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Abstract. We describe a complex of Wakimoto-type Fock space modules for 
the affine K a c - M o o d y  algebra s~n). The intertwining operators that build the 
complex are obtained from contour integrals of so-called screening operators. 
We show that a quantum group structure underlies the algebra of screening 
operators. This observation greatly facilitates the explicit determination of 
the intertwiners. We conjecture that the complex provides a resolution of an 
irreducible highest weight module in terms of Fock spaces. 

1. Introduction 

There are basically two procedures for constructing the correlation functions of a 
given conformal field theory on a general Riemann surface. The first consists of 
solving a set of differential equations arising from the symmetry structure of the 
theory. This method has proved to be useful in a number of cases, but progress 
seems to be limited due to the complicated nature of the differential equations 
involved. The second procedure, that originates in "the old string days," is purely 
algebraic in origin and involves the explicit computation of the correlation functions 
by "sewing" fundamental three point functions. The latter procedure, however, 
seems only feasible for free field theories. 

It has been known for some time that many (even non-free) two dimensional 
conformal field theories admit a free field realization, albeit their Hilbert space is 
only a subspace of the total Fock space of these free fields. For the minimal models 
of the Virasoro algebra [BPZ] this so-called Feigin-Fuchs realization ("Coulomb 
gas") was used elegantly in [DF1, DF2] to compute the correlation functions on 
a sphere. Generalization to higher genus surfaces, by sewing, requires a procedure 
for projecting out irreducible representations from this Fock space. It was realized 
recently that this projection can be achieved by taking alternating sums over an 
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infinite set of such Fock spaces [Fe]. The reason is that these Fock spaces, together 
with the group invariant mappings between them (the so-called intertwiners, 
which were computed in [TK1,FeFu])  form a complex whose cohomology is 
nonvanishing at one point only, where it is exactly the irreducible representation. 
In other words, there exists a resolution of the irreducible Virasoro modules 
in terms of Fock spaces. The resolution was used for computing torus cor- 
relation functions in [Fe] and subsequently applied to higher genus surfaces in 
[FLMS1, BaGo, FS2, FLMS2].  

Another important class of conformal field theories are the WZNW-models  
[WZ, Wi l ,No] ,  whose symmetry algebra is an affine Kac -Moody  algebra. To 
apply similar techniques for these WZNW-theories one first requires a free field 
realization. That such a free field realization might also exist for affine K a e - M o o d y  
algebras (for general values of the central charge!) can be anticipated from the 
Weyl-Kac character formula of an irreducible integrable highest weight module 
L A (see, e.g. [Ka])  

ChLA(Z,Z) = ~ (--1)  "w) 
weft" 

e2ni~;h(w, A) e2ni(w,  A,z) 

"l-I ((1-e2'~i"~) ~ VI (1-e2'~i"'e2"i("~))( 1-e2'~i~'-lJ~e-2'~it~''~)))' (i.1) 
n >__ 1 ~ed+ 

where h(A) = (A, A + 2p)/2(k + h v) and z~h. (For an explanation of the various 
symbols we refer to the end of the introduction and Appendix 2). 

The right-hand side of (1.1) may be recognized as the alternating sum of traces 
over Fock spaces Fw.a of a set of bosonic f/y-fields, one for every positive root 
of g, and a set of rank g scalar fields qT, where g is the underlying finite dimensional 
Lie algebra, i.e. 

chLa(z,z ) = ~ (--1)l(W)Tre,~.a(e2~i~LOe2~i(z'm). (1.2) 
wef t  

From the expression of h(A), and the requirement that one obtains the correct 
central charge and the correct isospin for the fl~-system, one may already guess that 

T(z) = -- �89 O~b(z):- iaop. 024 - ~ :fl'(z)igy~(z):, 
tt~A + 

(1.3) 

H'(z)= E 
~t~A+ 0~0 

where ~2 = (k + h ~ )- 1. 
This consideration would apply to an arbitrary affine Kac -Moody  algebra ~, 

in particular no distinction has to be made between simply- or non-simply laced. 
The problem is to show that the formulae (1.3) extend to a realization of the 
complete K a c - M o o d y  algebra. For S'~2)k such a realization was discovered by 
Wakimoto [Wa] and reads 

e(z) -- fl(z), h(z) --- 2:7(z)fl(z): + x/2(k + 2)it3~b(z), 

f (z )  = -:7(z)y(z)f l(z):-  x/~((k + 2)7(z)it3qb(z)- kc3r(z). (1.4) 
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This realization bears a close resemblance to the following well-known realization 
of the finite dimensional Lie algebra ~2)  in terms of differential operators on the 
space of polynomials of a single complex variable z 

d h =  d 2 d e=d~, -2Z~zz+2j,  f = - z  ~z+2jz. (1.5) 

In fact (1.5) is exactly the zero mode piece of (1.4). It is also well-known that 
realizations of the type (1.5) arise from the (right) group action on a suitable flag 
manifold, and it is this observation that, in principle, makes the extension to general 
Lie algebras straightforward [FeFrl]. 

To apply this free field realization to the computation of correlation functions 
one needs to find a resolution of the irreducible module in terms of the Fock space 
modules. The intertwining operators in this complex will be built from so-called 
screening operators. The screening operators already arise in the study of the 
realizations of finite dimensional Lie algebras in terms of differential operators as 
in (1.5). There they have a natural geometric origin as generators of the (left) group 
action on the flag manifold: they satisfy the Lie algebra of the positive root 
generators of g. In addition, the intertwining operators are in 1-1 correspondence 
with the singular vectors in a Verma module of g. 

The main results of this paper can be summarized as the following general- 
izations of these statements to the case of the affine Kac-Moody algebra ~. The 
screening operators satisfy the identities of the positive root part of the quantum 
group q/q(g) (within suitably chosen contour integrals). Moreover, given a singular 
vector in a quantum group Verma module we can build an intertwining operator. 
We conjecture that the converse statement is also true. 

The paper is organized as follows: In Sect. 2 we will discuss the Verma module, 
Fock space module and the corresponding resolutions for a simple finite- 
dimensional Lie algebra with particular emphasis on sl(n). We do this mainly to 
establish notations. None of the results in this section are new, we merely present 
those issues, which, in our opinion are necessary to appreciate the discussion in 
the affine case. 

Section 3 deals with Fock space modules for affine Lie algebras and contains 
the main results of this paper. The presentation closely follows the finite- 
dimensional analogue of Sect. 2. We will briefly discuss the affine counterpart of 
the BGG-resolution. Next, we explain how to obtain a Fock space module for an 
affine Kac-Moody algebra, and give explicit formulae for ~'(n). Screening operators 
are introduced and it is shown that they satisfy quantum group identities. 
The exact correspondence between intertwiners of Foek space modules and 
representations of quantum groups is revealed and used to make the complex 
explicit for sl(3). 

Section 4 contains a discussion of the results and comparison to related work. 
The results of this paper were announced in [BMPI]. 

Throughout the paper we will use the following notations (see e.g. [Ka]): 
g a complex simple Lie algebra 
h its Caftan subalgebra with dual h* 
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q/(-) the universal enveloping algebra functor 
g = n_ @ b @ n + a Cartan (triangular) decomposition 
b_+ = n_+ @ h the two Borel subalgebras 
G, H, N_+, B e denote the corresponding groups 
f the rank of g 
el, hl, fl, i = 1 . . . .  , ~ a system of Cartan generators 
A+ system of positive/negative roots 
M = Z.A+ is the root lattice of g 
W the Weyl group of g 
r~ reflection in the root ~ A  4, ri reflection in a simple root ~i 
(,) bilinear form on h or h*, sometimes also denoted by �9 
( , )  dual pairing between h and h* 
p the element of h* such that (p ,  h i ) =  1, Vi 
w .2  = w(2 + p) - p for w~ W,2~h* 
Z+ ={0 ,1 ,2  . . . .  } 
h v is the dual Coxeter number of g 
P, P+ set of integral, and integral dominant weights, respectively. 

In Sect. 3 we will distinguish between quantities of the affine K a c - M o o d y  algebra 
and its underlying finite-dimensional Lie algebra g by putting hats on the former. 

Additional notations in Sect. 3 are (see also Appendix 2 for some additional 
notation concerning the affine Weyl group): 

p(k), p~) integral, and dominant integral weights of level k 
zlr~ set of real roots. 

2. Resolutions for Finite-Dimensional Lie Algebras 

2.1 BGG Resolution of a Verma Module. In this section we will describe the 
Bernstein-Gel 'fand-Gel 'fand resolution of an irreducible highest weight module 
L z in terms of Verma modules. Recall that a Verma module MA with highest 
weight A is defined as the induced module MA = q/(g)| where Ca is the 
1-dimensional b+-module, with character determined by Aeh*, i.e. M a =  ~//(g)'VA, 
where v a is a (highest weight) vector such that n+ .v a = O, h'v a = (A ,  h )v  a for h~h. 
In general, a Verma module is not irreducible. To describe the irreducible subspace 
in terms of a cohomology complex we need the concept of an intertwining 
operator. 

Definition 2.1. Let V and W be g-modules. An intertwining operator Q: V ~  W is 
a homomorphism V--* W commuting with the g-action on V and W (and hence 
with the action of  q/(g)). The set of such intertwining operators is denoted as 
H o m ~ )  (V, W). 

It is clear that for Q~Hom~(g)(V,W) both KerQ and ImQ are invariant 
subspaces of V and W, respectively. 

The set of all intertwining operators between Verma modules was determined 
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in [Ve, B G G I I .  Let us describe the result relevant for the complex of an integral 
dominant weight AeP+.  

Recall that the Weyl group W of g is the (finite) group generated by the 
reflections r~ in the simple roots ct~ of g. Every element we W can thus be written 
in the form w = r~,-., r~,, and the length l(w) of w is defined as the minimal number 
of reflections r i required. Denote W tk) = {we WI l(w) = k}. A shifted action of W on 
Aeh* is defined by w* A = w(A + p) - p. 

For  w l , w 2 e W  we write w l ~ w 2  if wa =r ,  w2 for some ~ e d . ,  and l (wl)= 
l(w2) + 1. A partial ordering (Bruhat ordering) on W is defined by: w ~ w' if and 
only if there exists Wl, . . . ,Wk~W such that W ~ W l ~ W 2 ~ " ' ~ W k ~ W ' .  We 
have 

Proposition 2.2. [BGG1]  A e P  +, w, w' e W, then 

H~ otherwise.ifw~w' 

Moreover, for w ~ w', every such intertwiner is a multiple of the canonical embedding 
iw,w,:Mw, A--', Mw,.A. 

A singular (or primitive) vector in a Verma module M A is a vector v such that 
n+.v = 0. Every Verma submodule of M A is generated by a singular vector. 
Consequently the above proposition shows that the singular vectors in a Verma 
module MA, A~P+, are in 1-1 correspondence with elements of the Weyl group 
and moreover gives a complete degcription of the embedding pattern of the 
submodules generated by these singular vectors. 

Using these embeddings one may give a description of the irreducible submodule 
L A of MA,  the so-called Bernstein-Gel ' fand-Gel ' fand resolution, as follows 

Theorem 2.3. I-BGG2] Let L A be an irreducible finite dimensional g-module with 
highest weight A, and M A the Verma module with highest weight A. There exists a 
complex of g-modules: 

0 M~J~ "'" ~ ' 0, 

where s = dim n + = I A + h and 

Mt~t = w(~W,~ Mw, A. 

The cohomology of this complex is concentrated in the "zeroth" dimension 

Hi(d ) Kerd  '~ {LA /f i = 0  
-- Im d (i+ 1) - otherwise. 

The key observation in this construction is that for wl ,w2E W such that 
l(Wl) = l(w2)+ 2 the number of elements we W such that wl ~ w ~ w 2 is equal to 
either zero or two. In the last case the quadruple (Wa, w3, w4, w2) is called a square. 
To each arrow w ,-- w' one can now assign a sign s(w, w') = + 1, such that for every 
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square 

W 3 

/ \ 
W 1 W2 

W4 

in the complex, the product of signs equals - 1. This can be done consistently 
througout the complex. One now defines for w~ e W t~ WEe W t~- ~), 

d(i) = ~  S(W1,W2)l . . . .  2 if Wl~-W2 
w,,w2 [ 0  otherwise, 

and d ") = ~ , t " )  The signs ensure that d")d ~+ 1)= O. 

Remark, One usually summarizes both statements of Theorem 2.3 by saying that 

the sequence 

O~LA~M~ ...~M~X~,-O 
is exact. We have chosen the "unconventional" formulation above to be able to 
treat the affine case in complete analogy. 

2.2 Fock Space Realization of sl(n). In this section we will describe a realization 
of a simple finite-dimensional Lie algebra in terms of linear differential operators 
on a certain space of holomorphic functions. The type of realization is known 
under a wide variety of names, depending on the context, such as the Bargmann 
realization, coherent state realization [Pc], multiplier realization [Ko2],  etc. For 
many purposes it is sufficient to restrict the function space to polynomials, in which 
case one can interpret the module as the Fock space of a (finite) set of harmonic 
oscillators. This will be a convenient description when generalizing these kind of 
modules to affine Kac Moody algebras. So, henceforth, we will refer to these 
modules as "Fock space modules." Our aaain purpose in the rest of this chapter 
will be to describe a resolution of an irreducible highest weight module in terms 
of these Fock space modules, along the lines of the BGG-resolution described in 

Sect. 2.1. 
Let Y be a Schubert cell of maximal dimension in the flag manifold B_\G 

(where g ~ bg for beB_). We will denote by z both a point in Y and its coordinates. 
Denote by R A the space of holomorphic sections of a line bundle over Y determined 
by a character Za :B_ ~ C*. We will henceforth implicitly identify these sections 
with functions in Ca(G) satisfying the relation f(bg) = ZA(b)f(g), 'r VgeG. 
The group G acts as a transformation group on Y by right multiplication. This 
induces a representation aa of g on R a in terms of linear differential operators. 

Explicitly, 

qA(X) = ~(X) q- hA(X ), xEg, (2.1) 

where ~ : g ~ d i f f Y  and ha:g---~C~(Y). They are obtained as follows [Ko2].  Let 
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f ~C~(Y) ,  then 

(~(x)f)(z)  = d f(ze,X ) ,=o' 

and 

(hA(X) f ) ( z )  = ( A , ,  (Ad z)x ) f ( z ) ,  

where zeY, and A, Eg' (the dual of g) is defined by 

( Z . , y )  = [ ~  yen+ 

~A(etY) t=O y~b_ 

One may identify Y ~ N +, thus we have as many coordinates z~ as the number of 
positive roots ~ A + .  As remarked before, we may also restrict the realization of 
g to the "Fock space" F A = Pol (z~). 

For reasons that will become clear in Sect. 3 it is convenient to encode A in 
terms of another set of operators p~ and q~ with commutation relations 

[qi, pj] : ijij. 

To this end we identify Fa with Pol (z,)| CA, where CA is the one-dimensional 
space obtained from the "vacuum vector" I A),  satisfying 

p'IA ) = A ' IA  ) ,  

where A i denotes the components of A with respect to some orthonormal basis in 
h*. The realization on Pol(z~,)|  A is given by replacing A i ~ p  i in (2.1). Due to 
the identity 

[pi, eiA.q] = Aieia.q,  

we can identify [ A ) =  eiAqlO ). So the translation operator e ia'q "connects" all 
Fock spaces with different A, hence we will refer to this realization as the "universal 
representation." By slight abuse of notation, we will denote the image of x~g in 
this universal realization simply by x. 

Let us now make the aforementioned realization somewhat more explicit in 
the case of sl(n). The following theorem gives the expressions for the simple root 
generators in the Chevalley basis, which we recall is defined by the following 
commutators 

[ei, f j] = 6ohi, 

[hi, ej] = aljej, 

[hi, f j] = - a i j f  j, 

(2.2) 
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and Cheval ley-Serre  relations 

(ad e,) x -"'Sej = O, (ad fi) 1 - " ' f j  = O, (2.3) 

where aij is the Car tan  matrix of g. 

Proposition 2.4. The following expressions define a realization, with highest weight 
A, of sl(n) on the space of polynomials in zij, 1 < i < j < n, 

tTA(ei):oZli+l + E ZJi j<-_i-1 t~zji+l 

j < i - I  j ~ i + 2  O Z i + l j  

--Zii+l >=~i+ Zij ~ Zi+lj 
j 1 ~ Z i j  j ~ i + 2  

+ Z (z ,A_z, ,+,  0 ) tra(h~)=(A'~ \ ~ azji j <= i -1 ~ 1  

j>~i+2k ~ i+ Jt?ziy]" (2.4) 

Proof�9 For  G = SL(n,C) we have the following Gauss decomposi t ion (see, e.g. 
[BaRa] Exercise 11.6.1) i)/ 1 
with 

where 

Z~p 

•P "= Ap_ 1' 

Zpq ~- 
1 

(Pq = 1 

and 

(ZlP~) = (0 (fi) (Z) e N_ HN +, 

p--1 
p - 1  

q - 1  
q - 1  

l ~ p < n , =  

l ~ p < q ~ n ,  

l ~ q < p ~ n ,  

p.]= g"..'~' 
qm [gPmql 

"'" ~P~q~ I 
�9 �9 " gPmqm 

[1 
Ap= 1 ... ' 
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Thus, for instance, for 9 = ere' we have 

zo= 

[1  "~ . . . . . .  Z l i+  1 AF tZ l i  Zln  

1 . . .  

0 Zii-I- 1 "~- t 

1 

~  

1 

so 

t=o \ozii+l j<-_i-1 

The other expressions are proved similarly. []  

Let x", a = 1 . . . . .  dim g be an orthonormal basis of g. Let C 2 = E xaxa denote 
the (second order) Casimir element of g. We have 

Proposition 2.5. Let aA :g--* End (F A) be as in (2.1), then 

aA(C2) = (A, A + 2p)id, 

or equivalently, in the universal representation 

C 2 = (p, p + 2p). 

2.3 Screenino and lntertwinino Operators on Fock Spaces. In the previous section 
we have described the so-called Fock space realization of a finite-dimensional 
simple Lie algebra. It is clear that this representation is not irreducible, and 
moreover, not even completely reducible. We would like to characterize the 
subspace of Fa corresponding to the irreducible module L a of highest weight A. 
Normally one would try to characterize L a as a subspace of a module selected by 
certain eigenvalues of the Casimir operators of g. This procedure does not specify 
L A in this case (comp., Proposition 2.5). To make progress we need the slightly 
more general concept of an intertwining operator. In this section we will explain 
how to obtain all intertwining operators between Fock spaces, and show that they 
completely characterize the irreducible space L A. 

Recall that in the previous section the Fock space representation was obtained 
from the right action of G on the coset space B_\G.  Though the left action of G 
on B _ \ G  is not an isometry it turns out that the left action of N+ on B _ \ G  
still contains interesting information. 

Define for every xen+ a vector field p(x) on Y by 

d tx I 
(p(x)f)(z) = ~ f ( e -  z) ,=o' (2.5) 

where f~C~~ We have the following 
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Lemma 2.6. [Ko2] p:n+-~dif fY defines a representation of n+. Moreover, p 
extends to an isomorphism between q/(n+) and the set of  all differential operators on 
Y which are invariant under the action of n +. 

It is clear, however, that p(x) does not commute with the whole algebra g in 
general. In fact one easily shows that Yxeh, Yye~(n+)  we have 

[-O'A(X), p(y)] = p([x, y]), 

for instance 

[tra(hi) , p(ei) ] = aijp(ej). (2.6) 

At this point one may investigate the subset of q/(n +) that gives rise to the so-called 
quasi-invariant differential operators on FA [Ko2]. We find it more convenient 
to think of these in terms of intertwining operators (see, e.g. [KV]). T o  this end 
we can rewrite (2.6) as 

a a_~j(hi)p(ej) = p(ej)a a(hi). 

In other words, we may think of p(x) as a map FA'-*FA_deg x. 
Once more it is convenient to return to the universal representation. Let us 

define 

S i = p(ei)e -i~,'q. 

With a little hindsight we will call these the "screening operator" of g. We have 

Lemma 2.7. 

[ei, sj] = O, [hi, sj] = O, 

[f/ ,  sj] = 5ije- i,,.q (p,  hi ).  

Recall that we are using the same notations for x~g and its image in the 
universal representation, and that ( , )  denotes the dual pairing between h and h*, 
e.g. within angle brackets hi always denote the abstract element in h. 

The following lemma provides us with an important class of intertwining 
operators: 

Lemma 2.8. Let A ~ P such that m =  (A, hi}~Z+, then [x,(sl) "+1]  =0,  V x eg, i.e. 
(fl(ei) )m + 1 E Hom~(g) ( F A, Fr, ,  a ). 

Proof. We have to prove that [fi,(si) re+l] = 0 o n  F a. Using Lemma 2.7 we find 

for V~FA, 

[fi,(si)m+13"V = ~ e-i~"q(si)m-j(p, hi}(sl) j 'v 
O<j<m 

= ~ ( A - j c q ,  hl)e-i~"q(sl) m'v=O, 
O<_j<=m 

because ~ ( m - 2 j ) = 0 .  [ ]  
O<=j<=m 

As we will show later the set of all (s~) m' § 1, mg= (A, h i ), does not exhaust the 
set of all intertwiners. For the purpose of characterizing the irreducible subspace 
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L A of highest weight A within F A they are however sufficient, as the following 
theorem shows: 

Proposition 2.9. [Ze] Let AeP+.  Define m i = ( A ,  hi)~Z+, i = 1  . . . . .  d. Let 
V = {v e FAl(p(el))m' + 1 "v = 0, V i = 1 . . . . .  f}, then V ~ L a. 

Proof. It is clear that V is an invariant subspace of FA. Using a convenient choice 
of coordinates it is easy to show that V is finite-dimensional (see, e.g. [Ze]), hence 
by Weyl's theorem V is completely reducible. However, as one easily verifies, VA 
is the only highest weight vector of V, which implies V ~-L A. [] 

Remark. Though this will not be explored further in this paper, there is an obvious 
relation with the Borel-Weil theorem (see, e.g. [Bo, Kol]) ,  which states that LA 
is isomorphic with those sections which are holomorphic over the entire flag 
manifold B_\G. Recall the Bruhat decomposition B _ \ G =  U Cw ( Y =  C~a) in 

w~W 

terms of Schubert cells C,,  labelled by elements of the Weyl group W. One can 
prove that p(ei)m+l.v = 0 if and only if v can be extended holomorphically over 
Cid W Crl. 

Notice that, at this point, the structure of the Fock space obtained so far is 
strikingly similar to that of the Verma module. In fact, in the finite dimensional 
case, this similarity can be pushed further. 

Theorem 2.10. [Ko2-1 For A e P  let M A be the Verma module with highest weight 
A, and v A its highest weight vector. We define a map ]~:( M A)().)--, Hom ( F A, FA_ ~) by 

7(fi~"" fl.'vn) = p(e,,... %). 

Here MA= @ (MA)(2), where (MA)(2)= {VeMAIh'v= ( A -  2, h )v} denotes the 
2__>0 

weight space decomposition of M a. (Notice that though the expression for the vector 
f i , ' " f i . 'Va is not unique, the map 7 is properly defined because fi  and ei generate 
isomorphic algebras.) ? is an isomorphism between the set of all singular vectors in 
(MA)(2) and Hom~lg ) (F A, F A- a). 

Proof. We have 

[ei, f l , ' " f i . ] ' va= ~ f i , ' " f i ,_ ,hi f i ,+, '" f i . 'vA 
j ;  i j  = i 

= ~', (<A, h i>- a i ) f i , . . . f b . . . f i ' vA ,  (2.7) 
j ;  i v = i 

where aj = a i l j +  t + " ' "  "1- au,, and ^ denotes omission. 
Similarly, on FA, we have 

[L, sl, "" sl,] = . . ~  . e-i~,.~( ( A, hi ) - a j ) s l ,  " "  ~ i j ' "  s i . .  (2.8) 
J; | j = t  

Now observe that the right-hand side of (2.7) vanishes if and only if the right-hand 
side of (2.8) vanishes. Using the fact that every element in Hom~l,)(FA, F3_ z) can 
be written in the form p(ei, ..-%) (see Lemma 2.6), the theorem is proved. [] 

In the next section we will show how this set of intertwining operators allows 
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us to formulate a resolution of the Fock space module completely analogous to 
the BGG-resolution described in Sect. 2.1. 

Finally, for sl(n) the explicit form of the screening operators can easily be 
determined from their definition (2.5). In the notations of Proposition 2.4 we have: 

p(ei)= --(~~j>=~i+2Zi+lJ~ij). (2.9) 

Given these expressions, it is straightforward to verify the commutation relations 
of Lemma 2.7 explicitly. 

2.4 Fock Space Resolution. In the previous section we have seen that there exists 
a 1-1 correspondence between the singular vectors in (Ma)(2) and the invariant 
homomorphisms (intertwiners) FA~ FA-~. From the results of Sect. 2.1 we know 
that for AeP+ the singular vectors vw are in 1-1 correspondence with the elements 
w in the Weyl group, and occur for the weights A - 2 = w.A.  Moreover, v~,eM~,a 
if and only if w'<~w, i.e. for A~P+, 

Hom~,,(Fw, a, Fw,,a)= { Co w' ~ w 
otherwise" 

Let us denote such a homomorphism by Qw,,- Completely analogous to Theorem 
2.3 we can build a complex by combining the various intertwiners Q~,w,. 

Theorem 2.11. [Ke] There exists a complex of Fock modules 

where s = [ A + I and 

d(O) d(l) a~S- 1) 
0 ____~ ]~'(O)__A "-"+ 1 A~") --~ �9 �9 �9 ~ F~ ) ----~ 0, 

| F... 
w~W(O 

As usual we define the eohomology of the complex by Hi(d) = Ker d~i)/Im d ~i- 1). We 
have 

, = o  

otherwise" 

Clearly, for i = 0 this is the content of Proposition 2.9. The statement for i r 0 
follows essentially from the fact that every Qw,w, is onto. 

Let us make this more explicit for sl(3). Apart from the intertwiners provided 
by Lemma 2.8 there exist intertwiners corresponding to the Weyl group element 
w = rlr2q. They ensure that each square in the Fock space resolution, as shown 
in Fig. 1, is commutative. In practice their derivation is a simple matter of 
rearranging screening operators using classical identities (which the reader may find 
as the q--* 1 limit of the identities in Lemma A.1); 

Q ....... --- ~ b(12,13;j)(s2) 12-j(s3)j(sl) 12-j, 
O<=j~12 

Q,2,,2rl= ~ b(ll,13;j)(Sl)lt-J(--Sa)J(s2) h-j, 
O<j<~ll 
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where li = (A + p, ~) and 

Fq*A ~ Frtrz~ A 
/ \ 

\ / 
Fr2~ A ~ Fr2r~* A 

Fig. 1. Fock space resolution for s/(3) 

m!n! 
b(m, n;j) = 

jI(m -j)I(n -j)!" 

3. Resolutions for Affine Kac-Moody Algebras 

3.1 BGG Resolution for an Affine Kac-Moody Algebra. For completeness we 
describe the BGG-resolution for an affine Kac-Moody  algebra ~. Though the 
proof is more delicate, the outcome is remarkably similar to that in the finite- 
dimensional case, so we will make this exposition very brief. 

The Weyl group is now infinite, but the notion of length and Bruhat ordering 
goes through as in the finite-dimensional case. Again, we have for an integral 
dominant weight AeP+ that Hom~t~�91 A, Mw.,a) is nonvanishing if and only if 
w ~ w', and in that case the intertwiner is a multiple of the canonical embedding. 
We have the following resolution of an irreducible integrable highest weight module 
LA in terms of Verma modules 

Theorem 3.1. [GL, RCW] Let AEP+. 7-here exists a complex of Verma modules 

where 

~o, M~)~_ ~ d<2, d(3, 0 ,  . . . ,  

| Mw.,,. 
w ~  i) 

The cohomology of this complex is given by 

Hi(d)={ LA if i=O 
otherwise' 

where L A is the irreducible module with highest weight A. 

The main difference with the finite-dimensional stituation is that now the 
resolution is infinite in one direction ("one-sided resolution"), due to the fact that 
the affine Weyl group is infinite. The resolution of L A in terms of Fock spaces that 
we are going to discuss differs in two important aspects. First, the resolution is 
infinite in both directions ("two-sided resolution") and furthermore each term in 
the resolution will be an infinite sum over Fock space modules. 

3.2 Fock Space Realization of/~(n)k. In this section we present a Fock space 
realization of the affine Kac-Moody  algebra ~(n) that generalizes Wakimoto's 
realization of ~'(2) which we discussed in the introduction. Observe that we may 
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interpret the coordinates zij and derivatives O/~zlj of Sect. 2.2 as the zero modes 
of a set of first order bosonic fly-fields of conformal dimension 1 and 0, respectively; 

= 8. z , ~ ' J ( z ) : y ~ . . _  , B,~(z) y ,j - . - 1  ~,j~-. 
nEZ nEZ 

1 
?t(z)flJ(w) = 6 i s - -  + ' " ,  (I "~ (ij)), 

Z - - W  

i.e. ?~ ~ - z  u, fly ~ (d/Ozu). The pairs {pi, q,} can be considered as the zero modes 
of a set of n - 1 scalar fields ~b~(z), 

e~i(z) = q i _  i f f l o g z  + i ~ 1-ai, z -" ,  
i ~ o n  

dpi(z)q~ J(w) = - 61j log (z - w) + . . . .  

The modes fl . . . . .  satisfy the commutation relations of flee oscillators 

[ /~ , t~ .  ~] = a ' a m + . , o ,  ' J [ a . ,  a . ]  = ma'J6,.+.,o, [p~, q q  = - ia ~i. 

(We borrow techniques from 2-dimensional conformal field theory, where the 
commutation relations are encoded in so-called operator product expansions (see, 
e.g. [FMS, Gi] for an explanation of these techniques). The + --- stands for terms 
which are regular in the limit z ~ w.) 

Let us denote the Lie algebra of oscillators by a. The algebra a admits a Cartan 
decomposition a = a_ G ao �9 a +, where a_ is spanned by oscillators ft,, a. for n < 0 
and y., n < 0, a o is spanned by the p~ and finally a + by ft., n > 0 and ?., a,, n > 0. 

In principle one might try to obtain a realization by interpreting the components 
ft., 7,, a, partly as coordinates and partly as derivatives on some suitably chosen 
infinite dimensional flag manifold. We will follow a more pedestrian approach in 
that we straightforwardly "affinize" the realization (2.4) such that the zero mode 
part of the acquired realization agrees with (2.4), and the currents have conformal 
dimension 1. This obviously leads to some arbitrariness in terms of the form 
(?... yd?) which have vanishing zero mode. This arbitrariness is fixed by requiring 
the correct central charge term in the operator product expansion of the currents. 

Let us define for A~h* the Fock space module FA= q/(a)lA>, where IA) is a 
vector satisfying a+ 1A> = 0, p f l A ) =  %A'IA) .  We obtain 

A 
Proposition 3.2. On F a we have an sl(n) realization with hiohest weioht A = (A, k), by 

e i ( z ) = # . + ~ _  y~ r~i#j,+,, 
i < , - 1  

f i(z)  = -- v~ii+l(o~i'iO~b)-(k + i -  1)0~ Ii+1 -- ~ yji+lflji 
j<=i-1 

hAz) = v(~c ia4)) + 2:~," § ~ B"  + 1: - Z :(~,J,~Jl _ ?,i, + ~ B~,+ ~): 
j-_<i-1 

"~- E :(~ijflij --  ~i+ lj f l i+ l j):, 
j>i+2 
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where 1 )2= k-~-n, and :.--: denotes normal ordering. (We have suppressed the 
z-dependence on the right-hand side of the equations/) As usual, we have identified 
the modes of x(z) with x |  in Lg = g |  

It is straightforward to check that these currents satisfy the correct operator 
product expansions corresponding to (2.2). Proving the analogue of (2.3) can 
explicitly be done in the lower rank cases, but the general proof seems, as in the 
finite-dimensional case, only feasible by geometric means [FeFrl]. 

As already remarked, the realization for ~'(2) was discovered by Wakimoto 
[Wa]. For general s~(n) the realization was first discovered by Feigin and Frenkel 
[FeFrl],  and has since then been rediscovered several times (see, [Za2, GMMOS, 
BeOo] for ~'(3), and [BMP2, ItKa] for ~n), a~ad [GMMOS] for an interesting 
derivation of these realizations directly from the path-integral formulation of the 
WZNW-model). 

To be able to use the above free field realization to compute conformal blocks 
of the associated WZNW-conformal field theory, we need to verify that the 
Sugawara stress energy tensor equals the stress energy tensor of the free fields//, Y 
and qS, as announced in the introduction. This is the content of the next proposition. 

Proposition 3.3. Let x ~ denote an orthonormal basis of sl(n). We have 

1 
rsug(Z) 2(k + n) a ~ :xa(z)xa(z): 

= - �89 O~op'iSz4)(z) - ~ :#U(z)~TU(z):, l <i<j<n 
where ~o 2 = k + h v k + n. The modes of T(z) = ~ L , z - " -  2 generate a Virasoro 

algebra of central charge n~Z 

k(n 2 - 1) 
c = ~ -  12~21Pl 2 + 2 1 A + I - - -  

k + n  

We omit the proof, which is based on a comparison with the finite dimensional 
result (Proposition 2.5) for its zero mode piece, and an explicit determination of 
the terms that are consistent with the requirements that T(z) is a g singlet, and 
that every current xa(z) has conformal dimension 1. 

3.3 Screening and Intertwining Operators. By analogy with the finite-dimensional 
case (Eq. (2.9)) we define for ~'~n) the following screening operators: 

where 

si(z)=~i:e-i~o(',,o):(z), 

el(z)=--( ~ii+l- Ej>i+2 ~i+lj~ij). 

(3.2) 

(3.3) 

These operators are primary fields of conformal dimension 1 with respect to the 
stress energy tensor of Proposition 3.3. The only nontrivial operator product 
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expansion with the group currents is given by 

f ~ ( z ) s ~ ( w ) = ~ j c ~ ( ~ ) ,  

where 

(3.4) 

gi(z) = - v2:e-i~~162 (3.5) 

Contrary to the finite-dimensional case these screening operators do not generate 
the algebra fi +, due to the nonlocality of s~(z) with respect to sj(w) for a u -r O. We 
will see later that this property is replaced by an equally powerful property. 

We will now show how to build intertwining operators on Fock modules as 
appropriate contour integrals over products of screening operators. 

Define the set J as the vector space generated by all operators of the form 

~si, . . . s J  = S dzl ...dz, si,(Zl)...s,.(z,), i f{1 , . . . ,~} ,  (3.6) 
r 

where the contour F is taken as in Fig. 2, i.e. all contours taken counterclockwise 
from 1 to 1 and nested according to Izj[ > ... > Iz.I for zl r 1. The integral is defined 
by analytic continuation from a parameter region 0 < z. < ..- < za on the real axis, 
where the integrand is taken to be real. 

Let VeFA. Using the Campbell-Baker-Hausdorff formula we can write more 
explicitly 

H H z; 
f l < = k < l < = n  l < - ' k < - n  

~ . - 

�9 : e -'~o% 6(~, )... e -,~o~.6(~,): ~i~ (z 1 )"" ei~(z~) "v, (3.7) 

where qS(z)=t~(z)lp=o and ~i(z) is defined in (3.3). Expressions for ~si~'"si.~ 
involving normal ordered products of fiT-fields are easily written down using Wick's 
theorem. However, as they do not play a role for the monodromy properties of 
the integrand, we will not give them explicitly. 

To analyze properties of ~[s~...si.~ it is convenient to rewrite them into 
"elementary integrals" with a specific ordering of the variables on the unit circle; 
i.e. we define the operators 

I,~... ,= ~ dZl""dzn H (Zk - zl)~%'' 
0 < a r g z l  < . . - < a r g z n < 2 n  1 < k < l < n  

l ]  Zk'~a'~'~):e-i~~176 (z")" (3.8) 
l < k < _ n  

Fig. 2. Integration contour F 
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So we have for example 

~(Sl),,~= f i  ( 1 - - q 2 k )  
k=l \ 1 _q2 ] X I~...1, 

~SlS2]] = 112 + q-1121, if a12 = -- 1, 

where 

(3.9) 

q = exp0zie g) = exp k+nn " (3.10) 

Conventionally one might take for the contour F an element of the homology 
group H , ( ~ ,  ~ )  of the manifold ~ = C*"\ U {zi = zj} with coefficients in a local 

i r  
system 90 defined by the multivalued integrand in (3.7) [DM, TK, FeFu]. The reader 
should then note that our choice of F in (3.6) is not always in H . ( ~ ' ,  ~).  However, 
the intertwiners we build involve a linear combination of operators [[sil "'" s J ,  with 
permutations of indices, such that the resulting contour is in H,(./#, ~).  

Proposition 3.4. Within the contour-integrals F, i.e. in the "words" [si, ...si,~, 
the si's satisfy the defining identities of the quantum group ~gq(n+), where 
q -- exp (rci/(k + n)) = exp (zcict2), 

sisj-s~si=O, if a i j=0,  

s~s~s~ - (q + q- 1)s~sjs ~ + sjsis~ -- 0, if alj -- - 1. (3.11) 

Proof. For a~i = 0 the statement is trivial, because then the operators s~(z) and 
sj(w) commute. To prove the statement for a~j = - 1 we write ~si~... si, ~ in terms 
of elementary integrals (3.8), and consider the various terms with different orderings. 
Suppose for notational simplicity that the three operators occur in the first three 
entries of ~...~, i.e. we want to show 

~(sisis I - (q + q- 1)sisisi + sjsisi)si,.., s J  = 0. (3.12) 

Consider the overall coefficient of the term Iu~..:. Suppose this term occurs with 
coefficient (1 q-qE)d(q) in [~slsisj...~, where d ~ Z [ q , q  -1] is some polynomial 
(the factor (1 + q2) which is taken out, comes from interchanging il ~"~i2). Then it 
will occur with coefficients q-1(1 + q 2 ) d ( q )  and q-E(1 -4- q2)~C(q) in ~sisfl~ ...~ and 
~sfl~s~...~, respectively. So clearly the total coefficient for (3.12) vanishes. The 
coefficient of Iju... works similarly. For the term I~ji... the respective coefficients 
are q-1(1 + q2)~](q),2~(q) and q-1(1 + qE)~(q), so that again the total coefficient 
in (3.12) vanishes. This completes all different cases, hence the proposition is 
proved. [] 

Proposition 3.5. We have the following commutator 

_ g i ( 1 )  qtA,~}+r . [fi(z), ~si, . . . s J ]  - ~ - -  I y;~=, (q-(A,,O+,j  _ q(A,,,)-,j)~Si, ...g,j...Si,~, 

(3.13) 
where 

aj = a u j + ,  + . . .  + aii" (3.14) 
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and 

Proof. 

[L(z), Ws. " ' s j  ] : 

: aii I q.- .. .  -]- aiij_ 1 --}- aii~+ ~ -]- .. .  +aii, , .  
By (3.4) we have 

E I dz1 ""dzJ ' "dZnS i l (Z1)"  ( S i (Z j )  ~ argzj=2n...Si.(Zn) 
J;iJ =i F ~X Z - -  Z j ] l a r g z j = O  

= ~ ~ d z l ' " d z j " ' d z . s i l ( z l ) " - ( q - 2 ( a ~ ~  " 's i . (z . ) .  
j;ij =i F 

The evaluation of the integral at argzj = 2~ acquires a phase factor from pulling 
zj around 0, zj+ 1 . . . . .  z,. The term g~(l) can be written in front of the expression at 
the expense of an additional phase factor qb~, where bj = a m + ... + a,j_ 1, from 
pulling zj across Zl . . . . .  zj_ 1- Now notice that { = a j  + bj is independent of j, so 
the proposition is proved. []  

Let us review briefly the definition of the quantum group q/q(g) [Ji, Dr l ,  Dr2]. 
Suppose g is a finite-dimensional Lie algebra with Cartan matrix a~j of rank E. Fix 
positive integers d i such that d~ai~ = djaj~. Fix a complex number q such that qZa, ~ 1 
(1 < i < f). Introduce q-numbers, q-factorials and q-binomials as in Appendix 1. 

+ 1  Then, q/q(g) is the associative C-algebra with generators ei, f i ,  ki- , (1 < i < l ' )  
(k i ~ qhO, and relations (we use the conventions of [Lu2])  

kik : [ 1 = k :[ x ki = 1, kik j = k jk  i, 

kiejki- 1 : qd,aOej ' ki f jk[-  1 = q-d,,,,jfj, 

ki - ki- 1 
e l f  2 -- f jei = (5,j qd, 7 q= a,, 

1 --aij I ] ( -  1) ~ 1 - air e~ -"'J-"eje'[ = O, 
K = 0 K Aqal 

1 -aij  I ] }-, ( -  1) ~ 1 - a~j f ~ - ~ ' J - ~ f j f ~  = 0. (3.15) 
K = 0 ]t~ Aqdl 

This algebra is endowed with a co-multiplication, co-unit and antipode which 
makes it into a Hopf algebra. We refrain from giving their definitions as we will 
not need them here. 

We now describe the definition of the "quantum Verma module" M~t [Lul l .  
We define M~ = q/~(g)-VA, where va is a (highest weight) vector satisfying, 

e i 'UA=O,  ki'13A:q(A'hl)vA, i =  1 , . . . , f .  

The space M q has an (overcomplete) basis consisting of monomials f i ,  "" f i , 'Va,  
and is a q/q(g) module under the action 

q(A,hl) -dia j __ q-  (A,hi) + din j 

e , ( f ,~" ' f , . 'VA)  = ~ ~a~Tq-a ,  A ~ ' " - ~ , " ' f ' .  "va" 
j ; i j=i  

f i ( f i , ' "  f i . 'Va)  = f i f i , " "  fi . 'VA, (3.16) 

k i ( f  il "'" fin" VA) = q(Z'hi) q-di(aih + ""+ au"lf il "" f l.'Va, 
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where aj is defined in (3.14). This module is integrable for A~P+ and reduces to 
the conventional Verma module for g in the limit q ~ 1, i.e. is a deformation of 
M A [Lul l .  The module has a weight space decomposition 

M~ = @ (M~)(2), 
~>o 

where 

(MR)(2) = {v~MR[ ki'v = q<A-Zhi> V}. 

Using the aforementioned description of the quantum Verma module we find the 
following immediate consequence of Proposition 3.5. 

Theorem 3.6. There exists a map from the set o f  simgular (i.e. primitive) vectors in 
(Mq)(2) to elements in Hom,(~)(FA, Fa_z)c~ J .  The map is 9iven by 

f l ,  "" "fl, 'Va-* ~si,'" "si,~. 

Proof. Combining Proposition 3.5 with the aforementioned description of the 
quantum Verma module M R we see that the action offi(z) on d (by commutation) 
is, up to an overall nonzero operator, the same as the action of ei on M R. This 
proves the theorem, exactly as in the finite-dimensional situation of Theorem 2.10. 

[] 

The converse would follow from Proposition 3.5, if it could be proven that the 
operators ~si, ."gl~"" s~,~ do not conspire to cancel in such a way that the right-hand 
side of (3.13) vanishes "accidently." We are not able to evaluate these contour 
integrals in general. Further we do not have an argument which selects precisely 
which of the fundamental integrals of (3.8) are independent. However, by analogy 
with the finite dimensional case it is reasonable to expect that the converse to 
Theorem 3.6 is true. 

The problems here are linked to the discussion below (3.10). We expect that 
Hom~(i)(Fa, Fa, ) c 3 ,  if we make an assumption that all intertwiners can be built 
from screening operatorg as in (3.6), by taking F a contour in H,(J// ,  ~) .  But the 
dimension of this homology group can be larger than dim d I-FeFu]. Of course 
not all independent contours in H.(J///, 5 0 give rise to a different operator of the 
form (3.6); for instance, permutations ol ~ variables corresponding to the same simple 
root do not change the operator (up to a phase). However, to clarify this issue we 
need to know which of the fundamental integrals are independent. 

Let us make a final remark on the choice of contour f ' ,  as opposed to the 
"conventional" choice of contour F '  [Fe] of Fig. 3, i.e. z 2 . . . . .  z n are integrated 
over nested contours from z~ to zx and finally z a is integrated over the unit circle. 

Fig. 3. Integration contour F '  
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The most important virtue of the contour F '  is that those expressions evidently 
commute with the algebra, provided the last contour is "closed." For expressions 
containing only one type of screening operators si(z) one easily shows that the two 
operators are proportional, i.e. 

dzl . . .dz .s , (z l ) . . . s i (z . )  = 1 ( 1 - q  2"'] 
- ~ dz 1"'" dz.s~(z 1)"" s~(z.). 

r n \  1 _ q 2  J r '  

In general, however, this is not true for operator containing several types of 
screening operators. It proves to be useful to work with the contours F because 
it treats the variables z~ . . . . .  z, on equal footing, so that the quantum group relations 
(3.11) apply to all entries of [[si,... s~,~. A drawback is that the intertwining property 
is somewhat harder to prove. We believe that in the end the intertwining operators 
can all be rewritten in terms of contours F ' .  This we explicitly verified in some 
nontrivial examples, but we have not'proved it in general. 

3.4 The Fock Space Resolution. So far the discussion has been completely general. 
In particular, no restrictions have been put on the highest weight A, and its level 
k. To describe the complex of intertwiners we have to distinguish several cases 
however. For k~Q, i.e. q is not a root of unity, the quantum Verma module M~ 
has the same singular vector structure as M a [Ro], in which case the complex 
is exactly the same as in the finite-dimensional case, discussed in Sect. 2. For keQ 
we have qM= 1 for some M e N .  In this case the module M~t contains additional 
singular vectors. We will restrict the discussion below to highest weights Ae/~t+ k~, 
ke Z +, because they appear to be the most relevant in physical applications [GeWi]. 
The general case keQc~ {k > - n }  does not seem to be essentially more difficult. 

For k = - n however, the ~b-field decouples, and we are left with a realization 
in terms of fly-fields only. This "degenerated" realization can be used to verify the 
validity of the Kac-Kazhdan conjecture [KaKa]  for the character formula of 
highest weight modules at the critical level (i.e. k = - n) [FeF~] .  

From now on let AepCk+ ~, keZ+.  We recall that every w e W  can uniquely be 
written as t ~  for some # e W  and some ~eM. Here t~ is a translation operator 
(see, [Ka] and Appendix 2). 

The following lemma provides us with a basic set of intertwiners 

Lemma 3.7. Let we ~V. Write w = t ~  for some ~e M, ~ e  W. Define for a given simple 

root ct i, i = 1 . . . . .  f 

1 = (~(A + p), ~), w' = t ,r i~ if (#(A + p), ~)  > 0 

I = (k + n) + (~(A + p), ct~), w' = t~_~,riw i f  ( f f (A 4- fl), 0~i) < 0 

(note that in both cases 0 <  l<  k + n since Aeptk+)). Then (fi)t'Vw.A is a singular 
q vector in Mw.A, i.e. Qw.w, = ~(si)l~eH~162 Fw'*/,)" 

Proof. The proof of singularity of the vector is by straightforward calculation. We 
will present the proof in the case (r + p), ~i) < 0. The other case is similar, and 
in fact the singular vector in this case is just a q-deformation of the singular vector 
present for q = 1. By (3.16) we have 

1 (q(~,a,~,)- 2- __ q-(W,a,~,)+2m)(fj)l- 1.V~.a" 
e i ( f  j)l'Vw, A ~ (~ij q__ q-10_<m_<t-t 
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Now (w*A,~i )= ( I -  1 ) -  (k + n), so the summation gives 

t - - 1  
Z (ql-l-(k+n)-2m __ q-tt-Z)+<k+.)+Zm) 

m = O  

i Z q - 2 ] + q - " -  \ ~ / / = 0 .  [] 

For a single simple root ai the intertwining operators of Lemma 3.7 form a 
"grid of ~2 )  complexes: 

Lemma 3.8. Let ~ be a simple root, and w = t~ff~ ~V. Define 

{ w'=t=ri~, w"=t~_=,~ if  ( ~ ( A + p ) , ~ i ) > O  

w' = t~_=,r~, w" = t,_=,~ if (~(A + p),~i) < 0 

then Qw'.w,,Qw,~, = O. 

Proof. We have Q~,,~,,Q~,~, = ~(si)k+"~, which vanishes due to the phase factor in 
(3.9). [] 

The two previous lemmas completely describe the situation for sl(2). The 
resulting complex is depicted in Fig. 4 (see also [FeFr2, BF]). In general, the 
intertwiners corresponding to the simple root directions do not exhaust the set of 
all intertwiners. In fact, we expect intertwiners for every positive root direction�9 
Unfortunately, not much is known about the structure (i.e. singular vectors, 
composition series) of a quantum Verma module. For ~'(3) however we can exhibit 
additional intertwiners which allow the formulation of a complex, by explicit 
"reshuffling" of the screening operators using the lemma's in the appendix. 

So, let C t a = e x + e  z be the third root of ~'(3), and define l i = ( A + p ,  ei), 
~ = ( k + 3 ) - l i ,  i=1 ,2 ,3 .  We use the notation QI i) for an intertwiner Qw,w,~ 
Hom,ul~)(Fw, A, Fw,,a ) which is such that w ,  A - w' * A = leimod C6,i = 1,2,3. The 
reason for this notation is that since qE(k+3) = 1 there is a "periodicity" property 

q 
M q ~ M~, A, for all ~ M ,  which implies that throughout the (infinite) complex t~tff*A 

only a finite number of different Qli)'s are needed. The operator QI ~ that acts on 
Ft,,~.,a is completely determined by ~ W. 

Theorem 3.9. Let w = t=~elTV. Then we have, in addition to the intertwiners of 
Lemma 3.7, the followin9 intertwiners Qw.~,cHom,ut~l(Fw, a,F~,,a), dependin9 on 
~ W  
(i) 

0(3) w = r l ,  ~l~ = 2 bq(12,13;j)~(s2)t2-J(s3)i(sl)12-J~; 
O<=j<12 

(ii) 

~ ?.2 ~ ( ) ( 3 )  __ ~ , -  ~ bq(ll,la;j)~(sl)t'-J(gj(Sz)~'-J~; 
O<=j<=ll 

�9 . .  ~ F r o r ~ ,  ^ " Fro*^ ~ F^ = Fq,^ ~ Fqro, ̂  

Fig. 4. Fock space resolution for sl(2) 
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(iii) 

0(3)_._  ~'= rlrer" ~r3-  ~ bq(12,13;j)E(s~)r~-;(s3);(Sz)r3-~; 
O<j-_<T 3 

where sa = - s2s 1 + q-lS~Sz,g3 = - sis 2 + q-  ls2sl, and 

bq(m, n; j )  = qi+( . , - i ) ( . -y)  [m]q I [n]q? 
[ j L !  [m - j]~! [n - j]~!" 

This results in a diagram of Fock space modules Fw, A and mappings between them, 
part of which is depicted in Fig. 5. The diagram is invariant under A -~ A + (k + 3)~t 
for a~M, and contains three types of hexagons (Fig. 6 (a), (b), and (c)) in which the ~ 
following relations are satisfied: 
(a) 

Q(a)r30) t3(~)o(2) 
I2 ~:~tI -----.~13 -~I2 

Q ( 3 ) 0 ( 2 )  0 ( 2 ) / - I ( 1 )  
l l  ~ '12 = ~ 1 3  .~zSll 

(b) 

(c) 

Q ( 3 ) t 3 ( 2 )  
()(2)0(_1) 

[1 - ~ l l  = '-'~12 -'r~'l 3 

Q(3)n(~) 1~, o(,)~(2) 
l, ~T~ =(-- J ~ ~, 

Q(3)0(I) 1,J3 0(1)0(2) 
r~ ~l~ = ( - .  ~q ~ ,  

Q(3)o(2) i~Izo(2)o0) 
l~ ~T~ =(- ' ~r, ~l~ , 

Q ( 2 ) o ( 3 )  o(I)o(2) 

Q(1)Ot3) 0(2) [')(I). 
12 ';~;11 -----.'~11 '~13 , 

Q ( 1 ) o ( _ 3 )  c ) (2 )oo ) ,  

~( 2 ) 0 ( 3 )  __ [ 1 ) / 1 0 ( 1 ) 0 ( 2 ) .  
T 3 ~ 1 1  - - ; , - -  ~:511 ~zSl 2 , 

~ / '1(2 O ( 1  0 ( 2 ) / ' 1 ( 3 )  = / ~,~ ,~T~ ~- 1,%T~r~ ~, 
QO)O(3) _ / 1 ~ 1 2 0 ( 2 ) / ~ ( 1 )  

T3 "L~I2 - - I - - 1 !  ~-.12 ~ T  1 " 

Proof. The proof is a straightforward application of Lemma A.1 and Lemma A.2 
in the appendix. [] 

As discussed in Appendix 2, there is a "modified length" l" defined on I4' so 
that all the intertwiners Qw w, o f  Lemma 3.7 and Theorem 3.9 are such that 
l(w') = l(w)+ 1. In particular, for sl(3), we find that w = wri for QI~ ), (i = 1, 2) and 

- X �9 X �9 X --- 

X - X - X --- X 

- X - X - X --- 
/ (~ ,,,, / (o~ ,,,, / (o~ ,,,, / (o~ ,,,, 

X - X ~ X ~ X 

�9 X - X �9 X --- 
/ (~I \ / (bl ",, / (bl ",,, / (bl ",,, 

A 
Fig. 5. Fock space resolution for sl(3). The fundamental hexagons are those of Fig. 6 (a), (b) and (c) 
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2 1 
p P 

qx 
1 5 - ~ /  

Fig. 6. Fundamental hexagons. The mappings stand for 

2 

2 
and the labellings i and ? give Ii and ~, respectively, e.g. -----,stands for/1(3) 

w ' =  wr o for nt,) This also provides an easy procedure for reconstructing the 
: ~ 1 3  �9 

Weyl group elements w for the Fock spaces Fw, a in Fig. 5 in terms of simple 
reflections by walking along the edges of the hexagons starting from the middle 
Fock space F a  [FeFr2]. 

Let us emphasize once'again that we have not proved that the intertwiners of 
Theorem 3.9 exhaust the set of all intertwiners. Two ingredients are lacking: First, 
we would have to show that all intertwiners are of the form (3.6), and secondly 
we lack a complete understanding of the quantum Verma module M~t. Nevertheless, 
we believe that the set we have found is complete (i.e. for ~'(3)). Furthermore we 
should note that the relations (a), (b) and (c) in Theorem 3.9 ensure that the solutions 
Q~3) are well-defined and nonvanishing. Thus our explicit results for ~'(3) circumvent 
the remarks after Theorem 3.6. Moreover, they suffice to build the required 
complex, as the following theorem shows 

T h e o r e m  3.10. Le t  I7r {w~l?VlT(w) = i}. For  every A ~ f f  + we have a complex  o f  

~'~3) Fock  space modules 

a,-3~F~A_Z ) a,-2, a,-l~ ~to~ a,, ... , F~A-1) ___.~ F~)..s F~)  ~ . . . ,  

where 

F~ = (~) Fw.a. 
w E  ~V (i) 

Proof.  We define d~i):Ft~--. Ftia + 1) by its matrix elements ~tli) . . . .  lTvti) . . . .  ~z~i+ a) 
~ W l , W 2 ~ V V l ~ ' v  ,vw2cwr . 

Let -w,,w2 '/") = 0 if there does not occur an intertwiner Qw,,~2 in Fig. 5. Otherwise, 
put -wl.w2 "I~i) = ~(wl, wz)Q . . . .  2, where a possible choice of signs ~(wt, Wz) = _ + 1 is 
given in Fig. 7. (Note that for ( -  1) k+3 = 1 the signs can be taken such that they 
differ only for different types of hexagons. For  ( -  1) k+3 = - 1 the "periodicity 
length" of signs is increased by a factor of two). The nilpotency property d (i + 1)d~i) = 0 
follows from the identities in Theorem 3.9. [] 

For/~(n)  the lemmas of the appendix again give additional intertwiners. 
Moreover, for general q, intertwiners will exist for every q-analogue of a singular 
vector present in the q = 1 case. These intertwiners give a diagram that is 
a (fundamental) n!-gon in (n-1)-dimensional  space. We conjecture that the 
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1 

4• 
1 

I/  ",2 

C p  

! /  
XE_ /1" Iol 

E 

C~1 D 

m 

Fig. 7. Signs 3(wl, w2) for a fundamental cell. We have put e = ( -  1) k+3, (i =(--  1) t', i = 1,2 

additional intertwiners that exist for q a root of unity are such that the resulting 
diagram gives a tiling of (n - 1)-dimensional space in terms of this fundamental 
n!-gon. In particular we conjecture that Theorem 3.10 holds similarly for ~(n). 

Finally, we conjecture that the complex described in Theorem 3.10 provides a 
(two-sided) resolution of the irreducible highest weight module LA in terms of 
Fock space modules Fw, A, i.e. 

Conjecture 3.11. 

Hi(d)~={OA for i = 0  
otherwise. 

For s~2) a proof has been given in [FeFr2, BF]. As we have indicated the 
structure simplifies drastically in this case. The two main simplifications are that 
the complex of Theorem 3.10 becomes "l-dimensional" since I lTV Ck)] = 1, Vk, and 
secondly it is relatively easy to determine the complete "Fock space embedding 
pattern" by means of the Jantzen filtration [Ja]. 

As a final remark observe that since ( -  1) ~w)= ( -  1) ~) the validity of the 
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Conjecture 3.11 would provide one more proof of the Weyl-Kac character 
formula (1.1). 

4. Discussion and Outlook 

In this paper we have shown that a quantum group underlies the structure of the 
intertwining operators between various Fock space modules of ~'(n). For ~'(3) we 
explicitly computed the intertwining operators needed to build a complex of Fock 
spaces. 

To make progress for general s~n) we obviously need a better understanding 
of the quantum group Verma module. That the results can be extended to other 
Lie algebras is obvious, though the actual computations might be tedious. Clearly, 
we would like a proof of the conjecture that the cohomology of the complex is 
concentrated in the "zeroth dimension," where it is exactly the irreducible module. 
Given its validity the (higher genus) conformal blocks for WZNW-models can be 
computed in the same spirit as for the minimal models [Fe, FLMS1, BaGo, FS2, 
FLMS2], using the screened vertex operators introduced in [BMP1]. 

It is well-known that two-dimensional rational conformal field theory seems 
to be a generalization of ordinary group theory, and it has been emphasized that 
its structure in fact resembles that of a quantum group (see, e.g. [MS, AGS, TK2, 
Sm, Wi2, MR]). The correspondence, however, was (to our knowledge) shown only 
indirectly by either the explicit computation of the braiding and fusion matrices 
[TK2,FS1,FFK] which are argued to correspond to the quantum group 6j- 
symbols [MS, AGS], comparison of modular properties [AGS, Sm], or its relation 
to 3-dimensional topological field theories (braids/knot invariants) [Wi2]. 

The quantum group structure revealed in this paper is more fundamental in 
the sense that part of the quantum group relations are uncovered, and furthermore 
the relation to representation theory of the quantum group is pointed out. We 
believe that these observations will ultimately lead to a full understanding of, in 
particular, the monodromy properties of conformal blocks. 

Though we restricted the discussion in this paper to affine Kac-Moody algebras, 
the generalization to the so-called ~/F-algebras [Zal, FL1, FL2, BBSS1, BBSS2] is 
straightforward. For instance, the W'(g)-algebra corresponding to a simply-laced 
Lie algebra g of rank ~ possesses a realization in terms of E scalar fields ~b ~ with 
background charge aop and screening operators 

s + = exp (i~ + ct i- ~b), i = 1 . . . . .  E, 

where ~ + = �89 ___ ~ + 4), and % is related to the central charge of the Virasoro 
algebra by c=E-12~21Pl  2. The sets {s +} and {s?} will satisfy the identities 
of the quantum group q/q(n+), with however different values of q, namely 
q • = exp (ni~ 2). For the description of the complex we only need one set, say {s{ }. 
In fact, the complex for the ~#F(g)-algebra will have exactly the same structure as 
the corresponding one for the affine algebra ~. 

Though the sets {s + } and {s? } do not  combine into a realization of q/q(g), 
because of the different q-values for s{, it might be possible to broaden the definition 
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of a quantum group. Obviously the enlarged structure will not have a classical 
limit as one cannot take the limit of both q+ and q_ to 1 at the same time. 

Again, one might anticipate that the occurrence of the quantum group q/q(n+) 
are reflected in the properties of the conformal blocks (see, e.g. [FZ2, Bi2, Bi3] for 
the computation of conformal blocks on the sphere and their braiding properties 
in the case of the "#r(sl(n))-algebra). 

Another application of the type of free field realization discussed in this paper 
is that, in principle, free field realizations can be obtained for arbitrary coset models 
G/H (for one approach see [GMM]). The procedure is to bosonize the fiT-system 
(see, [FMS]) and to "rotate" the scalar fields such that the H-piece can be factorized 
out. This program has been worked out in detail for the Fateev-Zamolodchikov 
parafermion algebra [FZ1] and their generalizations [Ge] in [Nel,Ne2, Bil, 
DQ, GMM, ItKa], and for the closely related N = 2 superconformal algebra 
[DQ, It]. 

Append ix  1 

In this appendix we collect some notations and lemmas which are used throughout 
the paper. Let q~C be such that qZ:/: 1. We use the following definitions from 
q-number analysis: 

q, - q - ,  
[n]q q __ q - l '  I n ] q !  = k=lI~I [k]q, 

[m] [m]q! 
n ~=[n]~![m-n]~! '  

known as the q-number, q-factorial and q-binomial, respectively. The following 
lemma proves to be useful for the explicit determination of the intertwiners 

Lemma A.1. [Lu3] Consider the associative algebra with two generators A, B and 
defining relations 

A2B - (q + q-  1)ABA + BA 2 = O, 

AB 2 - (q + q-  1)BAB + B2A = O. 

Define C = - AB + q-  1BA, then 
(i) 

(ii) 

(iii) 

(iv) 

AC = qCA, qBC = CB; 

B k A l 
- E 

[k]q! [l]q! O<j<min(k,I) 

A ~ - J  C j Bk-J 
qJ+tk-J)(l-J)[l-- j]q! [j]q! [ k -  j]q!; 

AkBk+lAl= BIAk+lBk; 

C m 

- 2 [m]q! o_<j-<_,~ 

B j A m Bm-J 
( -  1)m-Jq - j  

[j]q! [m]q! I r a -  j]q!" 
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Proof. (i) is proved by straightforward calculation, (ii) and (iv) are proved by 
induction, and (iii) follows from (ii). [] 

In the limit q--* 1 these identities reduce to those of A/-subalgebras of Lie 
algebras (see, e.g. [Ve]). 

If in addition q is a root of unity, then there are additional relations. 

Lemma A.2. Let A, B and C be as in Lemma A.I.  Let  qM = _ 1, and define k = M - k 
for 0 < k < M,  then for 0 < l < k < M we have 
(i) 

A i + t B l = ( _  l)t ~ qj+(l-j)(k-j) [l]q![k]ql A I - j  j ~ l - j  ,k. 
o__<~__<, rj].![i-j~.~- j]q[ C .  A ,  

(ii) 
l W k V 

AtBi+J = ( _  1)t ~ qj+(t-j)(k-j) ~_- -; .~:7.~. ]q" [ ]q" B~At-JCJBt-j  
Ljjq!Ll S j j q ! L k _ j j ~ !  - -  . o<=j<_l 

Proof. First prove the identity for l = 1 by induction to k, then prove the identity 
by induction to I. [] 

Appendix 2 

In this appendix we summarize some facts about the Weyl group of an (untwisted) 
affine Kac-Moody  algebra (see, e.g. [Ka] for more details) and introduce the 
concept of the modified length of a Weyl group element. 

The affine Kac-Moody  algebra ~ can be obtained as the (unique) central 
extension of L g = g @ C [ t , t - 1 ] .  We will introduce an additional element d 
(derivation) defined by d(x | t") = n(x @ t") for xEg. The Cartan subalgebra of ~ is 
then given by h = h @ Ce @ Cd and its dual by h* = h* @ CAo @ C6, where Ao and 
6 are dual to r and d, respectively. The bilinear form (,) on h* is defined by the 
bilinear form on h* and the additional relations (A0, 6)= 1, (Ao, Ao)= (6, 6)= 0. 
We will denote an element 2~h* either by 2 or by its components (2,k,n) in 
h*•CAo@C& For modules with a highest weight /] we always choose /1 

/ N 

such that n = 0 .  We have a root space decomposition ~ = ( ( ~ ) @ ~ ,  where 
\ ~ e A  / 

A = { n 6 , n e Z \ { O } } w { n 6 + ~ , n E Z , ~ A }  and ~,0 =h |  = g, |  
The system of positive roots is given by/ ]  + = {n6, n > 0} u {n6 + ~, n > O, ~ A  + } u 

{ n 6 - ~ , n > O , ~ A + } .  Every positive root can be written as positive integral 
combination of simple roots 4 o = 6 -  0, ~i = % i = 1 . . . . .  g, where 0 is the highest 
root of g and % i = 1 . . . . .  Y are the simple roots of g. 

The Weyl group W of ~ is the group generated by the reflections h, i =  0, . . . ,  f 
in the simple roots ~i, i.e. h2 = 2 - (2(2, 4i)/(4i, ~i))~i.for 2oh*, and leaves the bilinear 
form (,) invariant. 

Every Weyl group element w~W can uniquely be written as w = t ,~ for some 
~ M ,  ~ W, where the "translation operator" is defined as 

t,2 = 2 + (2, 3)~ - ((2, ~) + �89 ~12( 2, 6))a, 2~fi, 
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i.e. in terms of the decomposition fi* = h* @ CAo @ C6, 

t,(2, k, n) = (2 + k~, k, n - ((2, ~) + �89 

In particular we have to = ra-oro and twt~) = w t , w -  a, w e  W. The length of an element 
w~l?r is defined as the minimal number I that is required to write w in terms of 
reflections w = ql""r~, , i je{0,- . . , : )-  One can show that l (w)= I~wl, where the 
(finite) set ~w is defined by ~,~ = A + n w(/]_). We have the following basic lemma 
which follows directly from [GL, Proposition 2.2]. 

Lemma A.3. Let  weITV and ie{0 . . . .  ,,:}. Then 

WO~i~- ~w ~ ~wr, = ~ w u  {W~i} , l(wri) = l(w) + 1, 

w ~ i ~ w = = ~  = ~ r , u  ( -- w~i}, l(wri) = l(w)-- 1. 

In particular it follows (by induction) that if w = r~l...ri, is a reduced expression 
for w then ~ = ( ~ i , , r ~ i  . . . . . .  ri, " " r i ._~ i . } .  

To describe the Fock space complex we have to introduce the concept of the 
modified length T(w) of a Weyl group element w. Let thereto "4+,,e =/]'+ u/]'~, with 

A+ = { ~ =  n f  + c t , ~ A + , n  > O}, 

A +  % = {~ = n6  - o ~ , ~ A + , n  > 0}, 

and define for all we if" 

�9 " =/~'+ n w(:~_), a>i; = ~';  n w(,~_),  ~ = ~ "  u a>i;. 

Definit ion A.4. For every wsC/V we define the modified length T(w) by 

~'(w) = I ~ 1 -  I ~ 1 ,  

and let if'V ") denote the subset o f  I?r o f  elements o f  modified lenoth i. (Note that, 
contrary to the subsets if.to c I-V, the subsets  f f t~  c if', the subsets ff-V ~i) consist o f  an 

infinite number o f  elements (except for  g = s/~2)).) 

Lemma A.5. Let  w = tag:el?C, and ct~A+. 
(i) I f  ~ -  1 ~ = o~ i for  some i = 1 . . . . .  E, then t a r ~  = wri and "f(wri) =~(w) + 1. 
(ii) I f  i f -  1 ~ = _ 0 (0 the highest root o f  g), then tat_ , r ~  = wro and l(wro) = T(w) + 1. 

Proof. 
(i) For all simple roots ~k,k = 0 . . . . .  [ we have r~ff~ k = f f~k-  (WOrk, ~)~ = W~k- 
akiO~ = W ( O ~  k - -  akiO~i) = wrist k S O  r ~ w  = ffrl. Now, w~i = taw~i = ta~t = ~ - (ct, fl)6. For 
(~,fl)>0 we have w ~ i e - d " +  so that ~w--~wr, u ( - w ~ i } ,  for (~,f l)<0 we have 
w~z~+ so that @w,, = ~ , u  {wal}. In both cases ~(wri) = T(w) + 1. 
(ii) We have t _ , r , ~  = t _ ~ r  o = ~ t_~-  , r o = ~toro = ~r 0. The statement that T(wro)= 
T(w) + 1 is proved similarly as in (i). [] 
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discussions. In particular we would like to thank E. Frenkel for discussions and explanations of his 
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Note added. In the course of writing we received several papers by Feigin and Frenkel [FeFr3, FeFr4] 
in which Conjecture 3.11 is proved by geometrical methods. Though their method is elegant it has two 
important drawbacks compared to our approach. Firstly, it does not give explicit formulae for the 
intertwining operators which are needed if one ultimately wants to apply these techniques to compute 
(higher genus) correlation functions. Secondly, the method, as presented, only works for the integrable 
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highest weight modules while treating rational k-values would be essentially the same in our approach. 
One may hope that the two approaches combine to give an even better understanding of the various 
issues involved. 
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Note added in proof. After submitting this paper the following works were brought to our attention: 
H. Saleur, Phys. Rep. 184, 177-191 (1989), in which a relation between the algebra of screening operators 
and a quantum group is investigated; V. Pasquier and H. Saleur, Nucl. Phys. B330, 523-556 (1990), 
where the embedding structure of singular vectors for q/q(s/(2)) is worked out; V. K. Dobrev, Trieste 
preprint IC/89/142 (June '89), in which the embedding structure of singular vectors for ~l[q(sl(3)) is studied. 


