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Abstract. A uniqueness condition for Gibbs measures is given. This condition is 
stated in terms of  (absence of) a certain type of percolation involving two independent 
realisations. This result can be applied in certain concrete situations by comparison 
with "ordinary" percolation. In this way we prove that the Ising antiferromagnet on a 

1 l n ( P J ( 1  - Pc)), where square lattice has a unique Gibbs measure i f /3(4 - Ihl) < 
h denotes the external magnetic field, /3 the inverse temperature, and Pc the critical 

probabili ty for site percolation on that lattice. Since Pc is larger than ~, this extends 

a result by Dobrushin, Kolafa and Shlosman (whose proof  was computer-assisted). 

1. Introduction and General Theorem 

Our main theorem requires hardly any prerequisites and we hope the following 
introduction makes it also accessible to non-experts. 

Let the graph G be connected, countably infinite, and locally finite (the last means 
that each vertex has finitely many edges). The set of  vertices of G is denoted by V G. 
Vertices will typically be denoted by i, j ,  v, w etc., possibly with a subscript. Two 
vertices v and w are said to be adjacent, or neighbours (notation: v ~ w) if there is 
an edge between them. 

A path from v to w is a sequence of  vertices v 1 = v, v 2 , . . . , v  t = w with 
the property that consecutive vertices are adjacent. An infinite path is a sequence 
Vl, v2, . .. with the property that consecutive vertices are adjacent, and which contains 
infinitely many different vertices. 

For B c V c ,  gB will denote the boundary of B,  i.e. the set of  all vertices which 
are not in B but adjacent to some vertex in /3 .  
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Percolation. Suppose each vertex i is, independent of all other vertices, open (i.e. 
accessible) with probability pi and closed with probability 1 p~. Denote the 
corresponding probability measure by P{pd" For a realisation of the process a 
path is called open if all its vertices are open. We say that percolation occurs 
if P{pd (there exists an infinite open path) > 0 (in which case this probability 
is even 1 since the event is a tail event). In case all p{'s are equal, say p, 
we write Pp for the above probability measure and define the critical probability 

Pc = inf{p:Pp (there exists an infinite open path) > 0}. This critical probability 
depends on G. One of the first results in percolation was to show that Pc < 1 for a 
large class of graphs, including the square lattice [Broadbent and Hammersley (1957)]. 
The above model is called independent site percolation. If  the vertices do not behave 
independent of  each other we speak of  dependent percolation and if the edges rather 
than the vertices are open or closed we speak of bond percolation. For further study, 
see Grimmett (1989) and Kesten (1982). 

Markov Fields and Gibbs Measures. Let S be a finite or countably infinite set and 
define X2 = sV~. Elements of  ~ will typically be denoted by w -- (w~, i C V~). We 
are interested in certain probability measures # on D (equipped with the a-algebra 
generated by (w i = s), i ~ Vc, s E S; we will call this the obvious a-algebra). 
Roughly speaking, # is called a Markov field if, for each finite set of vertices/3, the 
conditional distribution of the configuration inside/3, given the configuration outside 
/3, depends only on the configuration on 6 B. Such a set of conditional probabilities, 
indexed by the finite sets/3,  the configurations on B, and the configurations on 6 B, 
is called a specification of #. There may be more Markov fields with the same 
specification. They are called its Gibbs measures. For more general and precise 
definitions see Georgii (1988) and Prum and Fort (1991). An intuitively appealing 
introduction is Kindermann and Snell (1980). A central problem in the theory is to 
determine whether a given specification has a unique Gibbs measure. In case of non- 
uniqueness we say that there is a phase transition. The most well-known condition 
which implies uniqueness is Dobrushin's condition of weak dependence [Dobrushin 
(1968a)]. For references to other uniqueness results see the bibliographical notes for 
Chap. 8 of Georgii (1988). In this paper we prove a uniqueness condition involving 
two independent realisations. To state our result we need another definition. Let w 
and w' be two realisations. A path of disagreement for the pair (w, w') is a path in G 
on which all vertices i have w i # w~. 

Theorem 1. Let G be a countable, locally finite, connected graph, V c its set of 
vertices, S a finite or countably infinite set, and ~ = S va. Let the probability 
measures # and #' on ~2 (with the obvious a-algebra) be Markov fields with the same 
specification. Consider two independent realisations, one under #, the other under #'. 
If  (# • # ' )  ((w, w') has an infinite path of disagreement) = O, then # = #'. 

Remarks. (i) The reverse is obviously false: For example, let G be a graph whose 
critical probability Pc (for site percolation) is strictly smaller than 1, and let S = 
{ 1, . . . ,  r~}. Let # be the probability measure under which each i E V c ,  independem 
of all other vertices, is in state s ~ S with probability 1/r~. Uniqueness is trivial in 
this case. However, if w and w' are two independent realisations of this process, then 
the process (I(w i # w~))icvc, where I(.) denotes the indicator function, is i.i.d, with 

parameter p = 1 - 1In. Hence, if n is taken sufficiently large, then p > Pc and we 
have, with probability 1, an infinite path of disagreement. This example shows that 
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our theorem is, in certain cases, completely useless. However, in some other cases it 
is quite powerful, as the application in Sect. 2 shows. 
(ii) Methods involving two independent realisations have been used, with much 
success, earlier in this field [see e.g. Lebowitz (1974), Percus (1975), and Aizenman 
(1980)1. 
(iii) It seems natural to expect that improved results may be obtained by taking a more 
complicated coupling (instead of independent realisations). This will be the subject 
in van den Berg and Maes (1992). 

Proof  of  Theorem 1. Suppose the assumption holds, i.e. (# x #~) ((~,cJ) has an 
infinite path of disagreement)= 0. Let A be an arbitrary finite set of vertices, and 
S1,82, . . .  , sIA] an arbitrary sequence of elements of S (where JA] denotes the number 

of elements of A). Further, let E be the event {c~ E S va :cJ i = si for all / ~ A}. We 
have to prove that #(E)  = #~(E). For each pair (a~, cJ) the cluster of  disagreement 
containing A is defined as the subset C A of V c which consists of A as well as 
all vertices / for which there exists a path of disagreement to some vertex in 6 A. 
Let T:  22 x 27 --+ 22 • 22 be the transformation which exchanges c~ and cJ ~ on the 
above cluster of disagreement. More precisely, T(~, cJ) = (or, crY), where ~r i equals 
cJ~ if i E C A and equals w~ otherwise, and, similarly, (7~ equals w~ if i C C A and 
a;~ otherwise. This transformation is obviously 1-1. Moreover, C A is finite with 
probability one (by assumption). From this, together with the Markov property of # 
and #~, and the fact that # and #~ have the same specification, it is quite easy to see 
that T is also measure preserving: sum over all possibilities for C A, and all possible 
configurations on C A U (5C A. (This way of using the Markov property is somewhat 
similar to that in Russo (1979.) Hence, since E involves only vertices of A (which 
is by definition contained in CA), we have 

#(E)  = (# x #') (E  • 22) = (# x #') ( T ( E  • 22)) = (# • #') ( ~  • E)  = # ' ( E ) ,  

which completes the proof. [] 

The condition in Theorem 1 involves dependent site percolation. In certain situa- 
tions it is useful to compare this process with independent site percolation: 

Corollary 1. Let G, S, # and #' be as defined in Theorem 1. Consider again two 
independent realisations, one under #, the other under j .  Let, for  each vertex i, N i 
be the set o f  neighbours of  i, and define 

' ' ' for  all j E N i ) .  (1) p~ = sup (# X #t) (U)i r O)i ] a)j : O~j and cuj = a j  
oqozlEsNi 

Consider the percolation process where each vertex of  G, independently of  all others, 
is open with probability Pi and closed with probability 1 - Pi. I f  P{pi} (there exists an 

infinite open path) = O, then # = p'. 

Remark. It is clear from the definition of the p~'s in (1) that this corollary can easily 
be reformulated as a uniqueness condition for (Markovian) specifications. 

Proof  of  Corollary 1. Let, for each i, ~i be the or-field generated by the random 
variables cJj, j r i and the random variables cJ}, j 5s i. Since # and #i are Markov 
fields it is obvious that (# x p~)(wi 7s coOl,i) is, a.s., at most p~. Therefore it is 
intuitively obvious that the process (I(c~i 7~ a3~))icv,, is stochastically dominated 
by the process (/(vertex i is open))iev . [This can ~e easily proved by standard 
arguments as, e.g., in the proof of Lemma 1 in Grimmett and Marstrand (1990)]. 
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In particular, the probability that (co,U) has an infinite path of  disagreement is 
smaller than or equal to P{pd (there exists an infinite open cluster). Now apply 
Theorem 1. [] 

2. Application: Phase Diagram of the 2-Dimensional Ising Antiferromagnet 

In this section G is the square lattice, i.e. the lattice whose vertices are the elements of  
Z 2, and where two vertices v = (vl, v2) and w = (wl, w 2) have an edge in between 
iff Iv1 - W l ]  + IVz - w 2 l  = 1. The Ising antiferromagnet has two parameters, the 

/ 

external magnetic field h and the temperature T (or ,  instead, the inverse temperature 
\ 

/ 3 =  T ) .  Each vertex i can have spin coi = + 1  or --1, i.e. S = { - 1 ,  + l } .  Its 

Hamiltonian is given by 

= h (2)  

i ~ j  j 

This means that we are dealing with Markov fields with the property that the 
conditional probability that a finite set B C V a has configuration a,  given the event 
that its boundary has configuration c~ is proportional to 

e x p (  ( i_ j i i , j~  a ig j  - ~ - ~ c r j ) ) .  (3) 
i ~ j ; i~B , j c6  B j E B  

It is a standard result that at least one such probability measure exists. It has been 
proved by Dobrushin (1968b) that there is more than one Gibbs measure in the region 
/3(4  - [h i )  > • with ~ a positive constant. 

In a paper by Dobrushin, Kolafa and Shlosman (1985) the phase diagram near the 
points h = + 4, T = 0 has been investigated. In particular, they were interested in 
the question whether there could be more that one Gibbs measure if h = • 4 and T is 
sufficiently small. The main result in their paper, Theorem 2 below, shows the answer 
is negative (which had been made plausible before, but no rigorous proof existed). 

Theorem 2 [Dobrushin, Kolafa, Shlosman (1985)]. There exist O, rr > 0 > re~2, and 
r > 0 such that there is a unique Gibbs measure of  the antiferromagnet on a square 
lattice with parameters (h, T)  in the domain {(h, T)  : h - 4 = r / cos 0 I, T = r ~ sin 0 I, 
0 <_-01 < O, 0 <_ r ~ < r}. By symmetry, a similar result holds near thepoints h = - 4 ,  
T = 0 .  

The proof of the theorem above is computer-assisted and based on a constructive 
uniqueness criterion by Dobrushin and Shlosman (1985). This criterion is of the form: 
"if the Gibbs specification is such that a condition C v is true for a finite volume V, 
then there is a unique Gibbs measure." The values of  0 and r which can be obtained 
from the paper are very close to 7r/2 and 0 respectively, but it is believed that, in 
principle, by checking sufficiently large boxes, uniqueness for this antiferromagnet can 
be proved with their method whenever it holds. However, in practice the possibilities 
are, of course, limited by computer power. 

We will show that t h e  corollary in Sect. 1, combined with the following result 
on independent site percolation, yields, quite easily, a result which is stronger than 
Theorem 2. 
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L e m m a  1. Let Pc denote the critical probability for site percolation on the square 
lattice. 
(a) [Harris (1960)] Pc -> 1/2. 
(b) [Higuchi (1982)] Pc > 1/2. 

Remark. Part (a) of  the above lemma was proved by Harris for bond percolation on 
the square lattice, but extends to site percolation [see Fisher (1961) and Hammersley 
(1961)]. 

Theorem 3. For fl(4 - Ihl) < ~ l n ( P J ( 1  - Pc)) the Ising antiferromagnet on the 

square lattice has a unique Gibbs measure. Here Pc denotes the critical probability 
for site percolation on that lattice. 

Proof of Theorem 3. As remarked before, the existence of at least one Gibbs measure 
is a standard result. By symmetry we may restrict to the case h > 0. We apply the 
corollary in Sect. 1. In this model pi, defined in (1), does not depend on i so we omit 
the subscript. By taking B the set consisting of just one element, say the origin, and 
noting that the conditional distribution of  the spin at the origin, given the spins of its 
four neighbours, is a function of the sum n of  those neighbour spins, it takes only a 
few elementary steps to derive from (3) that 

p cosh(fl(n - nl)) 
- max (4) 

1 - p -4<~'<~<4 cosh(fl(2h - n - n~)) 

Now set 
u 

h = 4 + ~ .  (5) 

The condition in the theorem can now be written as 

u > - ~ l  l n ( P j ( 1  - Pc)) . (6) 

We have to show that, under (6), p < Pc, or, equivalently, p/(1 - p )  < P J ( 1  -Pc) .  
First, we can now write (4) as 

p cosh(, ;~( u - n~)) 
- max . (7) 

1 - p -4<nt<n<4 cosh(fl(8 - n - n z) @ 2u) 

Now note that 0 <_ n - n I _< 8 - n - n ~ and use that the function x --+ cosh(x) 
is increasing for x _> 0. In case u = 0 this gives immediately p/(1 - p) <_ 1, 
which, combined with (6), yields the desired inequality. In case u > 0, use again the 
monotonicity of  cosh(x) to obtain p/(1 - p) < 1, which, combined with part (a) of  
the lemma, yields again p < Pc. Finally, as to the case u < 0, note that the value 
of the denominator in the right-hand side of (7) for that case is larger than exp(2u) 
times the corresponding value for the case u = 0. Hence, the value of  p/(1 - p )  at 
u < 0 is smaller than e x p ( - 2 u )  times its value at u = 0. In other words, if u < 0, 
then p/(1 - p) < exp( -2u) ,  which by (6) is smaller than Pc~(1 - Pc). [] 

Remarks. (a) Note that the above theorem combined with part (a) of Lemma i implies 
uniqueness whenever [h] > 4. With the strong inequality in part (b) of  the lemma it 
clearly implies (and extends) the result by Dobrushin, Kolafa and Shlosman stated in 
Theorem 2 above. Using better lower bounds for Pc, our theorem yields automatically 
stronger uniqueness results. For instance, Toth (1985) has proved Pc > 0.503 . . . .  This 
bound has been further improved by Menshikov and Pelikh (1989). 
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(b) Int imately connected with Theorem 2 is the result (by Dobrush in  et al. in the same 
paper) that the critical activity a c for the hard-square lattice gas model  is larger than 
1. Our method easily yields a~ > Pc~(1 - Pc). This and other new rigorous results 
for hard-core lattice gas models  are given in van  den Berg and Steif (1992). 
(c) In this paper  we have restricted to mathemat ical ly  rigorous results, and we have 
not  ment ioned  the m a n y  detailed results for the Ising ant i ferromagnet  which have been 
obtained by interest ing but  non-r igorous  methods [see e.g. B15te and Wu (1990)]. 

Acknowledgements. I thank R. M. Burton, P. W. Kasteleyn, and J. E. Steif for stimulating discussions. 

References 

1. Aizenman, M.: Translation invariance and instability of phase coexistence in the two-dimensional 
Ising system. Commun. Math. Phys. 73, 83-94 (1980) 

2. Berg, J., van den, Steif, J.E.: On the hard-core lattice gas model, percolation and certain loss 
networks. Preprint (1992) 

3. Berg, J., van den, Maes, C.: Preprint (1992) 
4. Bl~Ste, H.W.J., Wu, X.-N.: Accurate determination of the critical line of the square Ising 

antiferromagnet in a field. J. Phys. A: Math. Gen. 23, L627-L631 (1990) 
5. Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. Proceedings 

of the Cambridge Philosophical Society 53, 629-641 (1957) 
6. Dobrushin, R.L.: The description of a random field by means of conditional probabilities and 

conditions of its regularity. Theor. Prob. Appl. 13, 197-224 (1968a) 
7. Dobrushin, R.L.: The problem of uniqueness of a Gibbs random field and the problem of phase 

transition. Funct. Anal. Appl. 2, 302-312 (1968b) 
8. Dobrushin, R.L., Shlosman, S.B.: Constructive criterion for the uniqueness of a Gibbs field. 

In: Fritz, J., Jaffe, A., SzAsz, D. (eds.), Statistical mechanics and dynamical systems. Boston: 
Birkh~iuser 1985, pp. 371-403 

9. Dobrushin, R.L., Kolafa, J., Shlosman, S.B.: Phase diagram of the two-dimensional Ising 
antiferromagnetic (computer-assisted proof). Commun. Math. Phys. 102, 89-103 (1985) 

10. Fisher, M.E.: Critical probabilities for cluster size and percolation problems. J. Math. Phys. 2, 
620-627 (1961) 

11. Georgii, H.-O.: Gibbs measures and phase transitions. Berlin, New York: de Gruyter 1988 
12. Grimmett, G.R.: Percolation. Berlin, Heidelberg, New York: Springer 1989 
13. Grimmett, G.R., Marstrand, J.M.: The supercritical phase of percolation is well behaved. Proc. 

Roy. Soc. London Ser. A430, 439-457 (1990) 
14. Hammersley, J.M.: Comparison of atom and bond percolation. J. Math. Phys. 2, 728-733 (1961) 
15. Harris, T.E.: A lower bound for the critical probability in a certain percolation process. Proc. 

Cambridge Phil. Soc. 56, 13-20 (1960) 
16. Higuchi, Y.: Coexistence of the infinite (*) clusters: a remark on the square lattice site 

percolation. Z ~  r 61, 75-81 (1982) 
17. Kesten, H.: Percolation theory for mathematicians. Boston: Birkh~user 1982 
18. Kindermann, R., Snell, J.L.: Markov random fields and their applications. Contemporary 

Mathematics, Vol. 1. Providence, R.I.: Amer. Math. Soc. 1980 
19. Lebowitz, J.L.: GHS and other inequalities. Commun. Math. Phys. 35, 87-92 (1974) 
20. Menshikov, M.V., Pelikh, K.D.: Matematicheskie Zametki 46, 38-47 (1989) 
21. Percus, J.: Correlation inequalities for Ising spin lattices. Commun. Math. Phys. 40, 283-308 

(1975) 
22. Prum, B., Fort, J.C.: Stochastic processes on a lattice and Gibbs measures. Dordrecht, Boston, 

London: Kluwer 1991 
23. Russo, L.: The infinite cluster method in the two-dimensional Ising model. Commun. Math. 

Phys. 67, 251-266 (1979) 
24. Toth, B.: A lower bound for the critical probability of the square lattice site percolation. ZfW 

69, 19-22 (1985) 

Communicated by M. Aizenman 


