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Abstract. We construct a family of probability spaces (/2, ~ ,  P~), 7 > 0 associated 
with the Euler equation for a two dimensional inviscid incompressible fluid 
which carries a pointwise flow tht (time evolution) leaving Py globally invariant. 
qSt is obtained as the limit of Galerkin approximations associated with Euler 
equations. P~ is also in invariant measure for a stochastic process associated 
with a Navier -Stokes  equation with viscosity 7, stochastically perturbed by a 
white noise force. 
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O. Introduction 

The search for solutions of Euler and Navier -Stokes  equations in certain spaces 
of functions is of great physical and mathematical  interest. In the present paper  we 
shall discuss the Euler and Navier -Stokes  equations for an incompressible fluid. 

For  simplicity we shall consider a fluid confined in a rectangular box T 2, with 
periodic boundary conditions (or, equivalently, on a 2-torus), but extensions to 
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more general domains are possible. The equations of motion are 

Ou 
O t -  ( u . V ) u - V p + T A u ,  d i v u = 0 ,  

where u(t ,x)=(ul(t ,x) ,u2(t ,x))E~ 2, t~E, x~Y 2= [0,2hi • [0,2n] is the velocity 
field, ~ > 0 is a constant coefficient, u'V - ul (O/Oxl) + uz(~/Oxz) - u1~1 + u2~2, and 

z 
A is the Laplacian in E2, div u - ~ Oiui, Vp - (Oip, 02p ). div u = 0 is the incompres- 
sibility condition, i= 1 

Concerning such equations (on ~2 or domains in E2) two types of results 
are known: 

a) results on generalized and pointwise classical solutions, with initial data in some 
(generalized) function spaces (not necessarily "physically relevant") 
b) results on statistical solutions, with initial data in some measure one set in a 
probability space describing "physical initial conditions." 

Concerning a) let us mention that in the case 7 = 0 global (in time) solutions with 
initial data with finite energy are known (M.M. Gunther (1927), W. Wolibner 
(1933), V. Judovich (1963), T. Kato (1967), C. Bardos (1972), see e.g. the references 
in [E]). 

In the case 7 > 0, we mention the existence of global solutions by J. Leray 
(1933), O. Ladyszenskaja (1959), Lions-Prodi (1959), see e.g. [Te] and references 
therein. 

Concerning b): this is part of a statistical approach to turbulence, initiated 
already last century, see e.g. [MP] and references therein. For the particular 
two-dimensional situation we are considering the case 7 = 0 has been discussed in 
physical literature by T. D. Lee (1952), R. H. Kraichnan (1967) and others, see e.g. 
[G], [-KrMo]. Probability measures /~ of Gibbsian type, with Gibbs density 
determined by the invariants of the motions, have been discussed mathematically 
in [AHKDeF],  [AHK1], [DeF], [AHKM],  [BF1,2], [BPP], [CDG]. Their 
"infinitesimal invariance" in the sense SBfd#  = 0 for smooth cylinder functions in 
the domain of the corresponding Liouville operator, has been proven in [AHKDeF],  
[AHK1]. As to the existence of a global flow in time leaving/~ invariant, only 
partial results had been obtained in the case of perturbed Gaussian measures 
[AHK1], [AHKM],  [DeF], [CDG] and in the case of Poisson measure [DP], 
[MP]. For ~ > 0 statistical solutions of different types have been discussed, see e.g. 
[-VKF], [FT] and references therein. However to our knowledge, the only result 
on invariant probability measures which has been proven in the case 7 > 0 needs 
the presence of an additional suitable random force [C1,2]. 

In Sects. 1 and 2 of the present paper we give the first proof that the 
infinitesimally invariant probability measures constructed in [AHKDeF],  [AHK 1], 
[DeF], [BF1,2], [BPP], [CDG] are indeed globally invariant. In Sect. 3 we extend 
the result to a stochastically perturbed Navier-Stokes equation. 

Let us now describe the contents of the different sections in more details. In 
Sect. 1 we discuss the equivalence of the Euler equation for a fluid on a 
2-dimensional torus (rectangular box with periodic boundary conditions) with an 
equation for a scalar "stream function" ~o. Moreover we express the basic conserved 
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quantities of the (classical, smooth) Euler flow, energy and enstrophy, in terms of 
~0. Finally we introduce the basic family #~, 7 > 0 of heuristically invariant 
probability measures of the Gibbs form, with formal density given by the enstrophy 
(a measure giving, roughly speaking, white noise distribution to the curl of the 
velocity vector). These probability measures are defined in terms of an abstract 
(complex) Wiener space, a complex version of a setting studied particularly by 
Gross, cf. e.g. [K]). A basic Lemma 1.3.2 shows that the generator B associated 
with the Euler equation (looked upon as an evolution equation in the Fourier 
transformed space to the stream function) is in L 2 between basic Sobolev spaces 
H 1 -,, ~ > 3 with respect to the basic probability measure #r. 

In Sect. 2 we show that B, as a functional with values in H 1-', is divergence 
free (relative to the divergence defined in the abstract Wiener space). In fact the 
latter result and the mentioned Lemma 1.3.2 essentially express in the useful 
language of abstract Wiener spaces results contained in [AHKDeF]. The usefulness 
of this formulation becomes clear in 2.2 where the basic Theorem 2.2.3 on the 
existence of a continuous flow defined on a probability space (I2, ~ ,  P~) with values 
in H 1-', associated to the Euler equation and leaving #~ globally invariant, is 
stated and proven. As mentioned before, this is the first solution of a problem 
stated in [AHKDeF] and [BF] (see also [AHKM], I-CDG] which contain partial 
results in this direction). It should be remarked that only existence is shown, the 
problem of uniqueness remains open, see [AHKM], [AHK1] for a discussion of 
this problem. 

Let us also remark that the present solution of the problem of constructing a 
pointwise flow should not be confused with the construction of a flow in L2-sense: 
the latter flow had been already constructed in [AHKDeF] (see also [AHK1], 
[AHKM] for further discussion). Of course the present pointwise flow also yields 
an L 2 flow. The problem of uniqueness of L 2 flows remains open (cf. [AHK1], 
[AHKM]). 

Finally let us remark that using results of [AHKDeF] (see also [AHK1], 
[AHKM], [W]) all is said here about #~, P~, can be extended to measures yp,~, Po,~ 
constructed from #~ using the renormalized energy functional :E~: of [AHKDeF], 
i.e. d#p,~ = exp ( -  fl: E:~)d#J S exp ( -  fl: E:~)d#~ with fl __> 0 (cf. [W]). We have #p,~ << #p,~ 
Vfl, fl',7, #p,~3_#r 757' .  In particular Pp,r is a family of globally invariant 
probability measures associated with the Euler flow. 

In Sect. 3 we consider the stochastically perturbed Navier-Stokes equation. In 
3.1 we show that each invariant measure #r for the Euler flow is also an invariant 
measure for a certain infinite dimensional Ornstein-Uhlenbeck process. Using this 
in Sect. 3.2 it is shown (Theorem 3.2.1) that #~ is also an invariant measure for~the 
flow associated with a Navier-Stokes equation perturbed by a suitable external 
random force. 

I. The Euler Equation in Two Dimensions 

1.1. General Settin 9. Let us consider the Euler equation for an incompressible 
non-viscous fluid in ~2, given by 

Ou 
0t  = - (u'V)u - Vp, div u = 0, (1.1) 
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where u is the velocity of the flow, p the pressure, u.V = Ul~ 1 + u2~ 2. We will 
consider the Euler equation on the 2-dimensional torus that we identify with the 
square T 2 = [0, 2n] x [0, 2n] and with periodic boundary conditions. Let rot denote 
the operator rotu = -t32 ul + t31u 2 (for u%C l) and set V• = (-~32~0 , Oi~0), where 
q~ is a scalar C 2 function. The incompressibility condition (div u = 0) implies the 
existence of a function (o such that u = V• Replacing in the Euler equation u by 
V• and applying the operator rot to both members, one can find a different 
formulation of the equation, expressed by the following result ([AHKDeF]):  

1.1.1. Theorem. u is a smooth solution of (1.1) if and only if there exists a smooth 
(real)function tp such that u = V• and q9 is a solution of  the equation 

~d~0_V• [] 
& 

We are therefore interested in solutions of Eq. (1.2) on 
periodic boundary conditions 

~p(0, y, t) = (o(2n, y, t) 

(1.2) 

T 2 satisfying the 

and q~(x,O,t)=q~(x,2n, t), u 2. 

Remark. Considering, on a bounded domain D c ~2 with simply connected 
piecewise C 1 boundary, the Euler equation du/& = - ( u ' V ) u -  Vp, div u = 0, with 
n" u = 0 on dD, where n is a unit normal to t3D, we still have a formulation analogous 
to (1.2). See [AHK1] for a study of this situation, as well as for the study of the 
Euler equations in more general domains, also in connection with the content of 
the other sections in the present paper. 

1.2. Invariant Quantities of the Motion. As is well known, the Euler system is 
conservative, that is, the energy is an invariant of the motion. This is easily seen 
by looking at the energy in terms of q~CE(T 2, ~), 

E=�89 ~ u2dx= - � 8 9  S q)Aq~dx. 
T 2 T 2 

We have for any smooth solution ~0 of (1.2): 

dE 
- ~ q~V• = ~ VtpV• = O. 

dt C C 

In a similar way, one can see that there are other invariant quantities for the Euler 
system (cf. [AHKDeF]).  One such quantity that will be important for our purposes 
is the so-called "enstrophy," given by: 

S = �89 ~ (rot u)Zdx = �89 S (A(~ zax" 
T 2 T 2 

We have in fact, for any C 2 solution cp of (1.2): 

dS 
- - =  dq~V• = O. 
dt ~ 

1.3. The Abstract Wiener Space Formulation. Let us consider the following 



Global Flows with Invariant Measures 435 

Sobolev-space on the torus: 

g2(T2) = ~u:T 2_~ ~:~ 
l 

ID~u(x)lZdx < + oo } .  
IM<2 

Let ek(X ) =(1/2rc)e ik'x, with keZ/2 and k .x  = k l x  1 + k2x2, be a complete set of 
orthonormal (with respect to L 2) functions, which are eigenfunctions of the operator  
- A ,  having k2=  k 2 + k 2 as their eigenvalues. We can identify ~f2(T2) with the 
complex Hilbert space 

H 2 =  {u=Zu~e~:~k4lUk[  2 < + 0% U_~=~R} 

(with ti denoting complex conjugation of u). 
For  general p e r  we define: 

= t u =  ~" Ukea:~kZVluk[ z < + ~ }  H p 
k>O 

(k > 0 meaning k e Z  2, kl > 0 or kl = 0 and k2 > 0), and with inner product given 
by (u,  v)v = ~ kEVUagk . 

k>0 
Let d#ar be the probability measure on C defined for ~eN + by 

d#~(z) = 7k4 ( -  �89 [Z)dxdy, ~ -  exp 

where z = x + iy, and d#~(u) = 1-] k dl~r(Uk). It is easy to see that, for ~ > 0 ,  
k>O 

~ [[ull~_,d#=~ Z k2-2~[ukld#r(u) =2 E ~  < +0(3. So  the measure #r is sup- 
k>O ~; k >Ot~- - -  

p o r t e d  by H ~-L 
We shall call complex abstract Wiener measure space a complex structure 

consisting of a complex Hilbert space H, a complex Banach space B which is the 
completion of H with respect to a measurable norm in the sense of Gross (cf. I-K]) 
and a o-additive normalized measure on B. We claim that: 

1.3.1. Proposition. ( H l - ' ,  H2, #r) is a complex abstract Wiener space with measurable 
norm II'llx-~, for any ~ > O. 

Proof. Let A be the linear operator defined by A(e~)=(1/[kl l+')ek . A is a n  
1 

Hilbert-Schmidt operator  on H 2 with norm JJA 2 .~ J]rt.s. = ~ < + oo. For  

u = ~UkekeH z we have [[ A(u)[[ a = [I u [[1 -~. The norm [['][1-~ is then a measurable 
norm and the completion of H a with respect to it gives the space H 1 -~. 

Remark. In the framework of the remark of paragraph 1.1, and considering A to 
be the Laplacian with Dirichlet boundary conditions, one knows that - A  has a 
discrete spectrum 0 <  21 < ... < 2 i . . . , 2 i~  +oo.  We can therefore make an ana- 
logous Wiener space formulation in this context. 

The measure #r constructed above is then the Wiener measure for the space 
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H 1 -~, verifying: 

j" exp (i~,l(u))dt~(u) = exp ( -  �89 II 71 II 2) Vl~( H1 - ~)* c H 2. 

We have Ez~(Uk) = O, E~(UkU'k) = 0 and E~(Ukf/k) = 6k,k,(2/yk4). Moreover for 7 :~ ~' 
the measures #r and #~, are orthogonal. Furthermore we have/~7(H 2) = 0. 

On the abstract Wiener space constructed above we will use differential calculus 
in the sense of Malliavin (see [Ma] for an introduction). In particular we shall use 
derivatives along the directions belonging to the Cameron-Mar t in  space, that is, 
H 2" 

Let us come back to the Euler equation (1.2) and write q~(x,t)= ~ uk(t)ek 
k > O  

(~0 is real and we can assume ~ q~dx = 0 since adding a constant to q~ does not change 
Eq (1.2)). Now (1.2) takes the form (cf. [AHKDeF]) :  

2 d 
2rck ~ u  k = - -  h+~h,=k(h• 

=�89 ~ (h• 2-(h')2]uhuh,, (1.3) 
h + h ' = k  

where h • ( - h2 ,  hi). This can be written as 

d 
~iUk = Bk(U), (1.4) 

where the Bk are given by: 

1 • 
Bk(u) = 

and we look for solutions u(t)eH 1 -~Vt. Let B(u)= ~Bk(U)ek. Then we have: 
k 

1.3.2. Lemma. For every �9 > ~ the functional B is square-inteorable with respect to 
the measure #~ and to the norm of  H ~-~, i.e., 

E.~IIBII~-,< +o0. 

Proof. The proof can be found in [AHKDeF] ;  nevertheless, we sketch it here, for 
sake of completeness. Define the following approximation fields: 

B~,(u)= ~ O~h,kUhUk-h, (1.5) 
h 2 ~ n  

where 2n%, k = (1/k2)(h• �89177 Then we have 

E~(IB~I~)= y, (~ ,~ ,  ~)E(u~u~_~a~,C~_~,) 
h2 <=n 

(h') 2 ~ n 

4 1 
= ~ E O~h,kOth',k(fn,h' + 6h, k-h') h4(k _ h)'*" 

h 2 < n  
h ' 2 ~ n  

Hence, 

( •  h~k 1 1 k 2 
E.~ (IB~l~)---- ~ -h) ~ + 2(~)~ ~ h~(k_h), 
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1 1 
+ ( ~ h ~ k L h l 3 l k _ h l a { I k - h l + � 8 9 1 8 9  (1.6) 

and, for m < n, E,~([B~ - B~I 2) is estimated by the r.h.s, of (1.6) with summations 
restricted to m 2 < h 2 =< n 2, which proves that B~ is a Cauchy sequence in LZ(H ~ -~, C), 

converging to B k. Finally, for c~ > ~ we have E,,  k ]Bkl -4-o% and 

therefore B e L Z ( H ~ - ' , H X - ' ) .  [] 

We remark that B is not a vector field in the sense of [C3], that is, it is not a 
functional with values in the Cameron-Mar t in  space. Therefore one cannot expect 
to apply the results of [C3] to construct a flow associated with B. 

We also remark that the energy and the enstrophy defined in 1.2 are given by: 

E=�89189 2, S=�89189 2. (1.7) 
k k 

2. The Euler Flow and the Invariant Measures 

2.1. The Invariant Measures. Let us consider the gradient operator in the sense 
of the Malliavin calculus, that is, for ~o defined on the Wiener space H 1 -" with 
values in a Banach space E, Vq~(u) is the linear functional defined, for uEH a -~, by: 

V~o(u)(v) = Dv~o(u) = lim 1 ho(u + ev) - ~o(u)], v~H 2. 
e~0 8 

Although, as we remarked, B is not a vector field on the Wiener space, we shall 
consider the following generalization of the notion of divergence (cf., for example, 
I-KK]). 

2.I.1. Definition. If G is a Hilbert space and t p e L 2 ( H  1 -~, G) ~ L 2, we call divergence 
of ~p, and we denote it by 6ucp, the adjoint of V in L 2, i.e., 6,~p is the element of 
L2(H 1 -~, ~), which verifies, whenever it exists: 

~ 6 , ( p ' f d l ~ = ~ ( ~ o l V f ) j #  V f z ~ ,  

where ~ is the space of differentiable functions defined on H ~ -" and depending 
only on a finite number of coordinates u,. ~ will be used as the space of test 
functions. (I)G is the scalar product in G. 

2.1.2. Lemma. Considerin9 B as #iven in Sect. 1.3, as a functional with values in 
H 1 -~, a > 3, (G = H 1 -~ in definition 2.1.1) we have 6uB = 0, with #y as in 1.3. 

Proof(cf .  [AHKDeF]) .  Consider the Galerkin approximations B~, of B, defined 
by (1.5); B~, depends only on a finite number of coordinates, say (us,k,... , u,,), where 
cheT/2, d, = dk(n). By taking B] , . . . ,  B.", we can define: 

Bn= 2 B~,ek, (2.1) 

where d = d(n). k~{~ ...... ,~ 

B" is then a vector field on C a and we know that, with respect to the measure 

dl~(u) = ~ dl~(u), u = (u,~ . . . . .  u J ,  (2.2) 
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the divergence is given by 

~u,~Bn(u) = <Bn(u), u)2 - ~ DekB~(u). 
k~ {o~ 1 . . . . .  OLd} 

From the expression (1.3) we see that, for each k, DekB ~ = 0. On the other hand, 

(B"(u), u)z = ~ k4n~,(U)ak = (AB"(u), Au)o = 0 

by the invariance of the enstrophy (of. 1.2). Therefore we have 6,~B" = 0 Vn and 
the result follows. [] 

According to [AHKDef],  all measures #r are infinitesimally invariant under 
the Euler flow in the sense that S Bfdl~y = 0 V f r  The existence of a global Euler 
flow was left open in [AHKDeF].  The purpose in the next section is to prove the 
existence of such a flow for #<almost all initial conditions. 

We remark that: 

•k2<<_ n / l  ]~ k2<= n 

Therefore the energy is not in L~(#~) and it is not possible, in order to construct 
a flow, to use results on existence of solutions of the Euler equation with initial 
conditions of finite energy. 

It is shown in [AHKDeF]  that ~ k2[Ukl2-Eu,( ~ k2[Ukl21convergesin 
k2<=n \ k 2 < = n  / 

L2(#~) for n --* o0. The limit is the "renormalized energy" discussed in [AHKDeF],  
[AHK1], [AHKM].  

2.2. The Euler Flow 

2.2.1 Lemma. There exists a unique non-explosive fiow u"(0)~ u"(t), with (d/dt)u" = 
B"(u) associated with the finite dimensional vector field B" defined in (1.5), (2.1). 

Proof. Since BT, is a finite sum of quadratic expressions of the type ~h,kUhUk_h, this 
follows from the classical results on finite-dimensional flows. We remark that the 
non-explosion (in finite time) can also be proved using the fact that Bn is divergence 
free (of. [C3]). [] 

We shall show that this classical flow (with support on functions) can be used 
to construct a flow (with support on generalized functions) associated with B. 

For u = ~ Ukek~H 1 -~, let H , u  be the orthogonal projection ofu on the subspace 
generated by {e~l,z..., %,}" Write u = H , u  + HX, u and let U" be the flow associated 
with B". Putting U"(t, u)= U"(t, FI, u) + FlU, u, we have: 

d U"(t, u) = B"((l"(t, u)), U"(O, u) = u, (2.3) 
dt 

these flows being now defined on H 1 - ' .  Furthermore, if U"(., u) = ~/]~,(', U)ek, we 
have that, for each k, O~,(-,u)eC(~; C). k 

We are now able to show the existence of a flow (in the precise sense of the 
following result): 
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2.2.3. Theorem. There exists a flow U(t, co) defined on a probability space (~2, ~ ,  P~) 
with values in H 1 -~, ~ > 3, U(', og)eC(~; H 1 -a), o9e~'2, such that: 

t 

(i) Uk(t, o9) = UR(0, CO) + ~ Bk(U(s, m))ds, P~ - a.e.o, Vt~R, 
0 

and such that the measure #~ is invariant for the flow, in the sense that: 

(ii) ~ f(U(t,  co))dP~(og) = S fd#~ Vt, V f ~ .  

Proof. We shall consider, for tER +, the t~, as stochastic processes with law on 
C(R; C) defined by 

v~(F) "". c(~+;c). =~({u.G(,u)~r}),  r ~  

We consider the sup-norm on the space C(~+;C) and the weak topology on the 
space of measures over C(R+;C). If we verify the following conditions: 

(a) lim sup v~,(]y(0)] > R) -- 0, 
R--* + Qo n 

(b) ~-.01imsupv~(, \o_<t_<t'_<TSUp ly(t)--y(t ')l>=p)=O Vp>O, T > 0 ,  (2.4) 
t ' - t < t i  

then it follows, by Prokhorov's criterium (cf., for example, [SV]) that v~ is a 
precompact sequence of measures and therefore that we have a subsequence 
converging weakly towards a limit vk. We have: 

1 z 2 
vT,(ly(0)l > R) _<-~E,,(lukl ) ~ - ~ ' . D 2 L 2 '  

- R  -~ ,~  ,~ 
which implies (a); 
(b) comes from the following estimations: 

v~, ', supt,,, ly( t ) -y( t ' ) l  => p <__ -~ E,,(sup[ O~(t,u) - UT,(t', u)l 2) 

r 
< ~ E . ,  ! I B~(U"(s, u))12ds 

~T 
p2, 

where we used (1.6) and the fact that/~r is invariant for the approximating U" 
flows (the divergence of B" is zero). 

There is then a subsequence of v~ converging to Vk; we shall denote it again by 
v~,, for simplicity. By Skorohod's theorem (cf., for example [IW]), there exists a 
probability space ( ~ , ~ , P r )  and a family of processes Uk (t, og), Uk(t, og), O9~12, 
having for laws, respectively, v~, and v k on the space C(R+;C). Furthermore, 
/~,~(', o9) ~ Uk(', O9) Pr -- a.e. in o9. On the other hand, we can repeat this construction 
for the processes tE~+ r--~ 0 ~ ( -  t, u) to obtain the negative values of t. 

We first prove (ii); for f ~ ,  we have: 

I f(~"(t ,  ",• . n u))d#r(u) = Id#r ~ f(U,(u))d#r(u) Vt, 

where d/~ is defined in (2.2) and dl~'• I-[ d#~(u). 
~(~,...,~a} 
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Hence, ~ f(U"(t, u))d#~(u)= ~ fd#r; on the other hand, denoting by v" the law 
of U"(', u), we also have: 

f(O"(t, u))d#r(u) = ~ f((y(t))dv"(y) 
= ~ f(U'"(t, 09))dPy(09) 

" ~ ,  ~ f(U(t, 09))dPy(09), 

which proves (ii). Let us now prove that U(t, w) has values in the space H 1 -~. From 
(ii), we have: 

I Z k2 - 2al Uk(t ,  (/)) 12 dne(09) -- ~ ~ k 2 - 2a[u k [2 d#e(u)  
k k 

= ~ II u II~-~d/~v(u) < + ~ ,  

therefore, P~ - a.e. 09, U(t, 09)~H 1 -L 

It only remains to prove (i), i.e., that U(t, 09) is a flow associated with B. We have: 

i [B~,(O'"(s, 09)) - Bk(U(s, 09))]ds de~(09) 

I i l  B~(O'n(s' 09)) -- Bk(U'n(s, 09))[dsdP~(09) 
0 

t 
+ ~ ~ }Bk(U~'" (S, 09)) -- Bk(U(s, o9))1 dsdP~(09). 

0 

The second term converges towards zero by the equi-integrability of the functions 
B~((J"(t,u)) and the fact that 0'"(.,09)~ U(',09) a.e. in the space C ( ~ + ; H I - ' ) .  The 
first term is equal to: 

t 
I ] BT,(0"(s, u)) - B k ( 0 " ( s ,  u))ldsd#~(u) 
0 

and therefore, by the invariance of /~  under U"(0)~--~ U"(t) and the fact that Bk Bk 
in L2(p~), this term converges to zero as well; therefore, and as we can identify in 
law the processes /~'"(t, 09) and the flows U"(t, u), we obtain (i) by passing to the 
limit. [] 

Remark. By using a precompactness criterium due to Dubinski [Du], one can 
show that the laws v" of U"( ", u) are precompact on the space 

Z=L2o~(~+;Ha-~)c~C(~+;HI-P), for ~ < a < f l .  

In this way, and avoiding the use of the marginals Vk, we obtain a probability 
measure and realize a flow associated to B on a single space, namely Z. 

3. The Perturbed Navier-Stokes Equation 

3.1. Invariant Measures. The classical Navier-Stokes equation 
motion of an incompressible viscous fluid and is given by: 

0u 
O t = - ( u . V ) u + T A u - V p ,  divu = O, 

describes the 

(3.1) 
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where 7 > 0 is the viscosity coefficient. We will consider this equation, more precisely 
a stochastic perturbation of it, in the same context as for the Euler case (Sect. 1.2). 
This means we will consider (3.1) on the two-dimensional torus "I]-2 and we will 
use the abstract Wiener space formulation of (1.3). We can then write the 
Navier-Stokes equation in the following form: 

d 
Uk = Bk(U) -- 7k2Uk �9 (3.2) 

As it is well known, this is no longer a conservative system (i.e. the energy is not 
conserved in time). One cannot therefore expect to have "good" invariant measures 
as in the Euler case. On the other hand, let us consider the following differential 
operator Q: 

Qf(u) = ~k ~ D 2 " f ( u ) -  ykZukDekf(u)' f~" 

This is an infinite dimensional Ornstein-Uhlenbeck operator of a type considered, 
e.g. in [Ga]. The measure #7 defined in (1.3) is an invariant measure for the 
Ornstein-Uhlenbeck flow generated by Q; in particular we have S Qfd#~ = 0 V f e ~ .  

Let us consider the following operator: 

Lf(u) = Qf(u) + ~ Bk(U)Dekf(u), f ~ .  (3.3) 
k 

This can be regarded as the infinitesimal generator for a perturbed Navier-Stokes 
flow, as we show in the following paragraph. By the invariance of/t~ under the 
Ornstein-Uhlenbeck flow and the invariance proved in Sect. 2 we have then in 
particular the infinitesimal invariance of the measure #7 under the Navier-Stokes 
flow in the sense that: SLfdp~ = 0 V f ~ .  

3.2. The Perturbed Navier-Stokes Flow. Let Tbt = ~ (1/[kl)b~ek be a normalized 
k 

cylindric brownian motion on H 1, where the b k are independent copies of complex 
brownian motions. We recall that the Ornstein-Uhlenbeck process associated with 
Q can be explicitly given by: 

~k= xke-YkZt q_ i e-rk2(t-s) ~2dbk(s), 
Ikl 

and that this process, starting from H ~ - ' ,  actually remains in H ~ -" for all times. 
With respect to the existence of a perturbed Navier-Stokes flow, we have the 

following theorem (cf. [C1] for related results): 

3.2.1. Theorem. There exists a stochastic process x ~ C( R+ ; H ~-~), such that, for 
x e H  1-~, and writing xt = ~Xkek, we have: 

t 

(i) x k = x k + ~Tb k- ~ []~kZx k - Bk(xs)]ds a.e., Vte~ +, 
o 

where ~b~ is a Brownian motion on H 1. 
Moreover, i~r is invariant for x t in the sense that 

( i i )  SExf (x , )d#~(x)=Sfdu  ~ Vt~R +, V f ~ .  
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Proof. Let us consider the finite dimensional approximations of Bk defined in (1.5), 
(2.1), and, for xeH  1-~, put x" = (x .... , . . . ,  x"'~9, where clearly d depends on n. Since 
the coefficients are regular, we have, by classical results, the existence of a finite 
dimensional stochastic process x~' = (x~"%..., x~ '''d) e C a defined for small times and 
satisfying: 

xn'k d- ~b n'k i [Tk2xn'k- B~(xn)]ds a.e., (3.4) n,k 
X t ~ 

0 

where b~' = ~ bk(1/Ikl)ek . By It6's formula, we have 
ka{al  . . . . .  aa} 

d lxT'kl 2 = 2k~i2 (Re (x'~'k)d Re (b'~ 'k) + Im (x'~ "k) d Im (bT'k)) 
I 

But, because of the invariance of the energy (cf. 1.2), we have ~k2B~(x).2k = 0 and 
therefore, 

g(llx'lll2)= E k21x'll 2 = 11x"112-2,/! IIx'lll2ds + c(n)t. (3.6) 

Moreover 

E(, supT  iix , ) __< 111"11,2 
t 

+ 8E sup ~, j" [(Re (x~'k)d Re (b~ 'k) + I m (x"dk)d Im (b~"'k)) ] 2 
k 0 

T 

< II x" II 2 + e(n)T + eg [. ~, Ix~'kl2ds 
0 k 

< ]] x" I12 + T( [[ x" [] 2 + c'(n)), 

where we used (3.5) in the last inequality. This estimation implies the non-explosion 
in finite time of the processes x~, for fixed n. 

We have S Exf(x'~) d#~(x) = ~ fd#~ V t > 0, f e ~ ,  by the invariance of the measure 
under the finite dimensional flow x~'. 

Let p,,k denote the law of x~ 'k on the space C(~+;C). We will apply the 
precompactness criterium (2.4) in order to get a weak limit of these measures. We 
have: 

1 k C (a) pn'k(]y(O)] >R)__<~]X ]__<~ Vn, 

(b) p.,k( sup l y ( t ) - y ( t ' ) l>p )< l -Esup l x7  'k .,k - -  X t '  [ 
\O<_'t<_t'<_T P 

t'--t<=(~ 

<= 6~+TkeEsup Ix~'klds+EsupSlBT,(x~)lds, 
t 
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with 0 < ~ < �89 by the properties of brownian motion and Eq. (3.4). Using H61der 
inequality and the initial condition, we have: 

E( sup i lxn'klds) ~ c~l/2( E i [xn'kl2 ds) 1/2 

~(~112(i('Xk'2 +~)ds)2S\ \a/2 

( <=61/2 [xk[2r + k2 ] Vn; 

moreover, using again the invariance of #~ under x~, 

( 'i ) ((i E sup [B~(xT)Ids <61/2 E IB~(x~)lEds 

< (6T)  Xl2(~lB~(x)12d~(x))l/2 , 

this last integral being uniformly bounded in n by the estimations of Lemma 1.3.2. 
Hence we will have a subsequence p.j,k converging towards pk and pk will be 

the law of a process x~e C(R +;C), by Skorohod's theorem. Let x, = ~ x~ek. We have 

E(llx'll~-')= E(~k k2- Z'lxkl2) = lim, j k~<_.~2 k2-2aE([x~'kl2) 
< ~, k 2 - 2~ f lXk 12 d#r (x) = f ]l x II 12- ~d~(x) < + co, 

k 

and therefore the process lives a.s. in H ~-L 
The relation (ii) follows from the analogous relation for the finite dimensional 

approximations. It only remains to check that x k satisfies (i), but this can be done 
by taking limits in (3.4), remembering that XT~'k~ X k a.e., uniformly with respect 
to t, and also that the Bk are equi-integrable in L2(#r). 
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