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Abstract 

The degree to which locational complexity and geographical complexity is represented in a 
location model is a critical decision that influences the quality of the application. Criteria 
which can be used to guide these decisions are presented and research that would better 
inform these decisions is described. 

1. Introduction 

This review of applications of location models focusses on how well analysts 
represent the locational complexity of the decision environment and the geo- 
graphical complexity of the environment in their models and how decisions on 
these questions might be made so that results might be more useful in day-to-day 
decision-making contexts. Three kinds of location models have been developed to 
cope with the different kinds of questions that analysts ask about location 
decisions. In one literature, (spatial choice), the focus is on the locational choices 
made and the goal is to infer the choice rules that decision-makers used in 
reaching their decisions. The purpose is to develop positive theories of locational 
decision-making. In a second literature, (organizational decision-making), the 
focus is on the process of decision-making and the goal is to show who 
participated, what roles they play, and how did they decide to act at any 
particular decision-making stage. Finally, in a third literature, (location-alloc- 
ation), the focus is on finding optimal locations for a decision-maker who has 
defined the objective criteria and wishes to find the locations that optimize the 
criteria. 

There has been little interaction between these three literatures. Instead, each 
has had its separate domain of application. Yet to give effective help in most 
decision-contexts requires that elements of the three literatures be merged. In so 
far as people evaluate alternative locations and make choices, it is important  that 
models of optimal location accurately represent these evaluations. In so far as 
organizations are complex decisionmaking units, it is important  that models of 
optimal location allow the locational elements of decisions to be made in 
whatever contingent way is required by other, non-locational, decisions. Applica- 
tions of location models are beginning to relate these literatures to one another 

© J.C. Baltzer A.G. Scientific Publishing Company 



26 G. Rushton, Application of location models 

but there are many problems to be overcome. At issue is how analysts deal with 
complexity. The complexity is that of an individual making a decision from 
among multi-attribute alternatives; of an organization making a decision in an 
environment where multiple goal exist; and of all of the above occurring among 
many combinations of locations. Separate location models exist that individually 
deal with each of these complexities but, not surprisingly, little progress has been 
made in dealing with perhaps the most common of applied location problems- the  
case where many individual private choices are being made, where a complex 
organization is involved and where many combinations of locations exist. 

Papers presented at ISOLDE IV represented the judgments  of researchers from 
many countries about the important problems in locational decision-making. 
They show that attempts to deal with these multiple complexities are still rare. It 
is no secret why this is so. In each of these three areas of locational modeling 
there are enough unanswered questions to keep our attention. Nevertheless, it is 
the lot of the applied location modeler to survive in this mine-field of unanswered 
questions and, usually after only a modest expenditure of resources, to say 
something useful about a pressing location problem where decisions must be 
made. In this paper I review many of the decisions that analysts make in applying 
a location model to the solution of a practical problem and conclude that many 
of these decisions are made without knowledge of the errors that are introduced. 
Research is needed to guide these decisions. They relate to how a given problem 
is represented and so will be called here "representation errors". Surprisingly 
little is known about the effects on the quality of solutions of the different 
possible decisions that can be made. Such knowledge as does exist is difficult to 
apply to specific cases. The paper discusses the potential for such errors to exist, 
what is known about each source of error, and how analysts can act to minimize 
the impacts of these errors on the quality of solutions reached. 

2. Representing locational complexity 

By locational complexity I mean the ability to identify and evaluate a large 
number of combinations of locations. Location-allocation models, developed in 
the 1960s, for the first time allowed locational complexity to be represented for 
geographic spaces that were realistically represented. Based on the assumption 
that the returns from modelling locational complexity were obviously large and 
significant, many application areas were soon identified. The quality of the 
locations selected were judged to be superior to locations selected by alternative 
methods. 

2.1. PROBLEMS OF MEASURING LOCATIONAL EFFICIENCY 

How much better are the "optimal locations" selected by a location model? 
Unlike 'normal '  choice problems where the set of available alternatives from 
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which choice is made usually can be identified easily, in the multiple location 
choice case, the composition of the choice set from which selections were made is 
unclear. The gain should be measured in relation to the likely objective function 
value if the model had not been used. In other words, the gain is a measure of 
what can he achieved simply by raising the quality of locational decision-making. 
It is not clear in many applied location studies, what assumption is being made, 
or standard adopted, about the location decisions that would be made if loca- 
tional complexity had not been modeled. The measurement of efficiency is itself 
an active area of research (Charnes, Cooper and Rhodes [6], Farrell [13], Sherman 
[41]). We suggest that locational efficiency be defined as the performance of the 
actual location decisions with respect to the estimated performance of an alterna- 
tive set of locations defined as a "reference set". McLafferty and Ghosh [33] 
define sets of locations that could have been selected by the decision-maker. 
Alternative assumptions about the discretion of the decision-maker to select 
different locations lead to the definition of alternative reference sets. It is 
therefore necessary to define the efficiency of any particular reference set as the 
performance of the best member of the set in relation to the best member  from 
the set of all locations. 

2.2. MEASURING THE PERFORMANCE OF PAST LOCATION DECISIONS 

The most commonly used reference point  for assessing efficiency is the ratio of 
the performance on a given objective function of the actual location pattern to 
the optimal pattern, as found by some location-allocation algorithm. There are 
substantial problems with this measure. What, for example, is the meaning of a 
report that a given location pattern is 0.94 efficient? When it is unity, the actual 
pattern is identical with the computed optimal pattern but it is more difficult to 
interpret values less than unity. In many practical circumstances the lower limit 
of this coefficient is substantially larger than zero and, in fact, can approach 
unity, even though the location decisions studied are suboptimal. This can occur, 
for example, when many locations are fixed and only a few location decisions are 
made. No matter how suboptimal these few decisions may be, relative efficiency 
would remain high. Even without considering constraints on location selection, 
the lower limit of this measure is affected by a number  of characteristics of the 
data and problem being examined: the ratio, for example, of p (the number of 
service locations in the system) to m (the number  of eligible or candidate sites 
from which p is to be selected). Where p approaches m in size, the opportunity 
for making a poor location selection is reduced. In such circumstances, a finding 
that relative locational efficiency is high is merely an artefact of the data and 
nothing can be imputed about the skill or purpose of the decision-maker in 
achieving this result. Note that the interpretation of this measure in behavioral 
terms, however, is based on the assumption, unrealistic in practice, that discretion 
in decision-making behavior allows any locations selected at some earlier time 
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period to be abandoned without cost and for new locations to be substituted for 
them-also without cost. 

We conclude, therefore, that the most common measure of locational efficiency 
has theoretical and applied problems with its use. The theoretical range in its 
value will vary from one problem to another, depending in an unknown way on 
different parameters of the problem. The behavioral possibilities for location 
selection implied in its use will often not exist. 

2.3. THE STANDARD OF BEST PRACTICE 

The argument for using '" best practice" as the reference point against which to 
measure any benefits from modeling locational complexity is that the theoretical 
ideal of selecting the optimal combination of locations may be unrealistic [26]. As 
Farrell observed, ([13], p. 255), "it is far better to compare performances with the 
best actually achieved than with some unattainable ideal". Incremental location 
decisions can be measured against the standard of the expected productivity 
increases achieved in relation to the maximum that could have been achieved 
given the locations with the service and the places where new facilities could have 
been located. Any trend in these points can be interpreted as an increase or a 
decrease in the locational efficiency of decision-makers. Alternative reference 
levels can be suggested, such as the modal value, the 10th percentile or the value 
most recently achieved. Comparing the performance of decision-makers in one 
area of activity with the measure of performance derived from its own new 
location decisions is known elsewhere as "structural efficiency", ([13], p. 262). It 
measures the extent to which new location decisions keep up with the perfor- 
mance of those made earlier. Its use is open to the criticism that it does not reflect 
the extent to which the best practice in one service activity compares with the best 
practice in another. The moments of the distribution, if measured for several 
services in an area, can be used to compare the structural efficiency of different 
service systems. Such comparative efficiency measures could be particularly 
useful when different decision-making processes are followed in locating different 
types of services. 

2.4. THE STANDARD OF ALTERNATIVE DECISION RULES 

Some literature has explored the quality of alternative possible decision rules. I 
believe this is important because the argument for modelling locational complex- 
ity in applications of location models rests on the expected gains from use of such 
models. There is some reason to believe that decision-makers use simple princi- 
ples to make service-location decisions, yet, neither their relative efficiency nor 
the circumstances that affect their performance is known. 

The "principle" which implies the least directed behavior to effectively deal 
with locational complexity is the rule that locations are selected at random. 
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McLafferty and Ghosh [33] have suggested that the performance of any chosen 
set of locations can be measured by comparing its score on any criterion with a 
reference distribution of relative frequencies of scores on the criterion obtained 
from a random sampling of sets of locations drawn from the list of places eligible 
for selection by the decision-maker. If a large proportion of such sets are poorer 
than the set selected, it is reasonable to infer purposive behavior on the part of 
the decision-maker to favor the criterion in question as well as an ability to 
identify the patterns that perform well on the criterion. As McLafferty [32] points 
out, the method is particularly appropriate when the criterion of interest involves 
the performance of a set of locations for serving two or more sets of people whose 
distribution patterns are different in a study area. In such cases the optimal 
quality of service that either group could receive may well be different (because of 
their different location patterns) and quite erroneous inferences concerning the 
motives of decision makers have been made in analyses that have merely 
measured the changes in geographical accessibility to a service by different 
groups after new location decisions were made, (Lineberry, [28]). Larson and 
Stevenson [26] showed that the average travel distance to the closest service site in 
an optimal location pattern in an area of homogeneous demand will be 25 percent 
smaller than a location pattern in which facilities are randomly distributed. How 
random location decisions will perform depends upon the distribution of the 
demand to be served and the distribution of locations that can be selected. Little 
is known about how randomly selected location patterns typically perform in 
such realistic conditions. 

A second principle for selecting locations is when places are selected in order 
of their population size. Although facilities are generally intended to serve people 
outside the places or communities in which they are located, decisions about their 
location often take place in forums where people represent their own place or 
community. From such a meeting may often emerge decisions favoring the larger 
places. It is a principle of a median point, of course, that if within a service area 
there exists a node with a demand greater than one-half of the total demand of 
the service area, it will be the median location, no matter where it is located in the 
local market area. If p places in a larger area, for example, contain more than 
half the demand of the area, the probability is high that they will be the solution 
to the p-median problem in the area. Other principles can be suggested. 

2.5. LOCATION OF DISPENSARIES IN NIGERIA, 1979-1982 

We studied the locations selected by the government of Nigeria for Dis- 
pensaries in a section of Ogun State in Nigeria, (estimated population 1,015,725), 
(Ayeni, Rushton and McNulty [2]). In the three years following the formation of 
a new civilian government in 1979, 20 dispensaries were added to the 43 that 
already existed in 1979. It seemed likely to us that the government would regard 
any question about past locational decisions as moot, but that it would be 
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interested in finding the locations which, if added to the 43 dispensaries that 
existed in 1979, would provide the largest possible increase in utilization. We used 
a function that estimated for each location, per capita use of dispensaries in each 
candidate place as a function of distance from the closest dispensary, Stock [42]. 
Using the Teitz and Bart [44] substitution heuristic algorithm, and employing the 
unified linear model of Hillsman [19], we found the locations for 20 dispensaries 
to add to the 43 existing dispensaries in the area in 1979 which would have most 
increased aggregate utilization. Following McLafferty and Ghosh [33], we com- 
puted the expected utilization for fifty sets of locations, each consisting of 20 
randomly selected locations from places with populations larger than 1000 that 
did not already have a dispensary (175 locations) and the 43 existing dispensary 
locations. We found that every single one of the 50 patterns would have had a 
larger utilization than the existing pattern of 63 dispensary locations in 1982. We 
found that when we chose 20 places to add to the existing 43 by selecting them at 
random, with probabilities proportional to their population, from the 175 places 
without dispensaries which had populations greater than 1000, the estimated 
utilization would have been 2.8 percent larger than the actual set. The third 
reference standard, selecting the 20 largest places without dispensaries, would 
have had a utilization rate 6.8 percent larger than the government's chosen 
locations. 

We concluded, therefore, that current methods of evaluating the performance 
of multiple location decisions can be improved by relating measures of perfor- 
mance to reference points that are selected as reasonable decision-making rules 
that could have been applied in the problem context (Park [35]). Such rules-of- 
thumb can, in some circumstances therefore, work very well as an alternative to 
using location-allocation algorithms to select locations to provide services to a 
dispersed population. The gain from modeling locational complexity should be 
assessed in comparison with the results if one or more of these simple decision- 
rules had been used. 

2.6. IMPORTANCE OF OPTIMIZING LOCATION SELECTION 

A related question in modeling locational complexity is the significance of any 
given measure of difference in performance between any two patterns. This can 
only be answered by reference to the substance of the problem. Decision-makers 
will often want to estimate how many fewer facilities optimally located could 
have produced the same amount and quality of service or how much greater 
outputs could have been produced by the same number of facilities optimally 
located; (for a related efficiency decision see Sherman [41], p. 922). Location-al- 
location models were used a great deal, for example, for finding optimal locations 
of emergency facilities because, it was argued, the increased performance was 
significant-lives saved, in the case of emergency medical services; fire loss, in the 
case of fire equipment deployment; crime, in the case of policy patrol route 
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optimization; . . .  the list could be long (see, for example, Swersey and Ignall [43]). 
A common decision that the applications analyst must make is whether to 

sacrifice the modelling of locational complexity in order to increase the ability to 
deal with other kinds of complexity. Brandeau and Larson [4] discuss the 
difficulties of devising a realistic analytical model of an urban ambulance 
deployment system and after concluding that five criterion are important in 
ambulance location deployment, they decided to sacrifice the formal modeling of 
locational complexity in favor of representing the five criterion for any solution 
and allowing decision-makers to search for solutions by discussing the relative 
merits of alternative configurations. The decision-makers were being encouraged 
to develop their preference trade-offs for the five criteria by discussing the 
relative merits of alternative solutions that they generated. In this case, process 
complexity consisted of reconciling two primary objectives and three secondary 
objectives; Brandeau and Larson 1986, pp. 132-133; 

"Primary performance objectives: 
(i) to reduce citywide average response times to emergency calls; 

(ii) to reduce citywide inequities in ambulance availability. 
Secondary performance goals deemed important were: 

(iii) to minimize ambulance workload imbalance; 
(iv) to minimize the fraction of cells handled by backup units; 
(v) to minimize the fraction of dispatches which are inter-district." 

In this case the key decision the analysts made was not to use any location-al- 
location algorithm to search for the optimum locations for ambulance deploy- 
ment. Rather, they used human intuition, supported by an evaluation routine that 
provided proof that the subjectively determined relations of the ambulances 
performed better than the current deployment pattern in terms of the five 
performance objectives and goals. Subjectivity in re-locating the units extended so 
far as to introduce new geographical data uni t s -"dummy atoms"-into the data 
set to allow ambulance locations in locations that were not centroids of census 
tracts, but which were thought to be desirable locations for ambulances. Although 
no formal explanation of the subjective choice of locations appears in their 
published work, one can surmise that an unstated goal was to convince decision- 
makers that model solutions were better than the existing system and that they 
should make the changes indicated by the model. By involving decision-makers in 
the solution process and asking them to suggest re-locations for evaluation, they 
raised the likelihood that model results would be implemented. In this case, 
several existing ambulances were moved to new locations suggested by the model 
runs and the authors concluded that since at least one more ambulance would 
have been needed to achieve the same service improvements if the existing 
vehicles had not been re-deployed, the benefits of the model were equal to the 
costs of acquiring and operating an ambulance, estimated to be $150,000 per 
year. 
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3. Representing the geographical environment 

Large errors can be caused by the method of representing the geography of an 
area in a location model. Key information are distances, travel times, or costs 
between places; measured of demand or need for service; the level of  spatial 
aggregation at which data is represented; and the effect of the boundary  of a 
study area on model results. 

3.1. DISTANCE ESTIMATION 

There are two issues in representing travel distances: the estimation of total (or 
average) distances in a system from knowledge of certain macro variables and the 
estimation of specific inter-point distances from secondary measures. 

Kolesar [23] and others have shown that expected distances in optimally 
located configurations of facilities can be estimated from knowledge of the area 
of a region and the number  of facilities. For travel times actually experienced in 
an area, equations calibrated from sample data on response times in operating 
systems have been shown to provide accurate estimates of response times for new 
systems (Kolesar [23], p. 190). 

maximum response time = K/{(number of facilities) 

and, more generally, 

E( D ) = k{~( A / U  ) 

D = exp b , ) ( Y  

where A is the area to be served, N is the number  of facilities.Kolesar shows that 
when needs for service occur homogeneously over area and when the number  of 
facilities is such that the area can be divided into equal sized square blocks, then 
k is equal to ~ 2/2-/3 = 0.4714. Earlier, Learner [27] had established the same result 
but had cautioned against its application in areas when the assumption of 
homogeneous distribution of demand was not met. Even when, however, the 
assumptions of homogeneity of demand for service is not valid, k can be 
estimated by simulation of patterns of demand for service in relation to any given 
pattern of facilities. After a number  of simulations, Kolesar found that ([27], p. 
195) " the  square root law holds as a good approximation under  the assumption 
of straight-line travel even when hazards, alarms and unit locations are not 
homogeneous, when distances are computed with a complicated function, and 
when units may often be unavailable to respond." This law can be used to 
estimate the size of the likely response distances if any given number  of facilities 
are deployed. It can also be used to estimate the size of the possible savings that 
might occur if an existing number  of facilities were to be re-located. This is 
valuable knowledge that can be used prior to embarking on analyses to improve 
locational configurations of facilities, and can provide decision-makers with 
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rough estimates on the degree to which response times can be improved by 
facility relocation. Although these rules are often helpful, their robustness for the 
range of conditions in which they can be used is not  known. 

Some progress has been made in making estimates of distances between places 
that are more accurate than the commonly assumed Euclidean or Manhattan 
distance metrics, (Love et al., [30], Ch. 10). Parameters of these empirical models 
of travel distances differ substantially over the various data sets from which the 
models were calibrated and Love et al. ([30], p. 262) have recently advised 
analysts not to generalize from these studies. Instead, calibration of models in 
study regions from sample spatial interaction data is still advised (Eaton et al. 
[12]). There is clearly scope for research that would determine the functional 
relationship between optimal parameter values and other measurable characteris- 
tics of regions. 

3.2. SPATIAL AGGREGATION EFFECTS 

The effect of employing discrete spatial structures to represent data that is 
distributed continuously is largely unknown, though recent research has shown 
that the effects on the validity of results from location-allocation models can be 
considerable. In most cases the decision to use a particular data structure is a 
matter of convenience and most analysts do not discuss the potential conse- 
quences of the data system they use or the alternatives they rejected. Opt imum 
locations of facilities depend on data structure in three respects. (1) the actual 
locations identified as optimal may be suboptimal for the disaggregated data. The 
difference cannot be assumed to be a small local distance deviation from some 
unknown optimal site for each location. Instead, the true optimal location pattern 
may well be some quite different pattern. (2) the true objective function value for 
the optimal location pattern found from the aggregated data may be different 
from the objective function value for the location pattern found from the 
disaggregated data- this  is the real cost to the decision-maker of accepting results 
from analysis of the aggregate data rather than equivalent results from the 
disaggregated data. It is not a "measurement  error". (3) the value of the objective 
function for the locations identified as optimal in the aggregate data may be in 
error so that decisions based on it may not be valid-this is a "measurement  
e r r o r " .  

In some cases, systematic bias in the objective function value can be estimated 
but in many cases the direction of the bias is unknown. The problem was first 
studied by Gould, Nordbeck and Rystedt [17] who investigated the robustness of 
solutions by conducting simulations with different degrees of data aggregation 
and with demand estimates randomly distributed. They reported robust results 
for their case study and dismissed the problem as unimportant  in practical work. 
In a more theoretical way the question has been studied by Casillas [5], Current 
and Schilling [9], Goodchild [15], and Hillsman and Rhoda [20]. Goodchild 
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showed that different data aggregations of the same basic, disaggregated, data set 
could give optimal locational patterns that were geographically quite different 
even though the values for the objective function were quite close. He concluded 
that "aggregation tends to produce much more dramatic effects on location than 
on the values of the objective function". The generality of this conclusion, 
however, can be questioned in that the data base on which his simulations were 
conducted was a hypothetical distribution of equal-sized zones with uniform 
weights. For such a spatial distribution, the optimal locations are indeterminate 
in that several symmetrical location patterns will have identical values of the 
objective function. Casillas [5] in a series of simulations concluded that optimal 
location patterns remain stable across all levels of aggregation but that estimates 
of travel distance or cost from analyses of aggregated data had large errors. 
Clearly, opt imum locations must be sensitive, to an important degree, at some 
level of spatial aggregation of data. We do not know how to identify this level in 
advance for any given application. 

If errors in finding optimal locations and errors in measuring the objective 
function value arise because of aggregation of data that is continuously distrib- 
uted, how can these errors be avoided? Three suggestions have been made. The 
first is that data be disaggregated. Unfortunately, the advantages of data disag- 
gregation are often offset by the disadvantages of handling larger data sets and 
the algorithmic compromises that are often necessary as the size of data sets 
increase. Because the optimal degree of data aggregation is not known, errors 
caused by spatial data aggregation are not entirely removed by disaggregation. 
Indeed, other errors are introduced when estimation methods are used to predict 
values of data for subareas, "target zones", from larger areas. Lain [24] reviews 
these methods and concludes that approaches that involve the overlaying of grid 
cells and interpolating values to each control point often produce large errors. 
These methods are non-volume preserving; that is, aggregation of data from the 
new, smaller areas are not guaranteed to sum to the original data values for the 
larger areas. A second class of methods are volume preserving. One method, 
(Crackel [8]), uses the overlay method in which the density distribution within a 
larger area is assumed to be homogeneous throughout the area, the proportion of 
the larger area within the smaller area is measured, and the value for the smaller 
area is estimated from its proportions of each of the larger areas times their data 
value. Although volume preserving, these methods introduce error through the 
assumption of homogeneity of distribution within the larger area. A second 
method (Tobler [45]), assumes the existence of a smooth density function fit to 
the centroids of the larger zones; the volume preserving condition is enforced by 
an iterative algorithm that increments or decrements the densities within individ- 
ual zones. Applications of either of these methods of areal interpolation in 
applications of optimizing location models are rare. 

The second suggestion is that two of the three sources of error caused by 
spatial aggregation of data (Hillsman and Rhoda [20]) be removed prior to 



G. Rushton, Application of location models 35 

computing optimal location patterns. Current and Schilling [9] showed that the 
weighted distances from the disaggregated spatial data units that comprise each 
aggregated spatial unit (ASU) can be measured to the center of all other ASUs to 
remove Type A errors and of all disaggregated units to the center of their own 
ASU to remove Type B errors of aggregation. This, they argue, is a practice that 
should be commonly used in applied location studies. When the analyst is 
presented with aggregated data, it requires judgment to determine whether the 
errors caused by the act of spatially disaggregating the data will be smaller than 
the errors caused by aggregation. No general conclusions are possible since the 
magnitude of both types of error will depend on the degree of aggregation and 
the nature of the spatial distributions that have been aggregated. Typically, data 
sets that contain large diversity in geographical sizes of units (such as U.S. census 
tracts) and large variations of data within data units (such as counties) are likely 
to cause large errors. Disaggregating them will often be necessary to reduce error. 
In summary, the worst case occurs when the ratio of p/m is large, and where 
data units are irregular in size. Current and Schilling [9] reported that distance 
measures in their worst case ( p / m  = 0.33) underestimated the true travel cost by 
44.6 percent. Since this error is related to p/m,  it also follows that as p increases 
in any given analysis, the true travel cost savings which result from increasing the 
number of facilities, is overestimated (Current and Shilling [9], p. 107). 

The reason why analysts aggregate data is to reduce computation time and 
data storage requirement. Current and Schilling ([9], p. 108) reported savings in 
CPU time used of 20 to 1 as they reduced a 681 × 70 data set to 30 × 30. 

The third suggestion for dealing with spatial aggregation error in location 
models is more radical. It is that the problem be expressed and solved in 
continuous space. There is a large literature on the solution of location problems 
on the plane (Beaumont [3]) but in almost all cases, although facilities are located 
continuously in the plane, the distribution of demand is represented as a set of 
discrete locations. Consequently, most of the aggregation problems discussed 
above remain. Applications are rare where facility locations are found in continu- 
ous space and need for service is represented as a continuously defined density 
distribution. Leamer [27] solved the p-median problem for this case for uniformly 
distributed demand while Rushton [37] developed an algorithm for the case where 
equal-size constraints existed on the populations served by each facility-the 
transportation-location problem, (see Goodchild and Massam [16] and Cooper [7] 
for the discrete spatial demand data case of the same problem). A basis for the 
continuous representation of interpoint distances, times or costs, in geographic 
space is provided by Angel and Hyman [1]. Building on this work, Mayhew [31] 
proposed a method involving the drawing of tesselations of hexagons on a 
population density surface and then transforming them to the physical surface of 
the city as distorted hexagons. These "districts" then have the property of having 
approximately equal populations. For the problem of locating hospitals so that 
the maximum time distance to the closest hospital would be least, Mayhew 
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proposed the drawing of hexagons on a travel velocity surface and the transfer- 
ring of their boundaries on to a map of the city of London where they are 
transformed into a tessellation of distorted hexagons, each district of which has 
approximately equal time distance from the center to boundary. Their distribu- 
tion reflected, therefore, the different travel speeds that occur in different parts of 
the city. Because both the methods of representing "demand"  and "distance" 
data as continuous functions in any empirical situation have error and because it 
is impossible at the end t o k n o w  the degree to which the problem as stated has 
been solved-no error theory is discussed-it  seems safe to presume that Mayhew's 
solution method, though original and novel, is inferior to alternative methods, 
based on discrete spatial data, which have been carefully described and evaluated 
in the literature, (Daskin et al., [10]). 

3.3. BOUNDARY EFFECTS 

There are two ways in which boundaries enter applications of location models. 
The first is in affecting the quality of the solution. The second is as a measure- 
ment problem affecting the accuracy with which interaction patterns are portrayed. 

Because location-allocation models can be used .to compute optimal locations 
for irregular shaped areas with non-uniform patterns of demand, decision-makers 
are rarely concerned about the effect of study area boundaries on their decisions. 
Yet boundaries do affect the quality of solutions and in many practical cases they 
are arbitrary and are not recognized by users of facilities. That they result in a 
loss of efficiency is well known, but systematic exploration of their effect and of 
the gains to be made by removing arbitrary boundaries, has received little 
attention. Leamer [27] showed how the ideal-shaped hexagonal honeycomb of 
market areas found in an area of infinite extent and uniform demand becomes 
distorted by boundaries of study areas. He simulated the case of an industry with 
fixed costs of facility upkeep and transport costs proportional to distance, first in 
a square region, and then for the case when the region was divided into four 
smaller regions. He found that the loss in efficiency caused by the boundaries was 
less than one percent. "The  rather small economic loss is surprising", he wrote, 
([27], p. 241). "Dividing a square into four equal squares should be a severe test. 
For this reason we can conclude that the fracturing of uniform demands is not 
likely to cause enough distortion in optimal market areas to lead to significant 
economic losses". He went on to caution " that  this statement cannot necessarily 
be extrapolated either to real locations or to non-uniform demands".  Yet the 
evidence abounds that boundaries do cause large losses of efficiency in specific 
cases. The quality of solutions to covering models in particular, can be affected 
by the shape of a study area. Yet study areas are often rather arbitrarily defined. 
The authority of decision-makers often extend over some political-administrative 
space and though analysts have no control over this, they can suggest that 
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Table 1 
Geographical accessibility to health service sites in Bellary district 1971-1981 

Year No. of Average distance to 
sites nearest sites (km) 

existing optimal 

Percent 
efficiency 

1971 32 6.74 5.62 83.44 
1976 47 5.19 4.27 82.29 
1979 52 4.58 4.00 87.33 
1981 59 4.16 3.66 88.12 

Locational efficiency of primary health units selected in each period 1971-1981 

Time No. of Average distance to 
period new sites nearest sites (km) 

existing optimal 

Percent 
inefficiency 
of new sites 

1971-76 15 5.19 4.52 30.2 
1976-79 5 4.58 4.39 23.8 
1979-81 7 4.16 3.90 38.2 

net reduction in distance by new sites 
Percent inefficiency of new sites = 1 -  

net reduction in distance of optimal sites 

sensitivity analyses be performed to show decision-makers the effect of  the 
boundaries on the quality of outcomes. An example will illustrate this point. 

Working with colleagues from Iowa and the Indian Institute of Management ,  
Bangalore, I have tried to compute  how the "locational  efficiency" of health 
services changed in the past ten years as the Government  intervened to strengthen 
the health care system by opening up new primary health clinics in the rural areas 
of South India. After  using a shortest path algorithm to compute  the shortest 
road distances between all 600 settlements in one study area, we used a heuristic 
algorithm to compute  locations that minimized average distance of people to their 
closest health clinic for each of several years during the decade, (Teitz and Bart 
[44], Hillsman [19]), see table 1. By comparing the actual clinic choices with the 
results from the algorithms, we found that the overall efficiency of the locations 
of the clinics increased from 83 percent efficiency in 1971 to 88 percent  in 1981. 
We then evaluated the recent clinic location decisions and used the algorithm to 
determine how many person kilometers incurred by people visiting the clinics in a 
given year could be saved if the clinics were to be located at different sites. We 
used the algorithm to search for the sites where the savings would be greatest and 
compared these potential savings with the person distances saved in the locations 
actually selected. We found that recent location decisions saved a smaller and 
smaller percentage of the potential savings available. The five clinics which 
opened in the area from 1976 to 1979 realized 77 percent of  the potential  distance 
savings, whereas the 7 clinics opened between 1979 and 1981 realized only 62 
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percent of potential savings available. Why was this the case? Interviews in the 
field with the administrators of the health system and visits to some of the health 
sites themselves led us to suspect that the reason was that administrators were 
constrained in nominating sites for government approval. They were selecting 
sites from small regions of approximately 15,000 population each, that had earlier 
been identified by them in response to a government policy that " there  should be 
one health center for every 15,000 people". We investigated the degree to which 
this constraint- that  new health clinics be located in these regions-limited the 
potential for developing the most geographically accessible system. We computed 
(by enumeration) the best clinic location which, if added to the existing set of 
clinics, would most increase geographical accessibility. In one case, the eligible 
sites were all places that met minimum site-specific conditions. In the second 
case, the eligible sites were restricted to the same sites in the government 's  
regions. We found that when we sequentially computed fifteen sites that met 
these conditions, there was an average loss of efficiency of 40 percent. We 
concluded that these regions, originally defined to aid decision-making, had now 
become the problem. By imposing arbitrary boundaries within which locations 
had to be selected, only a small percentage of the marginal improvements that 
could have been attained were in fact reached. 

The local health administrator in this rural study area was fascinated to see the 
results of the computed analyses showing the efficiency of some of the places that 
he had played a role in selecting. He had his own mental ranking of which had 
been the best decisions and which the poorest. He also now knew from experience 
which of them were busy seeing patients and which ones were poorly patronized. 
The results of our analyses made sense to him. For our part we were fascinated to 
see the forms that he had to fill out for the government every time he nominated 
a new health clinic. Essentially, he was being asked to estimate the accessibility of 
the site to its local area-the same equation that was formalized in the objective 
function that was being optimized in our algorithm. With such good correspon- 
dence between model and reality, one might expect to see more such uses of 
location models in improving basic services in developing countries. There are, 
however, only a few such examples, ([29], [34], [36], [38]). 

The second source of error caused by boundaries is measurement error. This 
occurs when the analyst selects a region for study which, although it may 
correspond with the space in which decisions are made, it may not be the space 
within which people constrain their spatial interactions. Many public facilities are 
located by groups who are responsible for a given territory in which some 
facilities serve people in neighboring territories and in which some people receive 
service from facilities in neighboring territories. How can this fact be incorpo- 
rated in applications of location models? Hillsman ([18], p. 83 and p. 101) coded 
a location-allocation suite of heuristic algorithms so that analysts could define 
places as within or outside a study area. His programs reported statistics only for 
places within the study area. The analyst using such a program can let analyses 
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proceed as if study boundaries did not exist by letting all places be feasible sites 
or can recognize the limited authority of the decision-maker being served by 
allowing only places within the study area to be selected. In either case, people 
inside the study area can interact with facilities outside the area and people 
outside the study area can be served by facilities within it. For many applications 
of location models this is a more realistic description of the role of a boundary. 
By working on each study area as if it were a self-contained island, the boundary 
affects the results by placing facilities in the border areas that are uncoordinated 
with related facilities in neighboring jurisdictions. 

4. Conclusions 

Applications of location models would be improved if more explicit attention 
were given to the benefits and costs of modelling locational complexity, facility 
operation complexity and the complexity of the geographical environment as 
coded in the application. In most cases a choice must be made between simplify- 
ing the evaluation of locational complexity by considering fewer combinations of 
facility locations, incorporating more detail about the process of managing and 
operating the system of interest in a realistic decision context, and coding and 
analyzing more details about the geographical characteristics of the study area. 
The history of applications of location models is one in which, increasingly, the 
treatment of locational complexity is being sacrificed in order to capture further 
detail of the operational process. This development is a response to user evalua- 
tions of applications of location models. As for capturing geographical complex- 
ity, the history of applications show little development: decisions to use crude 
distance functions and spatially aggregated data units continue to be the rule and 
the lack of any recognized method for evaluating the consequence of these 
choices on the quality of the results has encouraged analysts to simply dismiss the 
problem as intractable. The value trade-offs that accompany these choices are 
rarely made explicitly; instead, they usually follow from decisions of the analyst 
that are commonly made at an early point in the application and often are not 
rationalized. Yet, we see the disturbing spectacle of large computational efforts 
being incurred to find location patterns that are optimal with respect to a 
particular objective functions when errors that can be attributed to the oper- 
ational characteristics of the system, and to the measurement of the geographical 
characteristics of the environment, are sufficiently large that for a large number 
of solutions there can be no statistically significant difference between their 
respective objective function values. In such cases, it is impossible to defend the 
use of methods that do not explicitly consider the whole range of solutions among 
which the true (unknown) optimal system exists. 

The analyst is expected to provide guidance to the user in making these 
trade-offs. They should be made more deliberately and with better knowledge of 
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the consequences. To achieve this, users need the opportunity to explore their 
problems in order to understand them better, and to discover the problems that 
would arise if they were to implement any suggested solution (Rushton [39]). 
They need not only to express their preferences but to form their preferences as 
they evaluate alternative solutions to their problem (Fischhoff and Goitein [14]). 
In short, they need "decision-support" (Densham and Rushton [11]). Typical 
locational decision problems are "iU-defined problems" (Hopkins [22]), where 
analysts, decision-makers and affected people need to interact to explore the 
boundaries of the problem,-controllable components, and possible solutions-and 
need to judge them in the context of the feasibility of their ultimate implementa- 
tion, (Volkema [46]). The role of the analyst is to assist in the clarification and 
structuring of the problem; to generate preferences from the affected persons 
concerning criteria of value to them that may need to be sacrificed or traded-off 
against each other; to generate 'solutions' that meet defined criteria; and to 
generate other interesting alternatives for evaluation by affected people. 

Although optimal location models have a role to play, it is not the traditional 
role of finding " the solution" to the problem. The essential task is to identify new 
locational arrangements of activities and associated new patterns of behavior of 
people in their roles as both providers and consumers of goods and services. 
Location models need to be developed that are accounting models that provide 
information on the expected behavior patterns that would prevail if location 
arrangements that were optimum with respect to selective space-serving criteria 
were to be adopted. These models should be used to generate alternatives that are 
"interesting" with respect to defined objectives so that people may explore their 
implications and provide reactions that will identify new objectives, (Holloway et 
al. [21]; Larson [25], Schneider [40]). The models can then, in turn, be used to 
generate new alternatives. In short, the challenge to the applied location modeller 
is to develop and test feasible decision processes rather than to find optimal 
decisions. 
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