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Abstract 

Dynamic facility location is concerned with developing a location decision plan over a 
given planning horizon during which changes in the market and in costs are expected to 
occur. The objective is to select from a list of predetermined possible facility sites the 
locations of the facilities to use in each period of the planning horizon to minimise the total 
costs of operating the system. The costs considered here include not only transport and 
operation/maintenance charges but also relocation costs arising from the opening and 
closing of facilities as required by the plan. 
The problem is formulated in terms of dynamic programming but for simplicity with 
restrictions on the numbers of facilities that can be opened in a given period. The problem 
was solved using both dynamic programming and a branch and bound approach using state 
space relaxation. These two approaches are contrasted with different data and with different 
assumptions to compare the influence of alternative factors on the computational efficiency 
of both solution methods. 

I. Introduction 

Most warehouse and facility location problems take place against a back- 
ground of changing circumstances. With the passage of time, for example, 
markets will change, populations will grow or decline in different parts of the 
area of concern, freight rates will change, the transport infrastructure and road 
networks will change, and advances in technology will affect the cost structure. It 
follows, therefore, that over time the optimal number  and location of the facilities 
required to service the demand will alter to cater for the changing situation. Two 
approaches have been taken to handle this problem. 

The first approach is referred to as the static facility location problem. The 
static approach examines a single time period at a time giving essentially a series 
of snap shots over what is really a continually unfolding situation. A plan derived 
from a series of static snap shots may require that some facilities be opened and 
some may be dosed  from one picture to the next. Clearly it costs money to invest 
in new facilities and to close old ones. However the costs of opening and  shutting 
facilities cannot be taken into account within a static model, and must be treated 
exogenously in a suboptimal and clumsy fashion. 
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The second approach is termed the dynamic facility location problem. The 
objective of the dynamic approach is to devise the lowest cost location plan over 
a given planning horizon. The dynamic model requires the demand data over the 
whole planning period, and, taking into account the costs of opening and closing 
facilities, will determine the best location strategy by balancing savings in service 
costs (transportation, facility maintenance, etc.) against the costs of changing the 
network of facilities. 

A very considerable amount of work has been carried out in relation to facility 
location problems. The vast majority of this work has involved static models with 
differing characteristics, and only a limited number of papers have been pub- 
lished on dynamic models. This state of affairs is not because the dynamic 
problem is considered unimportant but because the dynamic models tend to 
depend on the static models for the background, and the latter are simpler to 
examine. 

Dynamic models are principally concerned with planning the location and /o r  
size of facilities over time and typically apply to plant, warehouse and public 
facility expansion. An interesting topology of the possible models is given by 
Shephard [19], and further review papers by Erlenkotter [5,6] and Luss [12]. The 
main division within the published literature concerns capacity restrictions. The 
work which started principally with Manne [13], examines the timing and size of 
capacity expansions rather than the introduction new plant. Other important 
papers using a similar restriction are those by Erlenkotter [4], Rao and Rutenberg 
[14], Jacobsen [9] and Fong and Srinivasan [7]. Alternatively some authors assume 
that capacity constraints are not important and that any new facility located will 
be large enough to cater for all the demand required of it during the whole 
planning period. Papers adopting this approach have been published by Klein 
and Kimpel [10], Ballou [1], Roodman and Schwartz [16], Wesolowsky and 
Truscott [22,23] and Van Roy and Erlenkotter [20]. 

As with static models a division also exists between public facilities, e.g. 
schools, fire stations, hospitals and medicare facilities, and private facilities, e.g. 
plant or warehouses. Papers describing the dynamic location of public facilities 
are given by ReVelle, Toregas and Falkson [15], Shilling [17,18], Gunawardane [8] 
and Chrissis et al. [2]. 

Some models examine only the case of increasing demand. These include 
Erlenkotter [4], ReVelle, Toregas and Falkson [15], Rao and Rutenberg [14], 
Jacobsen [9], and Schilling [18]. Roodman and Schwartz [16] examine the case of 
decreasing demand where facilities are to be phased out. The more general case 
will both open and close facilities as demand fluctuates. 

Most models treat time as discrete and some care should be taken to avoid any 
confusion as to when within a time period the changes take place. Models 
employing continuous time formulations are given by Erlenkotter [4] and Rao 
and Rutenberg [14]. 

Integer programming has been used as a solution method by Roodman and 
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Schwartz [16], ReVelle, Toregas and Falkson [15], Wesolowsky and Truscott [23], 
Schilling [17,18], Gunawardane [8], Chrissis, Davis and Miller [2], and dual-based 
mixed integer programming by Van Roy and Erlenkotter [20]. Heuristic proce- 
dures have been employed by most authors examining capacity constrained 
models such as Manne [13], Erlenkotter [4], Jacobsen [9], Rao and Rutenberg [14], 
and Fong and Srinivasan [7]. 

Dynamic programming has been used by Ballou [1] and Wesolowsky and 
Truscott [23]. Dynamic programming has also been used as a basis for the 
heuristic procedures of Erlenkotter [4] and Wesolowsky and Truscott [23]. 

In this paper the discrete time uncapacitated dynamic facility location problem 
is examined. It is felt that although time is continuous, the discrete time approach 
offers a more convenient way of handling the costs of opening and closing 
facilities which are such an essential part of the problem. A branch and bound 
approach based on state space relaxation in dynamic programming is presented 
to solve the problem with the objective of minimising the discounted costs of 
operation and location over the given planning horizon. It is suggested these costs 
are discounted in order to account for the time "value of money and to avoid those 
solutions which start with an over expensive pattern of facilities in the hope of 
making savings later. 

The outline of this paper is as follows. Firstly, the problem is discussed in a 
little more detail and a dynamic programming formulation is presented. Then a 
branch and bound procedure is developed using a state space relaxation of the 
dynamic programming formulation. Finally some computational results are pre- 
sented comparing dynamic programming and the new procedure. 

2. The problem and dynamic programming formulation 

In general terms the problem can be described as follows: Given a number of 
customers whose location and demand are assumed known for each period of the 
planning horizon and a number of potential facility sites available for use during 
each period, it is required to determine which sites should be used during each 
period so that the total discounted costs 

M M 

C =  E (operating cost)(1 + r)  -k + E (relocation cost)(1 + r )  -k  
k = 0  k ~ 0  

is minimised subject to the constraints: 
(i) the demand of all customers must be met; 
(ii) the number of facilities used in any period are within the limits pre-speci- 

fled for that period. 
Where M = the number of equal periods in the planning horizon and r = discount 
rate 
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The costs of operating refer to the cost of operating the entire system per 
period using whichever sites are appropriate. The costs of relocation are incurred 
if the facilities used differ from one period to the immediately following period. 

The solution to the above problem can be simplified by the introduction of the 
concept of "Location Sets". A location set is defined here as a feasible combina- 
tion of potential facility sites. For example, if there are three potential sites A, B 
and C, then there are 7 location sets. 

{A}, (B}, {C}, {AB}, {AC}, {BC}, {ABC} 

In this way instead of carrying out location allocation problem at each stage to 
determine the operating costs, it is only necessary to solve the customer to facility 
allocation for each location set. The latter is a relatively easy task. However, two 
preparation stages are required. 

(i) All the feasible location sets must be generated from the list of potential 
sites for each period. 

(ii) For each location set and each period it is necessary to determine the 
optimal operating costs. 

The problem described above can be formulated as a dynamic programming 
problem as follows. A "forward" recursion is used as this would seem to be more 
easily appreciated. This formulation follows Watson-Gandy [21] who gives a 
multi-facility form of the model due to Ballou [1]. Let I be the location set 
operated in the current period k and J be the location set operated in the 
previous period k - 1 where J e N k_ 1 and N k is the set of location sets feasible 
for period k, k = 1 . . . . .  M. Then it is required to minimise the recursive equation. 

F(I ,  k ) =  

subject to 

l , ~  I I I  < 

1,_1 < IJI  

Where 

C I ,  k ~ -  

FIq j , ! 

I k = 
I I I  = 

U k 

F(I,  k) = 

min (F(J ,  k - 1 ) + r n s . , ) + c , ,  k (1) 
J e N ~ _ l  

u, (2) 

< u,_, .  (3) 

the cost of operating from location set I in period k 
the cost of moving from location set J to location set 1 
smallest number of facilities allowed to operate in period k 
the number of facilities selected to operate in the current period 
the largest number of facilities allowed to operate in period k. 
the minimum total cost of operating an optimal policy from period 1 
and ending with the operation of location set 1 in period k. 

Equation (1) may be simply initialised by 

F(I ,  1) = c~, 1 

for all 1 such that 11 ~< I I I ~< ul. 

(4) 
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Note that other forms of initialisation of eq. (1) are possible. For example, it 
may be that the recursion will start with certain facilities already in place. This 
would occur if the institution concerned already operated a system. 

Then the value of F(1, k) is calculated in a recursive way for all location sets 
satisfying constraints (2) and (3) for all periods until the last period k = M is 
reached. The optimal solution is that given by the minimum value of F(I, M) 
and the optimal policy is derived by backtracking. Note that no mention has been 
made of the precise details of the operating costs. It is the intention of this paper 
to present an efficient algorithm to solve the dynamic facility location problem 
and detailed discussions of a complex costing exercise would distract from that 
purpose. Furthermore the calculation of the operating costs has no impact on the 
proposed method of solution. Indeed so long as the operating costs are available, 
the precise method of their determination is irrelevant to this paper. Nevertheless 
the concept of location sets is an extremely useful device in providing great 
flexibility in the application areas for the algorithm to be described. As long as 
the costs of operation are in the equivalent units to the cost of relocation, the 
problem tackled may be in either the public or private domain, and facilities, 
which are available only for part of the planning period, are easily catered for. 

3. A branch and bound approach 

Since the publication of the pioneering paper of Little et al. [11] for solving the 
travelling salesman problem, branch and bound techniques have been extensively 
used for solving combinatorial (NP-hard) optimisation problems. The dynamic 
depot location problem can be seen as a combinatorial optimisation problem 
being an extension of the NP-hard simple plant location problem. 

In order to develop a branch and bound approach for the dynamic depot 
location problem it is necessary to define first a "relaxed" problem. This is 
usually done by relaxing one or more of the constraints of the original problem so 
that the solution to the relaxed problem provides a lower bound to the original 
problem. A tree search procedure is then established by solving the relaxed 
problem at each stage to provide the bounds that lead the search. Clearly the 
choice of the constraints to relax must lead to a relaxed problem which is quickly 
and easily solved but which also gives tight lower bounds in order to reduce the 
number of nodes to be explored in the tree. A relaxed problem will be formed 
here by using the concept of state-space relaxation first used by Christofides et al. 
[3]. 

Dynamic programming is a very suitable technique for many combinatorial 
problems, It is, however, well known to suffer from the "curse of dimensionality" 
as the state-space i.e. the number of possible states, grows. To illustrate this let us 
define M as the number of periods in the planning horizon and N the number  of 
location sets. Then it is clear that in the formulation given here the computat ion 
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time is proportional to MN2;  that is it is linear in the number  of periods and of 
O(N 2) with the number  of location sets. This could be considered bad enough 
but clearly the number  of location sets increases dramatically with the number  of 
depot sites. For example, if there are 7 possible sites and it is permitted to locate 
up to 4 depots, then there are 98 location sets (all combinations of 7 taken in 
4, 3, 2 and 1 ways). If there are 8 possible sites, the number  of location sets 
increases to 162; with 9 possible sites, there are 255 location sets and so on. For  
realistically sized problems, if n is the number  of sites, the number  of location 
sets could be n! and becomes very substantial indeed. 

A significant reduction of the state space can be achieved if instead of 
considering the location sets themselves, only the number  of depots that con- 
stitute the sets are considered. For  the examples given above, this will result in a 
reduction from 98, 162 or 255 to only 4. To do this the transformation 

For I take [ I  [ = s and for J takes [ J  I = q 
is used and eqs. (1)-(3) are re-written as 

F ( s ,  k ) =  m i n ( F ( q ,  k -  1) + rnq,s) + cs, k (5) 
q 

subject to I k <~ s < u k (6) 

lk_ 1 <~ q <~ Uk_ 1 (7) 

However, recursion (5) cannot be used as it stands because the values of m q ,  s and 
cs. k depend on the location sets I and J from which s and q are derived. 
However, as it is required to produce a lower bound, the substitution ~q.~ for 
mq, s and E~.,k for c~. k may be chosen so as to satisfy 

"m q.s ~ m q,s and Cs,k ~< C~.k (8) 

~q,~ and ?s,k can be defined as follows 

0 if q = s  

~q .  = ( q - s ) v  I i f q > s  (9) 

(S -- q ) v  2 if s > q 

Where v~ = the cost of opening a depot, o 2 = the cost of closing a depot. 

and ?s.k = rain( c,. k ) (10) 

~q.~ and Cs,k are the minimum possible values that m q ,  s and c~. k can take and so 
the inequalities (8) are satisfied. The relaxed problem may now be written as 

F ( s ,  k ) =  m i n ( F ( q ,  k -  1 ) +  -mq,s) + Cs,k 
q 

subject to I k < s ~ u k 

lk_ 1 <~ q <~ Uk_ 1. 

(11) 

(12) 

(13) 

Because the inequalities (8) are satisfied, the solution to the recursion (11) 
produces a lower bound to the original problem. The recursion (11) is also very 
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much easier to solve than the original recursion (1) since the state space is 
substantially reduced. 

The relaxed problem developed above is used to produce bounds in a branch 
and bound tree search procedure. This is done in the following way: Initially all 
the location sets available are assumed to operate for the first period and then 
bounds are calculated for each location set in turn by solving the relaxed problem 
for the remaining periods. This is done by initialising eq. (11) by setting 

F(s,  1) = ci, 1 for all I ~ N 1 

where s = [II  for the location set 1 in mind and then applying the recursive 
equation (11) for period k = 2, . . . ,  M. This gives IN 1 Inodes with the bounds 
defined by the actual costs for period 1 plus a lower bound for the remaining 
periods. We branch from the node with the smallest lower bound. Let this node 
correspond to the operation of location set I*  during the first period. We now 
generate I N~I more nodes of the tree assuming that location set 1" was 
operating in the first period and each one of the N 2 location sets in the second 
period. Bounds for these nodes are calculated by solving the relaxed problem 
initialised by 

F(s,  2) = (Cl*,l "~ mt.,z ) --~ CI, 2 for all I ~  N 2 

where s = I I I and then applying (11) for the periods k = 3 . . . . .  M. We continue 
to branch from the node with the smallest lower bound (excluding any which 
have already been branched from). In general, if the node with the minimum 
bound for period k - 1  corresponds to location set I* ,  then INk[ new nodes 
corresponding to the INk I location sets are generated. The bounds are calculated 
from the relaxed recursive equation (11) initialised by 

F(s,  k) = (actual operating and moving costs so far) + rnt. d + cl. k (14) 

where s = I I I and I ~ N k, and applying the recursion (11) for k = k + 1, . . . ,  M. 
The procedure comes to an end when the node with the currently lowest value 
corresponds to the final period. 

It can be seen from (14) that the values associated with any terminal node (for 
which k = M) are the actual costs. Furthermore as the procedure is designed to 
ensure there is no repetition or cycling, the procedure will terminate in a finite 
number of operations. 

4. Computational results 

Both the dynamic programming and the branch and bound algorithms were 
programmed in FORTRAN 77 in order to compare their performance. In general 
it is expected that two particular parameters will show differences in the relative 
performance of the two algorithms. These parameters are 
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(i) the number of periods. Dynamic programming is linear with respect to the 
number of periods are required. However as the number of periods increases the 
higher is the chance of the branch and bound tree becoming bigger as the quality 
of the lower bounds in the early periods is likely to deteriorate with respect to the 
optimal solution. 

(ii) The number of location sets. As the number of location sets increases the 
curse of dimensionality will effect the dynamic programming approach. It is 
expected that the branch and bound approach would show an increasing ad- 
vantage. 

Some other factors may also affect the performance of the branch and bound 
algorithm. Two factors in particular stand out. The first is the degree of 
"difficulty" of the problem. It is reasonable to assume that the more the 
customers' demands fluctuate the more nodes may be required to be examined in 
the branch and bound procedure. The second factor is the relative size of the 
relocation costs in relation to the other costs. It will be recalled that the 
effectiveness of the bounds derived from the relaxed problem is related to the 
value of the relocation costs. The relaxed problem assumes that one can move 
from one location set to another at minimum cost. However the larger the 
re-location costs the less effective the lower bound will become. Take, for 
example, the perhaps unlikely case of moving from one set of three facilities to 
another location set consisting of three entirely different facilities. In this case the 
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bound for the relocation costs is zero, whereas in reality the cost is three times the 
sum of the costs of opening and closing a depot. 

To test these characteristics the following problem was devised representing the 
distribution problem of a manufacturing company. Fifty customers were gener- 
ated and grouped into 6 sales areas, as shown in fig. 1. N o t e  these areas are used 
as a device in the forecasting of future demand; it is difficult to predict with 
accuracy how the demand of individual customers will vary with time but easier 
to forecast the aggregated demand for an area. Figure 1 also shows 9 potential 
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warehouse sites and the location of the factory or manufacturing plant. The 
factory is essentially irrelevant to the discussion here but important in the 
calculation of the costs. Goods will be trunked from the factory to the warehouses, 
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and these costs, as well as the costs of goods storage within the warehouses, must 
be considered in the total cost equation. To compare the degree of difficulty 2 
data sets were created which differ in the way the customer demand develops in 
each of the 6 areas. Data set 1 has linear changes and no severe fluctuations but 
data set 2 has non-linear and significant demand changes over time. The demands 
for the two data sets are illustrated in figs. 2 and 3 respectively. 

Several problems were derived from the above data to investigate the effect of 
the factors that have been identified. The number of periods was varied from 2 to 
8 while the number  of location sets remained constant. Then keeping the number 
of periods constant the number of location sets were varied from 28 to 255. These 
variations were achieved by varying the number of potential sites (from 7 to 9) 
and changing the number of depots which are allowed to operate during each 
period. The allowed number is bounded by l k, which is always 1, and u k which 
has been varied from 2 to 5. Note that the bounds are kept constant  with each 
individual problem. Finally using data set 2 and a problem with 5 periods and 98 
location sets, the relocation costs were increased in steps from 0 to practically 
infinity. Here the ratio of closing costs to opening costs was kept constant  (at 
1:1.6). The results of these experiments are discussed below. Note  that the 

Table l(i) 
Results for data set 1 (98 location sets). 

Number of DP BB 
periods time * 

Time * Nodes Levels 

2 0.347 0.017 195 2 
3 0.363 0.041 293 3 
4 0.390 0.073 391 4 
5 0.420 0.123 489 5 
6 0.449 0.166 587 6 
7 0.482 0.225 685 7 
8 0.507 0.317 979 10 

Table l(ii) 
Results for data set 2 (98 location sets). 

Number of DP BB 
periods time * 

Time * Nodes Levels 

2 0.345 0.031 391 4 
3 0.372 0.214 1273 13 
4 0.406 0.333 1371 14 
5 0.432 0.533 1763 18 
6 0.454 1.167 3327 34 
7 0.477 1.770 4185 43 
8 0.495 2.139 4241 44 

* CP seconds for a CDC 6000 computer system. 
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with 98 location sets. 

computer times given refer only to the running of the algorithms; the times for 
the initialisation of the problems, which could be substantial in a large problem, 
are common to both programs and are excluded. We will use the notation (i) and 
(ii) attached to figure and table numbers to refer to data sets 1 and 2 respectively. 

1. Number of periods. Tables l(i) and l(ii) give the computer times of this 
experiment and these times are also shown plotted in figs. 4(i) and 4(ii). It can be 
seen from these that the dynamic programming approach is linear in the number 
of periods and is not effected by the degree of difficulty of the problem. The 
branch and bound approach clearly is effected by the degree of difficulty. 
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2. Number of location sets. The results for this experiment are tabulated in 
tables 2(i) and 2(ii) and illustrated in figs. 5(i) and 5(ii). Here it can be clearly 
seen how an increase in the state space has a deplorable effect on the dynamic 
programming approach. The larger the problem the better the state space 
relaxation method performs especially in the case of data set 1. 

3. Relocation costs. The computer times given by the branch and bound 
method for thisexperiment are tabulated in table 3(ii) and illustrated in fig. 6(ii). 
Note that changes in relocation costs do not effect the dynamic programming 
approach at all. These figures show, as expected, that the higher the relocation 
costs the more effort is required in the branch and bound approach until the costs 
become so high that no relocation is worthwhile. 
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Finally as an indication of the effectiveness of the bounds calculated we 
illustrate four trees from the experiments. The trees shown in figs. 7a and 7b 
show differences with a change in the number  of periods; those trees shown in 
figs. 8a and 8b show differences in the number  of location sets. Note  that each 
apparent  node on the tree, which we call a "branching  level", actually consists, 
not  of 1 node but of  N nodes (where N is the number  of permit ted location sets) 
and node 1 represents the N 1 nodes for period 1. Although this cannot  be stated 
as a general rule, almost all the trees we developed followed this pattern. The 
reasons may be various but can be summarised in the statement that the pat tern 
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Table 2(i) 
Results for data set 1 (5 periods). 

Depot Max. depots Location DP 
sites in one period sets time 

B B  

Time * Nodes Levels 

7 2 28 0.023 0.022 140 5 
9 2 41 0.063 0.032 215 5 
7 3 63 0.151 0.061 315 5 
7 4 98 0.420 0.120 489 5 
9 3 125 0.630 0.110 572 5 
8 4 162 1.205 0.176 725 5 
8 5 218 2.282 0.268 923 5 
9 4 255 3.546 0.241 1037 5 

Table 2(ii) 
Results for data set 2 (5 periods). 

Depot Max. depots Location DP BB 
sites in one period sets time * 

Time * Nodes Levels 

7 2 28 0.025 0.031 196 7 
9 2 41 0.062 0.051 309 7 
7 3 63 0.147 0.217 945 15 
7 4 98 0.432 0.533 1763 18 
9 3 125 0.627 0.698 2873 23 
8 4 162 1.193 0.959 3029 20 
8 5 218 2.877 1.576 3907 20 
9 4 255 3.574 2.333 6870 29 

* CP time in seconds on a CDC 6000 computer. 

Table 3(ii) 
Computing times for the BB method (data set2) with 5 periods and 98 location sets. 

Relocation costs Time * Nodes Levels 

Closing Opening 

0.0 0.0 0,124 489 5 
1.0 1.6 0.160 587 6 
2.0 3.2 0.250 881 9 
3.0 4.8 0.359 1175 12 
4.0 6.4 0.502 1576 16 

* * 5.0 8.0 0.533 1763 18 
6.0 9.6 0.537 1665 17 
7.0 11.2 0.500 1567 16 
8.0 12.8 0.501 1567 16 
9.0 14.4 0.426 1371 14 

10.0 16.0 0.428 1371 14 
16.0 25.6 0.424 1371 14 

999.0 999.0 0.424 1371 14 

* CP time in seconds on a CDC 6000 computer. 
* * Actual values used in the earlier results. 
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Fig. 8. Trees for data set 2 (5 periods). 

of the costs in the problems we examined, were such that certain location sets 
could be identified as of no worth very early in the search. 

5. Conclusions 

We have developed and described an approach to solving the dynamic facility 
location problem using state space relaxation in dynamic programming. The 
procedure has been programmed and compared with a classical dynamic pro- 
gramming approach using an example from the distribution industry. Both 
techniques are shown to have advantages in performance under differing cir- 
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cumstances but in realistically sized problems there will be a large number  
location sets-which is where our proposal technique is most effective. 
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Appendix 

In this appendix a small example is given to contrast  the two different methods 
and demonstrate  the calculations involved in the branch and bound  method. A 3 
period problem with 3 potential sites (A, B and C) is considered. The restrictions 
on the problem are that not more than 2 sites should be used in period 1 and not 
more than 3 sites in periods 2 and 3. This gives 1 1 = l  2 = l  3 = 1  and u 1 = 2 ;  
u 2 = u 3 = 3. There are 7 potential location sets 

{A}, {B}, {C}, (AB}, (AC}, (BC}, (ABC} of which the last {ABC} is not feasi- 
ble for period 1. 

The operating costs for these location sets have been calculated for each period 
and are given in table A-1 below 
The cost of opening a facility is 10 mu and the cost of closing a facility is 8 mu. 
These values are, for convenience, taken as the same for all periods. Table  A-2 
shows the costs involved of transferring from one location set to another. 
The problem will be solved first using dynamic programming. Here  table A-3 
shows the costs for the first period. 
Table A-4 (A-5) shows the costs for the second (third) period. Note  that the 
calculations for F(5, 2) are given in full, whereas only the minimum values are 
given for the other values of 1. 
From table A-5 the minimum cost strategy costs 115 mu and is derived from 
operating either set 5 {AC} or set 7 (ABC} in the third period and set 5 in the 
second and first periods. 

Table A-1 
Operating costs (mu) for each location set per period. 

Location Facility Period 
set 1 2 

1 A 35 45 68 
2 B 38 48 70 
3 C 40 50 65 
4 A, B 48 37 50 
5 A, C 40 30 45 
6 B, C 45 35 40 
7 A, B, C - 50 35 
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Table A-2 
The relocation costs from one set to another. 

From Location Set: 

1 2 3 4 5 6 7 

To lo- 
cation 
set: 

1 0 18 18 18 8 26 16 
2 18 0 18 8 26 8 16 
3 18 18 0 26 8 8 16 
4 10 10 28 0 18 18 8 
5 10 28 10 18 0 18 8 
6 28 10 10 18 18 0 8 
7 20 20 20 10 10 10 0 

Table A-3 
The first period. 

I F(I ,  1) 

1 35 
2 38 
3 40 
4 48 
5 40 
6 45 

Table A-4 
The second period. 

I J F(J,  1) rag. I Min(F(J ,  1)+ rag.i) ct, z F(1, 2) 

1 1 35 0 35 45 80 
2 2 38 0 38 48 86 
3 3 40 0 40 50 90 
4 1 35 10 45 37 82 

1 35 10 
2 38 28 
3 40 10 

5 4 48 18 40 30 70 
5 40 0 
6 45 18 

6 6 45 0 45 35 80 
7 5 40 10 50 50 100 

Table A-5 
The third period. 

I J F(J,  2) ms. t Min(Min(F(J,  2)+ ins.t) ) ct. 3 F(I ,  3) 

1 1 70 8 78 68 146 
2 2 86 0 86 70 156 
3 5 70 8 78 65 143 
4 4 82 0 82 50 132 
5 5 70 0 70 45 115 
6 6 80 0 80 40 120 
7 5 70 10 80 35 115 
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Branch and bound 

The full tree for the problem solved by the proposed method is shown in fig. 
A-1 which uses the following notation. The large figure within the circle is 1, the 
location set to be used at that period (or level). The small figures underneath the 
node in brackets is the lower bound value. The small figure to the left of the node 
is the node number. The calculations for two nodes, node 5 in period 1 and node 
7 in period 2, will be given now to illustrate the method. However, first table A-6 
gives the minimum operating costs for a given number of depots. These are 
extracted from table A-1. For example, the minimum operating costs for 1 depot 
in period 1 is rain (35, 38, 40} = 35. 
Similarly table A-7 gives the minimum relocation costs 
Node 5: For node 5 location set 5 (that is (AC} with 2 facilities) is to be operated 
in the first period. 
Therefore F(2, 1 )=  c5.1 = 40 mu. 
This is the value of F(s, 1) for period 1. 

PERt OD 2 7 ~ ~ ' ~ / / /  ~ °(~) ~ ~  

PERIOD 3 ~ ~ J ~ . ~  I ~ - - ~ - ~  

(14G) (166)  (143) (138) (115) (128) (115) 

1 5  /~ot~e ~ t u ~ b o r  

Q Location Set 

(135) Lower Bound 

Fig. A-1. Branch and bound tree search. 

Table A-6 
The minimum operating costs (mu). 

Number of 
depots 

Period 

1 35 45 65 
2 40 30 40 
3 - 50 35 
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Table A-7 
Minimum relocation costs. 

To: 

1 2 3 

From: 1 0 10 20 
2 8 0 10 
3 16 8 0 

The recursion (11) is now followed to give the bounds for node 5 as shown in 
Table A-8. For period 2 q has the value of 2 and F(q, 1) is 40 from period 1. s 
takes the values 1, 2 or 3 facilities and the minimum operating costs %2 are 45, 
30 and 50 respectively. To move from q = 2 to s = 1 means closing one facility at 
a cost of 8 mu. 
Hence F(1, 2) = 40 + 8 + 45 = 93. 
The minimum value of F(s, 2) is 70 mu with s = 2. 
Finally the lower bound for node 5 is found in period 3 to be 110 mu with s = 2 
Node 7: The calculations for node 7 can be made in a similar manner to that 
shown above. Node 7 is in period 2 and required that location set 5 {AC} be 
operated in period 1 and location set 1 {A} in period 2. This gives for period 2. 

F(1,  2) = c5,1 + rns, 1 + cl, z = 40 + 8 + 45 = 93. 

Following recursion (11) for period 3 gives the lower bound 143 mu as can be 
seen from table A-9. 

Table A-8 
The bounds for Node 5. 

PERIOD 1 

s F(s,  1) 

2 40 

PERIOD 2 

s q F(q, 1) ~q.,  cs.2 F(s,  2) 

1 2 40 8 45 93 
2 2 40 0 30 70 
3 2 40 10 50 100 

PERIOD 3 

s q F(q, 2) ~q., ?,.3 F(s,  3) 

1 2 70 8 65 143 
2 2 70 0 40 110 
3 2 70 10 35 115 
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Table A-9 
The bounds for node 7. 

PERIOD 2 

s F(s ,  2) 

t 93 

PERIOD 3 

s q F(q ,  2) mq.s c~.3 F(s ,  3) 

1 1 93 0 65 158 
2 1 93 10 40 143 
3 1 93 20. 35 148 

It can be seen that the lower bounds for the third period (M = 3) are the actual 
values and the optimum solution is given by node 18 or node 20 and is exactly 
similar to the solution given by the dynamic programming approach. 
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