single out one set of parameters as the mechanism of
wave number selection Rather, we must test for a certain band, though narrow, of waves forming
nearly resonant triads, and compare their growth rate

The second modification to apply the resonant idea 1s relevant to the calculation of its
evolution process In [6,8], the weakly nonlinear theory was proposed However, as stated 1n the
preceding section, for an evolutional problem, the evolution equation, 1 ¢ the amplitude equation,
should be reformulated. then perhaps we can provide a mechanism of wave number selection which
might be different from the previous result

A correct formulation could be as follows First, we may start with three waves as in (2 1), but
we may allow a certain degree of difference of the phase speed Then through nonlinear interaction
of different modes, new waves may be generated having the following form,

du()explil(ay—as)x~(uy — 0¥ )+ 2]}, ds(y)expisl(ay—ar)x
—(oy—@i)t~Bz1}t, ¢,(y)expl2(ayx—ast)] (2.3)

Then the newly excited waves may interact with the original waves to reinforce or weaken the energy
transfer to or from other existing waves or the mean flow If now we apply the 1dea proposed in
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section I, we may get evolution equations for each mode Then through their integration, we can
find the waves having the largest growth rate, which should provide a mechaism of wave number
selection

III On the Mean Flow Distortion 1n Developing Free Shear Flows

In applying the weakly nonlinear theory to problems such as developing free shear flow,
another difficulty may anise That 1s, 1f quasi-parallel assumption 1s made, then we will arrive at the
following equations for the second order mean flow distortion 25,

1 d*a d
R Tdp —dy v (3.1)

where the right-hand side represents the force resulting from the Reynolds stress generated through
nonlinear action by the fundamental If we integrate this equation, we will get a mean flow
distortion which decays algebraically when ¢—>eo, obviously incorrect compared with the
experimental observations This difficulty arises from the fact thateq (3 1)1sanequation only valid
for steady state, while for a real free shear flow 1tis evolutional, the mean flow distortion at a certain
location 1s actually the accumulated effect of the Reynolds stress generated by the disturbance
upstream from that location within a finite time interval Thus, thisis an evolutional process rather
than a steady state situation The way to overcome this difficulty 1s to dertve an equation for the
unsteady, evolutional process In a frame moving with the convective speed of the disturbance, we
would see an unsteady shear flow with its thickness growing But if we assume the growth rate 1s
small, then after certamn simplhifications we will arrive at the following equation for the mean flow
distortion,

Ougo(y,t) _ 1 O%uyy 0 n
o1 " F oy~ Oy <> (3 2)

Since this 1s an equation of diffusion, 1ts solution can be written as

_1 /Rj"[*o ] o
tz0 (Y, t)—Z =) . et W( tuy )

- exp [———[i((%z%—]dndr

(33)

but in actual integration, say, for a problem of mixing layer, we should start from a certain location
where the mean flow distortion 1s supposed to be nil, and then calculate the fundamental
disturbance, 1e¢ the T-S waves at each location, with 1ts amplitude either taken from the
experiment, or calculated by a certain kind of evolution equatton Find the convective speed of the
disturbance, convert the time variable to space variable according to the speed, and then integrate
eq (3 3) step by step with a step length which can guaranttee the required accuracy In this way, we
can get a mean flow distortion which decays exponentially when y— oo

One objection which people may raise to this scheme 1s that the effect of the growth of the
thickness of the layer has not been taken into consideration in formingeq (3 2) The answer s that
when we 1ptegrate the equation step by step, the thickness of the layer 1s assumed to be known, either
from the experiment, or from some other equations which may be solved in advance or
simultaneously So in fact, the effect of the growth of the thickness has already bten included 1n the
calculation
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