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Abstract. Weak matching rules for a quasicrystalline tiling are local rules that 
ensure that fluctuations in "perp-space" are uniformly bounded. It is shown 
here that weak matching rules exist for N-fold symmetric tilings, where N is any 
integer not divisible by four. The result suggests that, contrary to previous 
indications, quasicrystalline ground states are not confined to those symme- 
tries for which the incommensurate ratios of wavevectors are quadratic 
irrationals. An explicit method of constructing weak matching rules for N-fold 
symmetric tilings in two dimensions is presented. It is shown that the 
generalization of the construction yields weak matching rules in the case of 
icosahedral symmetry as well. 

I. Introduction 

The discovery of quasicrystalline phases of certain alloys raises a fundamental 
question in the theory of solid structure. Icosahedral and decagonal quasicrystals 
have been observed, as have octagonal and dodecagonal samples with a lesser 
degree of translational order, but no other noncrystallographic symmetries have 
been observed to date. Is there some a priori principle that prohibits them? 

A useful way to approach the question is to represent quasicrystals as space- 
filling arrangements of rigid tiles of two or more types, where it is assumed that a 
good approximation to the actual atomic structure is obtained by decorating each 
tile of a given type with the same atomic motif. It is well known that 
quasicrystalline tilings of arbitrary symmetry can be constructed using a variety of 
algorithms [1]. The mere existence of a tiling does not imply, however , that it is a 
plausible template for a real atomic structure. It may be that certain tilings or even 
entire symmetry classes can be eliminated from consideration on physical grounds. 

One criterion for physical relevance is locality. In real solids, the interaction 
between atoms decays rapidly with their separation, so a physically plausible 
model Hamiltonian should not contain terms depending on the relative positions 
of widely separated units. In a tiling model, where the energetics are encoded in 
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rules determining which configurations of tiles are allowed to occur, the rules must 
be local in the sense that the configurations specified are of bounded size. One is 
immediately led to ask whether tilings of a given symmetry exist with the property 
that their long-range translational order can be ensured by local rules. A negative 
answer would imply that ordered quasicrystals of that symmetry could not exist in 
the absence of long-range interactions. If, on the other hand, there do exist local 
rules which single out a class of ordered tilings, then one might expect to observe 
real quasicrystals of that symmetry. 

Tilings that support "perfect matching rules," which ensure that any infinite 
tiling is a perfectly ordered quasicrystal of a particular local isomorphism class, are 
known to exist for the cases of 5- and 10-fold symmetry [2, 33, 8- and 12-fold 
symmetry [4], and icosahedral symmetry [5, 63. The fact that the incommensurate 
ratios associated with these symmetries are all quadratic has been emphasized by 
Levitov in ref. [7], where the question of which 2D tilings support local rules is 
explicitly addressed. In the course of demonstrating why quadratic irrationals are 
special for 2D tilings, Levitov found it useful to introduce two less stringent types 
of matching rules, which he called "strong local rules" and "weak local rules." 
Strong local rules ensure perfect quasicrystalline order, but the tilings consistent 
with the rules are not all locally isomorphic. Weak local rules allow bounded 
deviations from perfect quasicrystalline order (in a sense that will be made precise 
in the next section). Levitov showed that undecorated N-fold symmetric rhombic 
tilings obtained by the canonical projection technique (see below) do not support 
strong local rules for any N other than 5, 8, 10, or 12 (or the crystallographic cases 
2, 3, 4, and 6). He also showed that all 5-fold tilings obtained by canonical 
projection do support weak local rules. (For a review of the theory of matching 
rules for 2D quasicrystals, see ref. [-83. ) 

In this paper, it is shown that there exist 2D tilings with N-fold symmetry that 
support weak local rules if N is any odd number or twice an odd number. The 
result does not contradict those of Levitov, but still comes as somewhat of a 
surprise. One might have expected that the proven lack of strong matching rules 
could be shown to imply the impossibility of having weak matching rules, but here 
we have explicit counterexamples. 

The strategy followed is to define a certain constraint on the configurations of 
tiles in a rhombic tiling and then show that the constraint (called the "alternation 
condition") has three properties when applied to N-fold symmetric tilings with 
prime N: 

1. it is consistent with some space-filling tilings of the plane, 
2. it ensures that fluctuations away from perfect quasicrystalline order are 
uniformly bounded, and 
3. it can be implemented using local rules for how tiles join. 

The extensions to factorable N and to icosahedral symmetry follow easily from the 
analysis of prime N. 

The main purpose of this paper is to present rigorous proofs of the three 
properties of the alternation condition and thereby elucidate certain features of 
tilings with N-fold symmetry. A significant byproduct of the analysis is that it 
yields new insights into two classes of tilings that have already appeared in the 
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literature: the "generalized Penrose tilings," here called "5-fold canonical projec- 
tions," composed of rhombi decorated as in [9] and the icosahedral tilings 
composed of rhombohedra decorated as in [1, p. 22]. 

Unfortunately, the constructions involved in the proofs are difficult to describe 
without the aid of several new terms and the introduction of new notation. These 
definitions of terms and notations have been collected in a list that constitutes 
Sect. 2. Section 3 contains several lemmas and corollaries that are used in Sect. 4, 
where the main results are proven. In Sects. 3 and 4, attention is restricted to prime 
values of N. In Sect. 5, the construction of a decoration scheme that enforces the 
weak matching rules for general prime N is presented. In Sect. 6 the special case of 
7-fold symmetry is examined in more detail. In Sect. 7 non-prime values of N are 
discussed, in Sect. 8 icosahedral tilings, and Sect. 9 contains some concluding 
remarks on the implications of the work. 

The results presented in this paper supersede the discussion of weak matching 
rules in ref. [8]. 

2. Definitions and Notation 

For the analysis presented in this paper, it is natural to divide the cases of N-fold 
symmetry into five categories: (1) N is prime; (2) N is odd but factorable; (3) N is 
twice a prime; (4) N/2 is odd but factorable; and (5) N is divisible by four. In the 
constructions that will be considered for producing tilings of these symmetries, 
tilings with even values of N appear only as special cases of tilings with N/2-fold 
symmetry. Furthermore, most of the analysis is not applicable to tilings in 
category (5). It is therefore adequate to make definitions that are only relevant for 
tilings in categories (1) and (2), even where natural generalizations exist. In the 
following definitions and throughout this paper N represents any integer greater 
than two, Q represents any odd integer greater than two, and P represents any 
prime number greater than two. 

Many of the following definitions are based on concepts that have already 
appeared in the literature and are repeated here only to establish notation. Further 
discussion of duals of N-grids and of the projection technique for generating 
quasicrystal tilings can be found in ref. [-1 ] and the papers and references contained 
therein. The method of lifting a tiling into a higher dimensional cubic lattice is 
discussed by Elser [10] and Henley [11]. The concept of weak matching rules was 
first introduced by Levitov [7]. 

2.1. Duals of N-Grids 

A grid is a set of non-intersecting infinite grid lines for which every point on the 
plane lies either on a grid line or between two grid lines. A grid line need not be 
straight. Associated with every grid is a vector called a star vector. The grid lines 
are indexed by consecutive integers ranging from - oe to + oe. 

An N-grid is a set of N grids in which each grid line in each grid intersects every 
grid line in every other grid in at most one point, which is not a point of tangency. 
The star vectors of the grids composing an N-grid are denoted e,, with n = 0,..., 
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N -  1. No two star vectors can be exactly parallel or antiparallel. The indices of the 
grid lines in the grid with star vector e, are denoted k,. 

The vector obtained by rotating a star vector e, through 90 ~ in the 
counterclockwise direction will be denoted e*. 

A symmetric Q-grid is a Q-grid with star vectors of the form e, = (cos(2rm/Q), 
sin(2rcn/Q)). Note that the Q-grid itself does not necessarily have Q-fold symmetry; 
only the star vectors do. 

A Q-fold star is simply the set of star vectors of a symmetric Q-grid. 
A periodic Q-grid is a Q-grid in which each grid is composed of equally spaced 

straight lines normal to its star vector, with the spacing being the same for all grids. 
In this paper, the periodic Q-grids discussed will always be symmetric Q-grids as 
well, so that the equations of the grid lines can be written 

x., k - %=  T(k+7.), (1) 

where x., k is a point on the k th grid line perpendicular to the star vector % T is the 
spacing between grid lines, and 7. is a real number called the phase of the grid. 
Note that only the fractional part of 7. is significant. 

The dual of an N-grid is a tiling composed of parallelograms with vertices, v, at 
positions w (~)(v) determined as follows. (The reason for using "w(1)(v) '' to represent 
the position of a vertex will become clear in the next subsection.) The points in the 
plane that do not lie on any grid line are divided by the N-grid into connected open 
regions. For each n, there exists some k. for which the points in a given open region 
lie between grid lines k. and kn + 1. The vertex dual to the open region lies at the 

N - 1  
point w (x) = Z k.e.. Note that vertices dual to open regions sharing a common 

n=0 
border along a grid line with star vector e. differ in position by the vector e.. 

Fig. 1. Definit ion of tile type, row, row border  and net. The star vectors are shown in the inset. 
Each  tile marked  with a do t  is a (2, 3)-tile. (Its edges are parallel to e2 or %, so it is the dual of an 
intersection of grid lines with those star vectors.) The shaded tiles form a 4-row. The vertices 
marked  with open circles form a 4-row border.  The tiles marked with a do t  form a 3 x 3 (2, 3)-net. 
The curvy lines are guides to the eye, representing the grid lines defining the net  
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The dual of an intersection of  two grid lines is a parallelogram tile with edges 
given by the star vectors of the two grids. Every space-filling tiling composed of 
parallelograms (aligned edge-to-edge) whose edges are taken from a finite set of 
star vectors, no two of which are parallel, is the dual of some N-grid. 

The dual of an intersection of grid lines with star vectors ei and e~ will be 
referred to as a tile of type (i,j), or simply an (i,j)-tile. For a symmetric Q-grid, an 
(i,j)-tile is a rhombus with a pair of 12rc(i-j)/QI angles (see Fig. 1). 

All tiles having a pair of [2~k/Q[ angles are tiles of the same shape but are not 
necessarily of the same type. Tiles of the same shape are called k-tiles. An (i,j)-tile is 
a special case of a k-tile if [i-j[ = k. 

The dual of a symmetric Q-grid is called a Q-fold tiling. It consists of rhombi 
with each edge parallel to one of the vectors in a Q-fold star. 

A row is an infinite set of tiles consisting of the duals of all the intersections lying 
on a single grid line. If the grid line has star vector % the row consists of tiles joined 
along edges parallel to e, and is referred to as row of type n or an n-row (see Fig. 1). 
Note that a row cannot end in the interior of a portion of tiling composed solely of 
parallelogram tiles. 

A row border is a set of vertices lying on one border of a row (see Fig. 1). If the 
tile edges in the interior of the row of type n are thought of as instances of the vector 
% the heads of all these vectors form a type n row border (or an n-row border), as do 
the tails. 

A L x L (n, m)-net is a set of(n, m)-tiles dual to the intersections of L grid lines of 
type n with L grid lines of type m. (An example is shown in Fig. 1.) 

2.2. Lifts, Projections, and Perp-Space Coordinates 

The lift of a Q-fold tiling is a unique subset of points of a Q-dimensional hypercubic 
lattice H defined as follows. Let the basis vectors of H be denoted B,. The lift of the 

Q-1 0-1 
vertex at w I1) = ~ k,e, is the hypercubic lattice point W = ~ k,B, and the lift of 

/7=0 n = 0  

the tiling is the set of all lifted vertices. The Q-dimensional space spanned by the 
vectors B, is denoted E. 

The canonical projection procedure is defined as follows (recall that Q is odd): 
�9 Q x Q  projection matrices ~ )  are defined with elements ~t i )_ =(2/Q) 

/ " \ 2 VOk)! ) =(l/Q)vj, k. cos for i=  1,..., (Q-1) /2  and ~(o)_ 

�9 E(, i) is a Q-dimensional vector defined by ~-(i)_ ~i ) tn  ~ for i=  1, (Q-1)/2,  
~'~n ~ J j k t J " n l k  " " ,  

n = 0,...,  Q - 1. Similarly, E t~ - ~~ k (the value of n does not matter). 
�9 It is straightforward to show the following: 
o For each i>0,  the E(, i~ span a 2D subspace of E, which will be denoted 
E (~ The 1D subspace spanned by E t~ will be denoted E t~ 
o ~ti). R is the orthogonal projection of the point R ~ E  onto E ~0 (including 
i=0). 
o E ~~ and E ~j) are orthogonal for any pair i#j .  
�9 ~•  is defined as ~ N(0 = J - ~ ( ~ ) , w h e r e  J is the identity. Also define S(R), a 

unit hypercube, as {X[0 < ( X - R ) - B ,  < 1 Vn}, where R is an arbitrary vector in E. 
S• is the image of S(R) under ~• 
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�9 A canonical projection is a tiling obtained by projecting with ~@(1) all points in 
the lattice H whose images under ~_L lie in S-L(R) for some fixed vector R. It can be 
shown that the procedure for obtaining a canonical projection is completely 
equivalent to forming the dual of a periodic Q-grid [-12]. 

The 2D vectors w (i) and the scalar F are defined as follows: We assign to each 
Q - 1  

vertex v the vectors w(~ - Y, k,e, • i, where i = 1 . . . . .  ( Q -  1)/2, " •  denotes the 
n = 0  

ordinary product, and it is understood here and throughout the paper that the 
subscripts are taken modulo Q. Note that w (1)(v) is just the ordinary position of the 
vertex. For different values of i, the vectors w (~ should be thought of as lying in 

Q - 1  

different spaces. We also assign to v an integer F(v)=- Y~ k,. 
n = 0  

It is straightforward to show that if orthogonal x and y axes in E (~ are defined 
with the x axis parallel to ~(~ o, then w(~ is the same as the projection of the lift 
of v onto E (~ up to an overall scale factor. Similarly, F(v) species the projection of 
the lift of v onto E (~ For this reason the variables w (~ for i>  2 and F will be called 
perp-space variables and spatial variations in their values will be called perp-space 
fluctuations. Note that not all perp-space variables correspond to phason degrees 
of freedom (continuous symmetries of the free energy for a generic Q-fold 
symmetric state [13]). In particular, variations of F are not phasons, nor are 
variations in w u) if j  and Q are not relatively prime. If Q is a prime, however, then 
long-wavelength spatial variations in any of the w (~ are properly called phasons. 

The i-sleeve of an n-row border is the strip of smallest width bounded by two 
straight lines perpendicular to enx i that contains all the points w(~ where v runs 
through all the vertices in the row border. 

2.3. Weak Matching Rules 
The r-atlas of a tiling is the set of all configurations appearing in the tiling that can 
be circumscribed by a circle of radius r [7]. 

Local matching rules for a set of tiles are rules requiring that every 
configuration of radius r or smaller composed of those tiles be a member of a 
specified r-atlas, where r is finite. The distance r is called the radius of the matching 
rules. 

Weak matching rules for the constituent tiles of a Q-fold tiling are local 
matching rules with the following properties: 
1. There exists an infinite space-filling tiling that satisfies the rules everywhere; 
2. Let W be the lift of one of the vertices in any infinite tiling satisfying the rules. 
There exists a finite distance d such that 1t~ I .  (W-R)H < d  for all W and some 
fixed R, where []Xl[ is the Euclidean norm of X. In other words, weak matching 
rules ensure that in an infinite tiling perp-space fluctuations are bounded for all 
i + 1 (including i = 0). 

A tiling is said to support weak matching rules if and only if there existweak 
matching rules for its constituent tiles which are satisfied by the tiling itself. 

2.4. The Alternation Condition 

The tiles in an m-row are of types (m, m _+ i), where i = 1,..., (Q - 1)/2. A Q-fold tiling 
satisfies the alternation condition (AC) if and only if for every m-row and every i # 0, 
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Fig. 2. Definition of the alternation condition. The star vectors are shown in the inset. (2, 3)-tiles 
are marked with a solid circle. (2, l)-tiles are marked with an open circle. Along every 2-row the 
solid and open circles alternate. Note that the (2, 0) and (2, 4) tiles alternate also. The curvy lines 
are guides to the eye that follow the 2-rows 

among the tiles lying between any two tiles of type (m, m_+ i), there is a tile of type 
(m, m-T-i). In other words, the alternation condition requires that as an m-row is 
traversed from "left" to "right" tiles of type (m, m -  i) and (m, m + i) alternate for 
every i (see Fig. 2). Note  that the AC applies to each tile shape independently. 
Between two tiles of the same shape (with the same value of i) there can be any 
number of tiles of other shapes. 

3. Some Preliminary Results 

Lemmas 1, 2, and 3, and Corollary 1, below apply to Q-fold tilings with arbitrary 
odd Q. Lemma 4 applies only to P-fold tilings, where P is a prime. 

Lemma 1. Let v I and v2 be any two vertices lying on the same m-row border in a 
Q-fold tiling obeying the AC. The value of [(w~i)(vl)-w")(v2)) �9 era• is uniformly 

(Q-  1)/2 

bounded by Z Icos(2rc/j/Q)[. 
j = l  

Proof Assume, without loss of generality, that in moving along the row border 
from Vl to v2, the edges of tiles of type (re, m - j )  are traversed in the +em-j  
direction�9 The edges of tiles of type (m, m +j) will then be traversed in the -em+j  
direction. In traversing an edge in the +em-j  direction one adds e~,,-~ • to w ~'), 
thereby increasing the value of w ").em • i by cos (27r~]/Q). Similarly, in traversing an 
edge in the - e , , + j  direction one adds -%,+j ) •  i to w r176 thereby decreasing 
w (~ • by cos(2rcij/Q). Let nj+ be the number of tiles of type (m, m +j) between v 1 
and v~. We have 

(O - 1)/2 
(w(i)(Vl)--w(i)(v2)) 'em• = ~, (nj_-nj+)cos(27zij/Q). (2)  

j=l 

The AC implies that In j -  -nj+[ is either 0 or 1, immediately implying the desired 
result. Q.E.D. 
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Lemma 1 states that there is a bound on the width of the/-sleeve of any row of 
any type in a tiling obeying the AC. When Q is a prime, the bound is the same for all 
i and will be referred to as D~. When Q is factorable, D~ is taken to be the maximum 
value of the bound obtained for different values of i. 

Corollary 1. Let v o be a vertex in a Q-fold tiling obeying the AC and let v be any 
vertex on an m-row border containing v o. Then w(i)(v) lies within a distance D~ of a 
straight line with the equation w (i). e,, • i = wt~ �9 e,, • i. 

Proof This follows trivially from the preceding lemma. 

Lemma 2. For any two vertices vl and v2 in a Q-fold tiling obeying the AC, two rows 
can be chosen, one having a border containing vl, the other a border containing rE, 
and the two having some tile in common. 

Proof Every vertex in a rhombic tiling lies on at least three row borders of different 
types, since it must be shared by at least three tiles of different types. Therefore two 
row borders of different types can be chosen, one containing v~, the other v2. The 
1-sleeves of the row borders have different slopes and therefore must intersect�9 
Since the 1-sleeves are of bounded width (Lemma 1), the row borders contained 
within them must also intersect at a common vertex. The vertex belongs to a tile 
shared by the two rows. Q.E.D. 

Lemma 3. Let v~ and v 2 be any two vertices lying on the same m-row border in a 
Q-fold tiling obeying the AC and let ](w~ )(v2)) �9 e*l-D. (Recall that e* is 
the rotation of % by 90 ~ and hence lies along the direction of the m-row.) Then 
I(w(O(vt)-w(i)(v2)) * =D' �9 % • i] is less than #D for any i, where # is the maximum value 
of sin(27tj/Q)/sin(2~k/Q) for any integers j and k with m o d e k # 0 .  

Proof Assume, without loss of generality, that (wm(v0-wC1)(v2)) �9 e* is positive. 
Each edge in the row border between vl and v2 contributes sin(2~j/Q) to D, for 
some 1 < j  < ( Q -  1)/2, and sin(2~k/Q) to O', where k =/j. Thus the absolute value of 
the largest possible discrepancy between the contribution of any single edge to D 
and to D' is a factor of #. The lemma follows immediately�9 Q.E.D. 

Lemma 4. Let v be any vertex lying in a P-fold tiling obeying the AC, and let r 
designate an m-row having v on one of its borders�9 There exists a finite distance Dt 
such that the distance between v and the nearest (m, m + i)-tile in r is less than D~ for 
all i. ( In  other words, the distance from any vertex in any m-row to the nearest 
(m, m + O-tile is uniformly bounded.) 

Proof We will show that a tile of every type must occur within every circular region 
of radius Dt in the tiling, where D, is not explicitly determined but is known to be 
finite. The basic idea is to show that a large number of tiles of some unspecified type 
must exist within a circle of "small" radius, then show that the presence of these 
tiles necessarily implies the presence of a slightly smaller number of tiles of another 
type within a larger radius, and finally to iterate the reasoning to show that all tile 
types must be represented within the large circle of radius D,. 

Consider a circle of radius R (the "small" radius) and let the number of (j, k)- 
tiles contained within the circle be denoted Tj, k. Since the number of distinct tile 
types is finite and the number of tiles in the circle is proportional to R 2, one can 
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always choose n and n' such that T,,,, is greater than or equal t o  zcR2/A, where A is 
the sum of the areas of the distinct tile types. Assuming the length of a tile edge is 1, 
the number of tiles in the circle that can lie on a single row is at most 2R/W, where 
W =  sin(2~/Q) is the width of the thinnest tile shape. Therefore the number of 
n-rows passing through the circle must be at least T,,,,/(2R/W)> ~WR/2A. Also, 
the number of n-rows passing through the circle is at most 2R, so there must be at 
least one n-row that contains at least T,,,,/2R > rcR/2A (n, n')-tiles. 

Let i=  n - n '  and L =  zcWR/2A. There is an n-row passing through the circle 
that  has at least L (n, n-/)-t i les on it, since W< 1. Between any two (n, n-/)-tiles on 
the same n-row there must be an (n, n +/)-tile (by the AC). Therefore, there must be 
at least L -  1 (n +/)-rows passing through the circle. Now Corollary 1 implies that 
for two n-rows with 1-sleeves separated by some finite distance d, the presence of an 
(n, n +/)-tile in one of them implies the existence of an (n, n +/)-tile in the other 
within a distance d csc(2zci/Q) along the same (n +/)-row, since the 1-sleeves of the 
row borders must intersect at that distance. Thus a circle of radius R csc(2~i/Q) 
(with the same center as the original circle) contains an ( L -  1) x (L-- 1) (n, n +/)-net. 
Similarly, that same circle must contain an ( L - 1 ) x  ( L - 1 )  (n- i ,  n-2i)-net.  

Using similar reasoning applied to the (n, n +/)-tiles, it can be shown that there 
must exist an ( L -  2) x ( L -  2) (n + i, n + 2i)-net (and an ( L -  2) x ( L -  2) ( n -  2i, 
n -  3/)-net) within a circle of radius R CSC 2 (2rci/Q). The reasoning is then iterated to 
show that for a choice of R such that Lis greater than ( Q -  t)/2, there is at least one 
row of type n +ji for all j within a circle of radius R csc (Q- 1)/2(2rci/Q). When Q is a 
prime, this includes all star vector directions, regardless of the values of n and i. 

Thus, the distance from v to the nearest row of type m + i is bounded. Let r' 
designate this nearest row. Again, Corollary 1 implies that there is a maximum 
distance between the point v and the intersection of the 1-sleeves of r and r'. Where 
the two sleeves intersect, there is a tile of type (m, m + i). Q.E.D. 

4. The Main Result 

We are now in a position to prove that the AC has the properties claimed in the 
introduction. 

First, it is easy to see that all canonical projections satisfy the AC. Recall that a 
canonical projection is the dual of some periodic Q-grid. Consider a pair of 
periodic grids with star vectors m + i and m -  i. These grids form a periodic lattice 
of rhombi. For any i, a grid line normal to % is parallel to one of the diagonals of 
the rhombi. The grid line must therefore intersect two adjacent edges of each 
rhombus that it passes through. Since these adjacent edges belong to different 
grids, two intersections of the same type cannot occur without the other in 
between. The duals of these two intersections are tiles of type m + i and m - i .  

Second, we must prove that the AC allows only uniformly bounded perp-space 
fluctuations. 

Theorem 1. Let v 1 and v 2 be any two vertices in a Q-fold tiling obeying the AC. The 
value of IF(v1)--/'(V2) [ is bounded by Q-1 .  

Proof. Applying the reasoning in the proof of Lemma 1 with i = 0 shows that the 
maximum possible value of [if(V3)--F(v4)l for v3 and v4 on the same row border is 
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( Q -  1)/2. Now consider two arbitrary vertices vl and v2. Let R1 and R 2 be row 
borders of different types containing v~ and v2, respectively, and let va2 be the 
vertex shared by R1 and R2 (Lemma 2). Writing F(vO--F(v2)=(F(vO-F(v12)) 
+ (F(v ~ 2 ) -  F(v2)) and substituting the bound (Q - 1)/2 twice on the right-hand side 
yields the desired result: ]F(vl)-F(v2)l < Q - 1 .  Q.E.D. 

Theorem 2. Let v~ and v2 be any two vertices in any P-fold tiling obeying the AC 
(where P is a prime number). There exists a finite number D w such that [[w(~ 0 
-w(i)(v2)ll <Dw for all i = 2  .. . .  , (P -1) /2 .  

Proof Let v 3 and v4 be two vertices on the same m-row border. By Lemma 1 we 
already know that I(w(~ • i] is bounded. We will now prove that 
I(w(~ e*• is also bounded, from which the theorem will quickly 
follow. (Recall that e* is the rotation ofe through 90~ The P-fold symmetry allows 
us to carry out the proof for the specific case of m = 0 and from that infer its validity 
for all other m. 

The proof relies on the constructions illustrated in Fig. 3. Parts (a) and (b) of the 
figure refer to the same sets of row borders, the difference being that (a) refers to 
their positions in the w(~)-plane while (b) refers to the w(~)-plane. 

Let r be a 0-row border containing v3 and v4 (lying in the strip labelled 0o in 
Fig. 3a) and assume that I(w(i)(v3)-w(i)(v4)) �9 e~l equals A (as indicated in Fig. 3b). 
We will show that if A is chosen large enough a contradiction arises, regardless of 
the distance between w~l)(v3) and w(1)(v4). By Lemmas 3 and 4, a large enough 

(a) 00 01 02 

02 

(0-1) 

(b) 00 01 

(Q-I) 

(Q-l) 

(@1 

(Q-11 

2 

3 ~ 0 (@11 

4 

5 

Fig. 3a, b. Proof  of Theorem 2. The case chosen for the purposes of illustration is that  of %fold 
symmetry, a The w~l)-plane: The shaded strips contain the 1-sleeves of the row borders used in 
the proof. Each strip has width 2(Dt+Ds) and is labelled by An, where A specifies the star vector 
associated with the row border  and n is an integer index. The heavily shaded strip contains a 
2-row. The meaning of Xp and z~,q is explained in the text. b The w(~)-plane: The shaded strips 
contain the/-sleeves of the same rows labelled in a. For the illustration, we have chosen i = 3. 
Strips with the same labels in a and h correspond to the same row border and x v and zp,q identify 
the same vertices in a and b 



Weak Matching Rules for Quasicrystals 609 

choice for A guarantees that this distance must be larger than 2(Dr + Ds). Lemma 4 
also implies that there exist 0-, 1-, and (Q-1) - row borders in the tiling with 
1-sleeves that lie within the shaded regions of Fig. 3a, where the thickness of the 
shaded strips is 2(Dt+Ds) and the separation between parallel strips is much 
greater than their thickness. The shaded strips are spaced periodically to form a 
triangular lattice as indicated in the figure. 

Corollary 1 implies that Fig. 3b can be constructed such that the/-sleeves of the 
row borders lying in the shaded strips of Fig. 3a lie in shaded strips of Fig. 3b. 
Again, the shaded strips are spaced periodically. There are two consistent ways of 
labelling the strips in Fig. 3b, one of which is shown in the figure. The other is 
related to this one by inversion and need not be analyzed independently. 

A proof that the form of Fig. 3b is forced is given in the appendix. The form is a 
direct consequence of the facts that (1) if two vertices are connected by a finite 
sequence of edges their separation in the w ") plane is bounded (being no greater 
than the edge length times the number of edges in the sequence); and (2) A, the 
distance between w")(v3) and wli)(v4), has been chosen much larger than Dr 

Consider now the nearest 2-row border to v3, which must lie in the heavily 
shaded strip in Fig. 3a [14]. Let xp be the vertex at the intersection of the 2-row 
border and the 0-row border with index p. (See Fig. 3a.) Let zp, q be the vertex at the 
intersection of the 0-row border with index p and the 1-row border with index q, 
where for each p we choose q such that w(1)(zp, q) is as close as possible to w(1)(xp). It 
is obvious that Ilwm(xp)-w~l)(Zp, q)[I is bounded. On the other hand, [[w(i)(xp) 
- wti)(zv,q)]1 grows without bound with increasing p, as can be seen by the follbwing 
reasoning. In the w(1)-plane the points zp, q lie close to a line normal to e2, implying 
that for large values of p, 

( ~ - 1 )  cot(2~/Q) ~ -cot(47r/Q). (3) 

In the w")-plane the points zp, q lie close to a line with slope (2~qp - 1 )  cot(2~i/Q). 

Substituting from Eq. (3) for (2q/p- 1), we have 

( ~ - 1 )  cot(2rci/Q) =, -cot(4~z/Q) tan(2rc/Q) cot(2rci/Q). (4) 

But this slope cannot equal - cot(4ni/Q), the slope of a line normal to ez • i, for any i 
in the range 2 .. . .  , ( Q -  1)/2. In the w")-plane, the slope of the strip containing all the 
Xp is therefore different from the slope of a line approximating the zp, q. 

Thus [1 w~i)(xp)- w")(zp, q)I]/l[ w(1)(xp)- w(1)(zp, q)[I grows without bound and we 
have a contradiction of Lemma 3 applied to the 0-row borders of large index. The 
contradiction means that A cannot be chosen arbitrarily large and the reasoning 
was completely independent of the distance between w(~)(v3) and w~0(v4). Hence 
[ (w( i ) (v3)  - -  W(1)(V4)) " era* • i[ is uniformly bounded on every 0-row border for m -- 0 in a 
tiling obeying the AC and, by symmetry, on every m-row border for arbitrary m. 
This result, along with Lemma 1, implies that [I w(0(v3) -- w(i)(v4) t[ <D~, for any two 
vertices on the same row border, where D~, is finite. 

For two vertices that are not on the same row border, Lemma 2 immediately 
implies [I w(0(vl)- wr < D~, where D~ ' = 2D,,. Q.E.D. 



610 J.E.S. Socolar 

We have demonstrated that the AC applied to a P-fold tiling allows only 
bounded fluctuations in F and in w (i) for all i = 2 . . . .  , ( P -  1)/2. It is now easy to see 
that the AC can be implemented in the cases of interest using a finite r-atlas (the 
third necessary property for weak matching rules). Lemma 4 implies that there is a 
maximum distance between two tiles of the same type in any given row. Choosing r 
to be greater than this distance, one merely has to include in the r-atlas only 
configurations consistent with the AC. 

The main claim of this paper has now been justified: For prime values of P, there 
exist weak matching rules for P-fold symmetric tilings. 

5. Nearest Neighbor Rules for the Alternation Condition 

By allowing the tiles of the same type to be decorated in several different ways, the 
AC can be enforced for any Q-fold tiling ((2 is odd) using an r-atlas that includes 
only configurations of two tiles sharing an edge. (Each distinct decoration of a 
configuration must be included separately in the r-atlas.) The construction 
described below produces such a decoration for any Q. Each tile is decorated with 
an arrow on each of its edges and tiles are allowed to share an edge only if their 
arrows on that edge are of the same type and point in the same direction. 
Following the discussion of the general case, the (2 = 7 cased is illustrated explicitly. 

There are ( Q - 1 ) / 2  distinct tile shapes in a Q-fold tiling and we will need 
Y= 2 ~e-3)/2 different types of arrows. (The reason for this number will soon 
become clear.) For  each tile shape we construct several decorations consisting of 
distinct ways of marking each edge with one arrow. Since an arrow can point in 
either of two directions and must be one of Y types, the arrow on an edge 
represents 1 + log 2 Y = ( Q -  1)/2 bits of information, one bit for each tile shape. The 
arrow on each edge can therefore be used to specify which orientation of each tile 
shape might be joined to that edge. Recall that a tile with two 2nk/Q angles is called 
a "k-tile" and a tile with edges parallel to ez and ej is called an "(i, j)-tile". 

For  an edge parallel to % let a = 1 if the arrow on it is in the e, direction and 
a = - 1 if the arrow is in the - e, direction. Also, let the "left" and "right" sides of 
the edge be defined relative to the forward direction of the arrow. Now ifa k-tile is 
to be added to a given edge parallel to e,,, it must be either an (m, m -  k)-tile or an 
(m, m + k)-tile. A given type of arrow specifies, for each k, whether a k-tile added to 
the left of the edge would have to be an (m, m -  ak)-tile or an (m, m + ak)-tile. If the 
arrow specifies _+ ak on the left, then it specifies T- ak on the right. Each arrow type 
specifies a particular choice of sign for each value of k. No two arrow types specify 
the same set of choices or sets that are related by the inversion of every sign. Sets 
related by the inversion of every sign are designated by the same type of arrow 
pointing in opposite directions. Opposite edges of each k-tile are required to have 
arrows that specify identical orientations for tiles of shapes other than k and 
opposite orientations for k-tiles. In this way, as a tile is traversed from one edge to 
the opposite edge the decoration keeps track of the expected orientation of the next 
tile in the row according to the AC. 

An example of the decoration scheme described here is shown in Fig. 4 for the 
case Q --- 7. Figure 4a indicates the meaning of each type of arrow (see caption). 
Figure 4b shows a port ion of a 7-fold tiling with tiles decorated to enforce the AC. 
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Fig. 4. A decoration that enforces the alternation condition for Q = 7. The four types of arrows 
are shown at left. The three tiles to the right (left) of each arrow indicate the orientations of each 
tile shape that can be added to the right (left) of the arrow. (The different shapes corresporfd to 
the different values of k discussed in the text and the different orientations of corresponding tiles 
for different arrow types correspond to different choices of sign for a given k.) Note that when 
rotation by 180 ~ of the entire figure is taken into account, all possible sets of orientations 
consistent with the alternation condition are included. The decoration of a portion of a 7-fold 
tiling is shown at right. The eight different decorations of the 2-tile are marked with solid dots 

Fig. 5. A decoration that enforces the alternation condition for Q = 5. There are two types of 
arrows, shown here together with the tile orientations they force on the left and right. The four 
tiles that are formed are shown at left 

The number  of  distinct ways a tile of  any given shape can be decora ted  is Y2/2, 
as determined by the following reasoning: Once  a given edge is decorated the 
decora t ion  on the opposi te  edge is determined. In addi t ion one bit o f  informat ion 
on each edge is fixed by the tile itself; once the a r row type for an edge of  the tile is 
determined, the a r row direction is fixed since it is known  whether  the tile lies to the 
left or  right of  the edge. Thus  each of  two adjacent edges of  the tile must  be 
decorated in one of  g ways, which would  appear  to produce  y2 tile decorations.  
The tile decorat ions  have been double  counted,  however,  as they come in pairs 
related by ro ta t ion of  the tile by 180 ~ Since there are (Q - 1)/2 tile shapes, the total 
number  of  distinct decora ted  tiles (counting enan t iomorphs  as distinct) is 
yz(Q_ I ) / 4 = ( Q - 1 ) 2  •-5. In  Fig. 4b, the 8 different decorated 2-tiles are marked  
with solid circles. 

Ano the r  example of  a decora t ion  scheme that  is equivalent to enforcing the AC 
has already appeared in the literature. The case Q = 5 requires four tiles which are 
equivalent to those discussed in ref. [9]. These are shown in Fig. 5. 
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6. An Example: 7-Fold Symmetry 

A closer examination of the decorated 7-fold tilings is worthwhile. Figure 6 shows 
a portion of the dual to a periodic 7-grid for which the sum of the phases, Z 7,, is an 
integer. It can be shown that the tiling actually has 14-fold symmetry, not just 
7-fold, and that it is locally isomorphic to all duals of periodic 7-grids in which the 
sum of the phases is zero. It will be referred to as a "F  = 0 tiling," where F is to be 
thought of as the sum of the ~'s. (The symbol "F" is a natural choice since the sum of 
the phases of the 7-grid is proportional  to ~<~ where R is the vector used in the 
definition of the corresponding canonical projection, and, as we have already seen, 
F is used to specify positions in E~~ 

First, for each tile shape only seven of the eight possible decorations appear in 
Fig. 6. Indeed, it can be shown that the F = 0 7-fold tilings do not contain any tiles 
of the missing types. (One shows that certain inequalities must be satisfied by the 7n 
in order for sequence of intersections of grid lines to correspond to a particular 
decoration and that these inequalities are incompatible with the condition that 

7, = 0. The proof  applies to any Q-fold tiling, always ruling out one decoration of 
each tile shape.) One can therefore delete the missing decorated tiles from the 
original set and still have weak matching rules for the F = 0 tilings. Equivalently, 
one can delete from the r-atlas for the undecorated tiles all configurations which 
would require the missing decorations and thereby obtain weak matching rules for 
the F = 0 undecorated tilings. It is not known whether additional tile decorations 
could be deleted if one did not insist on including a canonical projection among the 
allowed tilings. 

Second, it is interesting to examine the ways in which tiles can be rearranged 
without violating the matching rules. Figure 7 shows four pairs of three-tile 

Fig. 6. A portion ofa F=0 7-fold tiling. The decorated tiles shown in the inset do not occur in the 
F=0 tilings. The shaded tiles can be rearranged locally (see Fig. 7). Movement of any of the 
unshaded tiles necessarily involves rearrangements of infinite numbers of tiles. This is most 
apparent for the tiles marked with a solid dot, since their decorations are not a part of any 
transformable hexagon (see Fig. 7) 
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Fig. 7. Transformable hexagons of the decorated 7-fotd tiling. Each member of a pair can be 
transformed into the other without introducing any violation of the alternation condition 
matching rules into the tiling. In addition to the four pairs shown here, there are four obtained 
from these by reflection 

configurations (hexagons) that occur in any 7-fold canonical projection (not only 
F = 0). Either of the hexagons in a pair can be transformed into the other without 
changing the decoration of the exterior edges, so any member of a pair appearing 
in a tiling can be transformed into its partner without introducing a violation of the 
matching rules. The transformation of one hexagon into its partner is called a 
"flip." Note that a flip changes the position of the internal vertex of the hexagon 
and hence changes w ") at that vertex for all i. Note also that a flip can produce new 
hexagons in the tiling that can be flipped in turn. 

The existence of transformable hexagons means that the matching rules are at 
best weak. For any of the shaded tiles in Fig. 6 there exists a finite sequence of flips 
that changes the position of the tile and therefore can introduce fluctuations in w t0. 
On the other hand, there are tiles that can never participate in a flip since their 
decorations simply do not appear in any of the transformable hexagons. These are 
marked with a solid circle in Fig. 6. Loosely speaking, they give the tiling a sort of 
rigidity in perp-space. The perp-space variables associated with their vertices are 
fixed and therefore the perp-space fluctuations between them are constrained. 
(Note that this observation alone is not sufficient to prove that large perp-space 
fluctuations cannot occur in tilings that are not derived from flipping trans- 
formable hexagons in canonical projections. Nevertheless, it gives some idea of 
the way the matching rules function.) An important unresolved issue is whether 
additional decorating marks could be placed on each tile in such a way that all the 
hexagons are fixed and the matching rules become strong. 

The flipping of transformable hexagons should not be confused with the effect 
of phason strains, which are long-wavelength spatial variations in the hydrody- 
namic variables of the system. The phason variables for a Q-fold tiling can be 
thought of as coarse grained averages of w ") for those values o f / tha t  are relatively 
prime with Q. In the 7-fold case, coarse grained averages ofw ~z) and w TM are phason 
variables. A small uniform shift in a phason variable induces flips of hexagons of 
other types than those shown in Fig. 7 and consequent transformations of the 
arrows on tiles that do not move at all. The presence of phason strains is signalled 
by isolated violations of the matching rules, just as in the familiar case of 5-fold 
symmetry. Details are beyond the scope of this work. 
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Finally, a comparison of the 7-fold case and the well-known 5-fold case is 
revealing. In contrast to the 7-fold case, the 5-fold tilings composed of decorated 
tiles contain no transformable hexagons. There are no hexagons that can be 
flipped without a consequent change in the arrows on the exterior edges, so any flip 
induces a violation of the matching rules. It is therefore tempting to speculate that 
the matching rules constructed for the 5-fold tilings actually do not allow any 
deviation from the canonical projections and are therefore strong matching rules, 
but this conjecture has yet to be proven. 

The F = 0 5-fold tilings are just the original Penrose tilings. As in the 7-fold 
case, one type of decorated tile of each shape does not appear in the F =  0 tiling. In 
the 5-fold case, it is known that the F = 0 tiling supports "perfect matching rules", 
which restrict the possible infinite tilings to a single local isomorphism class. The 
effect of the analogous removal of decorated tiles in the 7-fold case is not yet 
understood, but the 5-fold result indicates that it could be dramatic. 

7. Other N-Fold Symmetries 

7.1. 3-Fold Tilings 

The AC decoration of the tiles in a 3-fold tiling produces one type of tile: a 60 ~ 
rhombus with a single arrow on each edge always pointing towards the same size 
angle. Only one tiling consistent with the rules exists and it is periodic. 

7.2. Q-Fold Tilings with Factorable Q 

When Q has two prime factors p~ and P2 greater than 2, the proof of Lemma 4 
breaks down. For i equal to Pl or P2 the directions labelled m + ki (modulo Q) do 
not include all of the star vector directions. It is easy to see the consequence: a 
p~-fold or p2-fold canonical projection is perfectly consistent with the decoration 
of the Q-fold tiles, although it uses only a subset of them. It is therefore clear that 
the AC alone is not a weak matching rule for the Q-fold tiling. Note that w (p~ + 1) is 
unbounded for the p2-fold tiling constructed from a subset of the Q-fold tiles. Using 
PiP2 = 0 (mod Q) and the fact that only edges parallel to %2 • i appear in the p2-fold 
tiling, we have 

Pt  

w(m+l)(v)= ~] k,2•215215 
i=O 

Pt 
= ~ k p a x i e p 2 x i  

i = 0  

=win(v) (5) 

and w <1) is obviously unbounded (since the tiling is infinite). 
One can disallow the p2-fold tiling simply by not including in the r-atlas any 

configurations larger than some appropriate size that do not contain at least one 
tile of every type, thereby making Lemma 4 true by decree. All of the other proofs 
carried out for prime symmetries remain valid for any odd Q. Thus we see that 
weak matching rules exist for Q-fold canonical projections for all odd values of Q. 
Expressing the rules as nearest neighbor matching rules for decorated tiles is much 
more complicated, however, when Q is not a prime. 
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7.3. N-Fo ld  7~lings with N = 2Q 

When N is twice an odd number Q, the tilings of N-fold symmetry are just a subset 
of the Q-fold tilings. It can be shown that there are two classes of Q-fold canonical 
projections with 2Q-fold symmetry, the F = 0 tilings and the tilings dual to periodic 
Q-grids with the sum of the phases equal to 1/2. Clearly, the weak matching rules 
obtained by the decoration described above act as weak matching rules for the 
2Q-fold symmetric tilings. Two interesting questions arise: First, in a physical 
system that is well described by the weak matching rule decoration of Q-fold tiles, 
will the equilibrium configuration have Q-fold symmetry or 2Q-fold symmetry? 
Second, if the appropriate decorated tiles are deleted (in analogy with the 5-fold 
and 7-fold cases) is the tiling guaranteed to exhibit 2Q-fold symmetry? The answers 
are beyond the scope of this work. 

7.4. N-Fo ld  771ings with N a Mult iple  o f  4 

When N is a multiple of 4 there are square tiles in the canonical projection and the 
AC is not well-defined. N- -4  is a trivial case; the only tile type is a square and the 
only edge-to-edge tiling is periodic. For N = 8 or N = 12, it is known that the tiles 
can be decorated to yield perfect matching rules, but the construction is not as 
straightforward as the AC rules [4, 15]. Higher values of N have yet to be analyzed. 

8. Icosahedral Tilings 

Analogues of all of the constructions described in this paper can be defined for 
icosahedral tilings. The canonical projection tilings with icosahedral symmetry 
consist of tiles of two shapes - a prolate and an oblate rhombohedron with edges 
parallel to six star vectors pointing to the vertices of an icosahedron. The tile 
vertices are projections of 6D hypercubic lattice points onto a 3D subspace. The 
canonical projections can also be generated as the duals of periodic 6-grids in 
which the grids are sets of parallel planes normal to the star vectors. It is known 
that these tilings support perfect matching rules if the tiles are decorated to form 22 
distinct tile types [5]. There is also strong evidence, though no rigorous proof, that 
perfect matching rules exist for a set of four decorated tiles - the prolate 
rhombohedron and the three zonohedra derived from it by the successive addition 
of edges parallel to the icosahedral vertex vectors I-6]. 

5 
The icosahedral analogue of the vectors w ") are the two 3D vectors u = y, kne n 

5 n = 0  

and w = Z khan, where e~ are the icosahedral star vectors: 
n = 0  

1 
en = ~ (2 cos(2rm/5), 2 sin (27rn/5), 1) n = 0 . . . .  ,4; 

e 5 =(0, 0, 1); (6) 

and ~ are a permuted set of the star vectors: 

en = emods(2n) n = 0, ..., 4; 
% = - e s .  (7) 
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Fig. 8. The AC decoration of the rhombohedral tiles in the icosahedral canonical projections. 
The four shapes on the left (right) can be cut out and folded to form decorated prolate (oblate) 
rhombohedra. The four shapes on the top form decorated rhombohedra with a three-fold axis of 
symmetry, decorations which never appear in the icosahedral canonical projections 

The position of a vertex v in the ordinary physical space is specified by u(v) and its 
position in the complementary 3D space is specified by w(v). There is no analogue 
of F for the icosahedral projections from 6D. 

It is also possible to define an analogue of the alternation condition for the two 
rhombohedra  of the canonical projection tiling. A row is now a series of 
rhombohedra  joined along parallel faces, or, in other words, the rhombohedra  
dual to the intersections of each of four sets of grid planes with the line of 
intersection of two planes taken from the remaining two grids. The four sets of grid 
planes form two pairs that produce tiles of the same shape in different orientations 
and these alternate along the row. Using a construction similar in spirit to the 
edge-arrow decoration described above, a decoration that enforces the AC can be 
produced that requires 4 tile types of each shape. Figure 8 shows the eight distinct 
decorated tiles. The rule is that on adjoining faces both the black and the white 
dots must match. To see how the dot positions are determined, imagine the faces of 
a rhombohedron to be transparent and view the rhombohedron along a line of 
sight parallel to four of its edges. From this view, one sees two opposite faces 
overlayed. For  the prolate rhombohedron,  the black dot on the front face overlays 
the black dot on the back, while the white dots lie in opposite corners. For  the 
oblate rhombohedron,  the white dots are in the same corner and the black dots in 
opposite corners. The black and white dots then ensure alternation of the oblate 
and prolate rhombohedra,  respectively. Note that four of the decorations respect 
the three-fold symmetry of the rhombohedra  and the other four do not. 

Theorem 3. The AC decoration defines a weak matching rule for the icosahedraI 
canonical projections. 

Proof. We wish to show that fluctuations in w are bounded. Let a set of tileswhose 
dual intersections lie on a single grid plane be called a "slab" and the vertices on 
one surface of the slab be called a "slab border" in analogy with the definitions of 
"row" and "row border." (Each slab border in an icosahedral canonical projection 
is an example of a "Wieringa roof" [3].) Consider a slab border corresponding to a 
grid plane with star vector %. The projection of the slab border onto the xy-plane 
is a 5-fold tiling. Now it is straightforward to check that the AC defined on the 
rhombohedra  acts on the projected 5-fold tiles precisely as the 2D AC studied 
above. Also, for a vertex v on a slab border normal to %, the x and y components of 
u(v) and w(v) are equivalent to w (1) and W (2) of the 5-fold tiling, respectively. Finally, 
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the z components of u(v) and w(v) are equivalent to + F and - F ,  respectively, 
where F is the usual Z k,. Theorems 1 and 2 therefore imply that for two vertices on 
any slab with star vector e5 the quantity I[ w(vt)-w(v2)11 is bounded. Icosahedral 
symmetry then implies that [I w(vl)-w(v2)II is bounded on any slab. Now for any 
two vertices in the tiling one can choose two intersecting slabs with each of the 
vertices lying on one of the slabs. (Compare Lemma 2.) Since the slab borders must 
have the same value ofw at their intersection, it is clear that the total variation in w 
is bounded. Q.E.D. 

The icosahedral canonical projections do not contain any of the three-fold 
symmetric decorations shown in Fig. 8. This is simply a consequence of the fact 
that all of the grid planes in the dual are flat and normal to the icosahedral star 
vectors. (The proof is left to the reader.) Thus the three-fold symmetric decorations 
can be deleted from the set of allowed configurations and consistency with the 
canonical projections is retained. The remaining decorations are the four shown 
on the bottom in Fig. 8. It is interesting to note that they are equivalent to the 
decorations presented on p. 22 of ref. [1]. There are no analogues of transformable 
hexagons that can be formed by these decorated tiles and it is believed that the 
decoration provides perfect matching rules for the icosahedral projection tiling, 
but no proof has been given. 

9. Conclusion 

We have shown that tilings with N-fold symmetry, where N is a prime or twice a 
prime, support weak matching rules and indicated how to construct a set of 
decorated tiles that serves to implement such rules. Though the result is not 
contradicted by any previous work, there has been no prior suggestion of its 
possibility. A more thorough investigation of the structure of the tilings with these 
symmetries may now be within reach. Just as the matching rules for Penrose tilings 
are intimately related to decorations that reveal the Fibonacci sequences 
underlying the tilings [16], the weak matching rules for other symmetries may help 
to uncover the relevant algebraic structures for cases in which the incommensurate 
ratios involved are not quadratic. 

The result also revives the possibility that physical systems governed by local 
interactions can exhibit quasicrystalline symmetries other than those based on 
quadratic irrationals. More careful studies of this matter are necessary, however. 
For example, the ground state of a solid must correspond to a single class of locally 
isomorphic tilings, but weak matching rules do not select a single class. Longer 
range interactions or small differences in the energies of different configurations 
obeying the weak matching rules must become important and their possible effects 
should be explored. Also, the consequences of weak matching rules for elastic and 
hydrodynamic properties have yet to be worked out. 

Finally, the fact that icosahedral tilings can support weak matching rules 
should be explored further. The possibility that perfect matching rules can be 
relaxed in certain ways but still be sufficiently restrictive to limit perp-space 
fluctuations means that a new variety of decoration schemes may become 
available for use as templates for an atomic structure. In searching for matching 
rules that can be implemented in a natural way in physical systems, one now has a 
wider range of models available. 
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Appendix 

We wish to show that the/-sleeves of the row borders lying in the shaded strips of 
Fig. 3a must lie in the shaded regions of Fig. 3b. 

First, we make repeated use of Lemma 3 to show that the strips containing the 
/-sleeves form a triangular lattice, without yet worrying about whether the strips in 
each direction are equally spaced. Consider the regions where three shaded strips 
intersect in Fig. 3a. The tiles at the intersections of the rows contained in the strips 
are obviously all separated by a finite distance less than or of the order of the strip 
width, 2(Dt+D~). Lemma 3 therefore implies that the separation between the 
vertices of these three tiles in the w ~) plane is bounded by some finite distance D. 
Note that D depends only on Dr, Ds, and i; it is independent of A. 

Begin now with the strips labelled 0o, lo, and (Q-1)1 and take A to be much 
larger than D. Consistency with Lemma 3 requires that the strip 01 must be added 
and that the spacing between 0o and 01 is roughly equal to (A/2)tan(27z/Q), the 
deviation being of the order of Dt + Ds. Applying this reasoning to strips in the 
other directions and then to the new triangles formed as strips are added yields a 
triangular lattice. 

Second, similar reasoning applied to larger triangles, such as the one formed by 
0o, lo, and ( Q - I ) , ,  shows that the spacing between any two strips in a given 
direction whose indices differ by n must be the same to within a number of the 
order of Dr + D~. For example, consider the triangle formed by 00, 1 o, and ( Q -  1), 
and that formed by 00, 11, and (Q - 1). + 1. Each of these determines a position for 
the strip 0,. Since the two determinations must be consistent and the strip 1 _, must 
intersect the intersection of 0 o and (Q-1) , ,  the spacings between 1 _, and lo and 
between 1 - , -1  and 1-1 must be approximately the same. Similar reasoning 
applies to the other directions. 

Considering the sequence of positions y, of the centers of the strips normal to a 
given direction, we have just shown that 

y m - - y m _ . = S . + ~  . . . .  (8) 

where s, is a constant (independent of m) of the order of A and era,, is of the order of 
Dt + D~. In order to satisfy the equation for all n simultaneously, we must have 

Ym = ms + ~n, (9) 

where s is a constant depending only on the direction of the strip and e,, is bounded 
by a number on the order of D t + D  s. The strips can be enlarged so that when 
equally spaced they include the possible deviations in e,,. There is no danger of 
parallel strips overlapping since s is of the order of A, which can be chosen as large 
as desired. Symmetry immediately guarantees that s is the same for the strips in the 
1 and (Q - 1) directions. Hence, the triangular lattice of strips can always be made 
to have the form shown in Fig. 3b. 



Weak Matching Rules for Quasicrystals 619 

References 

1. Steinhardt, P.J., Ostlund, S.: The physics of quasicrystals. Singapore: World Scientific 1987 
2. Penrose, R.: Bull. Inst. Math. Appl. 10, 266 (1974) 
3. de Bruijn, N.: Proc. Kon. Nederl. Akad. Wetensch. A84, 39 (1981) 
4. Socolar, J.E.S.: Phys. Rev. B39, 10519 (1989) 
5. Katz, A.: Commun. Math. Phys. 118, 263 (1988) 
6. Socolar, J.E.S., Steinhardt, P.J.: Phys. Rev. B 34, 617 (1986) 
7. Levitov, L.S.: Commun. Math. Phys. 119, 627 (1988) 
8. Socolar, J.E.S.: In Quasicrystals - Adriatico Anniversary Research Conference. Jaric, M.V., 

Lundqvist, S. (eds.). Singapore: World Scientific (to appear) (1989) 
9. Kleman, M., Pavlovitch, A.: J. Phys. C3, Workshop on Aperiodic Crystals: 229 (1986) 

10. Elser, V.: J. Phys. A. Math. Gen. 17, 1509 (1984) 
11. Henley, C.L.: J. Phys. A. Math. Gen. 21, 1649 (1988) 
12. Gahler, F., Rhyner, J.: J. Math. Phys. A 19, 267 (1986) 
13. Lubensky, T.C.: In Aperiodicity and Order, vol. 1, Jaric, M.V. (ed.). Boston: Academic Press 

1988 
14. One could equally well consider a ci-row border, where c is any number relatively prime to Q, 

but only one case is necessary for the proof 
15. Katz, A.: Unpublished 
16. Levine, D., Steinhardt, P.J.: Phys. Rev. B34, 596 (1986) 

Communicated by A. Jaffe 

Received September 28, 1989 


