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Abstract. We consider the motion of a test particle in a compound central potential 
field on a two-dimensional torus. We discuss three different classes of potentials 
(attracting, repelling, and mixed) that lead to Hamiltonian systems which have 
positive Lyapunov exponent almost everywhere and are ergodic. Included among 
the mixed potentials are smooth potentials without singularities. 

I. Introduction 

Do gas molecules interacting in a box behave stochastically? Boltzmann's ergodic 
hypothesis, rephrased in modern language, asserts the affirmative. In the nineteen 
forties, the Russian physicist Krylov [Kr] studied the case of a gas of hard spheres. 
His calculations indicated that collisions between the spheres would lead to an 
exponential divergence of trajectories. Hopf [HI had recently shown that geodesic 
flow on surfaces of negative curvature was ergodic precisely because of such 
exponential instability of trajectories. Krylov argued that the hard sphere gas 
should therefore also behave stochastically. 

In the early 1960s, Sinai [Sil] continued the work of Krylov. He translated 
the problem of two hard spheres into a billiard system consisting of one particle 
moving on a two dimensional torus T 2 with circular obstacles (scatterers). Sinai 
[Si2] showed that this billiard system was ergodic. Furthermore, recent work has 
proven ergodicity of systems of three and four balls [SC, KSS1, KSS2]. 

We will study a related systems, also discussed by Krylov, obtained by replacing 
the circular scatters on the billiard table by symmetric potentials of finite range. 
One then examines the motion of a point particle in the potential field. The resulting 
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do ~H dq 611 
dynamical system is determined by a Hamiltonian function H : ~t._._ - Oq ' dt = - Op " 

If there are n disjoint scatterers on the torus, then letting p~R 2, q ~ T  2, 

H ( p , q ) = ~ p  2 + ~ Vi(q-qi ) ,  (1.1) 
i = 1  

where the radially symmetric potentials V~ vanish outside a disk D i of radius Ri. 
The total energy E of the point particle is preserved under the Hamiltonian flow 

induced by (1.1) We restrict our attention to the E = 1/2 energy surface; a compact 
three dimensional manifold which we denote by ~ ' .  The choice of E = 1/2 implies 
that the particle will move with unit speed while outside wD~. We denote by q~t the 
flow induced on J / / by  (1.1) and let/~ be the restriction of the Louville measure to 
J//. This measure is invariant under q~t. We will study the dynamical system 

(J//, ~b', #). (1.2) 

To simplify matters, we will discuss the case of one scatterer and will set q 1 equal 
to the origin, but our results apply to the more general situation as well. 

Recently, Knauf [Knl ]  examined the case of attracting potentials and showed 
the existence of attracting potentials with - r -  1 singularities (Coulomb), and more 
generally singularities of type - r - 2 ( 1 -  ~/,), neZ+\{0,  1}, for which the system has 
positive entropy and is ergodic. We generalize this result to show 

Theorem 1. For any ct~(0,2), there exist attractin9 potentials with sinoularity of 
order - r - ~ f o r  which the system has positive L yapunov exponents almost everywhere 
and is ergodic. 

Note that if the singularity is - r -  2 or stronger, then a positive measure set of 
trajectories would be pulled into the singularity, trivializing the dynamics. 

In the case of repelling potentials, Sinai [Sil] and then later Kubo [Ku] showed 

Theorem 2. There exist repellin9 potentials, which are continuous but not C ~, for 
which the system has positive Lyapunov exponent almost everywhere and is ergodic. 

In their examples, the discontinuity in V' occurred at the boundary of the disk. 
At the discontinuity, they needed that I V'I was greater than a certain energy 
dependent lower bound. We generalize their results by constructing potentials with 
an arbitrarily small discontinuity in V' for which the conclusion of Theorem 2 still 
holds. Other works on this subject are [KSS4, KuM, M, V1, V2]. 

In [D1, D2], Donnay created smooth metrices on the sphere and two-torus for 
which the geodesic flow had positive Lyapunov exponent almost everywhere and 
was ergodic (see also [BG2]). In analogy with his construction, we show 

Theorem 3. There exist smooth potentials without singularities for which the system 
has positive Lyapunov exponent almost everywhere and is eroodic. 

These are the first examples of a smooth Hamiltonian of the form H = Kinetic 
Energy + Potential Energy for which the flow is ergodic [Be, p. 185]. 

We can construct several different sorts of smooth potentials. The crucial 
ingredient in the construction is that there exist a closed orbit inside the disk D. 

We prove our results on Lyapunov exponents by applying Wojtkowski's 
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�9 1. Attracting potential causes divergence 

Fig. 2. Repelling potential causes focusing 

method ofinvariant cone-fields [W1] to the flow ~b ~. A positive Lyapunov exponent 
implies that a family of infinitesimally nearby trajectories will diverges from one 
another exponentially fast. 

In free motion, V _= 0, a parallel family of trajectories stays parallel and never 
diverges. The attracting potentials of Theorem 1 will cause every parallel family 
of trajectories that enters the disk to become strictly divergent (Fig. 1) Once all 
parallel families are shown to become strictly divergent, the cone-field method 
immediately implies that almost every such family will diverge exponentially. 

The repelling potentials of Theorem 2 cause the parallel family to converge. 
Before returning to the next potential, the converging family focuses and then 
becomes strictly divergent (Fig. 2). If the repelling potential were C a smooth, then 
the time until this focusing occurred could become arbitrarily large; in particular 
longer than the return time to the potential. The method of proof then breaks 
down. 

For the systems of Theorem 3, the trajectories that enter the disk but do not 
cross the closed orbit will exhibit the diverging behavior. Those trajectories that 
cross the closed orbit will display, in a finite time, the focusing behavior. Dividing 
these two sets of trajectories are the trajectories that become asymptotic to the 
closed orbit. 

These trajectories introduce a type of discontinuity into the system. Typically, in 
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going from the diverging behavior, to the focusing-in-finite-time behavior, one must 
encounter the focusing-in-unbounded-time behavior. We are able to skip over this 
intermediate situation because of the discontinuity caused by the closed orbit. 

To prove ergodicity, two different methods are available. One method is based 
on the Burns-Gerber [BG1] argument for contact flows. The Burns-Gerber 
argument relies heavily on Pesin theory [P] and requires that the system be smooth. 
This smoothness requirement fails for the examples of Theorems 1 and 2. However 
for the special potentials with singularities of order - r - m -  1/,), we can regularize 
the singularity to produce a smooth flow. We combine this regularization with the 
cone technique to give a different proof of Knauf's ergodicity result. 

Knauf's proof was based on the Maupertius principle [A, p. 246] which states 
that the motion of a particle under the effect of a potential can be viewed as 
geodesic motion relative to a special metric. The trajectories on the torus produced 
by the potential V agree with the geodesic trajectories produced by the Riemannian 
metric 

ds 2 = (E - g(q))dg 2, (1.3) 

where dg is the Euclidean metric and E is the total energy of the particle. Note that 
although the trajectories of the two systems coincide, the time parametrizations 
of the flows do not. For any examples in Theorem 3 one can prove ergodicity by 
combining the Maupertius principle with the Burns-Gerber argument. 

For the potentials he constructed, Knauf showed that inside the disk D, the 
metric ds was of negative curvature. Outside the disk the curvature is clearly zero. 
For such a metric, the geodesic flow is ergodic (in an appropriate covering space) 
and hence so is the potential flow. We note that Krylov [Kr] did calculations for 
potentials of power-type indicating the likelihood that the associated metrics 
would have negative curvature. 

The other method is based on Chernov's and Sinai's ideas [SC]. These 
techniques were developed to prove ergodicity in the case of non-smooth systems 
(systems of hard balls), and relied on a detailed analysis of the properties of the 
singularities in the system. 

Finally in analogue with Donnay's light-bulb example [D1], we show 

Theorem 4. There exist smooth potentials without singularities for  which the system 
has positive Lypunov exponent on a set o f  positive measure but is not ergodic. 

The outline of our paper is as follows. We review (Sect. 2) the necessary material 
about cone-fields. We then consider the potential system as an example of a more 
general abstract system (Sect. 3). We determine conditions for this abstract system 
that will insure positive Lyapunov exponents (Sect. 4). We use these conditions to 
prove Theorems 1, 2, 3 and 4 (Sect. 5). We discuss the ergodicity of our examples 
(Sect. 6). We relate (Sect. 7) our potentials to the metrics given by the Maupertius 
principle. In Appendices I, II, we compute explicitly some relevant quantities for 
our model, and obtain the estimates needed to prove the existence of the Lyapunov 
exponents for the flows under consideration. In Appendix III, we supply calcula- 
tions used for the proof of Theorem 3. In Appendix IV, we provide the modifications 
necessary to apply the Sinai-Chernov theory, in the version presented in [KSS3], to 
our examples. Finally, Appendix V discusses embedding the associated Maupertius 
metrics. 
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2. Lyapunov Exponents and Cone-Fields 

Let .5[ be a C 3 compact, connected, three dimensional Riemannian manifold and 
# a measure on ~ that is equivalent to the Riemannian volume. Let Ct be a 
measurable flow on ~/,  generated by a vector field X, that preserves #. Osceledec's 
multiplicative ergodic theorem [O] implies that for a flow satisfying 

log + sup [IdCt(x) lld#(x) < oo, (2.1) 
v g  t e [ O ,  1]  

one has that for # - a.e. x e J / t h e  Lyapunov exponents of ~ e ~ ' - ~ ,  ~ ~ 0, 

2+(x,~)= lim l l o g  IIdCt~[I 
t - ~  + oo t 

and 

1 
2-(x, 4) = lim --log II dCt~ II (2.2) 

t -'r - oo t 

are well defined. 
We define the maximal Lyapunov exponent at x to be 

2+(x) = sup 2+(x, 4) = lim l l o g  II d#(x)II. (2.3) 
CeJx~ t-~oo t 

Wojtkowski's [W1] technique for proving that the maximal Lyapunov exponent 
is positive involves cone families. 

As in [BG1], we define a cone C in two dimensional vector space P to be a subset 
C = C(X1, X2)= {aX~ + bX2 :ab > 0}, where X t and X2 are linearly independent 
vectors and a, beR.  We call Int (C} = {aX 1 + bX2:ab > 0 or a = b = 0} the interior 
of C. The family is measurable (continuous) if the vectors {X1,X2} vary in a 
measurable (continuous) way. 

At each point x e ~ ,  we produce a two-dimensional vector space P(x) by taking 
the three-dimensional tangent space J x  ~ / a n d  quotienting out by the flow direction 
x : e ( x )  = Jx~c /X(x ) .  

For  concreteness, we will choose a fixed representative of P(x) at each x. We 
denote by ~' the projection in the flow direction onto this subspace P; for 

= o~X + peJ-xdr peP(x), we have 

~(~) = p. 

Theorem 2.1. Assume that the flow satisfies (2.1). Let U c d/[ be a set of positive 
measure with X ( x )~O for every xeU.  Suppose that there is a measurable two 
dimensional distribution P defined on U and a measurable family of cones C ~ P over 
U such that 
(i) P(x) and X(x) span 7xJC for each xeU; 

(ii) :~(dCtC(x)) ~= C(r whenever xe  U, r  U and t > 0; 
(iii) for # almost every x e U  there is a t(x)> 0 such that c~t~X)xeU and 

~(d(bt~x)C(x) ) ~ Int (C(r ). 
Then for # - a.e. xe  C = [..) # U ,  the maximal Lyapunov exponent satisfies 2+(x) > 0. 

t J R  

Proof. We follow [W13 where the case of maps is studied. Let T = Ct be the time 
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one map of the flow ~b t. Let T v be the derived transformation defined for xe U by 
Tvx = Tk~X)x, where kv(x ) = min {n > 1: T"xe U}. We denote by dTv: U --. GL(3, R) 
the differential of T v. Condition (2.1) implies that S l~ + IIdTv(x)l[d#(x) < 0% so 

U 

that the Lyapunov exponents for the cocycle (Tv, dTv) exist almost everywhere. 
Standard ergodic theory techniques imply that if the maximal Lyapunov 

exponent for the cocycle (Tv, dTv) is positive almost everywhere in U, then the 
same is true for the maximal Lyapunov exponent 2 + (x) of the flow r 

We examine an associated cocycle ('Iv, ~(dTu) ), where ~(dTv): U ~ GL(2, R) is 
the map from P(x) to P(Tvx ) defined using the projection map. The Lyapunov 
exponents for this cocycle exist since log + II ~(dTv)II eLl(U, #). Conditions (ii) and 
(iii) allow us to apply [W 1, Theorem 2.2] and conclude that the maximal Lyapunov 
exponent of (Tv,~@(dTv)) is positive almost everywhere. This result implies that 
the maximal Lyapunov exponent for (Tv, dTv) is also positive almost everywhere 
(for more details see also [W2, Lemma 1]). �9 

For smooth flow (at least C2), Pesin [P] showed that the measure theoretic 
entropy h, is given as the average of the positive Lyapunov exponents. 

h,= ~ 2+(x)d#(x). (2.4) 
XeJ /  

Katok and Strelcyn [KS] have extended this result to systems with singularities. 
If the set F of points with a positive Lyapunov exponent has positive measure 
then F decomposes into at most a countable number of invariant components, 
each of positive measure. On each component the system exhibits very strong 
ergodic properties. 

Burns and Gerber [BG1] have given a simple condition for ergodicity of smooth 
systems in terms of cone-fields. Essentially, they show that if the distribution P is 
flow invariant 

dc/Y P(x) = P( Otx) (2.5) 

then continuity of the cone-field implies ergodicity. For systems with singularities, 
the ergodicity proof of Chernov and Sinai [SC] (see also [KSS3, Bu]) can be 
phrased in terms of continuous cone-fields, but additional conditions on the 
singularity manifold are needed. We will refer to these methods to prove ergodicity 
for our examples (see Sect. 6 and Appendix IV). 

3. Model System 

The dynamics of our system (1.2) consist of the composition of two easily under- 
stood motions. Outside the disk, a particle moves in a straight line with unit speed. 
Inside the disk, the symmetry of the potential implies that the motion is integrable. 

To simplify the discussion, we will assume that every particle that starts inside 
the disk and every particle that enters the disk will leave the disk. This imposes 
certain restrictions on the potential V(r) (see (3.6)). We give the disk D polar 
coordinates (r,O), re[0,R], 0e[0,2n], and denote by q~e[-~,~] the angle a 
trajectory makes with the boundary of the disk. We set 

52 = {(0, ~p):0e[0, 2n) and (pc[0, n]}, 

5~ = {(0, ~p):0e[0, 2n) and ~pe[-n,  0] }. 
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Fig. 3. Rotation function AO(q~) 
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They represent, respectively, the points in the phase space J/{ at which trajectories 
enter and leave the disk. Abusing notation slightly, we will say a point x = (p, q) 
is in the disk D if qED. 

The symmetry of the potential implies that a particle that enters the disk at 
the point (0, q~), q~[0,  n], will leave the disk at a point (0 + d0(q~),-<p) (Fig. 3). 
The function 

d0(~o), ~o ~(0, ~z) (3.1) 

is called the rotation function; it will determine the ergodic properties of the system. 
The exact nature of the rotation function depends on the potential V(r) in the 
following way. 

Let V(r), r r lR + be a radial potential that satisfies 

lira r 2 V(r) = O, 
r--~0 

supp V ~ [0, R), 

VeCE((O,R)). (3.2) 

For  r < R, the trajectory of a particle (r(t), O(t)) of mass 1, energy �89 and angular 
momentum I entering in this potential is given by 

�89 = �89 + r20 ) + v(r), 
l =  r20, 

r (0)=R;  0(0)=0o~[0,2rc); ~(0)<0. (3.3) 

The dot indicates the derivative with respect to time and the particle is assumed 
to enter the disk at time t = 0. 

Rewriting the first of (3.3) gives 

l 2 
~2 = l - ~- - 2V(r) = r-E(h(r) -/2),  

where (3.4) 
h(r) = rE(1 - 2V(r)). 

Combining (3.3), (3.4) we have 

dO l 
- + ( 3 . 5 )  

dr r x / ~  _ 12 
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This sign of dO depends on whether r is increasing or decreasing. 
dr 

Before going further we impose an additional condition on our potential, 

h'(r) > 0 (3.6) 

for all except perhaps one value of re(0, R). This condition insures the absence of 
"trapping zones": invariant regions of phase space in which the motion is completely 
integrable (see the end of the section). 

With this assumption, i f / #  0, then there exists a time f e R + u  {oo} such that 
l:(t) < 0 for t < f and F(f) = 0. This is the time at which the particle comes closest 
to the center of the potential. Denote by ~ = r(q~) this minimum radius. For  potentials 
satisfying (3.2) and (3.6), we can integrate (3.5) and get the following expression for 
the rotation function for q~e[0,1r/2): 

R l 
d0(~0) = 2 S ~ dr, l = R cos tp = h(~) 1/2. (3.7) 

r x / h ( r )  - 12 

An orbit that enters the potential field with angle ~t - q) will rotate clockwise 
around the disk by the same amount  that an orbit entering the disk with angle ~o 
will rotate counterclockwise. Thus for ~oe(n/2, re], we can define 

AO(~o) = - AO(rc --  ~o). (3.8) 

This definition produces a rotation function that will typically be discontinuous at 
q~ = rt/2 (see Lemma 5.5). In such a case, we ignore those trajectories that enter 
the disk with angle q~ = 1r/2. These points from a set of measure zero. Note that 

d0'(q~) = AO'(rc - q~), (3.9) 

so that when we study properties that depend only on the derivative of the rotation 
function, it will suffice to examine q~e[0,1r/2). 

Actually, in many of the examples, we will be able to define the rotation function 
to be continuous and even smooth for q~e[0, lr]. If 

lim d0(~o)=n~, n e Z ,  (3.10) 
~o~0t/2) - 

we set AO(rr/2) = nrc and define 

AO(qg) = 2mr - AOOz - q~), ~oe(rc/2, lt]. (3.11) 

We will derive conditions on the derivative of the rotation function, AO'(q~), 
which will imply the existence of a strictly invariant cone field. To compute this 
derivative, we first make the change of variables s = r/~ to get 

R~- 1 l 
dO(qg) = 2 [ _ _ d s ,  

s~ /h (es )  - I z 

and then differentiate. By trial and error, we have found that the result can be 
written in a particularly simple form if we introduce the function 

rh'(r)  V'(r)r  (3.12) 
O ( r ) =  h(r) = 2 -  2 1 -  2 V (  



Ergodic Potentials on the Two-Torus 275 

One then gets that 

- 1 [ R  2 __ l 2] 1/2 {2[h(R - ) -- 12] - AO'(~o) 20(~) 

For  details, see Appendix I. 

~ h(r)[ l-2(r) - 12(~)] } 
1/2 + Je r [ h ( r ) -  12] 3/2 dr . (3.13) 

Trapping Zones. If h ' ( r ) < 0 f o r  some re(O,R), then there exist orbits that start 
inside the disk and never leave. Equation (3.4) implies that on a trajectory (r(t), O(t)), 
one will always have h(r(t)) > 12. Hence trajectories that start inside the disk with 
a value of angular momentum l close to the maximum value of h will have 
r(t)E[rmin, rmax] for all t ~ ,  where h(rmin)= h(rmax)= 12 (Fig. 9). 

There can also exist closed orbits inside the disk. If there exist rv~(0, R) such 
that 

h'(rc) = 0 or equivalently 12(re) = 0, (3.14) 

then there exists a closed orbit with r(t) = r~. To see this, let (r(t), O(t)) be a trajectory 
with angular momentum 12 = h(r~) that satisfies r(0) = r~. Then using (3.4), we get 

~ , - o  d2r dr _ = 0 and using h'(r~) = 0 we get d2 t ,= 0 = 0. Hence r(t) = r(O) = rc. 

4. Cone Fields 

We define the cone field {C(x)}, xEU,  and derive conditions on AO'(q~) that imply 
the cone-field is strictly invariant (i.e. satisfies (ii, iii) of Theorem 2.1). 

Definition 4.1. Let U c J / b e  the set o f  all points x = (p, q) outside the disk D. 

We can canonically identify the momentum p = 4 with its velocity vector 4. 
For  q outside the disk, V(q) = 0, so a particle moves with speed one and the velocity 
vector 4 has length one. We assign coordinates {v, v • <0} to J/r in a neighborhood 
of x: v is the distance from q on T z, measured in the direction of 4, v• is the distance 
from q in the direction perpendicular to 4 and to is the angle of the unit velocity 
vectors measured counterclockwise relative to a fixed axis. These coordinates induce 
an orthonormal basis {X = Xv, Xvi, X~} for T~/ .  We set P(x )=  span {Xv• X~}. 

It is easy to see that as long as (otx does not intersect D, the distribution P(x) 
is invariant 

d4)tp(x) = P(dptx). (4.1) 

We define the cone C(x) by 

C(x) = {JXv• + J ' X , : J J '  > 0}. (4.2) 

In differential geometry, a vector ~ P ( x )  is identified with a Jacobi field, hence the 
notation (J, J') for the coordinates of the vector. 

Theorem 4.2. I f  for almost every q~(O,n), the rotation function satisfies either 
AO'(~o) > 2 or AO'(q~) < O, then the cone family defined by (4.2) is almost everywhere 
eventually strictly invariant on U (i.e. satisfies (ii, iii) of Theorem 2.1). 

We find it useful to interpret vectors ~ ~Y'J//geometrically. We identify a vector 
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with the one-parameter family of trajectories ?(s)= (v(s), vZ(s), ~(s)), se [ -~ ,~] ,  
that generates it: 7(0)= x and 7'(0)= 4. Such a one-parameter family is called 
a variation. If ~eP(x) then v(s)-  0: the variation is perpendicular to the flow 
direction. The cone specified by (4.2) is then 

C(x) = {variations in P(x) that are diverging}. (4.3) 

The edges of the cone are the variations (J = 0, J '  = 1) and ( J = 1, J '  = 0); the former 
is most strongly divergent, the latter is parallel and is least strongly divergent. 

Proof of Theorem 4.2. 
a. Outside the disk, this family of cones is invariant (i.e. satisfies (ii) of Theorem 2.1): 
any divergent family of trajectories will stay divergent. The family of cones is not 
strictly invariant though (does not satisfy (iii) of Theorem 2.1), since the parallel 
family remains parallel. 
b. To understand how the cones evolve when they go through the disk, we examine 
first the case V(r) -  0, re[0, R]. Then the trajectories in the disk would be straight 
lines and by simple trigonometry, one finds that the rotation function is 

dO(q)) = 2q), q~e[0,rc/2], (4.4) 
so that 

AO'(q)) -= 2. (4.5) 

The cones would evolve as they had been doing outside the disk. The diverging 
variations would stay diverging, but the parallel variation would never become 
strictly divergent; it would remain parallel. Thus the cone field would never become 
strictly invariant. 

To produce a system with positive Lyapunov exponents, we must push the 
horizontal edge (i.e. the variation (J = 1, J '  = 0)) of the cone up, so that the cone 
family becomes strictly invariant. This amounts to making the parallel family 
become strictly divergent. 
c. Knowing the above information in the V(r) - O, case, one can quickly conclude 
that if 

AO'(q)) > 2, (4.6) 

then a parallel family that enters the disk with angle q) will be strictly divergent 
when it leaves the disk. Also any strictly diverging variation remains strictly 
divergent. From the geometry of diverging variations one can see that if 

AO'(q)) < 0 (4.7) 

then the same result holds. A more quantitative proof of this proposition follows 
from Lemma 4.5. �9 

If the rotation function AO'(q)) takes values in the interval (0, 2), then we can 
still produce an eventually strictly invariant cone family, but we must modify our 
definition of C(x), and also the minimum time between returns to the disk must 
be sufficiently large. 

For xe5  a, we define to(X) to be the time it takes to go through the disk. We 
define tx(x)e(to(X ). + oe] to be the time until xnext  returns to the disk: ~Yl~X)(x)~Sa, 
if tl(x) is finite. Then for te(to(X), t~(x)), ck*x is outside the disk. We set 

tmi, = min (tl (x) -- to(X)). (4.8) 
x ~ 5  a 
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Theorem 4.3. I f  there exists a fie(O, 2) such that AO'(q)) < 2 - 6 for almost all q~[0,  hi, 
then providing that 

2R(2 - 6) 
tmi, > 6 , (4.9) 

there exists a cone-field C1 defined on U satisfying conditions (ii) and (iii) of  
Theorem 2.1 

According to the previous theorem a given potential will produce the wanted 
behavior in a sufficiently large torus. An alternative, but equivalent, point of view 
is to fix the size of the torus and reduce R by rescaling. In this case (4.9) will be a 
condition on the support of the potential. 

Remark 4.4. If we assume that the torus has width 1 then tm~ . = 1 - 2R. Condition 
(4.9) translates into the restriction, 

6 
R < g. (4.10) 

To prove this result, we will need more quantitative information about the 
evolution of variations. Outside the disk, if 

then 

where 

= ~X + JoX~• + J ' oX o~9"x~  , 

t dc~t~ = a X  + J ( t )X~  + J ( t ) X ~ e ~  4,,xJ[, 

J ( t ) = J o  + J'ot and J ' ( t )=J '  o. (4.11) 

For  x = (0, ~p)e5 e (see Sect. 3), let to(X) be the time the orbit takes going through 
the disk: dq~t~ s where s  Since the potential is symmetric, the function 
only depends on ~o: to(X ) = to(q~). 

Lemma 4.5. Let x = (0, q~)~6 e and 

Then 

where 

= aX  + JXoi  + J ' X ~ Y - ~ I .  

~ = ct + ( R s-R-~n ~ + J ) (  RAO'(q~)cos tp - 

Y = J(AO'(~o) - 1) + J'(RAO'(~o) sin ~o), 

y , _  J 
R sin q~ (AO'(q)) - 2) + J'(AO'(q)) - 1). 

The image in P(~2) of  a vector ~ = JXv• + J X a ~  ~M(, is 

~(d49'~ = YXv,  + J ' X . .  

(4.12) 

(4.13) 
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Proof. Let 7(s), s e ( -e , e ) ,  be a variation that generates ~ so that y(O)=x and 
y'(O) = r We will use a prime for the derivative with respect to s computed at s = 0 
(when it is not conflicting with previous definitions). 
a. The tangent space J-Sg to the boundary of the disk has basis {Xo, Xq,}. Since 
the boundary of the disk has radius of curvature 1/R and remembering that the 
coordinate v ~ is defined using arc-length, one has that 

1 1 
Xv, = cot q~X - X o + ~ X~o. (4.14) 

R sin q~ /~ sin tp 

Therefore, 

where 

= oqX + O'X o + qCX,, (4.15) 

where 

(AO'(q~) - 2) 
t- u(AO'(~o) - 1) 

R sin q~ 
f~(u) = (d0'(~o) -- 1) + u(RAO'(qg) sin q~)" 

(4.21) 

- J  J 
~ l=c~+Jco tq~ ,  0' ( p ' - - -  ~-J'. (4.16) 

R sin tp' R sin ~0 

b. Th~ map from entering the disk to leaving the disk sends (0', ~0') to (0", (~') with 

O'=O'+AO'(~o)~o', t?' = --q/. (4.17) 

c. A vector O'Xo + ( o ' X , ~  can be written as 

~X + JXv~ + j ' X ~ 9 - - J [ ,  (4.18) 

where 

~=R0"cosq~, J=R0"sinq~, J ' = 0 " + 0 ' .  (4.19) 

d. Then the composition of the previous three maps gives the vector 

d c~to(~t~))(,(s ) )s= o = d Oto,,(o),(7(s))= o + d to ( , ( s ) )=  ~ X 

= ~ + dto d~~ X 
dip ds " 

Using (4.16) to determine ~ ,  we arrive at (4.12). 

In two dimensions, for a vector to be in a cone is projective property: if r ~ C(x) 
then 2~eC(x) for 2~R. We define a projective coordinate u for the space P(x): 

j ,  
U ~ -  , 

J ,~, J '  
Going through the disk, Lemma 4.5 implies that ~ = ~ is related to u J = f b y  

= f~,(u), (4.20) 
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Fig. 4. The effect of going through the disk 

The  effect of (4.20) on the edges of the cone, u = 0 and u = + oo, is 

1 : zo+  
fe(0) = R--sin q~ \Aft(q)) - _' (4.22) 

f,Joo~--- AO'(~9) -- l_ (4.23) 
" " RAft(q)) sin ~o" 

In Fig. 4, we graph  the functions fo(oo) and fe(0) as functions of AO'(q)). Outside 
the disk, u(t) evolves according to 

u'(t) = --uZ(t). (4.24) 

We can define global  solutions to (4.24): we identify _+ oo and set u( t , )= - o o  if 
l im u(t)= - o o .  Fo r  t > t , ,  we cont inue u so that  lira u(t)= + oo. F r o m  (4.11), 

t - * t , -  t ~ t ,  + 

one immediate ly  gets 

L e m m a  4.6. I f  u(O) < O, then at time z 1 = I 1/u(0)l, one has that u(zl) = - oo. After 
a further time z2, one has u(zl + z2)= l/z2. 

Having  identified + oo, we can consider solutions of  (4.24) to live on the circle. 
The  uniqueness p roper ty  of solutions of  ordinary differential equat ions imply that  
on the circle, the order  of  solutions is preserved. If  zl < z2 and  u o, ul ,  u2 are solutions 
of (4.24) with Uo(Zl) between UI('/71) and u2(z0, then /20("C2) is between ut(z2) and 
u2(z2). The  m a p  f+  also preserve the ordering. 

Proof of Theorem 4.3. F o r  x = (0, ~o)e6 e, we define Cx(x) by 

where 

C,(x) = {JX~I + J'S•:O ~ J ' /J  < ut~ (4.25) 

6 
u t~ = - -  (4.26) 

R ( 2  - ,~)" 
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Having  defined {C(lx)}, xeSr we simply push the cones forward  to define the 
cone-field on U: for c~'(x)~ U, t~(to(X ), t l(x)),  we define 

CI((Y(x))  = ~(dr (4.27) 

Since a lmost  every y ~ U  reaches 5 e in backwards  time, (4.27) defines a cone at 
a lmost  every y~ U. Only  a set of  periodic orbits  of  measure  zero will not  reach 6 e. 
To  make  the cone field on U strictly invariant,  we need only insure that  

d(ot'(x)Cl(X) ~ Int(Cl(qT'(X)x)). (4.28) 

By the ordering p roper ty  of f o  and of solutions of  (4.24), (4.28) will hold if we 
show that  u(t l (x  ), x) < u t~ where u(t, x) has initial value u(t o, x) = f~(utOp). We claim 

6 
that  for 0 < AO'(q~) < 2 -- 6 either U(to) = f~o(u t~ < R(2 -- 6~ or  U(to) = f~(ut~ 

2R(2 - 6) 
(0, + oo]. In  the first case, after a t ime t > 6 one has that  

6 
0 < u(t + to) < R(2 -- 6~--)" (4.29) 

In the second case, (4.29) holds for t > R ( 2 _ _ . -  6) When  AO'(q~) _-< 0 then 0 =< U(to) < 
6 

R(2 -- 6) 
f ~ ( +  m)  _< + m and so (4.29) holds for t > 

To  prove  our  claim, we notice that  the numera to r  in (4.21) satisfies 

- -  ~ top l ~ ( A O ' ( ~ o )  - 2) + ut~ - 1) < ~ -  + u (1 - 6) 
R sin ~0 

- 6  
< - - <  0, 
= R(2 - 6) 

and the denomina to r  

(d0'(q~) - 1) + ut~ sin q~) < (1 - 6) + ut~ - 6) 

< 1 .  

If  (AO'(tp) - 1) + ut~ sin q~) > 0, then we have the first case. 
If  (AO'(~o) - 1) + ut~ sin qJ) < 0, then we have the second case. �9 

Geometr ical ly ,  our  cones consist of  variat ions tha t  the diverging when they first 
enter  D and are again diverging when they re turn to D. If  AO'(tp) < O, then any 
var ia t ion that  is diverging when it enters D will be diverging when it leaves D and 
stay diverging until it returns to D. Fo r  0 < AO'(~o) < 2 - 6, some of  the variat ions 
will be converging when they leave D, but  after some finite t ime they will focus 
and then be diverging. We insure that  they focus before re turning to D. 

Remark  4.7. As 2 -  6 approaches  2, the focusing time becomes infinite. So if the 
value of AO'(q~) goes cont inuously  f rom 2 to some 2 - e, the focusing time for some 
var ia t ion becomes arbitrari ly large and our  methods  of p roof  breaks  down. 
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For  such system, one would still expect the existence of non-zero Lyapunov 
exponents. However present methods can not handle this situation in which the 
expanding direction gets sent onto the contracting direction, in our case by going 
through the disk. Moreover, in general, it is possible to arrange the geometry of 
the scatters in such a way as to obtain periodic stable orbits (in the sense of KAM 
theory), and hence a non-ergodic system. In order to prove positive Lyapunov 
exponents it would seem necessary to consider a family of similar systems and 
exclude the ones that may exhibit the undesired behavior. Recent work by [BC] 
on the Henon map begins to make progress on this type of problems. 

5. Potentials 

For a potential V(r), re(O, R) satisfying V(r)< �89 we can use (3.12) to write 

V(r)= ~ [ 1 - e x p ( !  2-~2(S) ds) (5.1) 

Since our motion occurs on the E = �89 energy surface, no trajectory can enter the 
region in which V > �89 Thus any potential we are interested in can be expressed 
via (5.1) in terms of the corresponding function ~2. This function determines AO'(q~) 
in a simple way. 

I. Attracting Potentials. We call a potential with V'(r)> O, re(0, R), attracting. 

Theorem 5.1. Let V be an attracting potential satisfying (3.2), (3.6) and such that 
f2(r) is strictly increasing for re(O, R) with 12(0) > 0 and V(R) = V'(R) = 0 (12(R) = 2). 
Then A0'(~o)> 2for all q~e(0, n/2). 

Proof. Since 12(r) -  f2(~)> 0, Vre[~,R], and the other terms in the integrand are 
positive we get from (3.13), (3.4), and (3.12) that 

4 [ R 2 - - 1 2 ]  1/2 4 

>  kffR p j >a(R) =2. 

Note that by (3.12), S2(r)e(0, 2), Vre(0, R), is equivalent to V being attracting. 

Corollary 5.2. Any attracting potential V(r) satisfying the assumptions of Theorem 
53 will produce a flow (~, ~/, l~) for which the maximal Lyapunov exponents 2+(x) 
are positive almost everywhere and is ergodic. 

Proof. If Y is C 2, then O is C 1 and we show in Appendix II that the Lyapunov 
exponents exist. Then combining Theorem 2.1, Theorem 4.2 and Theorem 5.1 
proves the result. Ergodicity is discussed in Sect. 6. �9 

From s we can determine the behavior of V at r = 0. 

Lemma 5.3. Let 12~CI([0,R]) and ct = 2 - 12(0). Then V will have a singularity at 
r = 0 of the form - 1/r ~. 
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Fig. 5. Attracting Potential 

Proof. Using (5.1), we get that 

lim f r "~2-  ~(~ = 1 ( i s  12(S)ds) (5.2) ,_~oV(r)~) constant - ~ exp 

The integral in (5.2) converges, for 12~C 1, proving the lemma. �9 

Example. For any ~ ( 0 ,  2), we can construct smooth potentials V(r) with singularity 
of order - r  -"  for which the flow has positive Lyapunov exponents almost 
everywhere and is ergodic: take 12 monotone increasing in (5.1) with 12(0) = 2 - 6 
and 12(R) = 2, .Q(k)(R) = 0,  Vk > 1 (this proves Theorem 1). For  such a potential, 
we use (7.5) to show the relationship between O and V (Fig. 5a, b). For these 
potentials, the associated Maupertius metric can be isometrically embedded in R 3 
as a surface of revolution determined by a function z=f(p), p~[0,R]  (see 
Appendix V). We graph this function in Fig. 5c. 

Remark. 5.4. If we consider a smooth attracting potential with no singularity at the 
origin and for which the rotation function is continuous, we are unable to prove 
positive Lyapunov exponents. 

To see this, note that if V is smooth at the boundary then lim dO'(q~)= 2 
~ 0 +  

since for ~o = 0 the particle is tangent to the disk and hence stays in the V = 0 
region. And we know that for V= 0, A0'(0) = 2. So we are forced to make A0' > 2 
for all ~o, since if A0' decreases continuously from 2 the cone method breaks down 
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(see Remark 4.7). But if V is smooth and bounded, and AOsC ~ then 
n/2 

A0( /2) = = S 
0 

so that AO' cannot be always bigger than 2. 

Regularization. Knauf 1-Knl] showed that for potentials with singularities of the 
type - r - 2 ( 1 -  1/n), n~ .Z  + \{0, 1}, the flow could be regularized in an appropriate 
covering space, i.e. could be extended to a smooth flow. We explain why the 
regularization is possible using the rotation function AO. 

L e m m a  5 . 5 .  

lira A0(cp) = 27c/~(0). (5.3) 
~p--, ~ / 2  - 

Proof. We introduce the function 

F(2) = 1/12 (h-1 (22)), 2~ [ -  R, R], (5.4) 

where h-1 is h inverse. Then the change of variables h(r) = 22 applied to (3.7) yields 
for ~0e(0, n/2). 

- 4 ~* 
F(12) 

AO(q~)-- 1 ) . ~ d ) . ,  

l = R cos (~0) = h(~) = angular momentum. (5.5) 

~. d2 = Ir/2 gives the Taking the limit as l--.0 and using that F(0) = 1/12(0), 1 ~" 2 'r~---x/A- 

result. �9 

2 
For 12(0) = - ,  n > 1, neZ,  one has that lim AO(q~) = mr. In these cases, we 

n r ~ n / 2  - 

can use (3.11) to define a rotation function continuous at re/2. In fact, using (5.5) 
one can show that the rotation function is smooth at n/2. The degree of smoothnes 
depends on the smoothness of 12. Thus for these examples, we could define AO(zc/2) 
and to(z/2 ) to produce a smooth system and hence an ergodic flow (see Sect. 6). 

II. Repelling Potentials. Sinai [Sil] and Kubo [Ku] have given examples of 
repelling potentials, V(r) > 0, V'(r) < O, re(O, R), for which the system had positive 
entropy and was ergodic. In their examples, the potential was continuous but not 
C 1 . 

We prove positive Lyapunov exponents for a class of repelling potentials which 
generalizes Kubo's "bell-shaped" potentials. 

The reason that one has not yet been able to make C 1 potentials for which 
one can prove positive Lyapunov exponents can be understood by reference to 
Remark (4.7). If the potential is smooth, then Aft(O)= 2. For small angles, the 
repelling nature of the potential causes trajectories to rotate less far around the 
disk than they would in the V = 0 case. Hence for small ~0, AO'(q~)< 2. Thus the 
values of AO' fill up some interval I-2 - 6, 2], and our cone-field method can not 
handle this case. 
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Theorem 5.6. I f  V satisfies conditions (3.2), (3.6) and 

i. l-2(r) is non-increasing for re(0, R). 
ii. V(R-)  = 0. 

iii. V'(R-) < O. 

Then 

AO'(~p) < 2 - 6, Vq~e(0, ~), for some ~ > 0. (5.6) 

Proof. g2(r) is non-increasing, hence we have 12( r ) -  12(0 < 0, Vre[~,R), while the 
other terms in the integrand (3.13) are all positive. Since g2(~)- 1 _<_ 12(R-) -  1, we get 

AO,(qO<412(R_)_I[ R2 _12 ]1/2 4 < < 2, (5.7) 
ntK-) - I z = E2(R-) 

using that (ii) implies h(R-) = R 2 and (ii), (iii) imply by (3.12) that  12(R-) > 2. �9 

Remark 5.7. The previous theorem holds for more  general conditions than (ii), (iii). 
See example (II.b) below. 

Using Theorem 4.3. (Remark 4.4.) and estimate (5.7) gives 

Corollary 5.8. Any repelling potential V(r) satisfying the assumptions of  Theorem 5.6 
4R 

and for which train satisfies tmi n > will produce a flow (q2, ~[, #)for which 
12(g-) -- 2 

the maximal Lyapunov exponents 2 + (x) are positive almost everywhere and is ergodic. 

Proof. Theorem 4.3 and Theorem 5.6 implies that 2+(x) > 0 a.e. while the ergodicity 
is discussed in Sect. 6. �9 

Examples. 
(II.a) Let V(r) satisfy (3.2), (3.6) with 

~ ' ( r )  ____ 0, Vre(0,R), V(R) = 0 ,  (5.8a) 

V'(R -) < 0 (5.85) 

(see Fig. 6). Then by (3.12), O ( R - )  = 2(1 -- V'(R-)R), so that 

2 
AO'(cp) < 1 - V'(R-)R < 2, Vq~e[0, hi. (5.9) 

For  such a potential, Corollary 5.8 gives that trai, should satisfy 

2 
train > V'(R-)" (5.10) 

K u b o  I-Ku] showed that if the potential was "bell-shaped", i.e. 

d 
~r(-rV'(r))  < 0, V(R) = O, (5.11a) 

and if 
2 

- V ( R - )  > ~-, (5.1 lb) 
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Fig. 6. Repelling Potential 

then the system would be ergodic and have positive Lyapunov exponents almost 
everywhere, for tm~n sufficiently large. A direct calculation, and the relation 
1 -  2V(r)>O, shows that (5.11a) implies 12'(r)<0. Thus our condition (5.8a) is 
weaker than Kubo's. Note that Kubo needs that RV'(R-)< - 2  (5.11b) while we 
allow any RV'(R-) < 0 (5.8b) (i.e. any arbitrary small corner for V at the boundary). 

2R 
Also Kubo's minimum time, tmin > --RV'(R-) - 2 '  is larger than ours (5.10). 

(II.b) We can allow discontinuities for V at the boundary: V(R-) ~ O. If we choose 
V(r) =- Vo, rE[0, R-) ,  we have the case of a soft potential studied by Knauf  [Kn2]; 
his results on positive Lyapunov exponents follows from our general set up. (Note 
that he normalizes the energy to be 1 instead of 1/2 as we do.) For  such a V, 

V R 2 - -  12 -I 1/2 
= 2Lh( -_y- >J (5.12) 

When V o < 0 then 

2 
AO'(q~) < < 2, 

x/1 - 2 V o  

so we get positive Lyapunov exponents provided that tmi n > 2R [X/1 -- 2V o -- 1] - 1 
The situation for VoE(0, 1/2) is slightly different. For  (Rcos (0)2= 12>>_ h(R-), we 
have A0(~) = 0. For  12 < h(R -), (5.12) gives AO' > 2. Hence soft potentials produce 
positive Lyapunov exponents by two different mechanisms. Clearly one can produce 
examples where V ( R - ) 5 0  and V is not constant provided that s has the 
appropriate behavior. 

I lL  Mixed Potentials. A potential V(r) being smooth does not necessarily imply 
that the rotation function A0(q)), ~0E[0, re/2), is smooth. It is this observation that 
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allows us to construct smooth, bounded potentials for which the flow has positive 
Lyapunov exponents and is ergodic. This idea was originally introduced in [D1]. 

The potential we construct will have a closed orbit for some re < R, hence 
I2(r~) = 0. There will be an angle ~0r of entry for which the trajectory will 
become asymptotic to this dosed trajectory and hence never leave the disk. Thus 
/tO(~o~) will be undefined. 

Theorem 5.9. There exist smooth potentials, satisfying (3.2), (3.6), with a closed orbit 
at some r o < R for which the rotation function satisfies 

AO'(~o) > 2, ~0e(0, ~o~), 

lim IA0'(~0)l = o% 
~ t p e  

A0'(~0)<2--6, ~0e(~0~,rc/2], 6 > 0 .  (5.13) 

By introducing the closed orbit, we permit the rotation function to start out 
with A0' > 2 for small angles and then to have A0' < 2 -- 6 for larger angles. Yet 
/tO' never takes values in the interval ( 2 -  5, 2). 

The theorem is proved in Appendix III. The potential we construct will staisfy 

O(R) = 2, (5.14a) 

12(r)>__0, re[0,R],  (5.14b) 

O'(r)>=O, re(rc, R], (5.14c) 

[2'(rc) = 0, 12(re) = 0, (5.14d) 

(5.14e) O ' < 0 ,  re[0, r~), 

plus some additional technical conditions (Fig. 7). 
Combining the previous Theorem and the results of Sect. 3 on positive 

Lyapunov exponents and Sect. 6 on ergodicity gives 

Corollary 5.10. For a potential whose rotation function satisfies (5.13) and for which 
tmi, > 2R(2 -- 6)/6, the flow has positive Lyapunov exponents almost everywhere and 
is ergodic. 

Remark 5.11. There exist smooth potentials for which (5.13) holds that have a hard 
core: i.e. for some r* < r~, the potential satisfies V(r) > 1/2 for all re(0, r*) (Fig. 8). 
The particle can not enter this regiQn. For such systems, the associated geodesic 
flow is incomplete and therefore the [BG1] proof of ergodicity does not apply. 

I E  Positive Entropy but Non-Ergodic Potentials. We outline the proof that there 
exist potentials whose flow has positive entropy but is not ergodic (Theorem 4). 

We take a potential with 12(r) < 0 for re(r1, re), with 12(rx) = 12(re) = 0 and with 
0 < r I < rc < R (Fig. 9). For such a potential the annulus between rl and r~ is a 
trapping zone: there is a positive measure set of trajectories that stay forever in 
this region. These trajectories lie on invariant tori in phase space and hence have 
zero Lyapunov exponent. These trajectories prevent the system from being 
ergodic. 

All trajectories that enter the disk with angle ~o # ~a~ will leave the disk. By 
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Fig. 8. Mixed Potential with incomplete Maupertius metric 
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h(r) ~ 

I R r 
Fig. 9. Trapping Region 

applying the methods of Theorem 5.9, we can choose 12 so that (5.13) holds. Then 
applying the cone-field argument to the invariant set of positive measure consisting 
of trajectories that enter the disk infinity often, we get that almost every such 
trajectory will have a positive Lyapunov exponent. 

One can construct a positive entropy but non-ergodic potential in this way 
such that any symmetric perturbation of the potential retains these properties. 

V. Varying the Energy Level. In our examples, we examined the E = 1/2 subspace 
and produced potentials for which the flow restricted to the subspace would be 
ergodic. For such a potential, how does the flow behave on other energy levels? 

If we take an attracting potential given by the example in I, then for any energy 
surface E > 1/2, the flow restricted to that energy surface will have positive 
Lyapunov exponent almost everywhere and will be ergodic. For the repelling 
potentials given by example II.a, the same conclusion holds provided that E < 1/2. 
For the mixed potentials, if E > 1/2 then O(r) > 0, re(0, R) and we are unable to 
determine the stochastic properties of the system. For E < 1/2, the system will have 
a trapping zone and hence will not be ergodic. It is possible that these non-ergodic 
systems could have positive entropy as in IV. 

All these results follow from repeating the analysis of Sect. 3 for the general 
case of energy E rather than fo E = 1/2. In Eq. (3.4), we replace h(r) by 

hE(r ) = 2r2(E -- V(r)). 

Then (3.12) holds with s replaced by 

V'(r)r 
i2E(r ) = 2 

E -  v(r)" 

Thus for a fixed potential V(r), the functions O = 121/2 and O~ are related by 

(E - �89 V'(r)r 
OE = 01/2 4 (E - -  V(r ) )  (�89 - V(r))' 
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and hence 

"Q'E(r)=gT1/2(r) E-  ~ +(E V'(r)(2-f21/2) (" 
Thus for an attracting potential with g2'l/2(r)> 0, if E > 1/2, then 12~(r)> 0. 
Therefore the rotation function AOE(~O) for the energy surface satisfies AO'~(q~) > 2. 
Similar arguments apply for the other cases. 

6. Ergodieity 

The method of Chernov and Siani [SC] was designed to prove ergodicity for maps 
with singularities. It may also be useful for smooth flows since such systems can 
have a non-smooth return map to a Poincar6 section. All our ergodicity claims 
can be proven using this method (see Appendix IV). 

For the smooth systems, there are simpler approaches to proving ergodicity, 
although no one method handles all the cases. We can use the method of [D2] to 
get ergodicity for the examples of Theorem 5.9. We can also appeal to the continuous 
cone-field criteria of Burns and Gerber [BG1, Theorem 1.1], but there is a slight 
problem. For our flow there does not exist an invariant two dimensional 
distribution P: 

dr = v ( r  

(i.e. the flow is not a contact flow). If such a distribution existed, outside the disk 
it would be given as the span of {Xv• X~}. Going through the disk, "Lemma 4.5 
shows that a vector in this subspace can pick up a component in the flow direction. 
A possible solution to the problem would be to prove a non-contact version of the 
Burns-Gerber theorem. 

Instead, we will re-parameterize the flow in the disk so t h a t  

cos q~ - ~ (q~) = 0, (6.1) RAO'(09) 

where to(W) is the time spent in the disk. 
If the flow through the disk is given by a geodesic flow, then we know that 

this condition holds since geodesic flows are contact (the perpendicular subspace 
remains perpendicular). 

Given a potential, we examine the geodesic flow of the associated Maupertius 
metric. If this flow is smooth and complete (Remark 5.11), then we can apply 
[BG1] to it. The trajectories of the 'geodesic flow and the potential flow are the 
same but are parameterized with different speeds. Since ergodicity is invariant 
under these reparametrizations, we get ergodicity for the potential flow. 

For the attracting potentials with singularity of order - l / r  ~, ~ = 2 ( 1 -  1/n), 
n~Z+\{0,  l} we showed that the flow was regularizable (Sect. 5). To prove 
ergodicity for these flows, we can prove ergodicity of a closely related system 
( y ,  r v). 

To construct X ,  we start with the set U (see Definition 4.1) and its boundaries 



290 V. Donnay and C. Liverani 

6 e and 6~. We will connect 6e and 67 by a suspended flow with height function 
r 

to(q)) = S RAO'(s) cos sds ~p e[0, It/2]. (6.2) 
0 

Note that to(Cp) is bounded. We set. 

r = {(x, t ) :x = (0, 4~)e:f ,  t~[0, to(~b)] } 

and identify the points (x, 0), (x, to(q~)) with the points x~5 f and 92 = (0 + AO(c~), - dp)667 
respectively. Our space JV is then U w F. The flow ~t agrees with 4)* on U, while 
on F, ff'((x, s) = (x, s + t). The ~bt-invariant measure v is induced by/~. 

Our choice of to(q~) implies that (6.1) holds. For q~6(0, n), the flow ~k* is smooth 
by the implicit function theorem (since AO'(q)) is smooth). At q~ = 0, the flow is also 
smooth since as q~ ~ 0, to(Cp) behaves as it would in the V = 0 case (to(q~) = 2R sin (p). 
Thus we can apply [BG1] to get ergodicity for ~h* and hence ~b'. 

For a potential of Theorem 5.9 whose geodesic flow is incomplete (Remark 5.11), 
we can prove ergodicity by combining the geodesic flow parameterization with 
the height function argument, provided we do the above construction in a disk 
contained inside the close orbit. 

7. Surfaces 

We derive relationships between the potentials discussed in Sect. 5 and their 
associated metrices given by (1.3). 

For geodesic flow, the evolution of tangent vectors to phase space is determined 
by the Jacobi equation 

J"(t) + K(t)J(t)  = 0, (7.1) 

where K(t) is the curvature along an orbit. Our equation (4.11) is just a special 
case of the Jacobi equation in the case K = 0. The projective coordinate u ~ J ' / J  
satisfies the Riccati equation 

u'(t) = - K(t) - u2(t), (7.2) 

which is the generalization of (4.24). In negative curvature, one can easily see that 
solutions of (7.2) grow exponentially, and hence the maximal Lyapunov exponent 
is non-zero. 

Lemma 7.1. For a given potential V(r), the curvature o f  the associated metric ds is 

rl2'(r) (7.3) 
K ( r ) = -  h(r-~' 

so that 
sign (K) = - sign (s (7.4) 

Proof. For metrics conformal to the Euclidean metric, and of the form (1.3), one 
has that, [Knl] ,  

(E -- V(q))A V(q) + (VV(q)) z 
K(q) = ( E -  V(q)) 3 ' 
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with the gradient V and the two-dimensional  Laplacian ,4. For  V radially symmetric, 

one has A V(r) = ~r 2 +- r~r  V(r) and (VV(r)) z = \ Or ] " From (3.12), we have 

(2 -- ~(r))(1 -- 2V(r)) 
V'(r) - 2r  (7.5) 

The result now follows by a straightforward calculation. �9 

F r o m  this lemma, we see that  the attractive potentials of Sect. 5 correspond 
to metrics of negative curvature. The repelling potentials correspond to metrics of 
positive curvature. The smooth  potentials correspond to a mixed case in which a 
closed geodesic in zero curvature separates the two regimes. 

Appendix I. Rotation Function 

Let us remember  that  

R*- 1 l 
d0(q~) = 2 [ ~ ds, 

i sx/h(~s ) - 12 

h(f) = l 2 = R2(cos ~o) 2. (I.1) 

Moreove r  we can restrict ourselves to the case l __> 0, P < R, h'(~) ~ 0. Then  

R ~ -  1 

d0(tp) = 2 ~ s -1  [(h(~s)/h(~)) - 1] -  t/2ds. (I.2) 
1 

We can now take the derivative with respect to ~o, 

A0'((p) = -- 2~- 1 [(h(R-)/h(~)) - 1] - 1/2 d~_~ 
dq~ 

R~-I "1 1 - 3/2 V sh'(~s)h(f) -- h'(t~)h(t~s) ] dt~ �9 
- ! L (I.3) 

Differentiating the second of the (I.1) we get 

h'(f) ~-~ = - 21R sin tp = - 2 l x / R  2 - 12. (I.4) 

Formula  (3.13) is then obtained by a simple change of variable in the integral. 

Using the previous result we have 

A0'(tp) = 4JR 2 - 12] 1/2 [h (R- )  - 12] - 1/2~- lh,(f ) -  lh(f) 

R ~ -  1 ~ r  
+ 2 S fh ( r  2 -12] l /2h(~)h(~s ' |  ~sh'(~s) / 'h '(f)-],  

1 fh'(t~) L h(~s) ~ )  ] a s  

= 2f2(~)-1[ R 2 -  1211/2~2[h(R_)- _ 12] -1/2 g~l  
h(~s)[~(~s) ~ ( 8 ) ] ,  1 - 1  as;. ( 
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Appendix II. Existence of the Lyapunov Exponents 

In this appendix we provide the estimates needed to prove the existence of the 
Lyapunov exponents for the flows considered in the paper. In particular we study 
the case when the potential is singular at the origin (Theorem 5.1). The existence 
of the Lyapunov exponents in the other cases follows from standard considerations. 
Let us remember that existence of the Lyapunov exponents is granted by condition 
(2.1). In order to verify (2.1) we need some explicit estimates. 

Note that 

h(r) = r2(1 - 2V(r)), 

h'(r)r 
a(r) = h(r~)-' 

l = h(r) I/2 cos (p. (II.1) 

The equations of motion are given by 

i'(t) = r(t)- 1 h(r(t))l/2 sin ~o(t), 

D(r(t)) l, 
~b(t)- 2r(t)2 

O(t) = It(t)- 2, 

r(0) = ro; q~(0) = ~Oo; 0(0) = 0 o. (II.2) 

From (IL2) it is possible to explicitly compute d~Y in polar coordinates and check 

that condition (2.1) is satisfied. Here we will explicitly find a bound for O~(t) ; similar 
~q,(0) 

or easier estimates apply to the other elements of the Jacobian of q~t. 

Lemma II.1. Given T > 0 we have 

Proof. From (II.2) we have 

;D(r(s)),. 
q)(t) = q~o -t- Jo ~ t a s .  

Differentiating the above expression, after some computations we get 

O(P - q ) o ! ~ _ d s  q_ l ! r ( s ) -3{~  if2 (r(s))r(s)-ff2(r(s))tff---(pff(po dS. 1 - I tan ' t2(r(s)) ' 1 , Or(s) 

Or 8q~ 
In order to have a closed equation we need to express ~ in terms of 8~0o. To 
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do so we differentiate the last of the (ILl) with respect to ~P0 and obtain 

dr 2r 2r 2 . ~0 
= - tan @ o ~ - ~  + ~ r 

~Oo &Po' 

where we have used the first of (II.2). Using the above expression and changing 
variables in the integral the lemma is proven. �9 

Using the preceding lemma we can obtain an interesting integral inequality. 

Lemma 11.2. Let f(t) # 0 Yte[0, T]. Then 3Cs, C~.eP.. + such that 

&p(t) < 1 + C31tan rpo I + ~ ~ 1 I&p(r-l(p))[. = a p  

Proof. We will consider the case r(t) < ro; the other case can be treated in the same 
way. Conditions (3.2), (3.6) imply 12~CI(P~ +) and, according to Theorem 5.1, 
t2(r) __> O(0) > 0; so 

"!' l ~ g2(p) _ s 2 } ~ 1  
p ( 2 a(p) ~/nv)--, -dp 

ro 1 h ( r o ) t -  1 1 

<C i ~ ~ d p = C l l  - i  !) d~ 
m) px/h(1) - l 2 h~,~t 1-2 g2(h- 1(~12))(~/~ _ 1 

h(ro) l  - 2 1 

!, h(r(t  t -  2 - -  1 

[x/~ 111h~,o)z-~ <27tC21-i C31-i = 2C21- ~ [arctan - i d ih(r(t))l-2 = = 

The lemma follows from the above estimate. �9 

&o 
To obtain a bound for ~ we need the following technical lemma. 

Lemma II.3. I f  x(r) satisfies the integral inequality 

r~ [x(r)[<A+B_~ x(p)[dp Vro>r>O; A, BeN +, 

then 

where 

Proof. 

[Ix [It = sup I x(p)[. 
pE[ r , ro ]  

The first step is to prove, by induction, the following 

IIx[l,<A ~ ~ i - ] B l o g ' ~  +~.~ Blog r IIxl[,; 
K=o~. t rA 

N > I .  
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For N = 1 it is trivially true. Let us suppose it is true for N then 

Ilxllr< A + B~ l f(~A g=oK.~l l [B l~  [Bl~  ~ ~ 1 ro Nllxllp}dp 

l~176 ( N - 1 1  ~_TBN(NII I[~}d( =A+B ~ ~A E--BKCK+ X 
o [ r=oK! 

N-1 1 F r 7K 1 F ,. 7N+1 
--<A ~ ~ - i - I B l o g ' ~  -t LBlog~J Ilxll,. 
- K=oK. L r J  (N + 1)! 

Now for each r there exists N: [B log ro/r] N < 1 which implies that II x II, is bounded. 
N~ 

The result follows then taking the limit N--* oo. �9 

We are now able to state the announced result. 

Lemma II.4. If the conditions of Theorem 5.1 holds then for each T sup log ay(t) 
t~to,rl I Oq~ol 

Ll(Jg). 

Proof. From Lemmas 11.2, II.3 we obtain that for l # 0, 

sup log dJ~(t)< sup log ~q~ < sup l o g [ ( l + C 3 1 t a n q ~ o l ) ( ~ ) C 4 1  
t~[0,T] (frO - -  r>--train ~ 0 0  r = r-->rmtn l (ro) 

= log (1 + C31tan ~Ool) + C41og ~ , 

where rmin is defined by the equation h(rmin) = 12. Given the relation between h and 
~ we have that rmi ~ > Csr 0 [cos q~o] -~2/n~~ which implies 

sup log 00~(t) Ca 
tet0,r]  (00 <~-wj  l~ [c~ r176 

1 ~Zl(Jr 

with respect to the measure rodrodOodq~ o. �9 
Finally the result follows from similar estimates on the other elements of the 

Jacobian and from the fact that the norm in polar coordinates does not introduce 
further divergences. 

Appendix HI. Mixed Potentials 

In addition to conditions (5.14a-e), we also require that the potential satisfy 

d ~[h(rc)-  h(r)] 1/2 } > 0, r~(rp, rc), 
dr ( a ( r )  = 

where 0 < rp < r~ < R, and 

4h(rp) < h(r~)O(rp) 2. 
We will show 

(5.14f) 

(5.14g) 

that (5.13) holds for a potential satisfying (5.14a-g). These 
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conditions are not  intended to be optimal and there are other ways to construct 
potentials satisfying (5.13) (see Alternative Construction). 

Conditions (5.14c, e) imply that  O"  > 0 in some neighborhood of r~, which in 
turn implies that  (5.14f) holds in some interval [rp, r J .  Condit ion (5.14g) is a 
requirement that  this interval be sufficiently large. (If we could take rp = 0, then 
(5.14g) would hold, while (5.14g) fails if rv = r~). Note that  if s'2 (rv) > 2 (corresponding 
to a potential with a repelling part) (5.14g) is always satisfied, since h(rv)< h(r~). 
Our  conditions generalize the non-increasing curvature condition that  Burns and 
Gerber derived for a focusing cap in the case of geodesic flow [BG2]. We will 
relate the two situations in Lemma III.2. 

P r o o f  o f  Theorem 5.9. For  i > re, the proof is identical to the case of Theorem 5.1. 
Next, we use that  h(R) = R 2, h(~) = 12 and (3.12), to rewrite (3.13), getting 

Aft(q)) = 2f2(e)- 1 2 + [R 2 - ~ ~2(s) [h(s) )]3/2 as . (III.1) 

For  ~e[rv, r~) an estimate can be obtained by dividing the integral into two parts: 

[O(s) - .O(e) ] h'(s) 
,c O(s) [h(s) -- h(P)] 3jr ds 

< 2 - s ~ h'(s) , 
= 2 L [h(s) -- ~-e)] 3/2  as 

= (2 - f2(~)) { [h(rc) - h(/~)] - 1/z _ [R 2 _ / 2 ]  - 1/2}, (III.2) 

and 

! [12(s) 2 a'-2 (8)] h'(s) 
s [h(s) - h(P)] 3/2 ds 

~2(~) [h(r~)- h(s)]l /2 ~ h'(s) 
= [ 1 - [h(rc) - h(s)] 1/2 O(s) J [h(s) --- h~)] a/2 ds, 

which by condition (5.14f) 

<!{1 
Changing variables to u = 

[h(r~) - h(f)] 1/2 ~ h'(s) 
[h(r~) h(s)] 1/2 J [h ( s ) -  h(~)] a/2 

h(s) - h(e) 
we obtain 

h(rc) - h(~) 

1 1 
- . ~ - - - ~ u -  / du [h(r~)~h(P)] 1/2f'~lJo[ 1 ) 32 ,/1-uJ 

1 ) cos0 
2 nj2 1 c _ o ~ s O ) s i _ ~ d O =  

- -  [h(r~) - - ) / ( r ) ]  1/2 o - -  

Combining this estimate and (111.2), we get 

A0'(q~) < 2~(/~) - 1[R2 -/211/2 2 
[h(rc) ~ h(~)] l 

ds. 

2 
~_h(rc ) _ h(/~)] 1/2" 

2 } = 0 .  
[ h ( r 3  - h(~)]  

(III.3) 
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For  ~e[0,rp]  it is necessary to divide the interval of integration in (III.1) in three 
parts, namely [re, R], [rp, r~] and [~, rp]. Estimate (III.2) applies for  the first interval. 
The  second interval can be treated according to (111.3) yielding 

~ s -- _.0(~) h'(s) 
.Q(s) [h(s) - h(f)] 3/2 { ds < 2[h(G ) - h(f ) ] -  ,/2 _ 1 + Lh(rp) _ h(f) J 

.(2 ( f) h(r~) - h(r p) 
O~p) [h(G) - h(f)l ,/2 [h(rp) - h(f)] ,/2 j ,  

(m.4) 

using s >__ O(rp), by (5.14e), 

< 2[h(rr - h ( f ) ] - ' /2  _ 1 + L h(G) - h(f) J J" 

The contr ibut ion of the third interval is negative, due to (5.14e), in analogy with 
Theorem 5.6. Combining the previous estimates give 

AO'(qg) < 2 - 2JR 2 -- l 2 ] 1/2 { [h(rr - h(f)] - 1/2 _ 212(f) -1 [h(rP)h(rc)-_h(f)]h(f) 1/2 } 

= 2 - 2 [ g  2 - 12]'/2[h(r3 - h(f)]-  1s ' 

�9 { [h(rr - h(f)]'/2a'-2(rp) - 2[h(rp) - h(f)] '/2 }. (III.5) 

According to (III.5) the theorem is proven provided that  

[h(r~) - h(f) ]l'2(rp) 2 > 4[h(rp) - h(P)] 

which is implied by (5.14g). �9 

Remark III.1. If condit ion (5.14f) holds for all r < re, then the previous estimates 
imply that AO'(~o)< 0 for all ~o~(~oc, r~/2]. 

Burns and Gerber  [BG2]  showed that  if a Riemannian metric inside the disk 
had a closed orbit  at r c, was of negative Gaussian curvature K(r) < O, r~(r~, R), and 

. . . .  dK(r) 
sausneo d ~ r  < 0 for all rs(0, re), then the rotat ion function would satisfy A0'(~o) < 0, 

~0~(~G, 7r/2]. Our  condit ion (5.14f) is a generalization of their result. 

Lemma III.2. Let K(r) be the curvature of  the Maupertius metric. I f  

dK(r) 
- -  < OVr < r c 

dr 

then (5.14f) holds for all r < re. 

Proof�9 Using identities (3.12), (7.3) and explicit computa t ion  yields 

d ~[h( r~) - -h ( r ) ] ' / 2~:  g(r)h(r) 
dr [ aQ(r) J 2rl2(r) 2 [h(rc) - h(r)] 1/2, 

where 

g(r) = ~( r )  2 -- 2K(r)[h(G ) - h(r)]. 
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Accordingly 

sign ( ~ [ d  f [h(rc)O(r)-- h(r)]t/2 J . ] =  ~ ) - s ign  (g(r)). 

Using (3.12), and (7.3) again, 

9'(r) = -- 2K'(r) [h(rc) - h(r)] > 0 

and, since 9(re) = 0, this implies that g(r) < 0 for all r < re. �9 

Alternative Construction of  Potential. Another way to produce a potential that will 
satisfy (5.13) is as follows (see [D1, Sect. 9] for the analogous construction in the 
geodesic flow case). Let O(r) > 0, re(0, re) be an arbitrary smooth function satisfying 
(5.14d) with .(2"(rc) > 0. Then there exists a value of R and a way to define [2(r), 
rE(r~,R) such that AO'(qO < 0 for all ~0E(q~,zc/2]. To achieve this, let .(2 satisfy 
(5.14a, c) and make O very close to zero for a long interval after r~. Such a choice 
of ~Q will cause the contribution from the integral in (111.2) to become large negative 
and outweigh the possibly positive, but bounded, contribution from (111.4). 

Appendix IV. Ergodicity for Systems with Singularity 

We use the methods of [SC] as modified by [KSS3] (see also [Bu]) to prove 
ergodicity for the flows discussed in the paper. We will prove ergodicity of a return 
map T to a Poincar6 section 6:~ from which ergodicity of the flow q~' will follow. 

We define the cross-section 501 as 50 u { (q, p) ln 1 (q) = - 1/2} u { (q, p) lrc2(q) = 
- 1/2}, where 6: is given in Sect. 3 and rci(q) is the i coordinate of q. We assume 
that the torus is a square of width one centered at the origin. By augmenting 
the original cross-section 5: we insure that the return time to the cross-section is 
finite. We equip 5:a with the measure/q induced by the Liouville measure and a 
metric induced by the Riemannian metric. Furthermore we induce two cone fields 
C § and C-  on 6ca. For xE5':, C+(x) is the projection of the cone C(x), defined in 
Sect. 4, onto the tangent space ~--x6e. For xE5:~\6 r C+(x) is defined by pushing 
forward the cones: ify = Tkx for xE5 a and k minimum, then we set C(y) = DTk(C(x)). 
The cone C-(x) is defined to be the closure of the complement of C+(x). 

In all the cases under consideration we assume that the stable and unstable 
manifolds exist almost everywhere in 5:1 and that these manifolds have the property 
of absolute continuity. If the original flow was smooth, then these results follows 
from Pesin theory [P]; if the flow has singularities, we refer to [KS]. Before 
proceeding further we introduce some additional notations. 

Definition IV.1. 
(1) 

~+  = { x e ~ l :  T it is not smooth at x}, 

~ -  = { x e ~ l :  T -1 it is not smooth at x}, 
~ =~t+ ~ -" 

(2) A point xE~9~ 1 is sufficient for T if there exists n(x) such that 

i) Tk(x)r +, kE{0,1,2 . . . . .  n(x)--l},  

ii) DT"(x)(C+(x)) c Int (C+(T"(~)x)). 
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(3) A point xeAPi is sufficient for T - i  if the analo#ous of properties (i), (ii) holds 
for the complementary cone field C -  and the set ~t- .  

Since our system has positive Lyapunov exponents almost everywhere, Pesin 
theory l-P], in the version by Katok and Strelcyn [KS], implies that for the maps T 
under consideration the set 6el is the union (modulo a set of zero measure) of a 
countable number of ergodic components. The next theorem categorizes the points 
that belong to an ergodic component with a nice local structure (non-empty 
interior). 

Theorem IV.2 (Local Ergodicity). Choose xeAai for which T k is smooth for all 
k ~ O. I f  x is sufficient for both T and T-1  then there exists a nei#hborhood ql(x) 
of x that belongs to one er#odic component. 

To prove global ergodicity we need first a simple extension of Theorem IV.2. 

Theorem IV.3 (Crossing Singularity Lines). Choose x e T - " ~  + ( T " ~ - )  for which 
T-kx(Tkx)  is smooth for all k > O. I f  x is sufficient for T - l ( T )  then T-"~+(Tn~I -) 
cannot be the boundary between two different er#odic components. 

Global ergodicity then follows from an analysis of the set of non-sufficient 
points. 

Theorem IV.4 (Global Ergodicity). I f  the set of non-sufficient points for T and T - i  
does not separate 6a~ then there is only one ergodic component. 

Note that sufficiency is equivalent to a trajectory entering the disk. The only 
trajectories that do not enter the disk are periodic orbits that move on the torus 
with a rational angle. For a given rational angle, there will always be a non-empty 
set of trajectories that enter the disk, so the condition of Theorem IV.4 is satisfied. 
We will not discuss explicitly Theorem IV.3 since its proof is analogous to part of 
the proof of Theorem IV.2. 

Proof of Theorem IV.2 (A  Sketch). We refer to [KSS3] for the details of the proof. 
Here we confine ourselves to a discussion of the changes needed to apply their 
results to our situation and how they fit into the general argument. The proof of 
[KSS3] requires the following properties. 

Property I (Double Singularities). The set of double sin#ularities of order n (i.e. 
points that enter ~1 + before n forward iterates and also enter ~ -  before n backward 
iterates of T) is a finite union of isolated points. 

Property II (Ansatz). Let v be the measure induced by #i on ~+ u ~ - ,  then for 
v-almost every y e ~ + ( ~  -) the map T - k ( T  k) is smooth for all k > 0 and y is sufficient 
for T -  i(T). 

Both properties can be proven using the same technique. First we notice that 
the singularity set ~ and the set of non-sufficient points are the union of a finite 
number of smooth manifolds. Then we study how the tangent vectors to these 
manifolds are situated with respect to the cone structure on 6e 1. 

We illustrate the argument in the case of an attracting potential. Let ~ -  c ~ +  
be the manifold of points that in future time hit the center of the potential. A 
tangent vector to the manifold ~ -  gives rise to a variation of trajectories that is 
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converging. Hence this tangent vector must lie in C- .  Analogously, the manifold 
~i- c ~ - ,  of the trajectories that hit the singularity in the past has tangent vectors 
belonging to the cones C +. Given the invariance property of the cone families, 
any intersection of the manifolds T - k ~  and T J ~  - (double singularities) is 
transversal (the tangent vectors to the manifolds belonging to complementary 
cones). Carrying out a similar analysis for all the singular points and non-sufficient 
points of our examples yields Properties I, II. 

Property III (Expansion). The vectors inside the cones C+( C -) expand monotonic- 
ally for D T ( D T -  1). 

Here the expansion is measured by the induced metric on 5:1 . The length of 
a vector ~1cY-5:1 in this induced metric is just the length of the vector ~ e 3 - J /  
in the original metric, where ~ is the unique vector in the {X,., Xv} plane which 
projects under the flow to C1. 

Hence to prove Property III for T ( T -  1), we study the corresponding property 
for the projected flow (i.e. flow under 4~ t and then project onto the {X,., Xr plane). 
We split the analysis into two cases: 

(1) AO' > 2 or AO' < O. 

According to (4.12) the vector r = JXv.  + J'X~, is mapped into the vector 

(J(AO'-- 1)+ J'(RAO' sin ~o)] 

~'-----(~)= / JRs~n + j ( A O  __1 , , ) (IV.l) 

from entering to leaving the disk. Thus for ~ C ( x )  given by (4.2), 

11 ~'[I 2 -> j2(AO' - 1) z + J'2(AO' - 1) z > j z  + j , z  = ICr I[ 2. 

And using (4.11), we get that outside the disk JI 9cpt~[[ > [1 ~[1 which implies the result. 

(2) 0 < A 0 ' < 2 - 8 ,  for some Se(0,2). 

In this case we have to consider only vectors of the form r = (1, u) uc[0, ut~ 
6 

u t~ = (see (4.26)). Using (IV.I) and (4.11) it follows that the image of the 
R(2 - 8) 

vector ~, from entering to entering the potential again, is 

(AO' -- 1) + Rs---~n ~ + u[RAO' sin q~ + (AO -- 1)Q 
= , (IV.2) 

no'  -__22 + u(aO' - 1) 
R sin q~ 

where z is the time from existing the potential to entering again. According to the 
2R(2 - fi) 

hypothesis of Theorem 4.3, z > tmin > 8 . Thus 

8 
_y '_> 

- R sin tp 
�9 6 

+ u(6  - 1) _> ~ + u(6  - 1) = ut~ - 6) + u(8  - 1) ~ u 
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and 

6 
- J > 5 - _  1 +~tmi ,+u[(6- -2)R+(6--  1)tmi,] > 6 - 1  + 2 ( 6 - 2 )  ~(2-6)z R u  t ~  = 1, 

which again implies II ~11 > II ~ II. 
The last property requiring an independent proof in our cases is the following: 

Property IV (Parallelization). The width of the cones goes monotonically to O. 

Recalling (4.20), t7 =f~o(u)= J'/J, it is a direct computation to check that 

d f~(u) (J/J)-  z. IV is then of the above estimates. Property a consequence 

This last property insures that the singularity lines become almost parallel to 
the (un)stable fibres and hence allows one to bound the measure of fibres that 
come close to the singularity lines. 

Even if the unstable fibre, for example, through the point T-kx  gets cut by a 
singularity line, and hence is short, it is still possible that the fiber through 
x = Tk(T-kx) is sufficiently long: one would need that the map T k expands the 
fiber sufficiently. This behavior can be achieved if at the singular point which cuts 
the fiber the map DT k is expansive. 

Thus, as in [KSS3], we define 

k,,+,o(y) = inf II DTn~ II- 
~EC + ( T - n y )  

Then for v-almost all point y ~ - ,  we have lim + k,,o(y ) = ~ .  This statement is a 
tl---~ oO 

consequence of Property III, which implies that a sufficient point keeps expanding 
at least linearly (since this is the rate at which vectors in the interior of the cone 
expand outside of the potential, in the free motion) and, of Proposition I, which 
implies that almost every point in ~ -  is sufficient. 

Using all the previous information it is possible to apply [KSS3] to prove that 
the stable and unstable fiber are long enough to perform the standard Hopf [HI 
argument and prove ergodicity in a neighborhood of our original point xeS~l. �9 

Appendix V. Embedding 

Given a function f(p), p~[0,R],  we define a surface of revolution as 

{ (x, y, z)~R3:x = p cos 0, y = p sin 0, z = f (p)  for 0E [0, 2n), p ~ [0, R] }. 

The metric da 2 induced on this surface by the Euclidean metric on R 3 is 

da 2 = (1 + f'2(p))dpZ + pad02. (V.1) 

Suppose that our abstract metric ds 2 on the disk D can be isometrically 
embedded in R 3 as a surface of revolution. Then there exists a monotone increasing 
function g(r), re[0,  R], with g(0)= 0, g(R)= R such that for p = 9(r) one has 

(1 + f'z(g(r)))9'2(r)dr2 = (1 - 2V(r))dr 2, (V.2a) 

gZ(r)d02 = (1 - 2V(r))rZdO 2. (V.2b) 
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L e m m a  u The disk D equipped with the metric ds z can be isometrically embedded 
in R 3 if 

i. It2(r)l < 2, u  
ii. O(r) > 0, Vr~ [0, R], with equality holding at no more than a finite number of points, 

iii. lira r 2 V(r) = 0 and V(R) = O. 
t ~  oo  

The functions g and f are given by 

g(r) = (h(r)) 1/2, 

R 

f (p)  = f(g(r)) = ~ f'(g(s))g'(s)ds, 
p 

where 

Proof. We can solve (V.2b) by setting 

9(r) = r(l - 2 V(r) ) x/2 = h X/2(r). (V.3) 

Combining  this with (iii) gives that g (0 )=  0 and that  g (R)=  R. Since h'(r)= 
(h(r)O(r))/r, (ii) implies that  g(r) is m o n o t o n e  increasing. 

Using (V.3) in (V.2a) gives that 

1 + f '2(g(r))-  r2(1 -- 2V(r)) h(r)/2g(r)'] 2 

4 
- ~Q2(r ), 

so that  (V.2a) is satisfied if 

This equat ion is well defined if [O(r)[ < 2. We define f by f ( R ) =  0 and f ( p ) =  
R 

S f'(p)dp. �9 
P 
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