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Abstract. We study the phase diagram of S = 1 antiferromagnetic chains with 
particular emphasis on the Haldane phase. The hidden symmetry breaking mea- 
sm'ed by the string order parameter of den Nijs and Rommelse can be transformed 
into an explicit breaking of a Z2 x Z2 symmetry by a nonlocal unitary transforma- 
tion of the chain. For a particular class of Hamiltonians which includes the usual 
Heisenberg Hamiltonian, we prove that the usual N6el order parameter is always 
less than or equal to the string order parameter. We give a general treatment of 
rigorous perturbation theory for the ground state of quantum spin systems which 
are small perturbations of diagonal Hamiltonians. We then extend this rigorous 
perturbation theory to a class of "diagonally dominant" Hamiltonians. Using this 
theory we prove the existence of the Haldane phase in an open subset of the 
parameter space of a particular class of Hamiltonians by showing that the string 
order parameter does not vanish and the hidden Z2 x Z2 symmetry is completely 
broken. While this open subset does not include the usual Heisenberg Hamilton- 
ian, it does include models other than VBS models. 

1. Introduction 

Much of our intuition for quantum spin systems is based on our understanding of 
the corresponding classical systems. However, occasionally the quantum spin 
systems surprise us. One of the most interesting surprises is the qualitative depen- 
dence of the properties of the one dimensional Heisenberg antiferromagnet on 
whether the spin is integral or half integral which was discovered by Haldane. He 
argued that the ground state has an excitation gap and exponentially decaying 
correlation functions when S is integral, while it has a ground state without a gap 
and correlation functions with power law decay when S is half integral [-22]. 
Haldane's argument was based on an approximate mapping of the spin chain onto 
a two dimensional quantum field theory. 

The Heisenberg antiferromagnet has a continuous symmetry; we can rotate all 
the spins by the same amount, and the Hamiltonian will be unchanged. This 
suggests that it should be possible to construct excitations with arbitrarily low 
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energy by a gradual twist of the ground state. Haldane's conclusion says that this 
classical intuition is wrong when the spin is integral. (Note that in the quantum 
case there is no guarantee that the gradual twist does not simply give you back the 
ground state.) Even more surprising than this failure of our classical intuition is the 
way in which the qualitative properties of the chain flip back and forth as the spin 
varies through half integral and integral values. This is in stark contrast to the 
universality we have come to expect. 

Haldane's theoretical work prompted a great deal of further theoretical work, 
numerical studies, experiments, and eventually some rigorous work. The numerical 
work for S = 1 now supports Haldane's conclusions rather convincingly 
[12, 34, 39, 45, 55]. Experimental results in quasi one dimensional systems with an 
effective spin 1 at each site [6, 15, 21, 24, 43, 51] seem to be consistent with the 
existence of a gap. For a review, see [2]. 

The less interesting half of Haldane's conclusions have been proven rigorously. 
Lieb, Schultz and Mattis [36] proved for S = 1/2 that the model must either have 
no excitation gap or more than one ground state. This proof was extended to all 
half integral spin by Affleck and Lieb [5] and by Kolb [30]. For any value of the 
spin the one dimensional Heisenberg antiferromagnet is expected to have a unique 
infinite volume ground state, in which case the above result implies there is no gap. 

There are rigorous results for integral spin for a special class of Hamiltonians. 
For S = 1 the special Hamiltonian is 

1 
H = ~ S , . S , + I  + ~(S, 'S,+l)  2 . (1.1) 

i 

Affleck, Kennedy, Lieb and Tasaki [4] proved that this model has a unique infinite 
volume ground state with a gap and exponentially decaying correlation functions. 
A crucial step in the proof was to realize that the exact ground state of the 
Hamiltonian (1.1) can be written down compactly using the valence-bond basis. 
The exact ground state is called the VBS (Valence-Bond-Solid) state. Knabe [29] 
gave another proof of the existence of a gap in this model. For higher values of the 
spin the special Hamiltonian is again a polynomial in S~.S~+I. The two point 
function of the ground state of the special model with S = 1, 2, 3 . . . .  was computed 
by Arovas, Auerbach and Haldane [7] and seen to decay exponentially. Fannes, 
Nachtergaele and Werner [ 17] studied this class of models in a very general setting. 
They proved the existence of a gap for all integral spin. 

Tasaki [57] proved the existence of the Haldane gap in an S = 1 chain in which 
the usual Heisenberg Hamiltonian is restricted to a subspace of the full Hilbert 
space. This result is stable in the sense that it established the existence of the 
Haldane phase in a finite region of the parameter space, and extends even to 
a quasi-one-dimensional model. 

We should emphasize that the most interesting part of Haldane's conclusions, 
that the integral spin Heisenberg chains are in a massive phase, is still unproven. 

Hidden Order and Four-Fold Near Degeneracy. The Haldane phase has no long 
range order; all the truncated correlation functions are expected to decay exponen- 
tially. However, there is a form of hidden order discovered by den Nijs and 
Rommelse [16]. They introduced the following string order parameter and argued 
that i t  should be nonzero in the Haldane phase. 

= lira co - S j e x p  ire ~ S~ S~, . (1.2) 
Ostr ing i j _ k j ~ o  ~ / = j +  J_ 
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Here co( ) denotes the expectation value in the ground state, and c~ can be x, y 
or z. (It is not true that if this order parameter is nonzero then the system 
is in the Haldane phase. We shall return to this point later.) Girvin and 
Arovas [19] numerically evaluated the above order parameter and concluded it 
was nonzero for the usual S = 1 Heisenberg Hamiltonian. Tasaki [58] reached 
a picture similar to that of den Nijs and Rommelse by directly treating the path 
integral representation of the S =  1 quantum spin chain and proving some related 
rigorous results. 

The ground state of the VBS model sheds some light on what this string order 
parameter measures. In the standard basis in which S z at each site is diagonal, the 
VBS state can be written as follows [4]: 

~vBs = ~ ( -  1) ~(") 2 n(a)/2 ~ �9 (1.3) 

A "classical spin configuration" a = {~1, ~r2, �9 �9 �9 aL} is a choice of a i=  - 1 ,  0 
or +1 at each site i, and ~b~ denotes the eigenstate with S Z ~  = ai~b~. 
Here the summation is over all the configurations ~ which satisfy the 
constraint that nonzero spins must alternate between + 1 and - 1 .  An 
example of an allowed configuration is + 00 - 0 + - 0 + 000 - 0 + - + - 
0 0 + 0 - .  z(a) is the number of odd sites with a i = 0 ,  and n(a) is the 
number of nonzero a~. Although the allowed configurations have some 
structure, they do not have long range order. If we fix the spin at the 
origin to be + ,  then we cannot predict what the spin at a distant site will 
be since we have no control over the number of O's that will appear between 
the origin and our distant site. However, if we keep track of the number of 
such O's (or equivalently the number of nonzero's) then we can predict what 
the spin at the distant site will do. This is precisely what the exponential factor 
in the string order parameter does. It equals - 1 raised to the number of nonzero 
spins between i and j. 

In a Haldane gap system the ground state should be unique in the infinite 
volume limit. However, it was found in [4] that the Hamiltonian (1.1) on a finite 
chain with open boundary conditions has exactly four ground states. These ground 
states all converge to the same infinite volume state as the length of the chain tends 
to infinity. Such a degeneracy is not observed in a finite chain with periodic 
boundary conditions. The valence-bond picture of [4] suggests that the four-fold 
degeneracy is due to the two effective spin 1/2's induced in the boundaries of the 
chain. 

In general in the Haldane phase the ground state of the open chain is not 
exactly four fold degenerate, but the four lowest eigenvalues are very close. 
The separation of these eigenvalues converges to zero as exp( -L/~)  when 
the length of the chain L goes to infinity. Here ~ is the correlation length 
of the ground state. This phenomena was studied by Kennedy [25] and by 
Affleck and Halperin [3]. The geometric picture in [58] also suggests this 
phenomena. Experimental consequences of this four-fold near degeneracy of the 
ground states in a finite open chain (or more precisely the existence of effective 
spin 1/2's at the boundaries) have been studied by Hagiwara, Katsumata, 
Affleck, Halperin and Renard [21] and by Glarum, Geschwind, Lee, Kaplan, and 
Michel [20]. 
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Phase Diagram of Typical Hamiltonians. In this paper we will consider the follow- 
ing two spin 1 Hamiltonians: 

s x y y H I  = Z [ S iS i+ l "~ S i S i *  l "~- )~SzS~* l "~ D(Sf) 2] , ( 1 . 4 )  

i 

H2 = ~ Ji [Sl. S,+I - fl(S~. Si+ i) 23 (1.5) 
i 

w i t h J i =  l i f i i s e v e n a n d J i = 6 <  l i f i i s o d d .  
One can consider a more general Hamiltonian which includes these two as 

special cases. Some of our expansion results can be extended to such a Hamilton- 
Jan, but we will restrict our attention to (1.4) and (1.5) for the sake of simplicity. The 
phase diagram of the ground state of Ha was studied numerically by Botet, Julien 
and Kolb [12], and further investigated in [16, 47, 48, 57]. Figure 1.1 shows the 
qualitative phase diagram. We have labelled the Haldane phase with an H. The 
other phases that appear in these figures are the large D phase (labelled D), the 
antiferromagnetic Ising phase (labelled I), the XY phase (labelled XY), and the 
ferromagnetic Ising phase (labelled F). The exact location of the phase boundary 
between the Haldane and the XY phases is still not clear because of the large 
numerical ambiguity. 

The large D phase of H1 occurs when D is large and 2 is not too large. If D is 
infinite, then the ground state is simply the configuration with all 0's. The large 
D phase may be thought of as a perturbation of this state. In this phase H1 is 
expected to have a unique infinite volume ground state which has a gap and 
exponentially decaying correlation functions. Numerical [12, 48] and field theor- 
etic [47] studies indicate that between the Haldane and the large D phases there is 

F 

D 

I 

Fig. 1.1. The phase diagram of the ground state of Hamiltonian H1 obtained by numerical 
studies. It contains the Haldane phase (labelled H), the antiferromagnetic Ising phase (labelled I), 
the large-D phase (labelled D), the XY phase (labelled XY), and the ferromagnetic Ising phase 
(labelled F). The boundary between the Haldane and the XY phases (shaded line) is not yet 
determined. We have rigorous control of the properties of the ground states in the shaded 
portions in the phase diagram. These portions just indicate the qualitative shape of the regions, 
and are not meant to be quantitative 
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a line of masstess models. Initially, the existence of the massless line was the only 
reason to believe that the large D and Haldane phases are distinct phases, since 
both of them are characterized by unique massive ground states. But, as we will 
discuss below, the string order parameter allows one to directly distinguish be- 
tween these two phases. 

The antiferromagnetic Ising phase of H1 occurs when 2 is large and D is not. 
If 2 were infinite then the two N6el states + -  + -  + . . . .  and 

- + - + - + �9 �9 �9 would be the ground states. In the Ising phase we expect two 
infinite volume ground states which are perturbations of these two N6el states. 
Each of these ground states should have N6el order, a gap and exponential decay of 
the truncated correlation functions. 

The ground state phase diagram of H2 has been studied intensively, especially 
on the line of translation invariant models with 6 = 1. There are four special points 
on this line where one has exact (or rigorous) results on the ground state. The exact 
ground states for/? = 1 and/~ = - 1 were obtained in [-9, 32, 56] and [33, 52, 62], 
respectively. At these points, it appears that the ground state is unique and has no 
excitation gap. The point/3 = oo was solved in [10, 28, 42]. It appears to have two 
ground states and an excitation gap. The Hamiltonian with/~ = - 1/3 is (1.1), and 
has a massive unique ground state. It is expected that a similar massive ground 
state occurs throughout the interval - 1  </~ < 1. In the region /3 > 1, it is 
expected that a spontaneous dimerization takes place, and the Hamiltonian has 
two ground states accompanied by a finite gap. A spontaneous trimerization is 
expected in the region/3 < - 1. See [40, 50] for numerical works. 

The phase diagram including the nontranslation invariant models with 6 < 1 
was studied by Singh and Gelfand [49] by Pad6 analysis of perturbation series. 
A qualitative phase diagram is shown in Fig. 1.2. The Haldane phase is labelled 
H and the dimerized phase is labelled D. The VBS state is the exact ground state of 
H 2 o n  the line fl = - 1/3 and 6 > 0. 

The origin of the dimerized phase of H2, at least for small 6, can be understood 
as follows. If c~ = 0 then the ground state is simply the tensor product of the ground 
state for each of the bonds with nonzero coupling. If ~ > - 1/3 the ground state of 
one of these bonds is the singlet state for two sites. The dimerized phase may be 

6 
1 

VBS 

D 

-1/3 0 1 /~ 

Fig. 1.2. The phase diagram of the ground state of Hamiltonian H2 obtained by numerical and 
theoretical studies. It contains the Haldane phase (labelled H) and the dimerized phase (labelled 
D). On the dashed line (which includes ~ = 1 but not ~5 = 0), the ground state is exactly the VBS 
state. The shaded regions indicate qualitatively (but not quantitatively) where we have rigorous 
control of the ground state 
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thought of as a perturbation of this tensor product of "dimers." Like the large 
D phase in Hi,  the dimerized phase (except the spontaneously dimerized line 
6 = 1,/~ > 1) is expected to have a unique infinite volume ground state which has 
a gap and exponentially decaying correlation functions. This phase, like the large 
D phase, may be distinguished from the Haldane phase by the string order 
parameter. 

As den Nijs and Rommelse [16] pointed out (see also [58]), the string order 
parameter can be used to distinguish the Haldane phase from other phases with 
unique massive ground states. The behavior of the string order parameter in the 
phase diagrams in Figs. 1.1 and 1.2 is believed to be as follows. We will also 
consider the usual N6el order parameter 

O~l  = lira ( -  1)lJ-klo)(SjS~), (1.6) 
I i-t~l-*oo 

where c~ is x, y or z. In the Haldane phase (H in Figs. 1.1 and 1.2), all three of 
O~ri~g are nonzero while all three of 0~0~ are zero. In the large D phase (D in 
Fig. 1.1) and the dimerized phase (D in Fig. 1.2) all of the order parameters vanish. 
Finally, in the Ising phase (I in Fig. 1.1), OsZtring and Ow are nonzero while the other 
four order parameters vanish. Hatsugai and Kohmoto [23] numerically evaluated 
these order parameters for the Hamiltonian Hi with 2 = 1; their results are 
consistent with the above picture. 

Tasaki [59] recently argued that the sharp singularity experimentally observed 
in the magnetization process of Haldane gap antiferromagnets [6, 24] can be 
understood in terms of the behavior of the string order parameter. 

Hidden Z2 x Z2 Symmetry  Breaking. In [26] we introduced a nonlocal unitary 
transformation U of the spin 1 chain with the following properties. (The definition 
of the transformation is given again in section two.) If we apply the unitary 
transformation to the operator that appears in the definition of the string order 
parameter, we obtain the usual ferromagnetic order parameter S~S~,. (See Sect. 2.1.) 
Thus the nonvanishing of the string order parameter for the system with 
Hamiltonian H corresponds to the existence of ordinary ferromagnetic order for 
the system with the transformed Hamiltonian H = U H U  - 1. Since the transforma- 
tion is nonlocal there is apriori no reason that /~ should be a sum of local 
operators. However, for the Hamiltonians above it is. (See Sect. 2.2.) 

H1 has an SO(2) symmetry and H2 has an SU (2) symmetry. These symmetries 
are local in the sense that the unitary operators are products of unitary operators 
that act at a single site. The transformed Hamiltonians /11 = U H 1 U  -1 and 
Jq2 = U H z U -  ~ will have the same symmetries as the original Hamiltonian, but 
there is no reason these symmetries must still be local. It turns out (see Sect. 2.2) 
that the only local symmetries of H1 and/~2 are rotations in spin space by n about 
one of the three coordinate axes. Thus the local symmetry group is the discrete 
group Z2 x Z2. 

In [26] we argued that one can determine which phase the system is in by the 
extent to which the Z2 x Z2 symmetry of the transformed system is broken. In the 
large D and dimerized phases this symmetry is not broken at all, and the trans- 
formed Hamiltonian has a unique ground state. In the antiferromagnetic Ising 
phase the Z2 x Z2 symmetry is partially broken and the transformed Hamiltonian 
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has two ground states. In the Haldane phase the symmetry is fully broken and the 
transformed Hamittonian has four ground states. (Since the transformation is 
nonlocal the original and transformed Hamiltonians can have different numbers of 
infinite volume ground states.) We argued [26] that the four infinite volume 
ground states in the transformed system imply that for a finite chain with open 
boundary conditions the four lowest eigenvalues of the original system must be 
very nearly equal. Thus the four fold near degeneracy in the Haldane gap system is 
a consequence of the hidden Z2 x Z2 symmetry breaking. 

Results of the Present Paper. In the above we have reviewed some of the properties 
of the spin 1 chain which are believed to hold. We emphasize that none of the 
various statements above are theorems except for the few that we have described as 
"rigorous" or "proven". We turn now to the rigorous results of this paper. 

Section 2 is devoted to the nonlocal unitary and the related Z2 x Zz symmetry 
breaking. We prove the existence of such a symmetry breaking in the Hamiltonian 
obtained by applying the unitary to the exactly solvable Hamiltonian (1.1). We also 
present a (highly nonrigorous) variational calculation. The success of this simple 
approximation indicates the power of the unitary transformation. 

We argued above that the string order parameter measures a floating or liquid 
N6el order in which the nonzero spins alternate between + and - ,  but because of 
the intervening O's this alternation does not simply go as ( -  1) I i-jI. It is natural to 
expect that this floating N6el order appears more easily than the usual N6el order. 
This observation suggests there should be an inequality 

~t ~t 
Ostring ~ ON6el �9 (1.7) 

In Sect. 3 of the present paper, we shall prove this inequality for c~ = x, y and z, and 
other related inequalities for the Hamiltonian H1 with 2 > 0. The random loop 
representation used in [58] playes an essential role in the proof. 

For certain values of the parameters the Hamiltonians Hi and H2 become 
trivial in the sense that one can find a basis in which they are diagonal. As we saw 
above, three of the phases (the large D, dimerized and Ising) can be obtained in this 
trivial way. As 2 ~ oe with D fixed, H1 just becomes the spin 1 antiferromagnetic 
Ising Hamiltonian. As D ~ ~ with 2 fixed, H1 also becomes trivial. The 
Hamiltonian in this limit is just H1 with D = 1 and all the other terms in H1 
deleted. The ground state consists of the state with all spins equal to 0. Hamiltonian 
H2 becomes trivial if we set 6 = 0. The ground state of Si. S~+ 1 -/?(S~. S~ + ~)2 is the 
unique singlet state when/~ > - 1/3. So for 6 = 0 and fl > - 1/3 the ground state 
of H2 is unique and is just the tensor product of the singlet state on two sites. One 
can hope to obtain rigorous results in a neighborhood of these trivial Hamiltonians 
by doing some form of perturbation theory. 

In Sect. 4 we prove the convergence of such a perturbation theory for two quite 
general classes of Hamiltonians. The first class consists of Hamiltonians which are 
small perturbations of a diagonal Hamiltonian which has a unique ground state. In 
the second class the Hamiltonian is a small perturbation of a diagonal Hamiltonian 
which has more than one ground state, and these ground states are related by 
a symmetry group. In this paper we are primarily interested in the application of 
this perturbation theory to the one-dimensional systems given by Hamiltonians 
(1.4) and (1.5). However, we should emphasize that the theory developed in Sects. 4 
and 5 is not restricted to one-dimensional systems. By applying these general 
theorems to Hamiltonians H~ and H2 we can prove the following. (The precise 
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statements of the theorems are given in Sect. 2.2.) In the shaded portion of region 
D in Fig. 1.1 (the large D phase) and the shaded portion of region D in Fig. 1.2 (the 
dimerized phase), there is a unique translation invariant ground state. This state 
has a gap and exponentially decaying correlations. All the string order parameters 
and the usual N6el order parameters vanish in this state. The transformed 
Hamiltonian has a unique translation invariant ground state. Thus none of the 
Z2 x Z2 symmetry is broken in these two regions. In the shaded portion of region 
I in Fig. 1.1 (the Ising phase) there are at least two ground states. The order 
parameters Ostring and O~el with c~ = z are nonzero. When c~ = x or y, both of these 
order parameters vanish. Thus one of the factors in the Z2 x Zz symmetry is 
broken, but the other is not. The transformed Hamiltonian also has at least two 
infinite volume ground states. We stress that these shaded portions in the phase 
diagrams are not drawn in a quantitative manner (while the phase boundaries are 
semi-quantitative.) The actual regions where the rigorous perturbation theory 
works are much smaller or farther away. 

The rigorous perturbation theory of Sect. 4 can be thought of as Rayleigh 
Schr6dinger perturbation theory. Rigorous Rayleigh Schr6dinger perturbation 
theory for various quantum spin systems that are perturbations of diagonal 
Hamiltonians has been done before. The approach we present here is quite general, 
but the proof of convergence is still relatively simple. Kirkwood and Thomas [27] 
controlled the perturbation theory for several models by writing the Schr6dinger 
equation in a clever form and developing the expansion directly from this equation. 
Another approach to controlling the perturbation theory is to use a Feynman-Kac 
or path space formula to make the quantum spin system look like a classical model 
in one more dimension. Yin and Thomas took such an approach [61]. See also 
[46, 57]. Albanese [1] controlled the perturbation theory by constructing a "dress- 
ing transformation" which takes the unperturbed ground state into the perturbed 
ground state. 

Our approach in Sect. 4 begins with a path space formula for Tr(e-aH). When 
the Hamiltonian is a small perturbation of a diagonal Hamiltonian the dominant 
terms in the path space formula consist of large regions of ground state(s) with rare 
excitations. The usual polymer expansion can be used to control this dilute gas of 
excitations. To take advantage of the usual polymer expansion we introduce 
a blocking in the time direction. This blocking of the continuous time direction 
makes the expansion look more like the usual polymer expansions one encounters 
in classical lattice systems. Our proof of the convergence of the expansion is greatly 
facilitated by the introduction of a "comparison Hamiltonian." 

Unlike the three phases discussed above there is no diagonal Hamiltonian 
which is in the Haldane phase. For H2 with/~ = - 1/3 the ground state is known 
exactly, but not all the eigenstates are known. Another way to see that H2 with 
/~ = - 1/3 is quite different from the diagonal Hamiltonians is to consider the 
correlation length. In the ground states of the trivial Hamiltonians considered 
above, truncated correlation functions vanish at large enough distances, so the 
correlation length is 0. By contrast, the correlation function in the ground state of 
H2 with/3 = - t/3, 6 > 0 decays exponentially, but never becomes exactly zero. 
(The correlation length is I/In 3.) Attempting to control small perturbations of the 
/~ = - 1/3 Hamiltonian is not simply a question of doing rigorous Rayleigh 
Schr6dinger perturbation theory. In Sect. 5 we consider perturbations of 
Hamiltonians for which the ground state(s) are known and are simple tensor 
products, but the excited states need not be. Of course we must assume something 
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about the Hamiltonian we are perturbing. The condition we assume, which we refer 
to as diagonal dominance, says roughly that each diagonal entry of the unpertur- 
bed Hamiltonian is greater than the sum of the absolute values of the off diagonal 
entries in the same column. We prove a general theorem for these diagonally 
dominant Hamiltonians which says that we can add a small but essentially 
arbitrary perturbation to such a Hamiltonian and have a convergent expansion for 
the ground state(s). 

Returning to Hamiltonian H2, We show in the appendix that for/~ = - 1/3 and 
6 sufficiently small but not zero, H 2 satisfies the diagonal dominance condition. 
The general result of Sect. 5 then gives us a rigorous expansion in the shaded 
portion of region H in Fig. 1.2. (Again the shaded portion is not quantitative. Also 
note that the portion does not include the point p = - 1/3, c~ = 0.) We use this 
expansion to prove that this region is indeed in the Haldane phase by showing that 
the string order parameters are nonzero while the usual N6el order parameters 
are zero. In this shaded region we also prove that the transformed Hamiltonian 
Hz has a least four ground states. It is important to note that when/~ = - 1/3 
and 6 = 0 the ground state is highly degenerate. Our results for the shaded portion 
of Fig. 1.2 cannot be regarded as perturbation theory about this highly singular 
point. 

In previous rigorous examples of the Haldane phase, the proofs that the 
correlations decay exponentially and there is a gap depended crucially on being 
able to find the exact ground state and ground state energy explicitly. Aside from 
the obvious advantage of an explicit solution, there is the disadvantage that this 
method is not robust, i.e., if one adds a small perturbation to the model then 
typically one can say nothing about the new model. In this rigorous examples of the 
Haldane phase that we obtain in this paper, i.e. the shaded portion of region H, we 
do not find the ground state explicitly, but instead rely on perturbative methods. 
Thus the results are robust in the sense that they hold in an open region of the 
parameter space. Unfortunately, the parameter region where our result holds 
does not include any translation invariant Hamiltonians. As long as/3 is close to 
- 1/3 the ground state of H2 in the translation invariant case, 6 = 1, should be 

a small perturbation of the VBS state, so one can still hope to do some form of 
perturbation theory. However, we have not been able to use the methods of Sect. 5 
to do so. 

2. The Unitary Transformation and Z2 • Zz Symmetry Breaking 

2.1. Definition of the Unitary. In the present section we introduce the nonlocal 
unitary transformation for the S -- 1 spin chain, and discuss its relevance to the 
problem of the Haldane gap. Our initial motivation for considering the unitary was 
to explore the nature of the hidden antiferromagnetic order in the Haldane gap 
systems. The transformation then lead us to the new Z2 x Z2 symmetry breaking 
picture discussed in the introduction. At the end of Subsect. 2.2 we will argue that 
this picture gives some insight into the origin of the Haldane gap. Moreover the 
unitary leads us to a very simple variational calculation which qualitatively 
recovers the phase diagram (Fig. 1.1) of the Hamiltonian Ha. 

We consider a finite chain with L sites where L is an even integer, and denote 
the sites by i, j, k . . . . .  We impose open boundary conditions. We associate spin 
operators S~, S{, S~ with S = 1 with each site i. We will work in the standard basis 
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where the Sf are diagonal and the matrices of the spin operators are as follows. 

 (010)   (il i 01 110!) 
s ~ ' =  1 o 1 ,  s i ' =  o - ~  , s f =  o o . 

0 1 0 i 0 0 0 - 

A "configuration" o- = {o-~} will mean a choice of o-~ = - 1, 0, or + 1 at each site i, 
and ~ denotes the eigenstate with S~4~ = a ~ r  

Define N(r to be the number  of odd sites at which there is a 0, and let 6 be the 
configuration given by 

F l 6~ = exp ire o-~ cr~. 
k / = 1  

We define the unitary U by 

U ~ ,  = ( -  1)~{')r (2.1) 

If ~rg = 0 then ~g = 0. If ai 4= 0, then ~z = cr~ if the number  of nonzero crj to the left of 
i is even and ~ = - ~r~ if this number is odd. We can visualize this transformation 
in the following way. Beginning at the left end of the chain, we move to the right 
looking for nonzero spins. The first nonzero spin is left unchanged, the second is 
flipped, the third is left unchanged, the fourth is flipped, and so on. Here are a few 
examples of the action of U: 

( 0 + 0 - - 0 +  + -  + 0 - 0 ) 4 ( 0 + 0 + - 0 -  + + + 0 + 0 ) ,  

( 0 +  - 0 0 + 0 0 -  + 0 0 - ) ~ - ( 0  + + 0 0 + 0 0 +  + 0 0 + ) ,  

( +  + 0 -  + 0 0 + 0 - 0 +  + ) - , ( + - 0 - 0 0 + 0 + 0 + - ) .  

It is immediate from the definition of U that U is unitary and U -1 = U. Recently, 
Oshikawa [41] found U can be expressed compactly as 

U = [-I exp( izcS~S~) .  
j<k 

A somewhat more complicated operator representation of U was found in [38, 54]. 
If 0 is a local observable, then U O  U - 1 need not be local. The action of U on 

the Hamil tonian does, however, produce a sum of local operators. This fact can be 
confirmed easily by an explicit calculation (see Lemma 2.1 below), but let us briefly 
see why this should be true. Take, for example, the Hamiltonian (1.4) and rewrite 
it as 

x x y y Z z 
H 1 ~- Z S i S i + I  ,--~ S i S i +  1 -}- ~ S i S i +  1 -1- D(SZ) 2 

i 

where S f  = S ;  + iS~. 
I t  is clear that the term D(S f )  e is unchanged by the unitary since this term does 

not distinguish between at = + 1 and - 1. For  S~Sf+ t'~,~ to be nonvanishing, both 
cr~ and o'~ + 1 must be nonzero. If  so, exactly one of the sites i and i + 1 will be flipped. 



Hidden Symmetry Breaking and the Haldane Phase 441 

Then  the unitary changes the sign of a~a~ + ~. Therefore we find for the diagonal part  
that  U(2S~ST+, + D(ST)2)U-1 = _ 2SzSZ+~ + D(S~):. 

To  see how the off-diagonal part  transforms, note  that  the nonvanishing matrix 
elements of &+ &-+ ~ + &- &++ z are (0 0) ~ ( + - ), (0 0) ~ ( - + ), (0 + ) ~ ( + 0) 
and (0 - ) , - ,  ( - 0). It is crucial that these actions conserve the number  of the 
nonzero  a~'s or change it by two. Since the unitary only involves the parity of the 
number  of the nonzero spins left of a site, the above matrix elements do not  affect 
the unitary t ransformat ion of the spins at sites j with j > i + 1. Thus the matr ix 
element of U(S+Si-+~ +Si-S++~)U -~ are still local and are given by 
(0 0) +--, ( + + ), (0 0) +-+ ( - - ), (0 + ) *-+ ( + 0) and (0 - ) ~-+ ( - 0). 

N o w  we move  on to explicit calculations of the unitary t ransformat ion of the 
spin operators.  

(2.2) 

Lemm a  2.1. 

US~U-l = S'~exp(ire ~ S~) , 
k = j +  l 

US~U-1=exp " S S~exp ir~ 
k = j + l  

) z z US~U- ~ = e x p  ire Sk S t. 
k = l  

Proof It is convenient  to explicity write down the matrices of the following 
operators:  (001) (00 

exp(i~zS~)= 0 - - 1  0 , exp(i~zS~)= 0 - t  
- 1  0 0 1 0 

- 1  0 0 )  

exp(ireS~)= 0 1 0 . 

0 0 - 1  

We start with S~ which is the easiest, 

usju-l   = ( -  1)"(  usj oe 

= ( - 1 ) N ( ~ 6 ~ U ~ e  

0 , 

0 

The last equality follows from U~b e = ( - I ) N ( ~ ) ~  a and N(6) = N(cr). The definition 
of # implies that  

~j~P~ = exp ire ~ ak O-~b~ 
k = I  

? z 2 = ex Sk j r  
1 

This proves the third identity of (2.2). 
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Next we consider the transformation of S f  = S] + iS'j, 

u s ?  v - 1  r = ( _ 1/,~o~ v s ?  r 

= 2 1 / 2 (  __ 1)N(*)U~b~+~j, 

where the configuration 6j is defined so that (6j)k is the Kronecker delta function 
6j~. 

When 6j + i > l, we define ~+~j  to be zero. Let a' be the configuration 
obtained by applying the unitary (2.1) to ff + ~j. An explicit calculation shows 

o-~=exp " (az + 6j, 64 + 6jk) 

1 = expIirc t=~l ( a ,+  5j,) exp in ,--~1 a, ~rk+ 3jk 

=exp( i rck~ ibJk )ak+exp( i rc i~=i~h)3Jk  

f ak if k < j 
= aj + exp(iTz~i=~,9,) if k = j .  

- ak if k > j 

The second equality follows from the fact that [#l[ = l a, I. Rewriting the above 
result in terms of the spin operators, we have 

US+ U -  lcb,~ = ( - 1)i21/2r 

1 - exp(trC~k= 1 = ( -  1) j 1 +exp(iTtZ],- ] + 
2 2 

L 

I~ [ -  exp(ircS~)] r  
k = j + l  

where we have used the fact ( - 1) NC~)+ m~+~ = ( - 1) j. Note that -- exp(izcS~) is 
the operator that flips the spin at site k. The minus signs cancel out since the 
number of sites L is even, and we get the transformation of Sj + . 

I ( ) U S f  U -~ = 1 + exp(irc~2~Sf')2 S f  + 1 - e x p ( i r c ~ 2  ~ - exp i~ k=j+ ~ 1 S~ . 

Since USj- U - ~ can be obtained by taking the adjoint of the above, the transforma- 
tions of S~ and S~ immediately follow. | 

The above lemma allows us to calculate the unitary transformation of an 
arbitrary polynomial of spin operators, i.e., an arbitrary local observable. Of 
special interest is the following transformation of the products of two spin vari- 
ables. 

Corollary 2.2. 

I 1 ez U S ~ S ~ , U - I = - S ~ e x p  i~z S, Sk, i f a = x , z .  
t = j + l  
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We have used the identity exp(inS~)S~ = S~. For c~ = y, the simple trans- 
formation above does not hold. It is crucial that the right-hand side of the above 
equation is nothing but the den Nijs-Rommelse string observable. Therefore we get 
the following identity between the order parameters: 

O~mng(H) = O} . . . .  (/7), for c~ = x, z ,  (2.3) 

where H is a general Hamiltonian and /7 = U H U  -1. The ferromagnetic order 
parameter is defined by 

OF .... (H) = lim coi~(SjSk), 
I j -k l - - , oo  

where coo(.) denotes the expectation value in the ground state of/7.  

2.2. Haldane Gap and Z2 x Z 2 Symmetry  Breaking. In the present subsection, we 
shall apply the nonlocal unitary transformation to the Hamiltonians HI and H2 
defined in (1.4) and (1.5), respectively. Let/7i = U H i U  - 1 (i = 1, 2). Then an explicit 
calculation using Lemma 2.1 shows that 

/71 = Y', h, + (1 - 2)S~S~+1 + D(Sf) 2 , (2.4) 
i 

and 

/72 = ~ J i [ h i -  fl(hi) 23 , 
i 

where 

hi = - SxSX+ 1 @ S~exp{iTr(S~ + S~'+I)}S~'+ z - $7S~+1 �9 (2.5) 

Although the transformed Hamiltonians H1, H 2  a r e  sums of local operators (as we 
stressed in the previous subsection), it is evident t ha t /7 t , /Tz  have less symmetry 
than the original Hamiltonians H~,/ /2 .  We find tha t /71 , /72  are only invariant 
under rotations by ~ about each of the three coordinate axes. They are not 
invariant under a rotation by r~ about an arbitrary axis. These three rotations 
generate the discrete group Z2 x Z2. Of course, the transformed Hamiltonians 
//1, H2 will have the same symmetries as the original Hamiltonians //1, //2 since 
these operators are related by a unitary, but in general these symmetries for/71,/72 
will be nonlocal. The only local symmetry of the transformed Hamiltonian is the 
discrete Z2 x Z2 symmetry. We shall think of this group as being generated by 
the rotations by r~ around the x and the z axes, i.e., q~--+exp(i~z~,jS}')~b and 

-+ exp(irc~jS~)~. As we shall discuss in the following, these symmetries may be 
spontaneously broken. Spontaneous breaking of these symmetries can be mea- 
sured by the order parameters z ~ OF . . . .  (H) and x - OF .... (H), respectively. 

Let us investigate what happens to this Z2 x Z2 symmetry in various regions of 
the phase diagrams. First we look at the ground state of H~ in the region where the 
anisotropy parameter D is large. Then we have the following theorem which is 
proved in Sect. 4 as a special case of a general theorem. 

Theorem 2.3. I f  D is sufficiently large, then the Hamiltonian H1 has a unique 
translation invariant 9round state. In this ground state O~re~l(H1)=0 and 
Os~ing(H~) = O for  c~ = x, y, z. This ground state has a gap, and truncated correlation 

functions decay exponentially. Under the same condition on the parameters the 
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Hamiltonian t t i  has a unique translation invariant ground state and in this ground 
state O~erro(/ti) = O for ~ = x, y, z. (How large D should be depends on the value of  2. 
There are constants c, c' such that the theorem holds if D > c + c']21.) 

The above theorem states that the Z2 • Z2 symmetry of the transformed 
Hamiltonian/71 is completely unbroken for sufficiently large D. (In [60], a conver- 
gent cluster expansion for the random loop representation described in Sect. 3 was 
developed. The above theorem was proved for D - 2[2[ > 28.) Although our proof 
requires that D be large, we expect that the conclusions of the theorem are valid 
throughout the large-D phase in Fig. 1.1. 

Similarly we have the following theorem for the ground state of the 
Hamiltonian He in the region with strong bond alternation. 

Theorem 2.4. I f  fl > - 1/3 and 6 is sufficiently small, then the Hamiltonian H 2 has 
a unique translation invariant ground state. In this ground state O~6el(H2) = 0 and 
Os~tring(H2) = O f o r  o~ = x ,  y, z. This ground state has a gap, and truncated correlation 
functions decay exponentially. Under the same conditions on the parameters the 

Hamiltonian I~ 2 has a unique translation invariant ground state and in this ground 
state O~ .... (t12) = O for ~ = x, y, z. (How small 6 should be depends on the value of  ft. 
See the shaded portion of  the region labelled D in Fig. 1.2. In particular, there is 
a constant c such that when fl is near - 1 / 3  the theorem holds in the wedge 
0 < ~ < clfl + 1/31.) 

Again, we expect that the conclusions of the theorem, in particular the absence 
of any breaking of the Z2 x Z2 symmetry, are true throughout the dimerized phase 
in Fig. 1.2 although our proof only works in a subset of this region. 

Next we consider H1 in the region with strong Ising-like anisotropy. We prove 
the following theorem in Sect. 4. 

Theorem 2.5. I f 2  is sufficiently large, then Hi  has at least two translation invariant 
infinite volume ground states. In each of  these ground states we have O~+ol(Hi) = 0 

O~ Z and Ostring(Hi) = O for ~ = x, y, while Of~el(H1) > 0 and Os~ring(Hi) > 0. Under the 
same condition on the parameters I t l  has at least two translation invariant infinite 
volume ground states. In each of  them O} .... (/tl) = O for ~ = x, y and O~ .... (/li) > 0. 
(How large 2 should be depends on the value olD. There are constants c, c' such that 
the theorem holds i f2  >= c + c'lDJ.) 

Thus the ground states for large enough 2 spontaneously break the symmetry of 
rotation by rc about the x axis. Note that they break only half of the Z2 • Zz 
symmetry, since the ground states are still invariant under the rotation by ~ about 
the z axis. We expect that the same is true in the entire Ising phase in the phase 
diagram of Fig. 1.1. 

As we discussed in the introduction, the above theorems are proved by an 
expansion that can be regarded as rigorous Rayleigh Schr6dinger perturbation 
theory. Several authors have put this perturbation theory on a rigorous footing for 
various quantum spin systems, and we expect that their approaches can also be 
used to prove Theorems 2.3, 2.4, and 2.5. Our next theorem concerns the Haldane 
phase, and its proof is much more subtle. For the Hamiltonian H 2 w e  can 
rigorously establish the existence of the Haldane phase in an open region in the 
phase diagram in Fig. 1.2. Unfortunately we have not been able to do this for the 
Hamiltonian Hi. 
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Theorem 2.6. There are positive constants e, 6o and ~ such that if]fl + 1/3l < ~ and 
7]fl + 1/3l < 6 < 6 0 then the transformed Hamiltonian H2 has at least four transla- 
tion invariant infinite volume ground states. In each of  them O~ .... (H2) > 0 for 

--- x, z. Let H L denote Hamiltonian H 2 on sites - L to L with open boundary 
conditions, and let 

Tr(" exp( - flH~)) 

( ' ) , , L  - Tr(exp( - flH~)) " 

Then under the above conditions on the parameters we have 

liminf liminf liminf -S~exp  in ~, St Sk > 0 ,  
IJ-kl-*~ L~o~ ,.4oe / = j + l  l / , . L  

and there exist constants c, # > 0 such that 

lim sup lim sup [ ( SjS~)fl,  L[ ~ ce -ulj-kl  
L~oo , - , c o  

for any j and k. 

In Theorems 2.3, 2.4, and 2.5 we have convergent expansions for both the 
original and transformed Hamiltonians. In Theorem 2.6 we only have a convergent 
expansion for the transformed Hamiltonian. This expansion proves most but not 
all of the properties that should hold in the Haldane phase. For example, although 
we prove that all the N6el order parameters vanish, we do not prove that the 
original Hamiltonian has a unique ground state. This is why the statements in the 
theorem about the string order parameter and the decay of the two point correla- 
tion function are somewhat cumbersome. We cannot simply refer to "the ground 
state," but must instead use(  ),,L- 

The theorem says that Hz has at least four infinite volume ground states in at 
least part of the Haldane phase. We expect that this is true in the entire Haldane 
phase for both/41 and/42. This may seem somewhat puzzling since the original 
Hamiltonian H should have a unique infinite volume ground state. Of course our 
unitary is nonlocal, so the number of infinite volume ground states of the original 
Hamiltonian does not have to equal the number of infinite volume ground states 
for the transformed Hamiltonian. Recall that the number of infinite volume ground 
states is unchanged by the unitary when we are in the Ising, the large-D, and the 
dimerized phases. The nonlocal unitary changes the physics drastically, but only 
does so when we are in the Haldane phase! 

The four infinite volume ground states of the transformed Hamiltonian in 
the Haldane phase have an important consequence for the original Hamiltonian. 
For a long finite open chain the four lowest eigenvalues of the transformed 
Hamiltonian should be almost degenerate. For a finite open chain the original and 
transformed Hamiltonians have the same eigenvalues, so the four lowest eigen- 
values of the original Hamiltonian must also be almost degenerate. We conclude 
that the near degeneracy in the Haldane phase discussed in Sect. 1 is an inevitable 
consequence of the Z2 x Z 2 symmetry breaking. 

Moreover, one may argue that the spontaneous breaking of the Z2 xZ2 
symmetry is the origin of the Haldane gap itself. The spontaneous breaking of 
a continuous symmetry is usually accompanied by massless excitations (Goldstone 
bosons), while the breaking of a discrete symmetry is usually accompanied by the 
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appearance of a gap. Since the ground states of the transformed Hamiltonian 
spontaneously break the Z2 • Zz symmetry in the Haldane phase, it is natural that 
each of the four ground states will be accompanied by a finite excitation gap. Then 
the most natural scenario (but not the only possible one) for a finite open chain is 
that the four lowest eigenvalues of the transformed Hamiltonian are separated 
from the other eigenvalues by a finite gap which is uniform in the size of the system. 
Since the spectrum of the original and transformed Hamiltonians are identical, this 
suggests that the original Hamiltonian should have a gap above the ground state 
energy. 

2.3. The Solvable Model. In this subsection we prove that the full Z 2 x Z 2 sym- 
metry is broken in the solvable model of Affleck, Kennedy, Lieb and Tasaki [4]. 
The Hamiltonian is 

HVB S = ~/ S i ' S i + l  -~- 7 ( 8 i , 8 i + 1 ) 2  . 

This Hamiltonian is special because Si 'Si+I + 1/3(S~. Si+1) 2 = 2Pg,~+ls=2 - 2 / 3 ,  
where s=2 P~,~+I is the projection onto the states with spin 2 on sites i and i + 1. Using 
this fact the following statements have been proven for the Hamiltonian HvBs [4]. 
There is a unique infinite volume ground state. In this ground state the truncated 
correlation functions decay exponentially. There is a gap in the energy spectrum. 
For a finite open chain the ground state subspace of HvBs is four dimensional. In 
the infinite volume limit these ground states all yield the same infinite volume state. 
The Hamiltonian/~vBs for a finite chain with open boundary conditions must also 
have a four dimensional ground state subspace. However, we will prove below that 
these finite chain ground states yield four distinct ground states in the infinite 
volume limit. 

There are explicit formulae for the ground states of Hvss [4], e.g., Eq. (1.3). We 
will not need these formulae here, but we should emphasize that these ground 
states cannot be written as a single tensor product of states at each site. We denote 
the transformed Hamiltonian UHvBs U-~ by /4vas. As we will now show the 
ground states of/4vBs can be written as a simple tensor product. Using our 

---- q_ I hZl calculations above, /4vBs ~i[h~ ~ ~a, with hi defined in (2.5). The two site 
1 2 Hamiltonian hi + ~h~ is easily diagonalized, and we find that the ground state 

subspace is' four dimensional and is spanned by the states 4'k | ~bk, k = 1, 2, 3, 4, 
where 

= [[o> + , , / 21+  > ] / , f 3 ,  

= [io> - > ] / , / 7 ,  

= [io> + ,/21->]/,/7, 
: [ IO>  - , j 2 1 -  > ] / , , / ]  �9 

For convenience we work with a finite chain running from - L  to L. The 
modifications needed for other finite chains should be clear. Let #J# be the state on 
this finite chain formed by tensoring together 2L + 1 copies of 0k- It follows 
immediately from the two site calculation that these four states are ground states 
for the - L to L chain. 
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Lemma 2.7. For a finite chain with open boundary conditions the ground state 
subspace for /4VBS is four dimensional and is spanned by the states ~L, k = 1, 2, 3, 4, 
defined above. 

Proof The ground state subspaces of Hvss and/tVBS have the same dimension. In 
[4] it was proven that the former has dimension four. As noted above the states 
tp L are ground states, so we need only show that these four states are linearly 
independent. This is an easy exercise that we omit. | 

We can define four infinite volume states 091, (i02, 0)3, and 0)4 as follows. For  
any local observable O let 

COg(O) = lira (oL, o o L ) .  
L ~ c o  

For sufficiently large L, ( ~ ,  OO L) is independent of L, so the existence of the limit 
is trivial. 

In general the ground state energy per bond is defined to be 

1 
eo = inf lim 2L p(H_L. L) , 

p L~cO 

where H_L, L is the Hamiltonian for a chain running from - L  to L, and the 
infimum over p is over all states on the infinite chain. The Hamiltonian HvBs is 
unusual in that the ground state energy for a finite chain is just equal to the number 
of bonds times the lowest eigenvalue of the two site Hamiltonian. Thus eo = - 2/3, 
where - 2/3 is the lowest eigenvalue of h~ + �89 h 2. We will say that an infinite 
volume state 0) is a ground state if for every i, 0)(hi + �89 h{) = eo. Clearly each 0)k is 
an infinite volume ground state. 

Theorem 2.8. /tvBs has exactly 4 infinite volume ground states. 

Proof We first show that one can find local observables Ok, k = 1, 2, 3, 4, such that 
w~(Oj) = 6kj. An immediate consequence of this is that the 0)k are linearly indepen- 
dent. Let Pj be the orthogonal projection onto the subspace spanned by states of 
the form Z | ~bj | Cj | 4, where Z is any state on sites - L to - 1 and ~ is any 
state on sites 2 to L. So the factor ~bj | Cj lives at sites 0 and 1. Some calculation 
shows that cok(Pj) = Mkj, where 

1 i f j  = k 
Mkj = 1/81 if j #: k " 

One can check that the matrix Mkj is invertible. We define 

4 

oj= 
k = l  

Then COg(O j) = 6kj. 
Now let co be an infinite volume ground state. Using the observables Ok defined 

above we let ck = p(Ok). We will show that 

4 

CO ~ ~ Ck0)k . 
k = l  

It suffices to show that co(O) r = Y',k = ~ Ck0)k(O) for any local observable O. We can 
also assume that the observable O has II O II < 1. Choose I large enough that the 
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support of O is contained in sites - I to I. Consider the restrictions of the states 
4 co and ~k=~ Ckcok to the finite chain which contains sites - L  to L. These 

restrictions can be written as density matrices for the - L to L chain. Furthermore, 
since the expectations in co and ~k Ckcok of the Hamiltonian for this finite chain are 
equal to the ground state energy of the finite chain, these density matrices can only 
involve the ground state vectors for the finite chain. Using the lemma above this 
implies that there are four by four matrices aij and 8~j such that 

c0(o) = ~ a,~(~,~, o ~ ) ,  
i , j  

E E aij(r OOj)  . 
k i , j  

In these sums i , j  and k all run from 1 to 4. The states (pL are not orthonormal, so 
the matrices a~j and 5~j do not have all the properties they would have if we used an 
orthonormal basis, but this does not affect our proof. 

For i # j ,  1(05i, 05j)l = 1/3. Thus i 4=j implies 

which implies 

Similarly, 

I(~, L, O~Y)l < 3-2~L-~) 

o3(0) - ~. a u ( ~ ,  O ~ )  < 12.3 -2(L-i) 

Ckcok(O)-- ~ U(~i, < 12"3 
i 

The definition of the Ck and the properties of the observables Ok imply that 
co(Or) = ~k  Ckco(OI). Thus if we take O = Ol in the above bounds we find that 
[ a u -  t/ul is of order 3 -2(L-t). Thus [co(O)- ~k Ckcok(O)[ is of order 3 -2(L-l). We 
can take L as large as we like, so this proves the theorem. | 

2.4. A Variational Calculation. There is a simple variational calculation which 
qualitatively recovers the phase diagram (Fig. 1.1) of the Hamiltonian H1 and the 
Z2 x Z2 symmetry breaking picture discussed in Sect. 2.2. The success of our simple 
calculation indicates that the nonlocal unitary transformation provides a natural 
viewpoint for studying the Haldane gap phenomena. We believe that the unitary 
also provides a good starting point for developing approximate theories for the 
Haldane gap. 

Let 05 = a(0) + b(+)  + c ( - )  be a state on a single site, and ~b = @105 be the 
state on the whole lattice obtained by tensoring together copies of the state 05 at 
each site. We shall take 4~ as our variational state, and minimize the energy 
expectation value of H1. It is crucial that we use the transformed Hamittonian 
rather than the original one here. 

By an explicit calculation using (2.4), (2.5), we find 

E(a, b, c) = l (q), 

= (la12 + [b12 + icL2)-2{ _ 2Re(a2(62 + ~2))_ 2[aL2(Lb[2 + [c[2) 

- -  , ~ ( ] b [  2 - [ c [ 2 )  2 q-  D(la[ 2 + [b [  2 q-  [ c [ 2 ) ( [ b ]  2 -4- [c]2)} . 
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Fig. 2.1. Typical energy landscape encountered in the variational calculation of the ground state 
of H1. The expectation value of the energy is plotted against the variational parameters b/a and 
c/a. a. The large D phase; 2 = 0, D = 4. There is a unique minimum at the origin, which preserves 
the symmetry, b. The Ising phase; 2 = 4, D = 0. There are two minima at b/a, e/a= 4-~, 
corresponding to the breaking of half of the Z2 xZz symmetry, c. The Haldane phase; )~ = 1, 
D = 0. There are four minima, indicating the full Z2 xZz symmetry breaking 
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D 

D 

Fig. 2.2. The phase diagram for H1 obtained by the variational calculation. It contains the 
Haldane phase (labelled H), the antiferromagnetic Ising phase (labelled I), and the large-D phase 
(labelled D). This qualitatively recovers the phase didgram of Fig. 1.1 

I t  is clear that  a m i n i m u m  of E(a, b, c) is a t ta ined when a, b, c are all real. When  we 
minimize E(a, b, c), we find that  the number  of  states at which the min imum occurs, 
i.e., the number  of  var ia t ional  g round  states, can be one, two or four depending on 
the values of the paramete rs  in the Hamil tonian .  Figure 2.1 shows typical energy 
landscapes in each of the three cases. In this figure we have plot ted E(a, b, c) as 
a function of b/a and c/a. 

i) The large-D Phase: In  the region D > 4, D > 2 > 0, we find that  4~ = (0) is the 
unique var ia t ional  g round  state (i.e., minimizer  of the energy expectat ion value). 
This state does not  break the Z2 x Z2 symmet ry  at all. 
ii) The Ising Phase: In  the region 22 - D > 4, 2 > D, 2 > 0, we find two distinct 

var ia t ional  g round  states, 4) = I + ) and q5 = ] -  ). These states breaks  half  of the 
Z2 x Z2 symmetry ,  i.e., the ro ta t ion  by 1c abou t  the x axis. 
iii) The Haldane Phase: tn the region D < 4, 22 - D < 4, ,~ > 0, we find there are 
four different var ia t ional  g round  states, ~b = e l0 )  _+/?l + ), q5 = e l0 )  +/~l - ), 
where c~ = x/(4 + D - 2)~)/(8 - 2)~), ]? = x/(4 - D)/(8 - 22). They  clearly break 
the full Z2 x Z2 symmetry .  These var ia t ional  g round  states at the Heisenberg point  
2 = 1, D = 0 are the exact VBS ground  states of the solvable model  discussed in the 
previous subsection. Given the fact that  the uni tary U transforms the VBS states into 
simple tensor product  states, this coincidence is not  surprising since the SU(2) inva- 
riance requires ((ST) z )  = 2/3 and thus uniquely determines the coefficients e and ]~. 

Figure 2.2 shows the phase  d iagram that  results f rom this variat ional  calcu- 
lation. It  shows a striking similarity with the expected d iagram in Fig. 1.1. 

3. String Order Parameters and Random Loop Representation 

3.1. Main Results. In  the present  section, we s tudy the den N i j s -Rommel se  string 
correlat ion functions for S = 1 quan tum spin chains. The  main  goal here is to 
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establish the bound between the string order parameters and the N~el order 
parameters. To prove the bound, we develop a stochastic geometric representation 
of the spin chain. Relations between the string order parameters and percolation 
phenomena in the representation are also discussed. 

We consider a finite chain of length L with open boundary conditions, where 
L is a finite integer. As in the previous sections, a "configuration" o- = {o-t} will 
mean a choice of at = - t, 0, or + 1 at each site i, and 45 denotes the eigenstate 

z with St ~o = atq)~. 
We consider the antiferromagnetic Hamiltonian with uniaxial anisotropy 

x x Y Y -t- ~ S ~ S f +  1 d-  D(SZ) 2 (3.1) H = ~ S t S i + I  + StSt+l  
i 

where 2 > 0. This is precisely the Hamiltonian H1 in the introduction. We denote 
by ~OL(. ) the ground state expectation value in the finite chain. We shall prove the 
following inequalities between the string correlation function and the standard 
antiferromagnetic correlation function. 

Theorem 3.1. In the ground state of  the Hamiltonian (3.1) with )~ >__ O, we have 

COL -- S~ exp i~ S~, S~ > ICOL((-- t)li-JIS~S~)l (3.2) 
k = i + l  

for  any i, j and ~ = x, y, z. For the antiferromagnetic correlation function, we have 

COL(( -- 1)I*-JISTS} ') > 0 (3.3) 

for  a = x, y. 

By letting L--+ oo and l i - j [  ~ Go in the above inequalities, we get the 
following bounds which were claimed in the introduction. 

Corollary 3.2. The string order parmeters and the N~el order parameters satisfy 

Osatring(H) ~ I O~0~(H)I 

where ~ = x, y or z. 

Remarks.  
1. For the antiferromagnetic correlation function in the z direction, we do not 
prove the bound (3.3). This bound may be violated when D is very large. 
2. Our proof of the theorem requires open boundary conditions for some technical 
(but essential) reasons. We could prove the theorem for a periodic chain with an 
even number of sites if we knew that the (finite volume) ground state had ~ tSf  = 0. 
This can be proved ifi) 2 __> l, D __< 0, ii) - l < 2 < l , D > 0 ,  oriii) D - 2 2 > 4 .  
The proof of cases i) and it) is a straightforward extension of the method used in 
[5, 35], while case iii) is proved using the random loop representation [60]. 
3. It is straightforward to extend Our theorem to the Hamiltonian 

y y z z H = ~ Ji(S~S~[+ t + S, St+ 1 + 2tXt St+ 1) + Dt(S~) z 
i 

with site dependent couplings J,. > 0, 2~ > 0, and D~. But the proof fails if the 
Hamiltonian contains a nonnearest neighbor interaction or a biquadratic term 
(S~. S~ + ~)z. 
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3.2. Random Loop Representation. In order to prepare for the proof of the 
theorem, we develop a random loop representation for the ground state. 
The representation follows the standard philosophy of path integrals. In a finite 
system, the ground state expectation value can be realized as the zero temperature 
limit of the Gibbs state, 

Yr(Ae -t~H) 
COL(A) = lira Yr(e_~n ) . 

fl--* co 

We use the standard path space formula [8, 18, 53, 44] to represent the above 
expectation value as that of a classicaI system. From the Lie product formula, we 
have 

e - P n =  lim (T~yT~) N~ , 
N-*oo 

where the "time evolution operators" T~r, T~ are defined by 

I '  J T~,=~. 1 --~-~(S~-Si-+~ + SgS++O , 

We let Nfi be a finite even integer, and study the expectation value 

1 
- Tr(A(T~r T~)NP), (3.4) COl B,N(A) ZL,~,N 

where 

Note that we have 

Z L ,  fl, N = Tr((T~y T z ) N f l )  , (3.5) 

COL(A) = lim lim COL, p,N(A) 

for any local observable A. We shall prove (3.2), (3.3) for the expectation value 
COL, p,N(A). The resulting bounds are uniform in N, Nfl and L, and thus are also 
valid in the limits N, fi, L ~ oo. 

By inserting the complete basis ~ ,  we can rewrite ZL, a, N as 

#-(l/N) 

ZL,~,N = ~ IV[ (q~ ...... , (T~yT~)~,), (3.6) 
{a,},=o, I / N  . . . . .  ]~-- 1/N t : = 0  

where a~ is a classical spin configuration indexed by "r = O, 1/N, 2 / N , . . . ,  
B -- 1/N, ft. We impose periodic boundary conditions (in the temporal direction), 
ao = aa, and sum a~ over all the classical spin configurations for each ~. As usual, it 
is convenient to interpret i and ~ as spatial and temporal coordinates, respectively, 
of an L • fl space-time lattice. The lattice spacing in the spatial direction is 1 while 
that in the temporal direction is 1/N. Then the summation in (3.6) can be regarded 
as being over all the classical spin configuration {ai, ~} in the space-time lattice 
where o-i, ~ = 0, + 1. 

Now we develop a geometric representation of (3.6). For each space-time point 
(i, ~) with cri, ~ * 0, we draw a vertical line of length 1/N which has the point as its 
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midpoint ,  i.e., (i, �9 + 1/2N) - (i, r - 1/2N). We put  an up-going ar row on the bond  
if ~i,~ = + 1 and a down-going  a r row if ai,~ = - 1. 

Next  we expand the opera to r  Txy. When  a term in Txy acts on a basis state, each 
bond  m a y  be hit by an opera to r  SFS[+I, by an opera to r  S[Si-+I, or by 1. 
A graphical  rule to represent  these contr ibut ions  to the matr ix  element 
(4~ .... ,N, T~y~,) in (3.6) is as follows. Each horizontal  bond  ( i , z+ 1/2N) 
- ( i  + 1, �9 + 1/2N) can be occupied by a r ight-going or a left-going arrow, or  left 
vacant.  Given a graph G of such horizontal  arrows, we define opera tors  Oz(G) as 
follows. We set Oi(G)= Ss if the element in G on the bond  (i, z + 1/ 
2N) - (i + 1, r + 1/2N) is a r ight-going arrow, O~(G) = S[ Si-+ 1 if it is a left-going 
arrow, and Oz(G) = 1 if it is empty.  Then  we can write 

where G is summed  over  all the possible graphs  of hor izontal  arrows. 
We have constructed a graph  F which is a collection of vertical and hor izontal  

arrows. See Fig. 3.1 for an example  of a classical spin configurat ion on the 
space-t ime lattice, and the corresponding graph  F. (We have omit ted  the arrows in 
the figure.) N o w  (3.6) can be rewrit ten as 

ZL, p,N = Y~ w ( r )  , 
F 

where F is summed  over  all the possible graphs. No te  that  F satisfies a self-avoiding 
condi t ion in the sense that  each bond  in the lattice can be occupied by at mos t  one 
a r row in a graph  F. It  also turns out  that  the only graphs  F we should take into 
account  are those satisfying a kind of "current  conservat ion."  

L e m m a  3.3. The weight W(F) is nonvanishing if and only if, at each space-time point 
(i, z + 1/2N), the numbers of incoming arrows and outgoing arrows are identical. 

o o+. o o o + o  o 
o o + o + o o + o o  

oo o o 
+ o o §  
o +__0o0--4- 
o oo + 
+-f-o o o o o o + o  

o o + o  o 
Fig. 3.1. A typical space-time configuration of classical spins, where we regard the horizontal and 
vertical axes as spatial and temporal axes, respectively. We draw closed loops which show the 
time-evolution of the nonzero spins to construct the random loop representation 
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Proof The statement follows easily from the construction of the graphic expansion 
and the fact that ((s)i, S+(s')i) = ((s')~, Si-(s)i) = xf26s,,,+l for s, s ' =  - 1, 0, 1. | 

A graph F which satisfies the above "current conservation" can be uniquely 
decomposed into a union of loops as F = h u . . .  u ?U, where we do not allow 
a loop 7~ to have self-intersections. (An 8-shaped graph, for example, is regarded as 
two loops.) We denote by each 7~ an unoriented loop, and represent its orientation 
by an accompanying parity variable p, = _+ 1. For a reason which will become 
clear later, we use the following procedure to determine p~. Suppose that we are 
given a graph F of oriented loops. Take a loop 7~, and pick an arbitrary point (i, z) 
on it. The classical spin ~r~,~ at the point must be either + 1 or - 1. Let Ni, d{7~}) 
be the number of vertical bonds in {7~} that cross the line (1/2, ~) - (i - 1/2, J .  (We 
assume that i = 1, L are the boundary sites.) 

Lemma 3.4. 

p a  = ( - -  1)N',~({7"})~ri,~ . (3.7) 

is independent of the specific choice of the point (i, ~) on ?~. 

Proof Given (i, ~) e 7~, let (L z) be the left-most point on ?,~ with the same z. The 
loop 7~ crosses the line (j + 1/2, r) - (i - 1/2, z) an even number of times if 
~ri., = aj,~, and an odd number of times if a~,~ = - % , .  This is because the 
up-going and down-going arrows alternate in a constant r slice of the oriented loop 
~ .  All the other loops cross the line (j + 1/2, v) - (i - 1/2, r) an even number of 
times. Thus we see that 

( -  1)N~,.({~})a~,, = ( -  1)N,.({,.})%,. 

Next we shall see that (3.7) gives the same value for an arbitrary point (k, ~') 
which is the left-most point in ?~ for a fixed ~'. Note that our space-time lattice has 
a cylindrical topology, so a self-avoiding loop on it must have the winding number 
0 or _ 1. Any loop ,/r (~ + fi) with the winding number 0 crosses the line 
(1/2, z ' ) -  ( k -  1/2, ~') an even number of times. A loop ?~ with the winding 
number _+ 1 crosses the same line an even number of times if it is right of T~, and an 
odd number of times if it is left of 7~. Thus the definition of p~ is independent of 

(k, ~'). I 
Now we can rewrite the representation (3.6) as 

ZL,#,N = Z U({?~}) ~ V{~,i({p~}), (3.8) 

where {7~} is summed over all the configurations of unoriented loops, and {p~} 
over all the ways of assigning orientations to the loops. We have factorized the 
whole weight as W(F)= U({7~ }) V{~o}({p~}). The weight U({?~})comes from the 
operator T~y and the O-dependent part of T~, while Vm}({p~ }) from the 2- 
dependent part of T~. It immediately follows from the construction of the geometric 
representation that 

D N  , 1 "~N~o~ / / -  ~ ~o~,) (3.9) 

where Nho~ is the number of horizontal bonds and Nv~rt the number of vertical 
bonds in {7,}. Note that the weight U({7,}) is nonnegative because any loop 
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contains an even number of horizontal bonds. As for the other weight, we have the 
following. 

Lemma 3.5. The weight V{~.}({p.}) can be written as 

V i ~ ) ( { p ~ } ) = e x p (  ~ J~,~,p~p~, ) , (3.10) 
cG ~/ 

where the sum is over all pairs of loop indices c~, ~' including the case ~ = ~'. Here 

J~,~, = ~ x ( #  of horizontal bonds that connect 7~ and 7'~) 

for ~ = ~' and 

2 
J~.~ = ~ x ( # of horizontal bonds that connect two points on 7~) �9 

In particular, we have Je, ~, ~ 0 for any c~, c(. 

Proof. Note that, in terms of the classical spin configuration {a~, ~}, the weight can 
be written as 

'~ 2a,~a~+~,~). V~ol({p,}) -- exp - ~ , ~  . 

Suppose (i, z) e 7~ and (i + 1, z) e 7~,. Then we have Ni+ 1,~({7,}) = Ni,,({7,}) + 1, 
and hence p,p~, = - ~,,a~+ ~, ~ by (3.7). Summing up the contributions from all the 
bonds connecting 7, and 7;, we get the desired expression for J~,. | 

It should be noted that the expression (3.10) can be regarded as the Boltzman 
factor of a ferromagnetic Ising model where the parity variable of each loop plays 
the role of an Ising spin. We used a somewhat involved definition of p~ to implicitly 
perform a local gauge transformation to make the model ferromagnetic. Note that 
this gauge transformation is closely related to the nonlocal unitary transformation 
discussed in the previous section. This ferromagnetic property is essential for our 
proof of the desired bounds. 

Since the statistical weights U({?~}) , VI~ ({p~}) are nonnegative, we can make 
use of probabilistic concepts, The quantity 

1 
PrObL,~,N({7~})- U({7,}) ~ V/~,)({p~ }) (3.1t) 

ZL, ~, n {p~} 

can be interpreted as the probability that a loop configuration {7~} appears. 

3.3. Proof  of  the Bounds. We shall construct representations for the expectation 
values of various operators, and complete the proof of Theorem 3.1. First we 
investigate the order parameters in the z direction. 

Consider an observable which can be written as F({Sf}), where F is an 
arbitrary real polynomial. Inserting the complete basis into the expectation value 
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(3.4), and noting that F({ST})@oo = F({ai, o})@~ o, we get 

~- 1/iv 
O)L,~,N(F({S~})) = ZL_~,N E I~ (~)~.+.~, (T~yT~)~J(~, (T~, ,T~)F({S~})~.o)  

= E E (3.12) 

The classical spin variables {o-i, o} can be expressed in terms of p~ as 

ai, o = ( -  1)N"o({~~ o), (3.13) 

where ~(i, 0) denotes the index of the loop to which the space-time point (i, 0) 
belongs. We set P~(i, o) = 0 if (i, 0) does not  belong to any loop. 

Since the weight V{~,} ({ p~}) can be regarded as the B oltzman factor of an Ising 
model, it is natural  to define the corresponding expectation value by 

}-~dp~} F ({p~})V{~,} ({p~}) (3.14) = ' 

where F is an arbitrary function of {p~}. 
By putting together (3.4), (3.8), (3.11), (3.12), and (3.14), we finally get the desired 

random loop representation 

c%,p,N(F({Sf})) = ~, ProbL, p,N({7,})(F({cri, o})><~,}, (3.15) 

where we use (3.13) to interpret F as a function of {p~}. It is interesting that the 
right-hand-side of the above representation can be regarded as the expectation 
value in a random Ising ferromagnet, in which the parity variables {p~} play the 
role of the Ising spins, and the random loop configuration {7~} determines the 
random lattice. 

We now apply the representation to investigate the properties of the string 
correlation function. We note that 

S[ S~ cP~ o = ai o exp iTr a j, o q3~o - ST exp i)z - Ok, 0 
k = i + l  k i 

= -- ~i, o(-  1) N~'~({~~ N ..... ({~o})crj, o~) o 

= P~(i, oIP~(j, o) (lb~o �9 

Therefore the representation (3.t5) for the string correlation function becomes 
extremely simple, 

O)L,p,N --S}'exp i~ Sk Sj 
k = i + l  

= ~ PrObL,~,N({7~});P~(I,O)P~(j,O)){~,}" (3.16) 

Moreover, since < �9 �9 �9 ){~o} is the expectation value of a ferromagnetic Ising model, 
Griffiths' first inequality implies 

<P~(i,o)P~(j,o)){~,} >= 0 .  
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We see that (3.16) represents the string correlation function as a sum of nonnegative 
terms. Thus we have proved that the string correlation function, and hence the 
string order parameter in the z direction are nonnegative. 

To compare the string correlation function with the antiferromagnetic correla- 
tion function, we write down the representation (3.15) for the standard S ~ correla- 
tion function, 

(OL, 8, N( Sz  S~) = 2 ( - -  1) N'' o({,,/) + N,, o({,,}} ProbL, ~, N({Y~} ) (P~(i, O)Pa(j, 0) ){~I ' 

By taking the absolute value, we see that 

ICOL,~,N(S~ Sj)} <--_ ~ ProbL,r {~} )(p~(i, o)P~(j, o)){~} 

=COL, 8.N - S T e x p  i~ Sk Sj 
k = i + l  

which, in the limits ~, N ~ oo, becomes the desired bound (3.2) for c~ = z. 
Next we consider the order parameters in the x and y directions. By symmetry, 

it suffices to consider only the x direction. 
The string operator in the x direction can be conveniently rewritten as 

- S ~ e x p  i~ S~ S~ (-1) lJ-~l  - k ~ - -4 (S+ + Si-) P~ (Sf' + S [ ) ,  
k = i + l  

where Pk = - exp(izcS~) is the spin-flip operator which flips the spin at site k. 
We will develop a geometric representation of the following quantity: 

XL, p.N(i,j) = ZL, p, SCOL,r -- S~exp i~ S~ S~ 
k = i + l  

( _  1)lj-il p-1/N 
- 4 ~ 2 (ep ....... (Tx, T~)eP~) 

x e ~ ,  (r~,Tz)(S? + S f )  Y, P~ (S; + S/)e~o . 
k = i +  l 

We follow every step in the previous subsection to get graphs of vertical and 
horizontal arrows, and represent the above quantity as 

XL, 8, N(i,j) = ~ W'(F) . (3.17) 
F 

The "current conservation rule" stated in the Lemma 3.3 is still valid except for 
those space-time points on which the string operator directly acts. At the points 
(i, 1/2) and (j, 1/2), there can be an extra in-coming or out-going current because 
the creation-annihilation operators S • act here. When a current crosses (vertically) 
through the horizontal line (i + 1/2, 1/2) - (j - 1/2, 1/2), the direction of the 
current is reversed because the spin-flip operators act here. Besides these excep- 
tions, any graph F with nonvanishing weight W'(F) must conserve the current. 

An allowed graph F can again be decomposed as F = w w ~1 w . . .  ~ ,  where 
each {7,} is a loop, and w is a walk connecting the space-time points (i, 1/2) and 
(j, 1/2). We assume {7~} and w are unoriented and non-self-intersecting (Fig. 3.2). 
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CO 

(i,1/2) J ~ (/,1/2) 

x._/ 
Fig. 3.2. A graph that contributes to the calculation of the string correlation function in the 
x direction. Note that the direction of the current is reversed when it crosses the spin flip line 
indicated by the shaded line 

Note that the weight W'(F) is again nonnegative. This is most easily seen by noting 
that the sign from Txy associated with the walk w exactly cancels out the factor 

We further follow the previous subsection to associate a parity variable p~ 
(e = 1 . . . .  , N) with each loop, and a parity variable Po with the walk w. Even 
though the topology of the graphs are different from the previous subsection, the 
construction (3.7) works consistently in this case also. This is because the anomaly 
caused by the current sources at (i, 1/2) and (j, 1/2) is precisely canceled by the 
spin-flip on the line between the sources. 

Therefore we arrive at the representation 

Xc,~,s(i , j )  = ~ tU({w,?,})[ ~ V{~.,ol({p,}), (3.18) 
{w,~) {po} 

where U, V are again defined by (3.9), (3.10), and Lemma 3.5 is still valid. Thus 
V can be regarded as the Boltzman factor of a ferromagnetic Ising model. 

In order to compare the string correlation function with the standard antifer- 
romagnetic correlation function, we now repeat the same construction for the 
quantity 

YL,r = ZL, a, NCOr, a,N(( - 1)li-Jl sxs~) 

( _  1)U-~l ~-~/N 
- Z [ I  (~ .... ,N,(rx, Tz)Q)  

4 {~} r=l/N 

x(a,  ..... (T~T~)(S + + Si-)(S 7 + S7)~oo). 

It is now straightforward to get a representation 

YL, t3, N(i,j) = Z IV"(/"), 
F 
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where the weight W"(F) is nonnegative. This proves the nonnegativity of the 
antiferromagnetic correlation function (3.3) claimed in Theorem 3.1. We also note 
that the graphs F summed over here are in one-to-one correspondence with those 
summed over in (3.17). 

Although an allowed F can again be decomposed as F = w vo 71 vo . . .  7N, the 
construction of the parity variables {p=} does not extend to this situation. Our 
definition (3.7) gives inconsistent values of p= for a loop that crosses the line 
(i + 1/2, 1/2) - (j - 1/2, 1/2). For such a loop, we chose an arbitrary point on it 
and apply (3.7) to define p~. 

Because of this arbitrariness in the definition of p=, Lemma 3.5 need not hold. 
As a consequence, the final representation for YL, ~, rv(i, j) becomes 

YL, e,u(i,j)= ~ [U({w,y~})] Z IT(,~,,,}({p~}), (3.19) 
{w,~o} {p~} 

where 

The interaction f~,~, satisfies If~,=,l < J,,=, with J~,,, defined as in (3.10). The 
effective Ising model of the parity variables {p~} may not be ferromagnetic in this 
situation. 

Lemma 3.6. 

Proof Note that the quantities in the inequality are partition ffmctions of Ising 
models. By using the identity exp(Jo-) = cosh(J) + a sinh(a) for ~r = __ 1, we 
expand the partition functions in standard high temperature series. Comparing the 
terms corresponding to the same graph using IJ,.,=,l < J~,=,, we get the desired 
bound. | 

By inserting the above bound into the representations (3.18) and (3.19), and 
noting that there is a one-to-one correspondence between the walk-loop configura- 
tions, we get the desired inequality in Theorem 3.1. 

3.4. Geometric Interpretation of the String Order. In [58, 60] a stochastic geomet- 
ric picture of the Haldane gap was developed. The point of this work was that the 
three phases (the Ising phase, the large-D phase, and the Haldane phase) of the 
Hamiltonian (3.1) can be fully characterized by using the notion of percolation. In 
the present subsection, we briefly see how the string order parameters are related to 
percolation phenomena. 

Theorem 3.7. 
bound 

where 

The string correlation function in the z direction satisfies the lower 

co - Sfexp in S~ S > Prob(i+-+j), 
k = i + l  

(3.20) 

Prob(i+-~j) = lim ~ Prob({7=})z((i, 0), (j, O) E 7~ for some ~) 
L, fl, N--+oa {y~} 
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denotes the probability (in the L, fl, N ~  oo limits) that the two space-time points are 
connected with each other by a single loop. Here )~(event) is one if the event is true and 
zero if it is false. The probability of the basic event {7~} is defined in (3.11). 

Proof The inequality follows by taking only those loop configurations {?~} where 
the two sites are connected, and noting that (in such a configuration) one has 
P~(i,o)P~(j, o~ = 1. | 

An interesting lower bound for the string order parameter OsZtring follows from 
(3.20). If we define the percolation probability Po~ of our random loop system by 

P ~ =  lira Prob(i~-+j) 

we have 

O~,i=g > P ~  �9 

The inequality is reminiscent of the picture developed in [583 that the percolation 
in the random loop system (formed by + and - states) generates the alternating 
order of + and - in the S = 1 quantum antiferromagnet. It is expected that the 
percolation takes place in the Ising phase and the Haldane phase, but not in the 
large-D phase. 

The string correlation function in the x (or y) direction cannot be bounded by 
the probability of a simple event. However the geometric representation developed 
in the previous subsection suggest an interesting connection between the percola- 
tion phenomena and the behavior of the string order parameter in the x (or y) 
directions. 

In a graph contributing to the quantity XL, p, u(i,j), the space-time points (i, 1/2) 
and (j, 1/2) become sources of flux carried by the bonds. Since flux is conserved (or 
changes by two at the spin-flip line) in all the other points, these two points must be 
connected by a random walk w consisting of the + and - states. It is likely that 
the percolation of the loops formed by + and - is necessary for the string order 
parameter in the x direction to become nonvanishing. 

However this is not the only geometric condition required. To see this, we 
consider different geometric objects. Given a classical configuration on the space- 
time lattice, we draw a vertical line of the unit time length through each point with 
0 on it. When drawing the horizontal lines, we use the same rule as before but omit 
its arrow. Figure 3.3 shows the same configuration as in Fig. 3.1, and the corres- 
ponding graph constructed in the new way. There is again a current conservation 
rule which says that each space-time point is attached to an even number of lines. 
A graph contributing to ZL, p, u consists of unoriented closed loops formed by the 
0 states. 

If we apply the new geometric construction to the quantity XL, p, u, we find that 
the points (i, 1/2) and (j, 1/2) again become sources of 0-lines. Thus we must have 
a random walk of 0 states connecting these points. This suggests that the percola- 
tion in the new geometric system of 0 states is also necessary to get a nonvanishing 
string order in the x direction. It is expected [58] that the percolation of the 0-loop 
system takes place in the large-D and the Haldane phase, but not in the Ising phase. 

In the previous section, we have characterized the Haldane phase by non- 
vanishing string order parameters in both the z and x directions. The above 
observation reveals that this characterization is perfectly consistent with the 
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Fig. 3.3. The same classical spin configuration as in Fig. 3.1 is shown, but now the random loops 
formed by 0 spins are drawn. In the Haldane phase the + loops (drawn in Fig. 3.1) and the 
0 loops (drawn here) both percolate 

percolation picture in [58], where the Haldane phase was characterized by the 
coexistence of percolation of + loops and percolation of 0 loops. 

4. Rigorous Perturbation Theory for Quantum Spin Systems 

4.1. Statement of Results. In the present section we study Hamiltonians that are 
small perturbations of Hamiltonians which are trivially diagonalizable. When the 
unperturbed Hamiltonian is a sum of independent terms and the unperturbed 
ground state is unique and has a gap, we can allow an essentially arbitrary finite 
range perturbation if it is sufficiently small. In this case we prove there is a unique 
translation invariant ground state, a finite correlation length and a nonzero 
excitation gap. For  unperturbed Hamiltonians which have multiple ground states 
related by a symmetry group, we can allow perturbations which preserve this 
symmetry. We prove that each of the unperturbed ground states gives rise to 
a ground state for the perturbed model. These ground states have a finite correla- 
tion length and a nonzero excitation gap. 

Theorems 2.3, 2.4 and 2.5 follow from the results of this section. While these 
applications are all one-dimensional, the perturbation theory of this section and 
the following section is valid in any number of dimensions. Some examples of 
applications of the general theorems to models other than the spin 1 chains are 
briefly discussed below. As we emphasized in the introduction, other authors have 
done similar rigorous perturbation theory for a variety of quantum spin systems. 
See the introduction for references. 

We consider an arbitrary translation invariant infinite lattice whose sites are 
denoted by i, j . . . . .  On each site we have a finite dimensional state space. A "site" 
in the present section need not be an atomic site of a quantum spin system. For 
example, a pair of strongly coupled (atomic) sites in the dimerized Hamiltonian H 2 

in the introduction is treated here as a single "site." 
We consider the following two classes of systems. 
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A Unique Ground State. The models in this class have translation invariant 
Hamiltonians of the form 

H =  V + s P ,  

V =  ~ V~, P =  ~ P~, (4.1) 
i i 

where V~ acts only on the spin at site i. We assume that Vii restricted to site i has 
a unique ground state. We normalize Vii so that the ground state energy is 0, and 
denote by g the first nonzero eigenvalue (i.e., the gap) of V~. The only conditions on 
the perturbation P are as follows. Po is an arbitrary hermitian operator whose 
support is a finite set including the origin 0. Pc is obtained by translating Po so that 
the origin is mapped onto the site i. 

B: Multiple Ground States. The models in this class have translation invariant 
Hamiltonians of the form 

H =  V + e P ,  

V =  Z V~j, P =  ~ P,,  (4.2) 
i , j  i 

where i,j is summed over all the nearest neighbor pairs of sites. As in class A, the 
perturbation Po must have finite support, and Pc is the translation of Po. We assume 
that there is an orthonormal basis ~(~)xd for the single site i and an integer "l.t:# S u  = 1 

m < d, such that V~ i is diagonal in the basis {e~ ) | e(~0} and the ground state 
subspace of V~j is spanned by {e(~ ) | ~u'cJ)xs,=l,...,,,. If we normalize the ground 
state energy to zero, we have 

= 0  if # = # ' < m  (4.3) 
(e~)| e(~:;)' V~je~)| e("~)) > g otherwise 

for some positive constant 9. The unperturbed model with e = 0 has m ground 
states 1#) = @~e~ ) with # = 1 . . . . .  m. Finally, we require that V and P are 
invariant under a symmetry group that acts transitively on the m unperturbed 
ground states of the model. 

In the following theorems and throughout the present section, an infinite 
volume ground state co( ) will mean a state for the infinite system which satisfies 

co(A*[H,A]) > 0 

for an arbitrary local operator A. This is a fairly standard definition in the 
mathematical literature. Note that we used a slightly different definition when we 
discussed the ground states of/-TvBs in Sect. 2. See the remark in [4, page 493] for 
the relation between these two definitions. 

Theorem 4.1. Consider a model in class A. There is a positive constant eo such that 
for any e with l el _-< 80 the model has a unique translation invariant infinite volume 
ground state. 

Theorem 4.2. Consider a model in class B. There is a positive constant eo such that for 
any e with 181 < 80 the model has (at least) m distinct translation invariant infinite 
volume ground states. When e = 0 these ground states equal the states I#) = @ie(~ ~). 
I f  the Hamiltonian H has additional symmetry under which the unperturbed ground 
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states ]#) are invariant, then the m ground states are also invariant under this 
additional symmetry. 

We denote by co(A) the expectation value in the above ground state of a local 
observable A. We also define the ground state energy per spin by 

1 
Eo = - lira lira Tr e -~n (4.4) 

A~oo fl--+oo ~ 

where H denotes the Hamiltonian of the corresponding finite system with A sites. 

Theorem 4.3. Consider a model in class A or B. There is a positive constant eo such 
that for any e with [e[ < eo we have the following. 

i) The ground state energy per spin Eo is an analytie fimction of the parameters in 
n~. 
ii) Let A be an arbitrary local observable. The expectation value ~o(A) is an analytic 

function of the parameters in Pi. 
iii) Let A and B be arbitrary local observables which contain the origin of the lattice 
in their supports, and let Bi be the operator obtained by translating B so that the 
origin is translated to the site i. Then we have 

[co(ASi) - co(A)og(B)[ < CAC B exp( - Ii1/~o ) 

(in one of the m ground states in the case of class B) where Iil is the graph theoretic 
distance between the origin and the site i. CA and CB are positive constants that 
depend on A and B, and ~.o is a finite constant that does not. Thus the ground state has 
a finite correlation length. 
iv) There is a positive constant 7 such that if A is any local observable with co(A) = 0 
then 

co(A* [H, A]) >_ ?co(A*A). 

(In the case of class B, co is any one of the ground states of Theorem 4.2.) Thus the 
ground state has a nonzero excitation gap. 

Remarks. 
1. One can extend class B so that the interaction V includes general n-spin 
interactions which allow the standard Peierls argument. 
2. We have restricted ourselves to translation invariant models. But our expansion 
and the convergence proof work in models without translation invariance as well. 
4.2. Applications. The theorems above are quite general. Before proving them, we 
list some examples to which they apply. 

i) Large-D Hamiltonian. Consider the Hamiltonian H1 in the introduction and its 
unitary transformation /41. These Hamiltonians fall into class A if we regard 
E D(SZ.] i , ,, as an unperturbed Hamiltonian V and the rest of the Hamiltonians as 
perturbations. Thus we can show the convergence of the rigorous perturbation 
theory when the uniaxial anisotropy D is sufficiently large (compared to 1 and 2). 
This proves Theorem 2.3. 

ii) Large-2 Hamiltonian. We again consider H~ and H1, but we now regard 
+ ~IZS~S~+ 1 as unperturbed Hamiltonians. Then H1 and H1 fall into class B. The 

perturbation theory works when 2 is positive and sufficiently large (compared to 
1 and D). This proves Theorem 2.5. 
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One might ask whether we are able to prove the existence of a N6el order in the 
ground state of HI when 2 > 0 is not large, but D is negative and its absolute value 
is large. In this region, we should regard ~2S~S~+1 + D(ST) 2 as the unperturbed 

v S x S  x Y Y is not small in norm, but is Hamiltonian. The perturbation/_., i i+l + S~Si+I 
effectively small since there are no matrix elements between the ground states. One 
must always go through an excited state (which costs an energy roughly equal to 
I DI) to get from one ground state to the other, and this fact should assume the 
convergence of the cluster expansion. This model does not belong to class B, but it 
is not difficult to modify the methods of this section to handle this model. 

iii) Dimerized Hamiltonian. First we describe a general class of models which can 
be handled by our theorem. Consider an arbitrary translation invariant lattice, and 
let/~ = {(i,,j,)} be a set of bonds (indexed by n) with the property that each site in 
the lattice belongs to exactly one of the bonds in B. Let V, be an arbitrary 
Hamiltonian which acts only on the spins at sites i,,jn and has a unique ground 
state. Consider an arbitrary Hamiltonian of the form 

H = Z V , + e P  

which is of finite range and invariant under any translat ionthat  leaves/3 invariant. 
Such a model falls into class A if we regard each bond in B as a "site." Thus it has 
a unique ground state, a finite correlation length and a gap, provided that ~ is 
sufficiently small. 

In a chain, we let /~ = {(2n, 2n + 1)},~z. Consider the Hamiltonians H2 and 
/q2, and let V, be the parts of the Hamiltonians corresponding to the interactions 
between sites 2n and 2n + 1. Then H2 and Hz fall into the general class described 
above. This proves Theorem 2.4, 

Note that there is no reason to limit ourselves only to dimerized models. 
A "site" can be a collection of any number of atomic sites, provided that the 
Hamiltonian on the "site" has a unique ground state. 

iv) Strong Magnetic Field. Let Ho be any finite range translation invariant 
Hamiltonian. Then the Hamiltonian 

H = h ~ S ~ + H o  
i 

falls into class A if we regard Ho as a perturbation. The rigorous perturbation 
converges for sufficiently large magnetic field h, and we can show that the model 
has a unique ground state and a gap. Note that we do not have to make any 
technical assumptions (other than finite range) on the unperturbed Hamiltonian 

Ho. 

4.3. Polymer Expansion. To prove the theorems, we first develop a polymer 
expansion. Our expansion is based on the standard idea [8, 18, 44, 53, 61] of 
expanding the exponential of an operator by using the Lie product formula. We 
first develop the expansion for a finite volume A. All the estimates will be uniform 
in the volume. An orthonormal basis for the state space of A is given by k~JiEa~kti ~ "9(i) 
with 1 _--< #i _--< d. We will use q~ to denote elements of this basis. 

Consider a model in class B. In the following H will denote the sum of the terms 
in the Hamiltonian whose support lies entirely in A. A model in class A can be 
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treated in a similar (and simpler) manner. A simple variant of the Lie product 
formula says that 

Tr(exp( -- fill)) = lira Tr 1 - ~ P e -(1/my 
N~co  

Here 4~ is shorthand for q51/u, qSz/m.. .  , ~b~. Each (~k/U is summed over the 
orthonormal basis defined above in which the Vi or V~j are all diagonal. Because of 
the trace we have q~o = qSp. The product over t is over the values 1/N, 2 /N  . . . .  ft. 
(We assume for convenience that Nfl is an integer.) 

We further expand this expression by expanding the 1 - (e/N)P term. At each 
time t we can either take one of the terms in - ( e / N ) ~ P ~  or simply the 1. So for 
each time t we can either choose a site i (which labels Pi) or no site at all. Let n be 
the number of times at which we choose a site, let tl ,  t2 . . . . .  t, be the times and let 
i l ,  i 2 ,  . . . , i n be the sites. We refer to a choice of ~b, tl, �9 �9 �9 t,, i l , . . . ,  i, as 
a configuration and denote it by C. The weight of C is zero unless ~bt-~/u = q~t for 
t r {tl, t2 . . . . .  t,}. In this case the weight is 

W(C) = [ I  (Or, e-(l/mv(o,) c~tj-i/u, - ~ Pij(~,j �9 (4.5) 
t j = l  

We now have 

T r ( e x p ( - f i l l ) )  = lira y, W(C) .  
N ~ o  C 

Next we define the support, s(C), of a configuration C. Loosely speaking, the 
support is the part of the space time picture that is not in the ground state. To get 
an expansion in the N ~ oe limit, and to take advantage of the usual polymer 
expansion methods, we introduce a "blocking" in the time direction, z is a time 
scale that will be chosen later. We divide the time axis [0,/?] into intervals 
[ ( / -  1)z, Iz]. For convenience we assume that fl is a multiple of z. P~ has finite 
support, i.e., it acts nontrivially only on a finite set of sites. For  each of these sites we 
take the unit hypercube in the spatial lattice which is centered at the site, and define 
S~ to be the union of these hypercubes. So S~ is a "thickened" version of the support 
set of Pi. For  a model from class B, the support set will consist of plaquettes of the 
form (i,j) x [ ( / -  1)z, lz] and "boxes" of the form Si x [ ( / -  1)z, lr]. 

Given a configuration C, the plaquette ( i , j )x  [ ( l -  1)z, Iv] is in s(C) if ~bt 
restricted to sites i and j is never in any of the m ground states of V~,j for 
( l  - 1)z <_ t N Iv. The box S~ x [ ( / -  1)r, lz] is in s(C) if i equals one of the i~ with 
tym [ ( / -  1)z, lv], i.e., if the operator Pi appears during the time interval (In a model 
in class A, we replace plaquettes by (time-like) bonds of the form {i} x [(l - 1 ) z ,  Iz]. 
The bond is in s(C) if q~t at site i is never in the ground state for (l - 1)~ <_ t N lz.) 

The most important property of the above construction is the following. 

Lemma 4.4. I f  the space time site (i, t) is not in s(C) then ~t at site i is in one o f  the 
ground states. 
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Proof Let 1 be such that t E [(I - 1)z, lr]. The plaquette (i,j) x [(1 - 1)z, lz] is not 
in s(C) since (i, t) r s(C), so qS, at site i must be in a ground state for at least part of 
the interval [(l - 1)~, lz]. But to excite ~bt out of this ground state into one of the 
excited states, one must hit it by an off-diagonal element of the Hamiltonian, which 
is the perturbation eP. This is impossible because no boxes intersect with the bond 
i x [ ( l  - 1 ) r ,  l ~ ] .  I 

In a model in class B, a space time point not in s(C) is in one of the ground 
states, # = 1 . . . . .  m. It is clear from the definition that two space time points not in 
s(C) with different # are separated by a wall of s(C), Thus all the space time sites in 
the same connected component of the complement of s(C) have the same ground 
state. Therefore (in class B) we extend the definition of the support set s(C) so that it 
also specifies the ground state indices # for each connected component of the lattice 
sites not in s(C). We will refer to this as simply a "ground state assignment." 

Let X be a possible support set, i.e., a set which equals s(C) for some C. Define 
the weight of X to be 

W(X)  = lim ~ W(C) .  (4.6) 
N ~ o o  C:s(C)=s 

Then we have 

T r ( e x p ( -  fill)) = ~ W(X)  . 
x 

The following two properties of the weight W(X)  enable us to use the standard 
machinery of convergent polymer expansions. 

Lemma 4.5. (factorization): Let X be a possible support set and let X = Z1 vo Z2 
vo . . .  u Z, be the decomposition of X into connected components. (We regard two 
elements in X as connected whenever they share a common space-time site.) A connec- 
ted component Zi is called a polymer. In class B, a polymer carries information about 
the ground state assignment. Then 

W(X)  = h W(Z,). (4.7) 
i = 1  

Proof  Let C be a configuration with s(C) = X.  Let Ci be the configuration which 
agrees with C on Zi and equals the appropriate ground state off of X~- Then 
s(Ci) = Zi. Thus there is a one to one correspondence between C with s(C) = X and 
C 1 ,  C 2 ,  . . . , C n with s(Ci) = Zi. Furthermore, since we have normalized V so that 
the ground state energy is zero, 

w(c)  = ~[ w ( q ) .  
i=1 

This proves the lemma. | 

Lemma 4.6. Given # > 0 we can choose r and eo so that I~k <= ~o implies 

I W(z)l < e - ~ l x l  . ( 4 . 8 )  

For a model in class A, I ZI is the number of bonds and boxes that make up Z. For 
a model in class B, IZl is the number ofplaquettes and boxes in Z plus the number of  
bonds in Z which are associated with sites in the boundary of A. 
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We will prove Lemma 4.6 in Sect. 4.5. Here we give a heuristic explanation of 
why it should be true. If a plaquette (i,j) x [(l - 1)z, Iz] is in s(C) then the part of 
W(C) that comes from the diagonal terms in the Hamiltonian should contain 
a factor at least as small as e -~ This is small if we take z large enough. If a box 
appears in s(C), then there is a corresponding factor of ~ in W(C). Thus there is 
a small factor associated with each plaquette and box in s(C). We still must control 
the sum over all C such that s(C) = )/. In particular the factor of ~ associated with 
a box can occur anywhere in the box, so it is really a factor of ev. Thus we will have 
to first choose z large enough that e -g~ is small, and then choose e small enough 
that ez is small. 

Lemma 4.5 implies that 

Tr(e-~H) = Z I~I w(zi ) .  (4.9) 
Z I , . . . , Z n  i = 1  

The sum is over polymers Z~ which do not overlap with each other. For  a model in 
class A, (4.9) is the desired polymer expansion. For a model in class B there are 
constraints on the Z~ arising from the ground state assignments. We return to the 
expansion for these models later. 

We can develop a similar polymer expansion for the (unnormalized) expecta- 
tion value of an arbitrary local operator A. For a model in class A this is given by 

Tr(A e x p ( -  fill)) = 2 WA(X) . 
X 

W,4(X) can be decomposed as 

WA(X) = WA(z(A)) ( I  W()fi), 
i = 1  

where ;g(A) is the collection of polymers (in X) that overlap with the support of A at 
time t = 0, and )/1 . . . .  , )/, are the rest of the polymers in X. The weight W()/i) is the 
same as that appearing in (4.7). Corresponding to the bound (4.8), the weight 
Wa ()~(A ) ) satisfies 

J WA(Z(A))I ~ II A II e -.(l~(A)l ~.) (4.10) 

with the same g, where VA is the number of sites in the support of A. Suppose that 
A is a product of two local operators B, C whose supports do not overlap. If z(B) 
unioned with the support of B and z(C) unioned with the support of C are disjoint, 
then we have 

Wa(z(A)) = W~()(.(B)) Wc(Z(C)) . 

Now let us discuss a model in class B. In the polymer expansion (4.9), there is 
the global constraint that the ground state assignments of the )/i must be com- 
patible. We will eliminate this constraint by introducing equivalence classes of 
polymers. We will construct the m different ground states by modifying the 
Hamiltonian at the boundary. Define for a volume A 

H ~ =  Z V , , j + e  ~ P i +  ~', P~'. 
i , j  ~ A i: supp(Pi) c A i ~ c~A 



468 T. Kennedy and H. Tasaki 

The sum over i, j is over nearest neighbor pairs in A. 0A denotes the sites in A which 
have a nearest neighbor that is not in A. P~' denotes the orthogonal projection 
whose kernel consists of the states which are in the ground state/~ on site i. We let 

co~,~(O) = Tr(O exp ( -  flH~))/Tr(exp ( -  flH~)) 

and ~ou(O) = lima ~ ~ limr co3,p(O). Note that we let fl ~ oo first. (The existence 
of the limits will follow from the expansion.) For  models in class B we modify the 
definition of the support, s(C), of a configuration C. If a site at the boundary of A is 
never in ground state/~ during the time interval [(l - 1)~, lz], then we include the 
line segment i x [(l - 1)z, Iz] in s(C). 

Let X be a support set including the ground state assignment, and let 
X = Z1 u Z2 u . . .  ~ X, be its decomposition into a union of polymers. Each Zi 
inherits a ground state assignment from X in a natural way. We think of the 
configuration as being in ground state # outside of A. Then each polymer Z has 
a unique exterior component; we will refer to its ground state as the exterior 
ground state. If Zi completely encloses )Q then the exterior ground state of )(j is 
determined by Zi. This forces us to introduce equivalence classes in the following 
way. 

The symmetry group acts transitively on the m ground states, so there are 
unitary operators U, which leave V and P invariant and send ground state 1 into 
ground state /z. If )~ and Z' do not intersect 0A, then we define )( and X' to be 
equivalent if the following are true. First Z and Z' must be identical as geometric 
objects. Let # and #' be the exterior ground states of Z and )(. Second, the ground 
state assignment of )( must be equal to that obtained by applying U u, U 7 a to the 
ground state assignment of )~. This definition is an equivalence relation since 
U,I UT~ ~ U~ UT~ a = U,~ U~-~ ~ . The key point is that if we are given an equivalence 
class 2 and a ground state for the exterior of 2, then there is a unique element of 
2 whose ground state on the exterior is the specified one. If either of )( or X' 
intersects OA, then we define them to be equivalent only if they are identical. 

To eliminate the global constraint from (4.9), we must show that two support 
sets from the same equivalence class have the same weight. At first glance this may 
appear to be a trivial consequence of the symmetry assumptions. (In the classical 
case it is.) However, we had to choose a basis to do the path space expansion and 
that breaks the symmetry. If we can find a basis for which the action of the unitary 
operators from the symmetry group is simply to permute the basis vectors among 
themselves, then the desired equality is indeed trivial. Unfortunately, in the 
example we are most interested in, the Haldane phase studied in Sect. 5, this is not 
the case. We prove the following lemma in Subsect. 4.6. 

Lemma 4.7. I f  Z and Z' belong to the same equivalence class, then 

w ( x )  = w ( z ' ) .  

Let X be a support set which appears in the expansion of Tr ( e x p ( -  [3H~)). Let 
X = ){~ w . . .  w Z, be its decomposition into connected components. As before we 
let )~i denote the equivalence class of Zi. Recall that the equivalence class )~i and the 
exterior ground state of X~ together determine )(~. Since the ground state outside of 
A is fixed to be #, Z1,. �9 �9 Z, determines gl, �9 �9 �9 Z,. The Xl . . . . .  )(, had to satisfy 
the global constraint that their ground state assignments were compatible. There is 
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no such constraint on the equivalence classes. Using Lemma 4.7 we get the desired 
polymer expansion 

Tr(exp(--  3H~)) = 2 ( I  W(~), 
)~1 . . . . .  ~. i = 1  

where the only constraint on the )~ is that they are disjoint. 
For  a model from class B, the expansion for the expectation value of an 

observable A is a little trickier than in class A. As above we picture the support of 
A as being at t = 0. The observable A need not be invariant under the symmetries. 
Thus the weight of a polymer that intersects the support of A will depend on the 
exterior ground state of the polymer. If there is another polymer that completely 
encloses the first polymer and the support of A, then removing this polymer could 
change the weight of the first polymer. We define z(A) to be the union of the 
polymers that intersect the support of A and any polymers which completely 
enclose the support of A. The weight WA(x(A)) is then well defined since the ground 
state outside of the space time lattice is fixed. It is important to note that if the 
polymer Z encloses the support of A and it also encloses the polymer Z', but Z' does 
not intersect the support of A or enclose the support of A, then we do not include )( 
in z(A). (To do so would be a disaster when we tried to bound WA(Z(A)).) 

We must check that we have not enlarged z(A) so much that we cannot bound 
WA(x(A)) as before. For any integer n the number of polymers with I)~l = n which 
enclose a fixed site is bounded by clnc~ for constants cl and c2. (To see this fix 
a line of sites which goes through the fixed site. Any such polymer much contain at 
least one site on this line within a distance n of the fixed site.) Thus a bound similar 
to (4.10) holds. 

4.4. Proofs of Theorems. Let us now outline how to prove the main theorems. We 
shall be rather sketchy here because most of the arguments are standard. 

A standard combinatoric argument shows that the number of all the possible 
polymers which include the origin 0 of the space-time lattice is bounded from above 
by c Izl with some finite constant c. It then follows from the bound (4.8) that, for 
a given positive constant q < 1, ther.e is e0 such that the following bound holds in 
a model with e < ~o. 

}-', [ W(x)[e Izl < q .  (4.12) 
X ~ 0  

We rewrite the polymer expansion in the last section as 

T r ( exp ( - -3H) )  = 1 + 2 ~ W ( X l ) . . .  W()~,), 
n > l  X~ . . . . .  ;~,~ 

where the second sum is over the polymers that satisfy the "hard core condition" 
)~ c~ Xs = 0 for i + j. Then a standard result in rigorous statistical mechanics is that, 
when we have the condition (4.12), we can take the logarithm of the above 
expansion [14, 31], 

log Tr(exp( - fill)) = Z Z W(~(1)... W(z,)Oc(Zl . . . . .  Zn), (4.13) 
n >  l X I , . . . , X ,  

Oc(X1 . . . . .  X.) is the connected part of the hard core interaction. The definition of 
~r can be found in [14]. ~r . . . . .  X,) is nonvanishing only when the union of the 
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polymers ) ~ , . . . ,  Z, is connected. If we denote by I, the n th term in (4.13), it satisfies 
the bound 

t 
]I,,I N - q " l A [ f  , (4.14) 

/'/ 

where ]A] is the number of sites in the (space) lattice A. 
Therefore we get an expansion for the specific free energy. 

1 I. 
- - l o g  Tr(exp( - /3H))  = - 

I A ~ f i  ' 

which is uniformly absolutely convergent in the limits A, fl ~ ~ because of the 
bound (4.14). This proves the analyticity of the energy stated in part i) of Theorem 
4.3. 

The rest of the statements are proved by developing similar convergent expan- 
sions for various expectation values. For the finite volume Gibbs state 

we have the expansion 

O)A, fl(A) = Z 

Tr(A exp( -  fill)) 
C~ = Tr (exp( -  fill)) ' 

WAz(A)) w ( z ~ ) . . ,  w(z,)~,o(~, z~, �9 . . ,  z , ) ,  
n_-> 0 x(A),7~, . . .  ,X, 

where the n th term in the sum is bounded from above by CAq'/n, where CA is 
a finite constant independent of A and ft. Therefore we get a uniformly absolutely 
convergent expansion for the expectation value in the A, fi ~ ~ limits. The 
existence of an infinite volume ground state in Theorem 4.1 and the analyticity of 
the expectation value in Theorem 4.3 ii) follow. We construct the m infinite volume 
ground states of Theorem 4.2 by using the Hamiltonian which includes the 
boundary term H~. The proof of part iii) of Theorem 4.3 using the convergent 
expansion is standard. 

To prove part iv) of Theorem 4.3 we first consider the finite volume Hamilton- 
ian H~. Let Eo, El,  E2, �9 �9 �9 be its eigenvalues counted according to multiplicity. 
Then 

T r e x p ( -  fiH~) = ~ e x p ( -  fiE,). 
? l = 0  

The expansion implies that 

Tr exp( - fiH~) = e x p ( -  f i f +  O(e-~))  

for some cons tan ts fand  ?~. V is positive and does not depend on A. (The terms in 
O (e-~)  come from terms in the expansion that go all the way around the periodic 
time axis.) Comparing these two expressions for the trace, we see that Eo is a simple 
eigenvalue and El -- Eo > 7. Let COA u = lim~-, 0o co~,~, so co~ is just expectation in the 
ground state of H~. By expanding in eigenstates of H~, it is easy to show that 
E1 - Eo > 7 implies 

co~(A* [H~, A]) >_- 7[co~(A*A) -leon(A)] 2] 

for any local observable A. Letting A ~ oe we obtain part iv) of Theorem 4.3. 
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Finally we show how to prove the uniqueness of the translation invariant 
ground state mentioned in Theorem 4.1. Let Q0 be an arbitrary local observable, 
and Qi its translation. We consider the translation invariant Hamiltonian 

H(&) = H + 6 •  Qi- 
i 

Let E(&) be the ground state energy per spin defined as in (4.4). The main ingredient 
of the proof is the following "Feynman's relation" proved in [-37] by using 
a theorem of Bratteli, Kishimoto and Robinson [13]. 

Lemma 4.8. Let co(.) be an arbitrary translation invariant ground state of the 
Hamiltonian H. When E(&) is differentiabIe in & at & = O, we have 

c o ( Q o )  = d . 

We will prove the differentiability of E(&) for an arbitrary local observable Qo- 
Then the lemma implies the uniqueness of the translation invariant ground state. 
To prove the differentiability, we note that the Hamiltonian H(&) is in class A if we 
think of fQ~ as part of the perturbation eP,. So we have a convergent expansion for 
E(&) if 6 is sufficiently small. It follows as above that E(f) is analytic in a neighbor- 
hood of 6 = O. 

4.5. Convergence Estimates. To facilitate the control of the sum over all C such 
that s(C) = Z in the definition of W(Z), we introduce a "comparison Hamiltonian" 

/~ = _ 1 Z / ~ i .  (4 .15)  
"C i 

/~i is obtained by replacing^the matrix elements of Pi by their absolute values. For 
a configuration C we let W(C) be the weight we get by using/4 in place of H in 
Eq. (4.5). Clearly, IY(C) > 0. It is important to note that H contains a factor of 1/z 
rather than the e found in H. 

Lemma 4.9. 

f fz(c)  ___< e 
C:  s(C) = Z 

k is a constant that depends on the operator Pi, but not on e or z. 

Proof of  Lemma 4.6 given Lemma 4.9. In the proof we assume we have a model 
from class B. A model from class A requires some trivial changes in notation and 
terminology in the proof. Let C be a configuration with s(C) = Z. Let p(C) be the 
number of plaquettes in s(C), b(C) the number of boxes in s(C) and d(C) the 
number of bonds in s(C) which are associated with boundary sites. (So [X] 
= p(C) + b(C) + d(C)). Recall that a plaquette (i,j) x [(l - 1)z, It] is included in 

the support set if V~i is never in one of its ground states during the time interval. 
A bond i x [(I - 1)z, Iv] with i ~ ~A is in s(C) if the state at i is never in ground state 
# during the time interval. These definitions, hypothesis (4.3) and the addition of 
the boundary term ~ i ~ a P f  to the Hamiltonian imply 

H(  ,oxp[ 
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We also have 

Ot j -~ /N ,  ~ P i ~ O t j  =(181~)" h (Pt j -1/N'~-NP~j(~ �9 (4.17) 
j=l j = l  

Noting that n > b (C)  and assuming that lelT < 1 and g < 1, we conclude that 

I W(C)l _-< 8-~(~(c)+d(c'(181~) br ffr 

We now take 

1 
80 = - e  -~ (4.18) 

so 181 < 80 implies 18IT < e-% and thus 

I w(C)l ___< 8 -g~t~l f f q c ) .  

Using Lemma 4.9 this implies 

] W(X)I =< e -g~lzt+klzl 

If we take z > (k  + # ) /g  and define 8o as in (4.18), then this proves the lemma. | 

P r o o f  o f  L e m m a  4.9.  Consider the restriction of Z to t = 0. This gives us a subset Xo 
of the spatial lattice. Z also gives us an assignment of a ground state to each 
connected component of the complement of Zo. Let Fl0~o) be the projection onto 
the states which are in the ground state specified by Xo outside of Zo. Let 

I~(X) = {i: Six [(I - 1)z,/z] c Z} �9 

So I(z) is the set of sites which are in X at time 0. I,(x) specifies the boxes which are 
in X during the time interval [ ( / -  1)z, lz]. Let 

z,= E i. 
i e h(Z) 

We claim that 

~" lYV(C) < T r ( H ( Z o ) e - n l e  - u 2  . .  �9 e - n ~ ' )  �9 (4.19) 
C: s (C)  = z 

In the path space expansion of the right side, every term is nonnegative. Each term 
in the left side appears in this expansion, so the claim follows. 

We now bound the right side of (4.19) by using 

Tr(AB) < II B I] Tr(A), 

where A is a positive operator. We take A = H(Zo) and B = e - m e  -H2 �9 �9 �9 e -~ '~.  
Tr(HOCo) ) is just the dimension of the range of this projection, which equals d", 
where n is the number of sites in Zo and d is the dimension of the state space at 
a single site. To bound ]l B II we use II Hi ]l --<_ II~001 tl/~o I[, to conclude 

l i e - m e - H 2 . . ,  e-m,'ll =<exp F ~ IIH, II 1 < exp(lz[ IIPoll) �9 | 
L I = I  
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4.6. Symmetry. In this subsection we prove Lemma 4.7. In many models in class 
B we can choose the basis {e~ )} so that the elements of the symmetry group merely 
permute the basis vectors. In this case Lemma 4.7 is trivial. To handle the general 
case we develop a representation for the weight that does not involve a choice of 
basis. 

For a set I of sites in A, define 

U(I) = Z VO + eZ P' " 
i , j  i~I  

The sum over i, j is still over all nearest neighbor pairs in A. Next we define 

(e-~'a))~= ~ (--1)l~l-IJle -~'(J) .  (4.20) 
J : J = I  

Lemma 4.10. For vectors 4 and ~, the path space expansion of(4,  (e-~mI))c~p) is 
given by taking the expansion of(4, e-~Ia)O) and only keeping the configurations in 
which the number of times Pi appears is zero if i r I and is at least one if i e L 

Proof. (This is a standard inversion trick.) Define L(I) to be the sum of the 
configurations in the path space expansion of (4, e-~U(IhP) in which the number of 
times P~ appears is zero if i f  I and is at least one if i e I. We must prove that 
(4, (e-~Ua))~) = L(I). Clearly we have 

(4, L(K). 
K : K = I  

Thus 

( 4 '  ( e - ~ H ( I ) ) c t f i )  =--- 2 (--  1)l'[-Isl(4, e-'H(J)O) 
J : J c l  

= Z (-1) Z L(K) 
J : J = l  K : K = J  

= Z L(K) Z (--1) I ' l-lsl  
K : K = I  J : K c J c l  

A little thought shows that the sum over J vanishes unless K -- I, and so the above 
just equals L(I). | 

Using the above definition and lemma we can write down an expression for 
W(Z) which does not involve an explicit path space expansion. Let 1 be an integer. 
Define 106 l) to be the set of sites i such that the "box" Six [(l - 1)~, lz] is in Z. So 
I0~, l) tells you where the operator Pi appeared during the time interval (l - 1)v to 
lv. I f / r  Uj~,(x. z)SJ, then the state at site./during [(l - l)z, lz] is unchanged. Define 
E06 I) to be the set of these sites i such that the state is not a ground state and 
Gu( Z, l) to be the set of these sites such that the state is ground state #. Now let 

H()~, l) = H(I(x, l)) 

P(Z, I )=  l~ P~ f i  I ]  P?'U, (4.21) 
i:i~E(z,l) #=1 iEGu(z,I ) 

where p~,u and P~ are the projections onto the #th ground state subspace at site 
i and onto the subspace of excited states at site i respectively. 
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Lemma 4.11. 

W(Z ) = Tr [P(z, 0)( e - ' (z '  1))r 1)( e-u(z' 2))~... P(Z, fl/z - 1)(e -/~(x' ~/r �9 

Proof The equation for wOO follows from the previous |emma and the defini- 
tions. [ 

Proof of Lemma 4.7. The operators P~ and (e-U(z'~))c are invariant under 
the symmetries U~U71. The operators P~'" transform according to 
U~U71P~,u(U~UTZ) -1 = P~'~ with a = v i f# = p. Lemma 4,7 now follows easily 
from Lemma 4.11. ] 

5. Perturbation Theory About Diagonally Dominant Hamiltonians 

5,1. Statement of Results. In this section we will do rigorous perturbation theory 
for a third class of Hamiltonians. This class will include the dimerized Hamiltonian 
H 2 in the shaded portion of region H of the phase diagram in Fig. 1.2. The results 
of this section will prove Theorem 2.6. In particular we show that in this region of 
the phase diagram all of the string order parameters are nonzero in the ground 
state of the original Hamiltonian, and the transformed Hamiltonian has at least 
four infinite volume ground states. Thus the full Z2 xZ2 symmetry is broken. 

In the previous section we perturbed Hamiltonians that were completely trivial 
in the sense that we could choose a basis in which all the eigenstates of the 
unperturbed Hamiltonian were simple tensor products. In this section we will 
perturb Hamiltonians for which the ground state(s) are simple tensor products, but 
the excited states need not be. Of course, we require some condition on the 
unperturbed Hamiltonian. The condition we assume, which we refer to as diagonal 
dominance, says roughly that each diagonal entry of the unperturbed Hamiltonian 
is greater than the sum of the absolute values of the off diagonal entries in the same 
column. 

The models we perturbed in Sect. 4 had a correlation length of zero. In this 
section, the models we perturb may have a correlation length of order one, We will 
introduce a blocking in the space direction(s), with the scale for the blocking chosen 
much larger than the correlation length. Using the diagonal dominance condition 
and the comparison Hamiltonian technique introduced in the previous section we 
will prove that the polymer expansion for this blocked system converges. 

C: Diagonally Dominant Hamiltonians. This class of models has a translation 
invariant Hamiltonian of the form 

H =  V + e P  

v =  v .j, P =  Z P, . (5.x) 
i, j i 

The sum over i,j is over pairs of nearest neighbor sites. Here V~.~ acts nontrivially 
only on sites i and j. The perturbation Po acts nontrivially only on a finite set 
containing the origin 0, and Pi is the translation of Po by i. The diagonal dominance 
condition will only involve V. Note that the perturbation P is essentially arbitrary 
(except for the symmetry requirement described below), but of course e must be 
small. 
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We assume that there is a basis ~o(~)H for the state space at a single site and { ~ / t  J g = l  

an integer m < d such that the ground state subspace of V~, j is spanned by e~ ) | e~ J) 
for # = t, 2 , . . . ,  m. I t  is important  to note that we do not require that this basis be 
orthogonat or normalized. We normalize V so that its ground state energy is zero, 

Fix a nearest neighbor pair i,j and let vu~,o, be the matrix of V~,j with respect to 
the basis e~ ) | e~ ). More precisely, 

d 

V,.,,j. e (0o | e~ ) = E vu~, p- e(~ ) @ e(~ j) . (5.2) 
# , v = l  

Since the ground state energy is zero, we have v,~. op = 0 for p = 1, 2 . . . . .  m and 
any/~, v. We say that V is diagonally dominant if 

Y, Iv.~ o,~1 < v o o , ~  (5.3) 
k~v: #v + pa  

for any pa except p a  = 11, 2 2 , . . . ,  mm. (For these exceptional values of po-, both 
sides of the inequality are zero.) This condition depends on the basis chosen, so it 
may hold in one basis but not in another. 

Finally we require that V and P are invariant under a symmetry group that acts 
transitively on the ground states of the models. 

It is not hard to see that every Hamiltonian in class B of the previous section is 
in class C. In this section we will prove for Hamiltonians in class C all the results 
that we proved for Hamiltonians in class B in the previous section. 

Theorem 5.1. Consider a model in class C. Then there is a positive constant eo such 
that for 1el < So all the conclusions of Theorems 4.2 and 4.3 hold. 

5.2. Applications. Our main interest in this class of Hamiltonians is that it includes 
Hamiltonians which are in the Haldane phase. Before considering this application 
we will present a simpler application that is of interest in its own right, 

i) The Spin 1/2 Anisotropic Heisenber 9 Ferromagnet. In this application we take 
the spin to be 1/2. The unperturbed Hamiltonian is 

v,,.j = - [ ,~ (~T~}  - 1) + G x %  ' + G ~ } ]  

with 2 > 1. This Hamiltonian has two ground states: ( + + ) and ( - - ). Their 
energy is zero. The nonzero matrix elements of V~, j are 

( + - I v~,;I + - ) = ( - + v~,jl  - + ) = 22,  

( + - j v ~ , j j - + ) =  ( -  + v~,jl + - )  = _ 2 .  

Thus this Hamiltonian is diagonally dominant if 2 > 1. Note that the excited states 
cannot be written as simple tensor products. The perturbation P is arbitrary with 
the obvious caveat that the closer 2 is to 1, the smaller we require e to be. For  
example, we could take the perturbation to be S~{S~ so that the total Hamiltonian 
becomes a completely anisotropic Heisenberg Hamiltonian in which all three 
coupling constants are different. 

ii) The Haldane Phase. The unperturbed Hamiltonian we consider is the 
Hamiltonian we obtain by applying the unitary transformation of Sect, 2 to the 
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Hamiltonian H2 with fl = - 1/3 and 6 small but nonzero. (If 6 equals zero, then the 
model is trivial but the ground state is highly degenerate. The perturbation theory 
we are considering cannot be regarded as a perturbation around ~5 = 0.) To put this 
model in the general framework above, we think of two adjacent sites 2i and 2i + 1 
that are strongly coupled as a single site. Site i in the general framework of class 
C will correspond to sites 2i and 2i + 1 in the Hamiltonian Hz. So the dimension 
d is 9 rather than 3. 

By changing the Hamiltonian in some trivial ways we can take the unperturbed 
Hamiltonian to be given by 

1 ^ S - 2  ^S=2 1 ^S 2 
Vi, i+ l = ~ P2/T, 2 i + l  -]- ~5P2i+1,2i+ 2 q- ~ P27~-(-2,2i+ 3 , (5.4) 

^S=2 U -1DS=2 U with s=2 = Pj, i+ 1 denoting the projection onto the states where Pj, j+I *j , j+l 
whose restriction to sites j and j + 1 has total spin 2. The nontrivial numerical fact 
is that for 6 < 0.033 we can find a basis in which this Hamiltonian is diagonally 
dominant. We show this in the appendix. 

The perturbation can be anything which preserves the Z2 x Z2 symmetry of the 
transformed Hamiltonian. In particular the shaded portion of region H of the 
phase diagram in Fig. 1.2 is covered. We can also add a small amount  of the crystal 
field term (S~) 2 or make the isotropic terms Si 'Si+l  and (S i .  S i + l )  2 slightly 
anisotropic. 

Note that the region of the Haldane phase in which we have rigorous control 
does not include any translation invariant Harniltonians. For  6 = 1 and fl = - 1/3 
the ground states of the transformed Hamiltonian are simple tensor products, but 
we have not been able to find a basis in which the Hamiltonian is diagonally 
dominant. (If we could then the results of this section would allow us to conclude 
that the translation invariant Hamiltonian was in the Haldane phase for fl in 
a small neighborhood of - 1/3.) 

5.3. Development of  the Expansion. The tensor products ",~JiEA/~ e (~ with 1 =</h =< d 
form a basis for the state space for the finite volume A. We denote a choice of 
{/~}~A by K, and the corresponding basis vector by eK. For  an operator O we 
define its matrix ele/nents, O(K, K'), with respect to this basis in the usual way, 
OeK = ~K, O(K', K)er,. For reasons having to do with the convergence of the 
expansion, we will construct the ground states in a slightly different way from the 
previous section. If Ko is a basis state which has nonzero overlap with the ground 
state, then we can compute the ground state expectation of O by 

<O> = lim [exp( - flH/2)O e x p ( -  flH/Z)](Ko, Ko) (5.5) 
p ~  exp(-- flH)(Ko, Ko) 

Our basis is not orthonormal, but we can still develop the path space expansion as 
we did in the last section. We must simply interpret expressions like (~b,, O~b~,) as 
the qSt, q~t, matrix element of the operator O. 

Let D~,j be the diagonal part of V~,j and O~,j the off diagonal part of V~,j. Let 
D = ~i, jDi, j, 0 = ~_,i,~Oi, j. The sums are over nearest neighbor pairs. Using 

1 e -a~ = lim 1 - (O + eP)e -(~/mD 
N--* ct3 
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we obtain 

{I 1 t 1 e-Pn(Ko, Ko)= lira ~ I~ t 1 - ~ ( O  + eP) e -(~/N)o (Kt-1/s,  Kt) 
N ~ c O  K1/~,K21N,. . .K~-IlN 

[ '  J = lim ~, ~ 1 - ~ ( O + e P )  (Kt_I/N, Kt)e-(1/N)D(Kt, Kt). 
N ~ o v  KI/N, K2/~, . K ~ - i m  

Each of K1/N, K2/N . . . .  K~-I/N is summed over the basis. The product over t is 
over the values 1/N, 2/N . . . .  , ft. We take K~ = Ko in the above. Keeping in mind 
that 1 - 1/N(O + eP) = 1 - 1IN ~i  jOi j - e /N~iPi ,  we continue the expansion 
by choosing for each time t either the' 1 term, one of the 0~, j terms or one of the eP~ 
terms. Let n be the number of times we choose an 0~, j term and m the number of 
times we chose an eP~ term. Let h ,  t2 . . . . .  t, be the times at which we choose an 
O~,j term, and let (i~,J0, (i2,j2) . . . .  , (i,,j,) be the particular terms chosen at these 
times. Likewise let s~, s2 . . . . .  sm be the times at which we choose an eP~ term and 
let kl, k2 . . . .  , k, be the terms chosen. A choice ofK1/N, Kz/N . . . . .  Kp, t~ . . . . .  t,, 
( i l , j 0 , . . . ,  (i,,j,), st . . . .  , s,,, kl . . . .  ,km will be referred to as a configuration 
and denoted simply by C. The weight, W(C), of the configuration is zero unless 
Kt-1/N = Kt for all t other than t~ . . . .  , t,, s ~ , . . . ,  sin. In this case 

fi 1 
W(C) = Vi e-t~/N)'(K,, K,) - ~ O,~,j~(K, _~/N, K~,) 

t p = l  

~= ~ - ~ ePk~(K~ - l/N, Ks~) �9 (5.6) 

We divide the space time lattice into large blocks that are L units wide in each 
of the space directions and z units long in the time direction. We take the block 
boundaries to run through lattice sites. This means that some lattice sites are on the 
block boundaries, but all the bonds in the space direction will lie in exactly one 
block. (r is the length in physical units, not the length in terms of the number of 
lattice sites. As always, the lattice sites should be thought of as being separated by 
1/N in the time direction.) The constants L and z will be chosen later. (They will be 
large.) 

Next we define the support s(C) of a configuration C. It will be made up of 
a subset of the blocks introduced above. First we look at the off diagonal operators 
O~.j~ and Pk~ which appear at times t v and s ,  respectively. Any block which 
contains part of the support of one of these operators is included in s(C). In the 
remaining blocks the basis state at each site must be constant as a function of time. 
Any of these blocks which contains a nearest neighbor pair of sites that are not in 
one of the ground states of V is added to s(C). 

To construct the m different ground states, we add the boundary term ~i  ~ 0A P~ 
to the Hamiltonian as we did in the previous section. As before P f  is the orthogonal 
projection whose kernel consists of the states which equal e~ ) on site i. Since the 
basis is not orthogonal, the matrix of P f  need not be diagonal. The action of P f  in 
our basis is given by 

p~ef  ) = ~0 if v = ,tt 
( e(~ ~  ) if v 4 # '  
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where %, ~ = (e(0, ~u~176176 e~)). By the symmetry, }l e(~ > l] = I[ e(~ ~ II, and so %, ~ < 1. 
Thus P f  is diagonally dominant in the basis. We treat Pp in the expansion just as 
we do the E, j terms. If a block which includes sites in OA has not already been 
included in s(C) and one of the boundary sites is in a state other than the ground 
state # for the entire time interval, then we include this block in s(C). 

As in the previous section the weight of a possible support set is defined to be 
the sum of the weights of all the configurations that have that support set. We 
decompose the support set into its connected components as we did in Sect. 4.3. In 
the next section we will prove that the weight of a connected component X is 
exponentially small in the number of blocks in )~. Given this estimate the develop- 
ment of the expansion and the proof of Theorem 5.1 proceed as in the previous 
section with one small twist. 

In the proof of part iv) of Theorem 4.3 we made use of the expansion 
for Trexp(--fl/-/A"). In this section we only develop expansions for 
exp ( - f i I I3 ) (Ko ,  Ko) for any basis element K0. For  a fixed volume A these 
expansions imply 

Tr e x p ( -  fiH~) = ~, e x p ( -  fiH~)(Ko, go) = c e x p ( -  fif + O(e-'~)) 
Ko 

for some cons tan t s f  7, c with ? > 0. We cannot conclude that c -- 1 as we had in 
Sect. 4, and so we cannot conclude that the ground state eigenvalue is simple. 
However, the above estimate shows that for small e there is a gap between the 
ground state eigenvalue and the next eigenvalue. When e = 0 we know the ground 
state eigenvalue is simple, so it must remain simple for small e. The proof of the 
existence of the gap now proceeds as in the previous section. 

5.4. Proof of Converoence. The convergence of the expansion will be established 
by comparing things with what we would get if we used the following "comparison 
Hamiltonian." The diagonally dominant assumption implies that we can find 
constants g > 0 and 0 < p < 1 such that 

p-1 ~ Iv,~,p,I _-< vo~,p~ - g (5.7) 
g, v: ~uv ~ pc~ 

for any pa except p~ = 11, 22 . . . . .  ram. Let 12i, j be the Hamiltonian we get from 
V~, j as follows. Replace the off diagonal matrix elements by - p-1  times their 
absolute value. Subtract g from the diagonal elements except for the diagonal 
elements that are 0. Note that the choice of g and p insures that I~ is diagonally 
dominant. Let fii be the Hamiltonian we get from P~ by replacing every matrix 
element by its absolute value times - p-a .  Finally, let 

1 
= Z Pi,  + )Z p '  (5.s) 

i , j  

It is important to note that there is a 1/~L in front of the/~ term, rather than an e. 
(e will be small compared to 1/rL.) 

Lemma $.2. Given # > 0 we can find z, L and ~o such that for le] < Co, 

] W(Z)[ _-< e x p ( -  #[)fl) �9 (5.9) 

/-/ere Z is any connected support set, W(Z) is its weight, and I Z] is the number of blocks 
in X. 
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How large we must make T and L and how small we must make eo depends on 
the constants g and p which we chose above using the definition of diagonal 
dominance. This lemma with large enough g implies that the usual polymer 
expansion converges. 

Proof of Lemma 5.2. For a configuration C we let n(C) be the number of off 
diagonal matrix elements in C which come from V~.~ terms, and let re(C) be the 
number of off diagonal elements which come from Pi terms. We let t(C) be 1IN 
times the number of nearest neighbor pairs i,j such that the configuration is not in 
a ground state of V~, j at time t. Then we let 

#(C) = (erL) "(~ p,(O exp ( - gt(C)) ; (5.10) 

Let /~(C) be the weight of C we get using the Hamil tonian/J .  Then we have 

I W(C)l = #(C) W(C). 

The proof of the lemma follows fairly easily from the following two lemmas. 

Lemma 5.3. Given ~ > 0 we can choose ~ and L large enough and ~o small enough so 
that for any configuration C with s(C) = )5 we have 

Lemma 5.4. 

#(C) < exp( - ~lzl) �9 (5.11) 

W(C) ~ exp(klZl),  (5.12) 
C: s ( C )  = x 

where k is a constant that depends only on the perturbation Po. In particular it does 
not depend on e, L or z. 

Proof of Lemma 5.3. The key to the proof, and to the expansion of this section, is 
the following fact, The operator Vi, j has no matrix elements between the ground 
state and the excited states. Thus if a region of the space-time picture is in the 
ground state, it can go into an excited state only by a matrix element from Pi or by 
an excitation moving in from the right or the left. In other words, every connected 
component of the excited region of a configuration C must have a factor of 
e associated with it. If one of these connected components extends a distance of at 
least L in the space direction then #(C) will contain a factor of pL. If it extends 
a distance of at least z in the time direction, then #(C) will contain a factor of e -t~ 
Since p < 1, g > 0 and z and L are both large, pL and e -t0 are both small. 

For  a block b, we let ~ denote the union of b and the blocks that touch it in 
the sense of having at least one space time point in common with it. (Note that 
the number of such blocks depends only on the dimension of the lattice.) 
Let bz, b 2  . . . .  , b, be blocks in Z such that bl, b 2  . . . .  , b, do not have any 
blocks in common. We will show later that we can choose these blocks so that 
n _-> (1/M)Iz[ + 1, where M is an integer that depends only on the number of 
dimensions of the lattice. First we will show that we can associate a factor of 
(ezL) l/q, p~ or e -~ from #(C) with each b-~. The integer q is the maximum number of 
blocks that the support of a single P~ can intersect. This will prove the lemma with 

given by 

e-~t~ = max { (eo.c L)l /q, pL, e-O~} . 
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We can make a as large as we like by first choosing L and z and then choosing Co. 
Consider ~.  If it contains a matrix element from some Pi, then there is a factor of 
ezL in #(C). Each factor of ezL is associated with at most q blocks, so we have 
a factor of (ezL) 1/~ for ~. If there is no matrix element from some Pi in ~,  then the 
excited part of C must have a connected piece extending between bl and the exterior 
o f~ .  Thus the part of#(C) that is associated with b~ must be at least as small as the 
larger of pL and e-~~ 

To complete the proof we must find bl, b z , . . . ,  b, such that n > 1/MIz[ + 1 
and ~ and ~ have no block in common. Pick bl in Z. Letffl be bl unioned with the 
blocks that touch b-1. Let M be the number of blocks in bl. (If we have one spatial 
dimension, bl is a five block by five block rectangle centered at bl, and M = 25.) 
Now pick a block b2 in g \ bl, Continuing, we let bi be a block in Z\ Q) I-211 ~ - Since/~ 
contains M blocks, )~\_~17_11 ~ cannot be empty until i - 1 is at least (1/M)[)~f. If 
i > j, then b~ is not in bj. Hence ~ and ~ cannot have any blocks in common. ] 

Proof of Lemma 5.4. Throughout the proof we let n denote fl/~. Let Ira(Z) be the set 
of sites i such that the support of P~ during the time interval ((m - 1)z, roT) lies 
entirely in X- We then let 

1 p~. (5.13) n , , = z Z  ~ , J + ~  Z 
i i ~ l m ( . ~ )  

Note that Hm contains a factor of r compared to / ] .  We claim that 

lira sup ~, fie(C) < (e-nle-n~ . . . e-n~)(Ko, Ko) . 
N ~ o3 C: s ( C )  = "~ 

The claim follows from observing that every term in the left side appears in the path 
space expansion of the right side, and all the terms in this expansion are non- 
negative. We can bound the above by 

(e-H~e -n= . . . e-~")(K, Ko) 
K 

since each term in this sum ~s nonnegative. 
Let/)i, j and 0~, ~ be the diagonal and off diagonal parts of I?~, j, respectively. The 

definition of diagonal dominance and the choice of the constants g and p, i.e., 
inequality (5.7), imply that for any K', 

~ K I I - I ~ o ~ , j I ( K , K ' ) e  -(~/N)E',fi'j(K''K') 

= 1 - ~  ~ d~,j(K,K') e -(~/~IL~'~(K''K'~ 

[ ~ ^ , I _ ( 1 / N ~ , . ~ & ~ ( K , K , , <  1 1  D~,j(K,K') e = . (5.14) <= 

Defining 

M = sup ~ t6i(K, K ' ) ,  
K :  K 
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we have 

1 ~ [1---1N (,,~ d,,J+-~,~(zfi,)](K,K')e-('/N)S"~&~(K"~') 
< 1 + ~ II,,(z)IM < exp II,,(z)IM 

for any K'.  Repeated applications of this bound to the usual path space expansion 
lead to 

~(e -me-a= ' "e -U") (K 'K~  f i  exp(l l I"(x)IM) ,,=1 

Now (l /L) y',,  II,.(z)l < clzl,  where c is a constant that depends only on the size of 
the support  set of Po. I 

Appendix 

In this appendix we will give a basis in which the Hamiltonian H2 with fl = - 1/3 
and cS sufficiently small is diagonally dominant. We start by defining nine states on 
two sites. For  i = 1, 2, 3, 4 we let 

where qSi are the states on the site defined in Sect. 2.3. We then let 

0 s = l + - > ,  

0 6 = l - + > ,  

07 = [1 + 0> + 10 + > ] / , j 2 ,  

08 = I-I- 0> + l0 - > l / X ,  

09 = [21005 +1 + + > + l - -  
Note that these states are not all orthogonal. The first four states are just the 
ground states of the transformed Hamiltonian on two sites with fl = - 1/3. Thus 
these states are the states one obtains by applying the unitary transformation of 
Sect. 2 to the four states on two sites which have total spin equal to 0 to 1. The last 
five states above are the states one obtains by applying this unitary transformation 
to the states on two sites which have total spin 2. Thus they too are eigenstates of 
the transformed Hamiltonian on two sites. Finally we define ek = COk for 
k = 1 , . . .  4 and ek = Ok for k - -  5 , . . .  9. Since the basis does not have to be 
normalized we are free to choose the constant c as we like. To test for diagonal 
dominance we must compute the matrix of V~, i+ 1 as defined in Eq. (5.4) in Sect. 5.2. 
V is diagonally dominant if inequality (5.3) holds. We find that with c -- 0.161, V is 
diagonally dominant for 6 __< 0.033. 
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Note added in proof. The details of the proof for the final bound of Theorem 2.6 (the exponential 
decay of the usual two point correlation) are not given in this paper. A sketch of the proof can be 
found in [38]. In [38], Matsui proves that the model treated in Theorem 2.6 has a unique ground 
state and a gap, results that we do not prove in the present paper. 


