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Abstract. Boundaries occur naturally in physical systems which satisfy the Vlasov- 
Maxwell system. Assume perfect conductor boundary conditions for Maxwell, and 
either specular reflection or partial absorption for Vlasov, Then weak solutions 
with finite energy exist for all time. 

w Introduction 

We study the initial and boundary value problem of both the non-relativistic and 
relativistic Vlasov-Maxwell system. We shall prove the global existence of weak 
solutions under various boundary conditions. 

Let f2 be an open set in R 3 with C l'u boundary, for some/~ > 0. Consider the 
non-relativistic Vlasov-Maxwell  system: 

v .  e, 1 . 

]O,E-ccurl,= - j :  -4~e ,~3 f ,  dv, 

~?~B + ccur lE  = 0 ,  

= 0 ,  l<f l<N 

(VM) 

where 0 < t < o% x ~ ~ and v 6 R 3, with the constraints 

d ivE = p = 4 ~ e ~  S f~dv , 
R 3 

d i v B = 0 .  
(o.~) 

* This research is supported in part by NSF Grant DMS 90-23864 
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The initial conditions are 

{ fp(0, x, v) =fop(X, v) for 1 < fl < N, E(0, x) = Eo(x), B(0, x) = B0(x),  (0.2) 

d i v E o = P o  and d i v B o = 0 .  

The boundary  condit ions are 

E x ~ = O, 
(0.3) 

f~(t, x, v) = ap(t, x, v)(Kfp(t, x, v)) + gp(t, x, v), 1 < ~ < N, 

for x �9 (30 and n" v < 0, where n is the outward normal  vector of dO at x. Here the 
reflection opera tor  is defined as 

K f  (t, x, v) = f ( t ,  x, v - 2(v" ~ )fi ) ,  (0.4) 

where ~ - 2 ( v "  fi )fi is the reflected vector  of ~ respect to ft. Also N is the number  of 
different types of particles with charges ep and masses rap, c is the speed of light. The 
absorpt ion coefficient ap(t, x, v) and the boundary  source ga(t, x, v) are two given 
functions on n" v < 0 satisfying either one of the following conditions: 

1. Purely specular reflection condition: 

ap(t, x, v) - 1, gp(t, x, v) - O . (0.5) 

2. Partially absorbing condition: 

0 <= ap(t, x, v) __< ao < 1, gp(t, x, v) >__ 0 ,  (0.6) 

where ao is a constant.  The purely absorbing condit ion is aa - 0 and gp - 0. 
These are two typical kinds of the boundary  conditions for t ransport  equations. 

The assumed condit ion E x ~-- -0  comes naturally from physics when f2 is 
surrounded by a perfect conductor.  The integrated energy for the non-relativistic 
case is 

e r  = 4rc~, ~ (1 + Iv[2)mafpdtdxdv  + ~ (E 2 + B 2 ) d t d x .  (0.7) 
fl ( O , T )  x f 2 x  R 3 (0 ,  T)  • 12 

Let Z r ( ' )  be the characteristic function of [0, T]. Our  main results are as follows. 

Theorem 0.1 (Non-relativistic case). Le t  t3f2 �9 Cl '~ , for  some p > O. Let  fop >= 0 a.e., 
for  1 <= fl <= N,  and let Eo and Bo �9 L2(f2) satisfy divEo = Po and divBo = 0 in 
the sense of  distributions. Assume fop(1 + [v[ 2) �9 L 1. In the purely specular case (0.5), 
assume fp �9 L ~176 r~L t. In the partially absorbing case (0.6), assume fop �9 LP, 
ZTgp �9 LP, Zrgp(1 + [v[) 2 �9 L l, for  some 2 <= p < oo and all T < co. Then there exist 
a weak solution o f (VM)  in 0 < t < oo, x �9 f2, v �9 R s withf ini te  energy Wr , fo r  all 
T < oo. Moreover, i f  fop �9 L q, Zrga �9 L q, for  all T < oo, then zr fp  �9 L q, for  all 
T < oo, where 2 < q < oo. 
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The relativistic Vlasov-Maxwell system (RVM) is the same as (VM) except that 
/) . V 

- -  is replaced by 1) - . (See [GS 1].) The energy is the same as for (VM) 
mp / 2 Iv? 

,/ m# + c~-2- / 1 

except that (1 + MZ)mp is replaced by 2c2(m~\ + [vj2Yc2 j. We have a parallel 

theorem (Theorem 5.1). 
This paper is a first attempt to describe the plasma-wall interaction. An 

important potential application is to a tokamak. However, there are several 
sources of particle fluxes to the wall, such as ions and electrons that diffuse across 
the confining field, runaway electrons, and neutral particles that are injected into 
the plasma from the wall. According to [St], "the physics of the transport processes 
within the plasma core and boundary regions and the atomic physics of the 
plasma-wall interaction are sufficiently complex and the experimental evidence is 
sufficiently limited, that it is very difficult to confidently predict the magnitude and 
energy distribution of the particle fluxes to the wall." Because of this uncertainty, it 
is useful to remark that our proof works if we replace the second condition in (0.3) 
byfp = oUf~ + gp, and eliminate (0.4), (0.5), (0.6), where • is any linear operator: 
LP({n'v > 0})~Lt '({n'v < 0}), with I1~11 < 1, assuming that 2 < p < oo. 

Arsenev [A] first proved the global existence of weak solutions of the Vlasov- 
Poisson system. Using a velocity averaging argument, DiPerna and Lions [DL] 
proved the global existence of the weak solutions of the Cauchy problem of the 
Vlasov-Maxwell system. Regularity of the global weak solutions with regular 
initial data for the Vlasov-Maxwell systems (VM) and (RVM) were proved earlier 
by Glassey, Strauss and Schaeffer in [GS1, GS2 and GSc], but they require some 
restrictions on the data. In the Vlasov-Poisson case, regularity without extra 
restrictions on the data have recently been proved by [-Pf, H, Sc and PL]. 
Greengard and Raviart [GR] proved the uniqueness and existence of weak 
solutions for the one-dimensional stationary Vlasov-Poisson system with bound- 
ary conditions. The case of linear transport equations have been studied by many 
mathematicians. In particular, Beals and Protopopescu [BP] gave a unified formu- 
lation in a general setting. Cooper and Strauss [CS] treated the general initial- 
boundary value problem for the Maxwell system in time-dependent domains. 

Even in the case of the full (VM) or (RVM) system without the boundary, as in 
[DL], the questions of uniqueness, regularity and conservation of energy are open, 
unless the data is restricted as in [GS1, GS2 and GSc]. We have some positive and 
negative results on these questions, which will appear in a later paper. 

To prove the existence of the weak solution, we first approximate the phase 
space t2 x R 3 by a sequence of bounded domains. In each bounded domain, we 
approximate a cut-off problem by a sequence of linear Vlasov equations and linear 
Maxwell systems with suitable new initial and boundary conditions. Using the 
results of [BP], we get a sequence of weak solutions (Sect. 2). We take the weak 
limits of the solutions of the linear problems and obtain the energy estimate by the 
compactness results of [DL] (Sect. 3). Then we get the weak solution of the partial 
absorption problem as the limit of the solutions of the cut-off problems. We 
approximate the purely specular problem by partial absorption problems (Sect. 4). 
Finally we treat the relativistic case (Sect. 5). 
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1. Notation and Weak Formulation 

Definition 1.1. Let 1I = (0, ~ ) x ~  x R 3, where t2 is an open set in R 3 with 
C 1'" bioundary, # > O. Let  n be the outward normal vector of  O(2 at x. Let  

?+ = { ( t , x ,v )  e (0, ~ ) x 0 ~ x R 3 l  _+ fi 'v > 0} , (1.1) 

?o = { ( t , x ,v )  E (0, or) • x Ra If i 'v  = 0} . (1.2) 

For any T > O, let 111 = (0, T)  x t2a x V1 e 11. Let  

7~ = 7 +- c~111 �9 (1.3) 
Let I "1 p;nl be the L p norm on 111, and let L "l p;~ ~(~) be the L p norm on ? ~ with respect to 
the measure IdTel, where 

dTt~ = (fi" ~ ) d t ~ x d v d t  , (1.4) 

where dax is the standard surface measure of  aria, and 1 < p < + ~ .  

Most of the estimates in this paper depend on any fixed T, but the solutions are 
defined for 0 < t < m .  

Definition 1.2. The integrated energy in a region is 

g (fe, E, B, Q1, V1, T) = 4 ~  m e ~ (1 + I v 12)fo d t dx dv + ~ (E 2 + B2) d t d x .  
fl H I ( O , T ) •  

(1.5) 

We also define the initial-boundary energy as 

go(fop, Eo, Bo, gp ,~ ,  T) = 4rc~ mp ~ (1 + Ivl2)fopdxdv +  (Eo + Bo )dx 
fl ~ x R  3 

- ~ m ~  ZT(1 + IvlE)ood~, for a fixed T > 0 .  

(1.6) 

Definition 1.3. The test function spaces are 

= {~(t,X,V) ~ C~([0,  ~ ) •  xR3;  R1)[ 

suppe  c c  {[0, oo) x ~ x  R 3 } \ { ( 0  x ~(2)k) ,yo}} , (1.7) 

vz = {((b, ~)1 ~ ~ c 2 ( [ 0 ,  oo) x ~2; R3), ~ e C~([0, ~ )  x R3; R3)}. (1.8) 

Definition 1.4. (Test functionals). Let  111 be as in Definition 1.1. Let f~ ~ L~oc(111), 
fo~ e Lr f ~  e Lr and gp e L~or with respect to d?t~, for 
1 < fl <= N. Let  E and B e L~or T) x ~), and Eo and Bo ~ L~oc(~2). Let  ~ e ~1/', 
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and (~, ~p ) ~ Jg. Define 

249 

A~( f~ , f ; ,  E, B, a~, (2~, V~) = - ~ fo~a~(O, x, v)dxdv - ~ (Ot~ + V~a~'~ 
f2~ x V1 H ~ 

+ (E + v x B ) 'V~p) fpd tdxdv  + ~ ~ f ]  dTp 

C(E, B, ~,j ,  s V1) = 

+ I ~p{apKf;  + g~} d7r (1.9) 

T 

-- I I E ' c 3 t ~ d t d x -  I ~J(O,x)'Eodx 
0 01 01 

T T 

- I I c u r l ~ ' B d t d x  + I I ~ ' j d t d x ,  (1.10) 

where j = 4rC~v 1ZtJ vepft3 dr, and 

D(E, B, ~, f2~, 1/'1) = 
T 

- I ~ B ' c ~ f o d t d x -  I ~o(O,x)'Bodx 
0 01 01 

T 

+ ~ ~ cur l~p .Edtdx .  (1.11) 
0 0 1  

Definition 1.5. (Weak solutions). Let fp=>0  a.e., fp ~ L~oc(H), f~  >=0 a.e., 
f~- e L~or +) and E, B ~ L,lor ~ ) •  t2). They are a weak solution of (VM) with 
conditions (0.I) through (0.3), if Yap e ~ ,  V(~, ~o) ~ ~[, 1 < fl <= N, 

{ Ap(fp, f ~ ,  E, B, ap, O, R 3) -- 0 ,  

C(E, B, ~,j, Y2, R 3) = O, D(E, B, ~o, (2, R 3) = 0 ,  (1.12) 

d i v E  = p and d ivB  = 0 in the sense of  distributions . 

Since 7 ~ has zero surface measure  (see [ G M P ] ) ,  it is omitted.  

L e m m a  1.1. div B = 0 is implied by the other conditions in (1.12). 

Proof For  any ~ ~ C~( [0 ,  ~ ) x g 2 ; R ) .  Assume ~(t ,x)= 0 when t > T. Plug 
~o = ~toV(dr - ~ V ( d t  into D(E, B, (~, (2, R 3) = 0 and the l emma  follows. 

L e m m a  1.2. Suppose that fop, Eo, g and a are smooth, that Eo • n = O, on ~2, that fp, 
f ~ ,  E and B are a weak solution of (VM) ,  that fp ~ CI(H), that f~ ~ C1(7+), that 
E, B ~ C1((0, ~ ) • Y2 ), that fp have continuous extensions to 7-  w 7 + • {t = 0}, and 
that E and B have continuous extensions to [0, T ]  • ~, for  all T < ~ .  Then fp, f ~ ,  
E and B is a classical solution of (VM)  with classical initial and boundary conditions 
o n  ~+ u ~- ~ {t  = 0} .  

The p roof  is s tandard.  

Remark. If  ~" Bo = 0 in the weak sense on c~(2, then ~ '  B = 0 follows for all t. Since 
divBo = 0, the weak form of ~ ' B o  = 0 is ~ V ~ ' B o d x  = 0 ,  ~'~ e C~(R3).  Choose  
a test function ff such that  ~(t, x) = 0 when t > T. Plug ~ -- ~o V ~ dz - ~s V ~ dt into 
D = 0. We get - ~s ~ V ~" B dt dx = 0, which is the weak form of ~" B = 0. 



250 Y. Guo 

2. An Approximate Solution for (VM) 

For notational simplicity in Sects. 2-4 we take only one species of particle, drop the 
subscript fl and set the basic constants equal to unity. Under these assumptions, we 
treat the partially absorbing problem of (VM) in the next two sections. 
Let's assume fo(1 + Iv[ 2) E L l ( O x R 3 ) , f o  ~ L ~ ( O x R 3 ) , f o  > 0 a.e., Xr(1 + Ivh2)g 
~ L I ( y - ) ,  X r g ~ L ~ ( 7 - ) ,  g > O  a.e., for all T <  o~, O < a ( t , x , v ) < a o <  1, and 
Eo, B o ~ L2(O). In order to get good estimates, we cut the physical space O to On 
and the velocity space R 3 to Vn, where 

O u = { X ~ O l [ x l < N } ,  V n = { v ~ R a l i v l < N } .  

Let / /n  = (0, N ) x  On x Vn, and /7n be its closure. For fixed N, we will define 
a sequence of functions by solving a sequence of linear problems, (2.11) and (2.17) 
below. 

The first approximations are E ~ = Eo and B ~ = Bo. Suppose we already know 
B k and E k ~ L2((0, N) x On), for some k > O. Let B k, Bk, ~ C~((0, N) x On) such 

1 1 
that IE k - EklE;(O,N)• < -~ , IB k -- BklE;(0,n)• _--< ~-~. The linear equation satisfied 

by fk+X will be defined following the procedure of [BP], as follows. 

Definition 2.1. For fixed k, let (t, x, v) ~ fin. The path f fk(s;  t, X, V) is the solution 
(t(s), x(s), v(s)) of the system 

dx dv dt 
ds v, dss g~ +vxBk, ,  ~ 1 (2.1) 

which passes through the point (t, x, v) when s = t, extended over the maximal 
s-interval for which the path lies in IIn. By the length of this path we mean the length 
of the maximal s-interval over which the path remains in f i  N . 

Definition 2.2. (Incoming and outgoing sets). Let D- (D + ) be the subset of ~II N 
consisting of the left (resp. right) limits (in the parameter s) of all maximal paths with 
initial values in IIN. Keep in mind that D e depend on k and N. 

We also define ?~ = 7 + c~/IN. Clearly from (2.1) we have 

7~ c D  -+, { t = 0 }  c D - ,  { t - - T } c D  +.  (2.2) 

We also define the following sets, which are also dependent on k and N, 

{ e - = D - \ ( 7 ~ w { t = O } ) ,  R - = D - \ { t = O } = F - w T ~ ,  (2.3/ 
F + = D + \ ( 7 ~ u { t  r}), R + = D + \ { t = T } = F + u ? ~ ,  

Definition 2.3. By qb = qb k = ~k s we denote the test function space of the linear Vlasov 
equation. It  consists of all the Borel functions (a on I~N with the following three 
properties: 

1. (a is continuously differentiable in the variable s along the path F k(s; t, X, V). 
2. (a and Y(a are bounded, where Y = ~3, + v" Vx + (E k + v x Bk,) �9 Vv. 
3. Among all the paths which meet the support of(a, there is a positive lower bound to 
their lengths inside II  n. This lower bound may depend on k and N. 

If (a is smooth, then properties 1 and 2 are obviously satisfied. But we want to 
allow (a to be discontinuous in some directions. Notice that the test function space 
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depends on k and N. The following lemma shows that  ~ belong to every ~k after 
being cut off. 

Lemma 2.1. Given Ek,, Bk, ~ C~((O, N) x (2N), and let XN = {Ixl < N}, let 

~N = {~ ~ V [  supp ~ ~ =  [0, N) x (O c~ Xu) x Vu} �9 (2.4) 

Then "KN ~ ~k, for all k. 

Proof  Choose ~ 6 ~//"N. Let K2 = the v-projection of supp ~. Then Kz c c  VN. Let 
Ka = the x-projection of (supp ~ c~ {t = 0}), then K1 c c  ~'/N. From the definition of 
"/f, and from (2.4), we know that ~ vanishes on a ne ighborhood of F -.  Now we let 

do = min {d(K1, ~/~), d(Kz,  V~), d(supp ~, F - ) ,  d(supp ~, ~,o), d(supp ~, X~)} , 

(2.5) 

where d is the Euclidean distance in R x R a x R 3. Certainly do > 0 and ~ satisfies 
properties 1 and 2. Let F k(s; t, X, V) be a path in _r]N which meets supp ~. Because 
dt 

t ds 1, and t ~ [0, N] ,  the path must  emanate  from some point  (t', x ,  v') e D -.  So 

we can write the path  as F k(s; t, X, V), where (t, x, v) ~ D- .  We shall find a lower 
bound  for [s - t[. 

do 
Case 1. d((t, x, v), s u p p a ) >  ~--. Since the velocity is bounded,  clearly there is 

a lower bound of time to cover the distance do. 
4 

do 
Case 2. d((t, x, v), supp ~) < ~-. F rom (2.5), we know 

3do 3do 
I x ] = < U - ~  and I v [ _ - < N - - ~ - - .  (2.6) 

By (2.1), we have d ]v12 = v. Ek * < ]v(s)[ 2 + lEg, j2 ' By the boundedness of E~ and 

by Gronwall 's  inequality, Iv(s)[2 __< (Iv[ + C 4 ( s -  t)1/2) 2, where C3 and C4 are 

constants depending only on [I Ek, II ~. Let so = t + mln ~ -~ ,  . If s > so, then 

So clearly is a lower bound  for Is - tl. If t _< s < so, we know from (2.6) that 
do do 

]v(s)l < Iv[ + ~ - <  N, and Ix(s)] < Ix[ + ~ - <  N. By (2.5) and (2.3), we know 

(t, x, v) ~ {t = 0}  ~ 7;. 
Now we treat two different situations. In case (t, x, v) ~ (t = 0}, then from (2.5), 

do 3do 
d(x, O~u) > d(supp ~, O~v) - d(supp ~, x) > do 4 4 

Since Ix(s) - x[ < ~ff , d(x(s), (2~) > d(x, 0~)  - d(x(s), x) > 
3do do do 
4 2 4" Hence, 

(s, x(s), v(s)) ~ Ilu, when 0 -- t < s < So. Thus So is a lower bound for the length of 
the trajectory. Finally in case (t, x, v) ~ 7N, then we know that  n" v < 0. F rom (2.5), 
we have 

do 3do 
d((t, x, v), ~o) > d(supp ~, 7 ~ - d(supp ~, (t, x, v)) > do - - -  

4 4 
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Hence there is a 6 > 0, such that  

n" v < - 6, for all such (t, x, v).  (2.7) 

Since af2 ~ C 1 ' " , #  > 0 ,  we know that  l Y - x l - l l ( Y - x ) ' n l  is uniformly small, 
provided that  l Y - x [  is small, and x , y  ~ Of 2nP(N.  N o w  let x ~ af2, and 

3do do 
Ix] < N - --~-. I t  is easy to show that  there is a ~-  > r / >  0, such that  

i f l y - x [ < l /  and ( y - x ) ' n <  6 1 y - x l  then we h a v e y e O N .  (2.8) 
- 2 N  ' 

{ q (5 } . I f t < s < s l ,  Ix(s)--x ,  N o w  let sa = t + min  So,~-~,2(l[E~][ ~ + N[tBk,[I~) 

< ~7lv(~)ld~ < (s - t ) N  < ~. F r o m  (2.7), 

( x ( s ) -  x) 'n  = yv(z) 'ndz  = v(z) + v'(r "ndz 
t t 

< - ( s  - t)6 + (s - t)2(llU, IIo~ + NIIBk, II ~) ~ - ( s  - t ) ~ .  

Hence (x(s) - x)" n < 61 x(s) - x l. By (2.8), x(s) = ~-~ s f2N. Since v(s) ~ VN, (s, x(s), v(s)) 

fin and Sa - t is a lower bound  for the trajectory. Therefore we conclude there is 
a lower bound  for the trajectory in every case. Q.E.D. 

L e m m a  2.2. There  are two unique positive Borel measures  p +- on D • such that  

I Y(a dt dx dv = j" q~ dp + - 5 q~ d p - ,  Vq5 e ~ .  (2.9) 
n N  D + D- 

Moreover ,  d # -  restricted to {t = 0} is dx dv and dkt +" restricted to 7~ is [dT[. These 
measures  depend on k and N. 

Proof Equat ion  (2.9) is p roved  in L e m m a  3.1 in Chap te r  XI of [ G M P ] .  Choose  
= q5 e ~UN c ~. By (2.3) we know e = 0 on F • Therefore  we can replace D +" by 

7~ in (2.9). Applying the divergence theorem to the left side of (2.9), we deduce the 
rest of the lemma.  

D e f i n i t i o n  2 .4  (Trace). I f  u and Yu belong to LP(1-IN), the trace of u is a pair of 
functions u • in LiPoc(D • d#• such that ~/~ ~ qb, 

< r u ,  4,> + <u, r4 ,>  = 5 u 4 , d ,  + - [. u 4 , d ~ -  . (2.10) 
D + D -  

F r o m  Prop.  1 of [BP] ,  we know that  trace of u exist and is unique. N o w  we are 
ready to define our  fk  + 1 as a unique solution of the linear Vlasov equat ion 

63tf k+l + v ' V x f  k+* + (Ek, + v x B k , ) ' V v f  k+l = 0 (2.11) 
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with the initial and boundary  conditions 

fk+l (0 ,  X,V) =fo(X, V), f k+l l v -  = O, 
(2.12) 

f k  + l ly;  = a(t, x, v)(Kfk + l )[,~+ + g(t, x, v) , 

satisfied in the sense of trace. More  precisely, we have the following 

Lemma 2.3. Given Ek. and Bk., there exist two unique nonnegative functions 
fk+l  e LP(FIN) and fk+ +t ~ LP(D+), such that V~) e 4, 

I (r~a)f  *+ t d tdxdv  = I (afk++ l d# + -- I ~p(aKf k++ ~ + 9)d# - 
17 N D + ~,~- 

- S ~)fo dx dr .  (2.13) 
t = 0  

Proof Recall from (2.3) that R -  = F - w 7ft. Define 

{~ in 7~ and I s  Kq in ~ 
0 = in F -  in Fff  

for any function q( t ,x ,v )  on R - .  Now we can write part  of (2.12) as fk+tlR-  
=I((fk+~ln+ ) + ~j. By changing v-variables, we have 

1 

II Kq IIL'(R-,d.-) = laKqfldTI = - ~ a(t, x,v)'lq(t,  x, v - 2 (n ' v )n ) fdv  
- ~ 

= a(t, x, v - 2(n" v)v)Plq(t, x, v)lPd7 = (ga)Plqfd7 

< aollqltL,(R+,~+) < IlqllL,(R+.a~+). 

Also / (q  __> 0, if q _>_ 0. Now our  lemma is an immediate consequence of the 
following special case of the theorems in [BP] .  

Theorem 1 and 2 of [BP] .  Suppose that o ,~ :LP(R+,d l z+)~LP(R- ,d# - ) ,  
1 <= p < Go, has operator norm less than 1. For any fo ~ LP(I2N x VN), 9 ~ L ' ( R -  ), 
the linear transport problem 

Y u = O  in I-IN, u l t=o=fo  U- = XU+ + 9 on R -  

has a unique solution u ~ LP(1-IN) with unique trace u +- ~ L'(t3HN). Moreover, if  
Vq ~ L ' ( R - ) ,  q >= 0 implies ~ q  >= O. Then the solution u >_ 0 if fo >= 0 and # >= O. 

Lemma 2.4. The solution from the previous lemma has the following properties: 

V ~ S V N ,  A(fk+a, rk+l k Bk,,O:, j +  , E , ,  ON, VN) = 0 ,  (2.14) 
1 

(1 ~ k+l + - ao) [ z r f +  [p;7~ + IzTfk+llpm~ <= 2er(lfolp;no + (1 -- ao)-l[zrglp;~ -) (2.15) 

for 1 < p < o% where Ho = f2N x VN, and Z r ( ' )  is the characteristic function of 

[0, T], 0 < T < N, Here we set (i - ao)~ = 1 i f p  = oo. Furthermore, 

5e- ' (1  + JvlZ)zrfk+l d tdxdv  <__ ~ (1 + I v l Z ) f o d x d v -  ~ gr(1 + Ivle)qd7 
HN Ho 7- 

+ 2~ e - t z r E k . v f k + ~ d t d x d v .  (2.16) 
HN 
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Proof  By L e m m a  2.1 and 2.3, if ~r �9 ~//~ = (b, we recall that  ~ = 0 on F + and  on 
t = T. Plugging ~ into (2.13), we have 

O= -- I f k + a Y ~ d t d v d x  + I f k + i ~ d #  + -  I ~ ( a K f  %+a + g ) d #  - -  I ~ fodxdv  
II~ D + ~ t = O  

= -- ~ Y a f  k+~ dt dx dv + ~ ~fk++ ~d7 + ~ (aKfk+ +~ + 9)~ d? -- ~ ~fo dx dv 
FIN V + ~;, t = 0 

= A( fk+l , f k+~,  Ek ,  Bk ,a ,  YJs, Vs)  

which proves (2.14). Next,  let / /T  = H~c~((0,  T ) •  Vs), and let D~ be 
its incoming (outgoing) sets. Mult iplying (2.14) by e- t ,  we have 
Y ( e - t f  k+~) + e - t f  k+~ = 0 in @(HT). Since e - t f  k+~ has e - i f  k+l as its trace, by 
Prop.  1 of  [BP] ,  

(e-tff++l)Pd# + + P ~ ( e - t f k+l )Vd tdxdv  = ~ (e-tfk-+l)Pdkt - , 
D + FI~ D T  

for 1 < p < ~ .  Let 's  write out every te rm above explicitly. Not ice  that  

D~ = { t =  T } u { F  + t n H  T}u{7~r C~F/T}, 

DT = {t = 0} U { F -  c~ F/T} w {7~ c~F/T}.  

Since aKfk+ +1 + g is the trace for f k+l  on ~fi, and since f k+ ,  => 0 and J+Ck+l => O, 
we get 

(e-tfk++~)Pdp + + ~ Zr(e-tfk++*)Pd# + + ~ Zr(e-~fk++~)Pdy + P ~ (e- t fk+l)Pdz 
t = r F + ~+ FI~ 

= _ ~ Zr[e-t(aKfk+ +~ + g)]P@ + I f g d x d v  + ~ Zr(e-~ff-+~)Pdp - , 
~ .rio F - 

where dz = dt dx dr. Notice that the first and second terms are nonnegative, and the 
last term vanishes. We estimate the first term on the right as 

0<_ - ~ ZT[e-t(aKf+k+a + g)]Pd7 = I Z T [ e - t ( ( K a ) f  k++l + Kg)]Pd7 

< ~ - t  k + l  = Zw[e (aof+ + (1 - -ao) (1  -- ao) - iKg) ]Pd?  

< a o  ~ . i ^ - t s  = Zvte j +  )Pd? + (1 - ao)~ ZT[(1 -- ao) - l e - tKgJPd7  �9 

Therefore 

ZT(e f +  ) d7 + ~ ;~r(e-tfk+l)Pdtdxdv (1 - a o )  S - ,  k+l p 

)'~ //N 

<--_ S f g d x d v  - ~ [ e - t 0  _ ao)-lZTg]PdT . 
11o ~ 

This proves  (2.15) for 1 < p < ~ .  Since all the measures  here are finite, when 
p ~ ~ ,  (2.15) is valid. Finally we mult iply (2.11) by e- t (1 + [vl 2) on HT to get 

y{e - t (1  + i v l 2 ) f k + l }  _]_ e - t O  + i v [ 2 ) f k + l  , ,  - t ~ k + l  r k  = A e  J V L ,  , 
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where e--ts U~E,, e Li(FIN).Noticinge-t(1 + Ivl2)f k+l has trace e-t(1 + Ivl 2)f_+k+ 1, 
repeating the argument as above, we get (2.16). Q.E.D. 

We now define E k+~ and B k+ ~ as the weak solution of the linear Maxwell 
system 

~Ek+i _ curlBk+l = _ j k + l  = _ ~vfk+idv ,  

z~ (2.17) 
8t Bk+i + curiE k+l = 0 

with initial data Eo, Bo and boundary data E k§ ~ x n = 0. More precisely, we have 

Lemma 2.5. For fixed k, suppose j k+ i = ~v v f  k+ l d v e  L~~ (O, N ) x  ON). Thereexist 

E k +l and B k +i e L 2 ((0, N) x ON), such that V(~, ~p ) e Jg, and supp ~ c ~  [0, N) x f2N, 

C(Ek+I, Bk+I:k+I~I ,  ON, , = O, D(Ek+I, Bk+I,~9,~'~N, VN) = 0 , (2.18) 

ZTe-t[lE~+il2 + ]Bk+il2-1dtdx< ~(E2 + B2)dx 
(O ,N) •  t2N O 

- 2 ~zre - tEk+Iv fk+~dtdxdv ,  (2.19) 
HN 

where O < T < N. 

Sketch of the proof. Notice that f2N has a Lipschitz boundary which is not 
necessarily C 2. In case ~f2N happens to be C 2, the proof is standard. See [CS]. In 
the case 0f2 is not C 2, by I-N], we deduce our lemma by approximating f2 N with 
smooth domains. 

We summarize our constructions as follows. 

Lemma 2.6. There is a well-defined sequence fk  f k ,  E k, B k satisfying (2.14), (2.15), 
(2.16), (2.18) and (2.19). 

3. The Cut Off Nonlinear Problem 

In this section we let k ~ ~ .  This process will result in the following lemma. 

Lemma 3.1. There exist f, f+ ,  E, B such that V~ e ~//'N, g ( ~ , b ) e  Jg with 
supp ~ ~ c  [0, N) x ON, we have 

A ( f , f  +, E, B, o~, ON, VN) = 0 ,  (3.1) 

C(E,B, j ,~ ,ON,  VN)=0,  D(E,B,~o, f2N, V ~ ) = 0 ,  (3.2) 

i + 
(1 - ao)~lzrf  [p;rZ + [zrfIv;nN < 2er([folp;no + (1 - ao)-llZrglp;~, -) (3.3) 

g ( f , E , B ,  ON, VN, T )<eTg o (T ) ,  w h e r e l < p <  ~ ,  0 < T < N .  (3.4) 

Proof. By (2.15) and (2.19), there exist weak limits f , f + ,  E, B and subsequences 
such that fk___,f weakly in Lv(IIN), J+ck*---"C+J weakly * in LP(7~ ), E k--- E weakly in 
L2((0, N) x ON), and Bk----B weakly in L2((0, N) x ON) for 1 < p < ~ .  Since Ek----E 
and Bk,--~B weakly in L2((0, N) x ON), we get (3.3) by weak lower semicontinuity. In 
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order to prove the lemma, we have to consider the limit of (2.14), (2.16), (2.18) and 
(2.19), when k --* ~ .  Since in (2.18) every term is linear, (3.2) is valid. Our main task 
is to prove (3.1), for which we take the limit in (2.14). It is sufficient to consider only 
these two delicate terms as follows. We claim that for each e e ~ ,  

~(a(Kf + ) + g)d7 = ~ a(aKf + + g)dT , lira S k+ 
k-~o~ ~,~- ~7 

(3.5) 

lim I (ek* + vxBk*)v~af k+~ dtdxdv = ~ (e + v x B ) V ~ a f d t d x d v ,  (3.6) 
k-* oo H~ H~ 

Proof of the claim. For (3.5), we change v-variables, take the weak limit, and then 
change v-variables back again. Thus, 

lim ~ e(a(Kf~ +~) + g)d7 = lim I (-1)Kc~((Ka)ff ++~ + Kg)d7 

= -- I (K~ + + Kg]d~ 

= ~ ~ ( a K f  § + g)d~. 

This proves (3.5). For  (3.6), fix any t/~ C~(HN), 0 < t/__< 1. From our construction, 

•,(tl fk  +1 ) + v" Vx(tl f k + 1) = _ divv (t I (Ek, + v x Bk, )fk + 1) 

+ Vvtl "(Ek. + v x B k , ) f  k+l 

+ ~Itf k+a + v" Vxqf  k+l = h k (3.7) 

in 9 ' .  Noticing that h k is a bounded sequence in L2(RxR~ ,  H-I(R~)),  by the 
averaging lemma of DiPerna and Lions, ([DL]),  we deduce that Vr e C~(R3), 
~ff+lc~(v)dv is bounded in H*((0, oo)x R3). Hence ~tlfk+lr is compact in 
L 2. So there is a subsequence (still denoted by fk+l), such that ~ qfk+lr  
S tlfr strongly in L 2 a s  k ~ o0. By a density argument, we can assume 
of the form cq(v)c~e(t,x), where Ctl(V)=0, if I v [>N,  and c~2(t,x) 
may not vanish on the boundary. We wish to show that SV~fk+ldv con- 
verges strongly in L2((O,N)• We break up f k + l _ f = ~ ( f k + l _ f )  
+(1 -- t l)(f  k+l - - f ) ,  and estimate these two terms separately. We have 

~2 ~ ( l _ q ) ( f k + l _ f ) V v c q d  v dtdx <-C (1 - t l )Zd tdvdx  , 
( 0 , N ) x Q ~  VN 

(3.8) 

by (2.15), we can choose C depends only on ~ ,  ~2, fo, ao and g. Now for any ~ > 0, 
we choose q such that C[~n~(1 - ~)2dtdvdx]r < e/2. Then for this fixed ~/, we 

2 k +  choose k so large that [ ~(o,m • a~ ~2 (~r. ~/(f 1 _ f)V~l dr) 2 dt dx] ~ < e/2. Thus we 
have shown 

lim ~ ~2 ~ ( f k + l _ f ) V e l d v )  dtdxJ = 0 .  
k ~ o o  (0 ,N)xON VN 
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Now in (3.6), ~(o N)• Ek*(~v~Veff+ldv)dt dx converges because one factor con- 
verges weakly in' L 2 and the other converges strongly in L 2. The second term in 
(3.6) is 

//N (0,N)x~ \VN 

Regarding v x V~e as another test function, we deduce our claim. 
Finally let's consider the limit of (2.16) and (2.19). By exactly the same method 

as in the proof of (3.6), both ~ufl~rE~,e-tvff + ~ dt dx dv and ~n~zrEae-tvf ~ dt dx dv 
converge to ~nfl~rEe-tvfdt dx dr. The reason is that z re - t v  now behaves like a test 
function, since our HN is bounded. Letting k ~ oo in (2.16) and (2.19), using the 
weak lower semicontinuity, then adding (2.16) and (2.19) together, we finally prove 
(3.4). Q.E.D. 

4. Solution of (VM) 

In this section, we begin with the partial absorption problem and conclude with the 
specular case. We let N ~ ov in the cut off problems. The method is similar to the 
previous section. 

Theorem 4.1. Suppose ~Q ~ C 1'", for some ~ > O. Let fo(1 + [v[ 2) ~ Ll( f l  x R3), 
f o ~  L~(  0 x R3), and fo > 0 a.e.. Let 0 < a(t, x, v) < ao < 1, zrg(t, x, v) ~ L~~ ), 
(1 + [V[2)XTg ~ Ll (7 - ) , f o r  all 0 < T <  co and 9 > 0 a.e. Let Eo and Bo ~ L2(O) 
with the constraint conditions div Bo = 0, div Eo = Po in ~ ' (0) .  Then there is a weak 
solution f, f+,  B, E of the partial absorption problem, with 

(1 -- ao)l/V[ZTf + Ira+ + [XTflp;H < 2eT(lfo [p;--o + (1 - -  ao) -1 [zrglm-) 
(4.1) 

g ( f , E , B , O , T ) < e r ~ o ( T ) ,  for l < p <  o% V T <  oo . 

Proof. We now have sequences fN , f~ ,  BN, EN satisfying (3.1), (3.2), (3.3) and (3.4). 
We extend the functions fN , f~ ,  EN, BN by 0 outside II\IIN. The extended functions 
still satisfy (3.1) to (3.4) in the cut off domains. Abusing notation, we call them fN, 
f ~ ,  EN and BN again. It is easy to show that there exist measurable functions f, f+ ,  
E and B defined for 0 ____ t < o% and subsequences (still denoted by N), such that 

L2,H , ~+ z r fN- -~zr f  weakly in t ), ZrJN *--'zrf + weakly * in L*(7+), 

zrEN---'zTE weakly in L2((0, oo) x Q), 

zrBN--~ZTB weakly in L2((O, o0)X Q), for all T. (4.2) 

By weaklower semicontinuityfor f f+ ,  E and B, (4.1) is valid. We also have 
Vc~ e Y/~N, V(O, ~ ) ~ d/ /with supp ~ c c  [0, T) x f2N, 

IX + = , ( fN, fN,EN,  BN, C~,f2, R 3) A(fN, + = f N ,  EN, BN, ~, ~N, VN) 0 

C(EN,BmjN, ~, f2, R 3) = C(EN, BN,JN, ~, ON, VN) = 0 , 

D(EN, BN, ~0, f2, R 3) = D(EN, BN, ~, ON, VN) = 0 .  (4.3) 

Now fix any e s r and (~, b ) e  ~ .  There exists a r > 0, such that suppe c c  
[0, r) x (f2N c~ XN) x VN when N > r, and supp ~ c c  [0, r) x s'2N when N >  r. 
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In other words, (4.3) holds for any a and (~, b ) when N > r, r depending on a and 
~. When letting N ~ ~ in (4.3), we only need to consider 

~jNdtdx and ~ ( E N + v •  (4.4) 
(0, r)x Q H 

In the former integral, we break up JN = ~R3 vfu dv into its parts over Iv[ < R 

]vl > R. Then we get IS(o.r)•215 < ~]S(1 + ]v[Z)fNdtdxdv[ and 

C' 
< -  thanks to the energy inequality (3.4). ~'e > 0, choose R big enough 
= R ' 

C '  e 
that ~ < ~ .  For this fixed R, by (4.2) we have ~(O,r)•215 

~(O.r)•215 < R)~Vfdtdx dr. Hence the former one goes to the correct limit. 
For  the latter integral in (4.4), we follow the proof of (3.6). We first choose 

q ~ C~(/ / ) ,  0 < q < 1, such that (3.8) holds for (fN - f ) .  There exists No(t/) such 
that when N > No(t/), supp t / = = / / N .  Therefore the rest of the argument for (3.6) 
holds with N > No(t/) and T = No(t/). Hence A, C and D are zero with f f + ,  E 
and B. 

Finally, in order to complete the proof  of Theorem 4.1, we only need to check 
div E = p in the sense of distributions. To accomplish this, we use the following 
observation, which is a fundamental motivation of this paper. 

Lemma4.2 .  I f  A = C = D =O holds with f ~ L~176 (O,T) x ~ x R3), E E 
L 2 ( ( 0 ,  T) • (2), and ZT(1 + IV[2)�89 E LI(H), VO < T <  oo. Then divE = p. 

Proof o f  Lemma 4.2. Under above assumptions, we claim that A = 0 holds for any 
a(t, x) ~ C~([0 ,  0o) • f2) which is independent ofv and vanishes near ~O. In fact, let 

2 
bN(]v]) e C c ~ ( R 3 ) ,  with bN = 1, for Iv] < N, bN = 0, for Ivl > 2N, and IVbNI < ~ .  

Then bNa ~ ~ .  Assume a(t, x) = 0 if t > T. Plugging it into A = 0, we know that 
-- ~ bN~fo dx dv - l bN~,af dt dx dv - ~ f bN~ " V~ct dt dx dv - ~ ( E + v • B ) f Vvbu~ dt dx dv 

equal to zero, since there is no boundary term. Notice that V, bN is parallel to ~, so 
that v • B" V~bN = 0. When N ~ 0% only the last integral will present any difficulty. 
Noticing that the volume of {N < Ivl __< 2N} is O(N3), we have 

II EfV~bNctdtdvdxl < IE[ 2dtdx  I ( l fV~bNadv) 2dxdt  
(0, xO (0, T)xO 

< 
= 

< 

< 
= 

The last integral goes to 0 

(0, T)x~x {N =< Ivl =< 2N} 

(O, T l x O •  {N < Iv] < 2 N }  

i 

N f  2 dv dt dx )  ~ 

(1 + Ivl2)~fdtdvdx . 

as N ~ ~ .  This proves A = 0 for such a. 
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N o w  for any a(t, x) ~ C~( [0 ,  oe) x f2). Not ice  that  ~(t, x) = ~o~d~ - ~S~dt  is 

again a test function of the form given above. Replacing ~ by ~, and (r ~ )  by 
( ~ o V a & - s r V a d t ,  O) in A, C, and D, we deduce d i v E = p  from the 
d ivEo  = Po. Q.E.D. 

N o w  we can extend our  results abou t  the part ial  absorp t ion  problem.  

Theorem 4.3. Suppose 0 < T < oo, fo ~ LP( 0 x R3), XTg E LP(7-) for some 
2 < p < 0% where fo and ZTg are not bounded. Let the other assumptions of The- 
orem 4.1 remain the same. Then there is a weak solution f f+,  E, and B with given 
data fo, a, g, Eo, Bo, and satisfy (4.1)for above p. 

Proof. We first t reat  the case of 2 < p < ~ .  Let f~o ") ~ L~((2 x Ra), ZTg t") ~ L~(7 - ), 
such that  [[ fro") - fo II L, n L~(~ • R~ - ~  0 ,  II gr (g  ~"~ -- g) II ~, ~ ~,(~-~ -- ,  0 when n ~ ~ .  By 

(hi (n) + (n) (n) (n) Theorem 4.1, there exist weak solutions f , f , E , B with given d a t a f o ,  Eo, 
Bo, a, g("). Also f("), f(")+, E ("), and  B (") satisfy the est imate (4.1) with the fixed p. 
Hence there exist weak limits f, f +, B and E of the corresponding sequences such 
that  (4.2) holds for these functions. By weak lower semicontinuity,  f, f + ,  B and 
E satisfy (4.1) with the fixed p. To  prove  they are weak solutions, the only difficult 
term is again the nonl inear  one ~ (E (") + v x B("))f(")V~e dt dx dr. By the L p boun-  
dedness of  f("), we can follow the p roof  as in (3.6). We only need to replace (3.8) by 

1 

I = ~ c~(I(1 - q ) ( f ( " ) - f ) V a l d v ) 2 d t d x  
(0, ~ ) x  O 

r , ( ,  )( ) ]  < C  ( 1 - q ) 2 d v  ~ (f(") - f)2 dv dtdx . (4.5) 
t.. supp ~t2 k supp ~I supp al 

Next we use H61der inequality with i + 2 = I, p > 2. Since f~"), fe L p, we get 
q P 

I < C (1 - ~)2qdtdxdv j" (If(")l ~' + I f lOdtdxdv 
supp  a2 supp ~t 1 supp Qt2 • supp a l  

1 

< C (1 - q)2qdtdxdv 
supp  a2 x supp  Gtl 

where C depends on ~1, a2, fo,  ao and g. We thus conclude the p roo f  for p > 2 by 
the same arguments  in (3.6). 

N o w  let p = 2, and we repeat  the process of case 1. It  suffices to show that  I in 
(4.5) can be arbi trar i ly small. To  this end, we follow the idea of [ D L ]  and  [$2]. It  is 
easy to show if fo and Zrg in L 2, then there exist a C 2 function 0(u): 
[0, ~ ]  ~ [0, oe), such that  0(0) = 0, O(U 1 AW U 2 )  ~ 0 ( U l )  + 0 ( U 2 )  , lim,-.~o0(u) = 0% 
and 

S O(fo)f 2dxdv < ~ ,  ~ ZrO(g)g21dTI < CT < ~ �9 
O •  a ~ -  

With this 0, we claim that  both  ~nO(f("))(f(")) 2 ZT dt dx dv and ~n O(f) f 2 )~T dt dx dv 
are uniformly bounded  on n, where f(") and f are the same as in case 1. 
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Proof of the claim. It suffices to show that (2.15) holds for O / l e ( n ) ' k + l ]  where 
O(u) = O(u)u z. Since Y(e - tO( f f+ l ) )  + e - ' O ( f f + l ) = O ,  by the same proof  in 
pp. 380-382 of [ G M P ] ,  it is easy to show that  e - t O ( f ~  )'k+l) has trace 
e-t,~tC(,),k+l~ By Prop. 1 of [BP] ,  ~ 'J~JN,  +. ]" 

l a - t l ~ (  t~ + 1 ]  ~ , J N , +  ,d#+ + ~e- ,O( f (~) ,k+l )d tdxd  v =  S.-,,~lC(.),k+a v ~JN, - ) d# -  . (4.6) 
D; n~ D; 

From the same argument  as in (2.15), by the boundary  condition, we get 

~D~ = ~ -  + ~t=0. By the properties of O(u), for any integer M > 1, we write the 
integral over 7-  as 

zTe-tO(aKf~ff+ +~ + g)l dyl = ~ + ~ = 11 + 12 
-- n),k+ 1 ~, M g  <= Kf~!'k+ +' M g  > K f ~ ,  + 

1 
Since a < ao < 1, ao + ~ < 1 when M is large. Since O(u) is increasing, 

11 < I ZTe-tO ao + ~ j * , - J n ,  + 1 

which can be killed by the same integral on 7 +. Since O((M + 1)u) < (M + 1)0(u), 

I2 <= ~ <= ~ )~Te-'O((M + 1)g)2ldy] <= C(M) ~ ZTe-'O(g)ldyl . 
M g  > Kf~?'k+ + ' 7 -  y 

The remaining terms in left side of (4.6) are nonnegative, hence 
SnNe- t zrO( f~k+l)d tdxdv  is uniformly bounded on n and k. Thus our  claim 
follows through the limiting procedure as k, N ~ oo from Sects. 2 to 4. 

Now we can estimate (4.5) by the s tandard method.  Since 

1 

I =< C I I (1 - q)2dv (f(.))2 + f Z d v  dtdx , 
s u p p  ~2 supp  ~1 / \ supp  ~1 

it suffices to estimate f(") and fseparate ly .  The integral with f(") is split to two parts, 

ST"'~ M and Sf,,, >= M. The term with f(") < M is bounded  by CM [ ~ (1 - t/) 2 dt dx dv] �89 
1 

and the term with f(") > M is bounded  by O(f ) ( f  ) dt dx dv . Fo r  any 

e > 0, we first choose M large, such that  ~f,., __> M < 4' then for this fixed M, choosing 

q such that  ~f,,<=M < ~ .  It is the same for f. Hence I can be arbitrarily 

small. Q.E.D. 

Next  we study the purely specular problem. Now the boundary  condit ion for 
the Vlasov equat ion is f~-  = Kfi  +. In other  words, a(t, x, v) - 1, g =- O. 

Theorem 4.4. Suppose 0~2 e C 1'", for some # > O. Let fo ~ L ~ ~ L I ( f 2 x R 3 ) ,  
fo(1 + Iv[ 2) ~ L~~ x R3), and fo >= 0, a.e.. Let Eo ~ L2(O), Bo e L2(Q) with 
constraint conditions div Eo = Po, div Bo = 0 in @'(~2). Then there is a weak solution 
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f f+ ,  E, B of the purely specular problem. Moreover 

{ I)~rf[p;n < 2erlfolp;.no, f o r  1 < p <= ~ , 

] )~ r f+ lo~ ;~+  < 2erlfo[~o;no, f o r  p = Go 

g(f,  E, B, Q, R 3, T) < ergo(T) .  

V0 < T <  oo , (4.7) 

Proof. Choose 0 < am < 1, limm~o~ am = 1, where am is a constant. For  fixed m, 
consider the partial absorption problem (VM) with the boundary conditions 
E (m) x fi = 0 and f~m) = "m~ a~r(m)+, and with initial values fo, Bo and Eo. Since g = 0, 
by Theorem 4.1, there is a solution f("), f(m)+, E (m) and B (m) satisfying (4.7) for all m. 
Now as m ~ oe, there are global weak limits f, f + ,  E, B of corresponding sequences 
such that (4.2) holds. So we get (4.7) by weak lower semicontinuity. Since in (4.7) the 
constants are independent of m, we get the correct limit by the same method in 
Lemma 3.1. Q.E.D. 

5. Relativistic Case 

Let H, 7 • and 7 0 be the same as before. When the particles with which we are 
concerned move very fast, we have to consider the following (RVM) system [GS 1]: 

8,E - c curl B = - j = - 4rc~p e~ ~ ~ "f~ dv (RVM) 

I,O,B + c curl E = 0 

with the constraint conditions 

d i v e  = p = 4 ~ E e ~ f ~ d v ,  divB = 0 (5.1) 

and with the same initial and boundary conditions as (VM), (0.4) through (0.8). 
Here 

v 
~ =  l < f l < N  

We shall make the following definitions for (RVM). 
V . 

The surface measure d7~ is the same as (1.4) except that - -  is replaced by bp, 
m ~  

I _< fl __< N. The test function spaces for (RVM) remain the same as (1.9), (1.10) and 
(1.11). The energies g and go for (RVM) are the same as (1.5) and (1.6) except that 

the factor (1 + Iv[Z)m~ is replaced by 2e a --\/m~ + [v]--~2 1 < fl < N. For the new dT~, 
C 2 ' = _~_ 

the testfunctionals and the definition of a weak solution for (RVM) are the same as 

in (1.12), except that v_  is replaced by ~ .  With the new definitions, Lemma 1.1 and  
m e  
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Lemma 1.2 are still valid for (RVM). Our major results about (RVM) are parallel to 
those for (VM). We summarize these results in the following Theorem. 

Theorem 5.1. (Relativistic case). Let ~(2 ~ Cl'", for some p > O. Let fo.p > 0 a.e., 
1 < fl < N. Let Eo and Bo in L2(y2) satisfy divEo = Po, divBo = 0 in the sense of 
distributions. There are two kinds of  conditions for fop. 

(1) Ifap - 1, and gr - O, let fop ~ L~ c~ L~((2 x R3), fo~ x/(1 + tv12)E LI(Q x R3). 
(2) I f  O < a~(t, x, v) < ao < l, and g~(t, x, v) > O a.e., l ~ + [ v [  2) 

La((2 x Ra),fop ~ Lv((2 x Ra), ZTgI~ ~ LV(? -)  and + Iv  2 )  •TgpX/(1 ~ LI(V-), 
for 2 < p <  ~ ,  O< T < oe. 

Then there is a weak solution of(VM), denoted fl~, f ~  , E and B with finite energy. 
Moreover, if fotJ ~ Lq(O x R3), Xrgt~ ~ LP(V-), then Zrffl E Lq(1-I), where 2 <= q < oo. 

Sketch of the proof of Theorem 5.1. We follow the arguments Step by step from 
Sects. 2 to 4 with some suitable changes. We first modify the definitions in Sect. 2. 
Definition 2.2 remains the same for (RVM). Definition 2.1, 2.2 and 2.3 still make 
sense if we define Y =  ~, + ~'V~ + (Ek. + ~ x B k ) ' v ~  instead of Y =  0~ + v'V~ 

V 
+ ( E  k + v xBk)'V~, where ~ -  Under these new definitions, 

x/(1 + IriS)" 
Lemma 2.1 and Lemma 2.2 now are valid. Hence Definition 2.4 makes sense for ^ 
(RVM) with Y and d/~ -+, where d/~ -+ is the new measure in Lemma 2.2. In order to 
prove Lemma 2.3 for (RVM), it suffices to modify the results of [BP] as follows. 

Theorem l'  and Theorem 2'. Suppose that 3ff 'LV(R+,dft +) ~ LV(R-,df t - ) ,  
1 < p < ~ ,  has operator norm less than 1. For any fo ~ LP(ON x VN), g ~ LP(R-), 
the linear transport problem 

I~u=0 inHN, ul t=o=fo ,  u + = d U u - + g  o n R -  

has a unique solution u ~ L p with trace u +- E L v. Moreover, if Vq ~ LP(R-), that 
q 2 0 implies ~/'q >- O. Then the solution u >= 0 if fo >= 0 and q >- O. 

Proof of these two Theorems. Theorem 1 and 2 of [BP] are exactly the same as 
Theorem 4.3 and Theorem 4.4 in Chapter XI of [GMP]. We deduce these The- 
orems by the same proofs as in Theorem 4.3 and 4.4 of [GMP].  

So our Lemma 2.3 for (RVM) follows easily. Therefore our Lemma 2.4 holds by 
2 ! multiplying (2.11) with 2(1 + [vl )2. Now (2.16) takes the form 

t 2 !  2 !  
2 5 e-t(1 + {vlZ)~xrfk+*dtdxdv < 2~ (1 + lvl Y f o d x d v -  2 ~ )~r(1 + IV[ )2g@ 

HN HO y - 

+ 2 S e-tzTEk*vf g+l d tdxdv  . 
HA 

Lemma 2.5 is also valid with ~ in (2.19). In Sect. 3, we need the relativistic version of 
D i P e r n ~ L i o n s ' s  Lemma, see [$2]. Then Lemma 3.1 is true for (RVM) by using 
the same argument. In Sect. 4, since we get x ~  + [vj2)f ~ LI(II)  for (RVM), the 
first term in (4.4) goes to the correct limit with j = S~fdv. So is Lemma 4.1. Using 
the same method as in Theorem 4.1, Corollary 4.3 and Theorem 4.4, we establish 
Theorem 5.1. Q.E.D. 
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