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Abstract. We present a proof of Chemin's [4] result which states that the boundary 
of a vortex patch remains smooth for all time if it is initially smooth. 

1. Introduction 

A vortex patch is a domain D (simply connected, open and bounded) in the 
Euclidean plane R 2 which moves with a velocity given at each instant of time by 

with 

- (1.1) 

I 
(D o 

T(x) = a-- [ In Ix - yldy, 
ZTZ b 

(1.2) 

where the constant (Do is time independent. Vortex patches are particular examples 
of weak solutions of the two dimensional incompressible Euler equation. Well- 
known results of Yudovich [10] provide a framework for the vortex patch problem. 
If an initial domain Do and a constant Oo are prescribed then there exists a unique 
vortex patch D(t), defined for all time t ~ R which starts out at t = 0 from Do: 
D(0) = Do. The area of D(t) is constant in time but, in general, other geometric 
features behave in a less regular fashion. In particular, the length or curvature of 
the boundary may grow rapidly [1, 6]. If the boundary is smooth enough (C1), then 
the velocity is a contour integral on the boundary, and so the problem can be 
expressed as a self deforming curve in the plane [11] (the curve is the patch 

* Partially supported by a National Science Foundation Postdoctoral Fellowship 
** Partially supported by the National Science Foundation 



20 A.L. Bertozzi and P. Constantin 

boundary). Majda [8], proposed the vortex patch problem, in contour dynamic 
form, as a model for the inviscid, incompressible creation of small scales. Motivated 
by analogy with the stretching of vorticity in three dimensions and by a simple 
model [5] he suggested the possibility of finite time singularities. In other words, 
some smooth initial contours might, in finite time, lead to loss of regularity (infinite 
length, corners, or cusps for instance). This suggestion has been the subject of some 
debate in the computational literature [-3, 7]. 

Recently, Chemin [4] proved that smooth contours stay smooth for all time. 
We offer here our interpretation of Chemin's result. 

The absence of blow up is mainly due to kinematic ("frozen time") rather than 
time dependent reasons. We use the word "kinematic" somewhat abusively to refer 
to spatial properties of the velocity deduced from the Biot-Savart law. In order to 
explain them let us compute Vv: 

Vv(x) COO p~ ~(x - y) , COo(01 - 1 )  
=2re ~ ~ - - y T  ay + y 0 

ZD(x) �9 (1.3) 

Here the Pv stands for Cauchy's principal value, XD(x) equals 1 in D, �89 on aD and 
0 outside/).  The 2 x 2 symmetric matrix o-(z) is explicit 

1 ( 2ziz2 z 2 -  z2 ) (1.4) 
cT(x) = ~ k z  2 _ z2 _ 221Z2/  

but what is important is that 

- it is a smooth function, homogeneous of degree 0, 
- it has zero mean on the unit circle, and 
- it is symmetric with respect to reflections 

o (  - z )  - -  ~ r ( z )  . ( 1 . 5 )  

It is obvious from formula (1.3) that the gradient of v is discontinuous across the 
boundary of D, no matter how smooth this boundary might be. 

The first kinematic observation is that [ Vv(x)[ is bounded across smooth (Ci'u) 
boundaries. This happens because near the boundary of D the intersection of 
D with a small circle looks very much like a half-circle (Geometric Lemma) and 
because, in view of (1.5) the mean of o on half-circles is zero. Not  unexpectedly the 
bound turns out to be logarithmic, 

I VvIL~ < CulcOo[(1 + (Log[-A,])), (1.6) 

where A u is related to the #-H51der modulus of continuity of the tangent to the 
boundary (Proposition 1). 

The second kinematic observation is that despite its discontinuity, Vv is 
nevertheless continuous in the tangential direction. More precisely the formula 
(Proposition 2) 

COo a(x - y) 
Vv(x)W = ~ Pv ! I-x22-y7 (W(x) - W(y))dy (1.7) 

holds for divergence free vector fields W which are tangent to OD. Such a vector 
field is 

W = V ' p  (1.8) 
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for q~ a C1'" function in R 2 which defines the patch via 

D = {xeR2lq)(x) > 0}. (1.9) 

From the formula (1.7) it follows by classical arguments that the #-H61der modulus 
of continuity of (17v) V• is bounded by the product of I Vvlz~ and the/~-H61der 
modulus of continuity of I7• In view of the first kinematic observation concern- 
ing I VVlr~ (1.6) we deduce the bound 

I(Vv) v• 5 Culcool(1 + (Log[Au]))l v• (1.10) 

which is only logarithmically superlinear. The quantity (Vv)V• is the material 
derivative of V• if 0 is transported passively, i.e. 

+ v- ~0 = 0 (1.11) 

and 

+ v. 17• = Vv V• (1.12) 

It is only here that the time dependence enters at the level of a Gronwall inequality 
(Proposition 3) and provides an a priori bound for [ Vq~ I,, the #-H61der modulus of 
continuity of the tangent. This however is known to be sufficient for any higher 
derivatives, by classical calculus inequalities (see for example [2]). The conclusion 
is that [VvlL~ may grow like e ct and quantities related to smoothness of the 
boundary (such as length, curvature, etc.) may grow like e qe~'. 

2. The Main Result 

We reformulate the vortex patch problem as follows. We seek a scalar cp(x, t) which 
solves 

&0 
8~- + v. Vq) = 0 ,  (2.1) 

q)(x, 0) = % ( x ) ,  (2.2) 

where v is given by the Biot-Savart law 

COo ~ V~ln]x - yldy (2.3) t)  = 

and D = D(t) is given by 

We assume that 

D = > 0 } .  

Do = {xeRZ l%(x )  > 0} 

is bounded and has a smooth boundary. We also assume that 

inf [ Vcpo(X)[ > m > 0 
x~SDo 

(2.4) 

(2.5) 

(2.6) 
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and that q)o~CLU(R2). In view of (2.3) the vorticity co(x) = alv2(x) - ( ~ 2 v l ( x )  is 

co(x, t) = 03oZD(t)(x) (2.7) 

with ZD(x) = 1 i f x ~ D ,  � 89  and 0 if x r 
It is well known that the Euler equations possess unique weak solutions whose 

vorticity obeys (2.7) ([10]). This velocity field is quasi-Lipschitz continuous; par- 
ticle trajectories are unique, globally defined for (~, t) e R z x R and H61der continu- 
ous in both space and time. This classical Yudovich solution provides a solution of 
(2.1-2.2) via 

~o(x, t) = q~o(X-'(x, t)) . (2.8) 

The area of D(t) is constant in time and is used to define the units of length. We set 

L z = area(Do) = area(D(t)).  (2.9) 

We also use the notation 

]V rp(')linf = inf I v~o(x)l = inf r v~o(x)l, 
x ~ O D  x,~o(x) = 0 

I Vq~(')l, = sup [Vo(x) - V~o(x')l 0 < # < 1 
x#x' Ix - x't" 

The main result is one of regularity of ~o: 

Theorem. Given 030 =t: O, Do bounded and q~o~Cl'~(R 2) satisfying (2.5) and (2.6) 
there exists a constant C depending only on I03ol, L, I VCpo I,, I V %  IL~, and l Vq~o linf so 
that the problem (2.1)-(2.5) has a unique solution (p(x, t) defined for all x e R  2 and 
t e R and satisfying 

Vv(. , t) lL~ < l V v ( . , O ) l L ~ e  cl*l , (2.10) 

I V~o(-,t)lu < [ Vcp(.,0)luexp((Co + #)eCl'l), (2.11) 

V~p(., t)IL ~ < I Vq)(., 0)lr~ exp(e cl U), (2.12) 

V(o(., t)h,e > I Vq~(' ,0)h.eexp(- eCltl). (2.13) 

Co is constant depending only on the dimension of the space. It is known [2] that 
(2.10)-(2.13) are sufficient for higher regularity. More precisely, the following 
theorem holds 

Theorem. Consider COo ~: O, Do bounded and ~Oo ~ C k' "(R 2) satisfying (2.5) and (2.6). 
Let  cp(x, t) be as defined in (2.8). A sufficient condition for (p(x, t )~ C k' ~(R2) for all 
t ~ [-0, T] is that I V~o ( . ,  t)Iu, I V~o (-, t)lL~, and 1/([ Vqo (-, t) lint) remain bounded for all 
t e  [0, T]. 

In particular the above theorem is true for C ~ = 0~~ C k'". We start with 
a few kinematic results. 

Proposition 1. Assume v is given by the Biot-Savart formula (2.3) and q) is related to 
D by (2.5). Then 

IVVIL~ _--< ( 9  + 2]I03o1(1 + (LogjAm])), (2.14) 
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where 

A / , -  
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I v~o(.)t,<s_, ,~ 

117(,0( .)}in f " 

In  view of (1.3) we only need to est imate the symmetr ic  par t  of (17v)(xo) and the 
only nontrivial  case is when Xo is close to the bounda ry  of D. Let  us denote  

d(xo) = inf {ix - xol} (2.15) 
x e c~D 

the distance f rom Xo to OD. We take a cutoff distance 0 < fi < oe defined by 

I lTrpli~r 
cSu - - -  (2.16) 

I I7~ol. 

and consider the set of points  Xo so that  

d(xo) < 6 . (2.17) 

Fo r  every p, p > d(xo), consider the directions z so that  Xo + pz~D" 

Sp(xo) = {zl lzl = 1, Xo + p z e D }  . (2.18) 

Also, choose a point  ~ e a D  so that  ]Xo - 21 = d(xo) and consider the semicircle 

Z(Xo) = {z[ [z] = 1, Vx~o(2).z > 0}. (2.19) 

As d(xo) approaches  zero the symmetr ic  difference 

Rp(xo) = (So(xo) \ Z(Xo) ) co (Z(Xo) \ Sp(xo) ) (2.20) 

becomes negligible. More  precisely we have the following 

Geometr ic  Lemma .  I f  Rp(xo) is the symmetric difference in (2.20) and H 1 denotes the 
Lebesgue measure on the unit circle then 

holds for all p > d(xo), # > 0 and Xo so that d(xo) < ~ = (I gq~l~of ) 1/~ 
= \ l V ~ o l . )  

The proof  of this l emma is e lementary and can be found in the appendix.  

Proof of  Proposition 1. Recall that  we only need an est imate for the symmetr ic  par t  
of l;7v which we write as the sum of two integrals 11 and 12. I2 is the integral 

% ~ o(xo - y ) .  
12(X0) = 27D~{lXo Yl >-a} t~7o Z 7  ay ,  

where ~ is defined in (2.16). It  follows that  
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On the other hand 
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a(Xo - y) COo I ~ o  - - ~  dY 
I i (xo) = 2~ D • {IXo - yl < a} 

vanishes if d(xo) > 6 so we may assume that d(xo) < g). Passing to polar coordin- 
ates centered at xo and using ~Z(~o)adHl(z) = 0 we obtain 

[ I i (xo)l  < Icool HI(Ro(xo)). 
= 27z d(Xo) e 

Applying the Geometric Lemma and integrating yields 

11~1 _-< ]cool[(1 + 2u) + ~ ] ,  

which finishes the proof. 

Proposition 2. I f  v is given by the Biot-Savart formula (2.3) and W is a divergence free 
vector field tangent to ~D then 

COo a(x - y) 
Vv(x)W -- ~ Pv ~ Ix - yl 2 (W(x)  - W(y))dy. 

The proof is a calculation based on (1.3): 

1 
Pv ~ I7[ ~- loglx - yl]W(y)dy 

D 

=-limCO~~ ~ ( W ( y ) . ( x - - ~ - ) ) 1 7 ~ l o g ] x - y [ d y  
0~0 2~ I x -  yl =gJ, yeD 

(2.22) 

The first equality is due to the fact that W is divergence free and tangent to 3D. We 
o'(x - y) 

also use the fact that VyE17r - y l ]  - i x Z y  ~- A corollary to Proposition 

2 is 

Corollary 1. There exists a constant Co such that if v is given by the Biot-Savart 
formula (2.3) and if W is a divergence free vector field W e C"(R 2, R 2) tangent to 8D 
then 

[ VvWl~ ~ Col VVlL~IWI~ �9 (2.23) 

The proof is straightforward and is given in the appendix. 
Finally, here is the only time dependent result we need to conclude: 

Proposition 3. Assume q) is a solution of(2.1)-(2.5) on some interval of time It[ < T. 
Assume that q)( . , t )~Cl '~(R 2) and that 1Vq~(',t)linf > O for }tl <-_ T. Then 

I Vcp( "t)l~ < l Vq)( " O)'"exp[(C~ + p) i l Vv( "S)lL~dSl (2.24) 



Global Regularity for Vortex Patches 25 

] Vcp(-,t)IL~ ~ I V(p(',O)IL~ e x p l i  I Vv(.,s)tL~ds I , (2.25) 

I vcp( " t )l'ne >= l v~~ " ~ exp[ - i l Vv( " s)[L=dSl (2.26) 

The proof of Proposition 3 is straightforward and is found in the appendix. It uses 
the corollary only for (2.24). 

One concludes using Proposition 1 in conjunction with Proposition 3 that the 
estimates in the theorem are true as long as one has a solution. But local in time 
existence and uniqueness under the hypothesis of the theorem are easily obtained 
(see for example [2]). This finishes the proof of the theorem. 

Remark. Using the same approach one can prove that several disjoint patches 
retain the smoothness of their boundaries. Also, under appropriate assumptions 
the result holds for a patch of nonconstant vorticity. 

3. Appendix 

Proof of the Geometric Lemma: 
Recall that 

Sp(xo) = {zl Izl = 1, x = Xo + pzeD} , (3.1) 

Z(Xo) = {z[ Izl = 1 (v~rp(2).(z)) >__ 0},  (3.2) 

Rp(xo) = (Sp(xo) \ N(Xo) ) w (Z(Xo) \ Sp(xo) ) . (3.3) 

Let O(z) be the angle in Rp(xo) that corresponds to the point z in Rp(xo). Parametr- 
ize Rp by O(z) given by 

v e ( 2 ) . ( z )  v~o (2 ) . (~  - Xo) v ~ o ( x ) . ( x o  + p z  - 2)  
sin 0(z) = - = + 

I v~o(2)l tzl I w,o(2)lp i v~o(~Z)l p 

If zeRp(xo) the either {sin0(z) > 0 and (p(Xo + pz) < 0} or {sin0(z) < 0 and 
q~(Xo + pz) > 0}. In either case, since (p(Y) = 0 and 17q~(2) is parallel to Xo - 2, 

Isin 0(z)] =< d(xo)p + v~o(2).(xOl v~o(2)lp + pz - 2) _ cp(xol V c, o(2)[p + p z ) -  ~o(2) 

d(xo)  I Vq~l~lxo + p z -  2i l+~ < + 
p pl v~o ll.f 

< d(xo) + I V~Oll~,f (d(xo) = p pF~-~ + P)~+" 

< d(xo) 
P 

+ 2 " - -  I v~ol. (d(Xo)l+. + pl+~) .  
pl Vq~ti.f 
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H e n c e  

< 2~ + 2u + 2u ~ �9 

We prove the Corollary, in its general form: 

Lemma. Let  K be a Calderon-Zygmund kernel, homogeneous of  degree - n, with 
mean zero on spheres, satisfying I VK(x)I < C l x [ - " - 1 .  There exists a constant Co so 
that all f e CU(R ") and co eL~176 ") satisfy 

[GI. < Co(p, n) l f l . ( lK*co iL  | + Ico]L~), 
where 

G(x) = P,  ~ K ( x  - y ) ( f (x )  - f (y ) )co(y)dy  . 
R" 

Proof  We write G(x) - G(x + h) = 

Pv ~ K (x - y ) ( f (x )  - f ( y ) )  co (y) dy - Pv ~ K (x + h - y ) ( f ( x  + h) - f (y ) )  co (y) dy 

= P~ ~ K ( x  - y ) ( f (x )  - f ( y ) ) c o ( y ) d y  
[x  - Yl < 2h  

- By ~ K ( x  + h - y ) ( f ( x  + h) - f ( y ) ) c o ( y ) d y  
I x - Y] < 2 h  

+ Pv ~ K ( x  - y ) ( f (x )  - f ( x  + h))co(y)dy 
I x - -  Yl > 2 h  

+ P,  ~ [ K ( x  -- y) -- K ( x  + h - y ) ] ( f ( x  + h) - f ( y ) ) c o ( y ) d y  
I x  - Yl > 2 h  

= (1) + (2) + (3) + (4) .  

Clearly I(1)l, 1(2)1 =< c,,[fluh"lcolL~. Also, we have 

C 
1(4)[ < ~ h[x  y [ . + l - ,  [fl . lcoiL~dy < Cuh"lfl,lcoiL| " 

I x  - Yl > 2 h  

A bound for (3) is obtained by using a lemma due to Cotlar (see Torchinsky [9] 
p. 291): 

1(3)1 < Ifl~,h" ~--~ P~ ~ g ( x  - y ) c o ( y ) d y  < C o l f l , h " ( I g  *coiL~ + I c o l L ~ )  �9 

Ix Yl > 2h 

To prove Lemma 2 we recall that W = V• satisfies 

OW 
- -  + v.  V W  = V v W  . (3.4) 
#t 

Let X(~, t) be the particle trajectory map associated with v. The bounds (2.25) 
and (2.26) can be obtained directly by writing (3.4) in Lagrangian coordinates and 
computing pointwise bounds for [W I. That is, 

w ( x ( ~ ,  t), t) = z ( . ,  t) 
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so that Z satisfies 

dZ(a, t) 

dt 
- -  - v v ( x ( ~ ,  t ) ,  t)z(., t),  

dlnlZ(~, t)l 
dt 

<= Vv(X(cr t), t) l ,  

, Z(~, t)l < e_~olVv(.s)lL.as e-I~ < Z(~, O)l = 

which certainly implies (2.25) and (2.26). 
We present the details of (2.24). We write 

W(x, t) = Wo(X-~(x, t)) + i V v W ( X - ~ (  x, t - s), s)ds.  
0 

So that [W(x, t) - W(x' ,  t)[ =< 

[Wo(X-X(x, t ) ) -  Wo(X- l (x  ', t))l 

+ i V v W ( X - ~ (  x, t - s), s) - V v W ( X - ~ ( x  ', t - s), s)ds 
0 

< IWot~l V X - X ( ' , t ) [ ~ l x  - x'l" + i lVvW(. ,s)[ ,]  v x - l ( ' , t  - -  s ) [ ~ ] x  - -  x'[Uds 
0 

< IWol.exp # I Vv( ' , s ) lr~ds I x - x ' l "  

+ IVvW( ' , s ) l~exp  # I Vv(s',.)lL~ds' I x - x ' l " d s  
0 

and therefore 

IW( ' , t ) l ,~ ]Wol~exp  # I Vv(. ,s) lL~ds 

+ I V v W ( . , s ) l , e x p  # I Vv(.,s')lL~ds' ds .  
o 

Here we use the fact that VxX-1  satisfies 

I VX - 1 (x, t - s) lL~ < exp ] Vv(s',. )IL ~ ds' . 

Writing Q(s) = ]Vv(. ,  s)[L~, and using (2.23) we have 

[i [! 1 IW(',t)l~ < IWol,exp # Q(s)ds + C Q(s ) lW( . , s ) I , exp  # Q(s')ds' ds .  
0 0 

Multiplying both sides by exp [ - # j ' t  o Q(s')ds'] we obtain 
t s 

] W ( " t ) { u e x p [ - # ! Q ( s ' ) d s ' l < = t W ~ 1 7 6  Q ( s ) , W ( . , s ) , ~ e x p [ - # ! Q ( s ' ) d s ' ] d s .  
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~t . . . s , . d s , ~  So that IW( . , t ) l~exp[ -  ~tlo~gt ) ] = G(t) satisfies 

G(t) <= IWol. + Co i Q(s)G(s)ds , 
0 

and thus by Gronwall's Lemma satisfies 

J a(t) < IWol~,exp Co Q(s)ds 

which gives 

[W(.,t)l .  ~ IWo[.exp (Co + #)~[I7v(.,S){L~dS . 
o 
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