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Abstract. Time evolutions of the Toda lattice hierarchies of Ueno and Takasaki 
are induced by Hamiltonians which are conservation laws for the original 
(one and two dimensional) Toda lattice obtained by Olive and Turok. Moreover 
these Hamiltonians for two dimensional Toda lattice hierarchy are also 
conserved quantities of the two component KP hierarchy in which that system 
is embedded. The one dimensional Toda lattice hierarchy is characterized by 
the bilinear relations, and a new version of the one dimensional Toda lattice 
hierarchy is constructed. Generalized Toda lattice hierarchies associated to all 
affine Lie algebras are presented. 

O. Introduction 

The Toda lattice has been, together with the Kortweg-de Vries (KdV) equation, 
one of the most important completely integrable non-linear systems, many features 
of which have been revealed by various methods. In this paper we will investigate 
the interrelationship between the Toda lattice hierarchy (K. Ueno, K. Takasaki 
[U-T]) and the structure of the Toda lattice as a Hamiltonian system with infinitely 
many constants of the motion (D. Olive, N. Turok [O-T1, 2, 3-]), and conserved 
quantities of the multi component KP hierarchy. We also give a characterization 
by the bilinear relations and another version of one dimensional Toda lattice 
hierarchy, and present a candidate for the generalized Toda lattice hierarchy 
associated to any affine Lie algebra. 

Ueno and Takasaki [U-T] introduced the Toda lattice hierarchy (hereafter 
we will abbreviate it to TL hierarchy), inspired by the theory of the Kadomtsev- 
Petviashvili (KP) hierarchies, and investigated its Lax representation, Zakharov- 
Shabat representation, the linearization, the T function and its bilinear equations 
of Hirota-type etc., and showed that the TL hierarchy is embedded into the 2 
component KP hierarchy. They also defined the periodic reduction and the 
restriction of the system to the one dimensional sector. 

On the other hand, Olive and Turok [O-T1, 2, 3-] made full use of the classical 
r matrix (they call it the P operator; cf. [Fa, Fa-T])  introduced from the theory 
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of the quantum inverse scattering method to get infinitely many constants of the 
motion for the one and two dimensional Toda lattice. Their fundamental principle 
is, first, to express the simultaneous commutation relation using the r matrix, and 
then, to construct infinitely many conserved quantities, and finally, regarding them 
as Hamiltonians, to consider time evolutions corresponding to them, which 
commute with each other. The final result gets the form of 0-curvature conditions. 

The main theorem of this paper is the following: 

Theorem 

(i) Time evolutions of the 1 dimensional TL hierarchy are induced as a Hamiltonian 
system by the conserved quantities of the original Toda lattice obtained in [O-T1].  
(ii) Time evolutions of periodic reduced TL hierarchy are induced as a Hamiltonian 
system by the conserved quantities of the AI~_) 1 type 2 dimensional Toda lattice 
obtained in [O-T2, 3]. 
(iii) These Hamiltonians of the TL hierarchy are conserved quantities of the 2 
component KP hierarchy in which the TL hierarchy is embedded. 

Here in the above theorem for the 1 dimensional case, some physical justification 
is needed, for the theory developed in [O-T1, 2, 3] is based on the finite rank 
Kac-Moody  Lie algebras, while the TL hierarchy consists of Z • Z matrix 
of formal power series. To avoid handling divergences, we construct a new 
hierarchy by characterizing the Lax pairs algebraically which we get, following 
the prescription in [O-T1],  from the formal Hamiltonians. Then we show that 
this new hierarchy is nothing but the one dimensional TL hierarchy of [U-T].  

For the two dimensional system, we define a new system which naturally 
includes the system of [O-T2, 3] and corresponds to an affine Kac-Moody  algebra. 
This system associated to AI[)I type Lie algebra is identical with the/-periodic TL 
hierarchy, when it is represented as infinite matrices. (M. Fukuma advised the 
author to deal with the finite periodic lattice rather than the infinite lattice.) 

While Olive and Turok discuss along the formulation of the inverse scattering 
method convenient for quantization (cf. [Fa], [Fa-T]) ,  in [R-S] the "half" of the 
TL hierarchy is constructed by a clever use of the co-adjoint orbit method and 
the central extension of Lie algebras. 

The present paper is organized as follows: 
In Sect. 1.1, we recall the materials in [U-T]  which are needed later, without 

fixing gauge specified by a parameter ~; [U-T]  used ~ = 1/2 gauge but a = 0 gauge 
is of great importance and, at the same time, interesting from the historical point 
of view. (This gauge brings historic Lax operators for the Toda lattice in sight of 
the theory of the TL hierarchy.) Then we discuss the one dimensional TL hierarchy 
and, when the gauge is fixed appropriately (~ = 0), the system has high symmetry, 
which allows the characterization of the one dimensional TL hierarchy by the 
bilinear relations of the wave matrices. 

In Sect. 2, making use of the classical r matrix as in [O-T1],  we construct 
infinitely many Lax pairs for the one dimensional Toda lattice and investigate its 
structure as a hierarchy of Sato-type. On the other hand this system has a natural 
interpretation as a Hamiltonian system, which we will explain in Sect. 2.1. From 
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the bilinear relations for the wave matrices, we know that this "r matrix type" one 
dimensional TL hierarchy is identified with that of [U-T]  through a simple linear 
transformation of time variables. 

In Sect. 3, first we recall the theory of Olive and Turok [O T2, 3], generalizing 
it to all affine Lie algebras including twisted ones. In this theory the classical r 
matrix plays an essential role, especially in the formula "fundamental Poisson 
relation." Then, through the zero curvature conditions obtained, we can introduce 
non-local elements of gauge groups, which behave just like solutions of the 
linearized problem of the TL hierarchy (wave matrices). With the help of this "wave 
matrix," the similarity between the theory of [O-T2,3] and the TL hierarchy 
becomes clear, and thus a candidate for the generalized TL hierarchy associated 
to an arbitrary affine Lie algebra is presented. As mentioned above, this system is 
identified with the/-reduced TL hierarchy in the AI~_)I case. 

In Sect. 4, changing the standing point, we construct these conserved quantities 
quite algebraically. [U T] has proved that the TL hierarchy is embedded in 2 
component KP hierarchy. Therefore it is natural to ask how the conserved 
quantities are embedded in 2 component KP hierarchy. Here, after recalling the 
r component KP hierarchy, we calculate its conserved quantities from the solution 
of the linear problem (the wave operator) under suitable boundary conditions. This 
is a generalization of the results of [W, Chl,  F1 and Sa] to the matrix case. 
Comparing their expressions in z function, we know that the Hamiltonians of the 
TL hierarchy and the conserved quantities of the 2 component KP hierarchy 
coincide. The real reason of this coincidence has not yet been explained and should 
be further studied. 

We also remark that TL hierarchy and KP hierarchy are deeply related to the 
2 dimensional field theories in physics, and the conserved quantities obtained 
in the present paper are important in the theory of deformations of conformal field 
theories [Fu-T] .  

Notations 

�9 Usual abbreviations for differentiations: e.g. 

0 

�9 Let (a(s)),~ z be a series, then: 

diag [a(s)] := (a(i)filj)~j~z, 

i.e., the diagonal matrix, diagonal elements of which are a(s)'s. 
�9 A_+ 1 := (~i_+ lj)ij~z: the shift matrices. 

Hence Z x Z matrix is written in a convenient form as 

!i! '/ a o ( - 1 )  a x ( - 1 )  a2( -1)  
a_l(0) ao(0) al(0 ) "'. = ~ diag [a~(s)]A ~. 
a_/(1) a_l(1) ao(1) j~z 

" . ,  " . .  / 
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�9 For  l eN  Z x Z matrix A = (aij) is called 

�9 For  a matrix A = (aij), matrices A +, A_,  
I periodic if for all i, j ~ Z  aij = ai+l,j+ I. 

A o are defined by: 

~aij, if i < j ,  

(A + )ij = (0,  otherwise; 

~aij, if i > j ,  
(A _ )ij = (0 ,  otherwise; 

~'aij, if i = j ,  
(Ao)ij = (0,  otherwise. 

Hence, A = A+ + A o + A_.  O u r  usage of + is different f rom that  in [ U - T ] .  
�9 Hereafter, "function" means a formal power  series. 

1. Toda Lattice Hierarchy 

1. Reviews of  the TL Hierarchy of  Ueno and Takasaki. Here we recall the Toda  
lattice hierarchy (TL hierarchy) [ U - T ]  in a slightly modified form, i.e., with one 
parameter  a which designates the gauge. 

Let L • B, be the following Z x Z matrix valued functions of x • = (x • 1, x • 2 . . . .  ): 

L + =  ~ diag[b+(s)]A j, L _ =  ~ diag[bf(s)]A j, 
-oo<j__<l --l_-<j<oo 

with 

b~(s)l/2+~=bT_l(s+l) -1/2+~, b-+_+l-~0, 

B, = (L~.)+ + (1 + a)(L%)o, 

B _ , = ( L " _ ) _  +( �89 n =  1,2 . . . .  , (1.1) 

where b f  (s) = b + (s; x) are functions of x + and x_ .  
The Toda lattice hierarchy under  a-gauge is, by definition, the compatibil i ty 

conditions for the linear problem, 

L + W (~) = W~~ L_ W ~~ = W~~ 1, 

Ox W = B , W ,  n = + 1 , + _ 2  . . . . .  (1.2) 

of the Z x Z matrix valued unknown  functions W = W (~~ and W (~ 
Explicitly, the T L  hierarchy is the following system for the unknown functions 

b + ; for all m, n = _+ 1, _+ 2 . . . . .  

OxL+ = [B,, L • ], (1.3L) 

[ ~ ,  - B . ,  O~m - -  Bm]  = O ~ , B .  - -  O ~ B  m + [ B . ,  Bin] = 0, (1.3ZS) 

Proposition 1.1. Under the condition (1.1), (1.3L) and (1.3ZS) are equivalent to each 
other. 

Proof. We prove that  (1.3L) implies (1.3ZS). The converse can be proved in the 
same way as Theorem 1.1 of  [ U - T ] .  Let us introduce 1-forms co, .O• ~,X(_+ ~ by 
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co:= ~ L~ dx,,,, 
r n = l  

o +  := (co)+ + (21- + ~)(co)o, 

o _  := (co)_ + (�89 - ~)(co)o, 

4 := ~ Lm-dx-ra, 
m = l  

x~+~ = (4)+ + (�89 + ~)(4)o, 

xL~176 = (4)- + ( �89 ~)(4)o. 

285 

with 

where 

l~~ ~ c~ = diag [ff~(s;  x ) ]A  +-J, 
j = o  

~o~ ~) -  '/~ +~ = ~,~o~'(s; ~ ) '~  + ~, ~,'o ~ ~ o, 

We denote the exterior differentiations with respect to x_+ as d e. Then 

d+co =co/x O+ + O+ A CO, d + 4 = ~ A O +  + O +  A ~, 

d_ co = co/x X(_ ~176 + X(_ ~ /~  co, d_ 4 = ~ ^ X (--~176 + X (-~~ A ~, (1.4) 

follow from (1.3L). Since co = O+ + O_ and co ^ co = 0, the first equation of (1.4) 
yields 

d+co=O+ ^ O +  - I 2 _  AO_.  

As B, is upper triangular matrix for n > 0, 

O+ A O+ = ~ [B,,,B,,,]dx,, A dx,,, 
O < n < t n  

is strictly upper triangular. Similarly O_ A O_ is strictly lower triangular. Hence 

d+O+ = O +  A O+, 

which is (1.3ZS) n, m > 0. The last equation of (1.4) yields (1.3ZS) n, m < 0 likewise. 
Using the second and third equation of (1.4), we obtain 

d_O+ + d + X L  ~176 . (XL ~~ ^ O+ + O+ A XL ~~ 

= - d _ Q _  +d+X(_~)+(XL~)A O_ + O _  /x XL ~176 

= d_O+ -- d_X~+ ~176 + (X(+ ~ / x  O+ + O+ A X%~ 

The left-hand side of this equation is upper and lower triangular at the same time, 
that is, diagonal. The diagonal part is 

( - d _ O _  + d+XL~~ = (�89 - cr - d_co + d+ 4)0 

= ( d _ O +  - d+ X L ~ ) o  = - (�89 + ~ ) ( -  d_co + d+ 4)o = 0. 

This proves (1.3ZS) in the case when n and m have opposite signs. �9 

If L+ are solutions of the TL hierarchy, then there exist solution matrices 

(wave matrices) W(~ W <~ or W (~176 to the linear problem (1.2) such that 

W(~176 = W(~ exp 4(x +, A), 

W<~ = l?Vt~ exp ~(x_, A-  1), (1.5) 
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and ~(x • A • ~) = ~ x + ,A +". The  p roof  is similar to that  of Theorem 1.2 of [ U - T J .  
n = l  

The  following propos i t ion  gives the complete  character izat ion of solutions of 
the T L  hierarchy in terms of these wave matrices. 

Proposition 1.2. 

(i) Wave matrices satisfy the following bilinear relations for all x, x'; 

T : =  W(~176 - 1 = w(O)(x)w(O)(x,)- 1. (1.6) 

T is called the transition matrix from x to x'. 

(ii) Conversely, if W (~ of the form (1.5) satisfy (1.6), then one can set 

L+:= W(~ ( ~ - 1  (= r162176176176 
L_ := W(~ 1 w(O)- 1 ( = iYV(O)A- 1 l?V(o)- 1) (1.7) 

to obtain the solutions of (1.2) and (1.3). 

(The products  of  infinite matr ices above (e.g. in (1.5), (1.6)) are well-defined and 
convergent  when the topology  of the ring of formal  power  series is in t roduced by 
degree: deg x,  = Inl. In what  follows, we don ' t  make  this kind of remarks.)  

Proof. It  is easy and  differs f rom that  of  Theo rem 1.5, [ U - T ]  only in the point  
that  one must  pay  at tent ion to the diagonal  par t  of wave matrices. 

(i) is also a direct consequence of the uniqueness of the solution of the Cauchy  
problem: 

T(x, x') = B,(x)T(x, x'), 
OXn 

- -  T(x, x ')  = - T(x, x')B,(x'), 
gx'. 

T ( x , x ) = l .  �9 

The relation (1.6) is formally equivalent  to 

W(~ ~ W(~)(x) = A = colJstant matrix.  

This  gives the Riemann Hilber t  decompos i t ion  of an element of GL(~). 

We define an impor tan t  function u(s;x) such that  

ff(o~ x) = e (1/2 + ~),(s), ff(o~176 x) = e (- 1/2 + ~),(~) 

Then  one of the equat ions  (1.3ZS) n =  1 , m = -  1: [Ox,-B~,Ox_~--B_l]=O is 
nothing but  the original 2-dimensional  T o d a  lattice equat ion 

~x,~x_ ,u(s; x) = e "(s)- u(s- l) _ eU(S+ 1)- u(s). 

Proposit ion 1.3. Let L~ ) be solutions of the T L  hierarchy of a-gauge, and define 
B(~)= B, as above and n 

g = g~p:= diag [e(~-~)"(s)]. 
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Then 

L~) := g- 1 L~)g, 

is a solution of the TL hierarchy of fl-gauge, and 

tO -1 B(P) = g-  I B(,~)g + x.g g, 
W(p) = g-  1 W(~), I;V(p) = g- 1 ~(a).  

Proof. It is straightforward, using Proposition 1.2. �9 

This proposition states the gauge invariance of solutions of the TL hierarchy, 
and allows us to use all the results of [ U - T ]  which treats the TL hierarchy of 
c( = 1/2 gauge. Here we recall some of them without fixing gauge. (Later we will 
use mainly a = 0 gauge.) 

For  W (~ above there exists the so-called z function r(s; x) such that 

r162 = ~ .. F pj(- ~x)~(s) 1 A-J, ~ Lz(s + 1)l/2-aZ(s)l/a+:t j=O 

[~(O)(x)= ~ d i a g [  p@(--'~y)z(s+ 1) ~ , j  

~ - " "  [ A  Jdlag PJ(~x)r(s+l) 1 I/~z(~ 1 
=j=u  "C(S -'1- 1)1/2 +~'C(S) 1/2-~ ' 

* " " [ A  Jdlag PJ(~r)Z(S) 1 (1.8) ~(O)(x) 1 
j=O )(S -~- 1) 1/2 +a'E(s)l/a-a ' 

and for n > 0 

" [ diag P'-m(Dx+)v(s+m+l)'v(s) 1 B. A" m=l "C(S -t- m + 1)l/2+a'c(s -t- m)l/z-az(s -t- 1)1/2-~'c(s) 1/z+~ 

[p.(bx+)~(s + 1).~(s) J, 
+ (�89 + a) diag L ~ i~(~ 

-1 [ p,+,,(D x )z(s+m).z(s+ 1) ] A  m 
B_,  = m= ~ - .  diag z(s + m + 1 ) ~ ~  m ~ f f z ~ i ) 5 7 2 - ~ ( s ) l / 2  +~ 3 

+ ( �89 a)diag [ -p"(/~x-)z(s)" r(s + 1)]  
L r(s + 1)~(s) _' (1.9) 

Here we use the notations 

e~(X+-'~)= ~ pj(x+_) 2j, 
j=o 

1 1 o~_~ = (~x+ ~, :~_~ ~, ~Ox~ . . . .  ). 

The symbol D denotes Hirota's D-operator which is defined for a linear differential 
operator F((?~) by 

F(Dx)f(x)'g(x) = F((?x,)f(x + x')g(x - x')Ix,= o. 
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u = u(s; x) is expressed in terms of the z function as 

e~(S ) _ z(s + 1) 
~(s) 

The following modified wave matrices and the modified z function are also 
important:  

pc~)(x) = l~t~ exp (--  ~(x_, A -  1)), 

V(~ = l~(~ exp ( - ~(x +, A)), 

Note  that  (1.8) and (1.9) also hold if I7r and z are replaced to f" and z' respectively, 
and that  the z (or z') function is uniquely determined up to arbitrariness of the 

factor aSb exp (c,x ,  + dnYn . 
n 

l-periodic reduction (or AIk~I reduction) of the T L  hierarchy is defined by 
imposing the following constraint  on the T L  hierarchy: 

Ll+ = A ~, L l_ = A - k  (1.10) 

Then  L•  B,, 1~  ~ are I periodic matrices (cf. Notations),  and 

~x.L+ = ~ x L _  = 0  (1.11) 

for n --- 0 (mod l). We can also take the z function as periodic in s and independent  
of the variables x ,  (n - 0 (mod l)): 

z'(s; x) = z'(s + l; x), 

Oxz'(s; x) = 0x z'(s; x) = 0, n - 0 (mod I). 

Since u(s) = log (z'(s + 1)/z'(s)), this implies 

l - I  

u(s) = u(s + l), ~ u(s) = 0. (1.12) 
s = O  

As u(s) is /-periodic,  # = g~p is also periodic; 

[9, A l] = 0. 

This equat ion together with Proposi t ion 1.3 means the gauge invariance of the 
constraint  (1.10). 

2. The l-Dimensional T L  Hierarchy. In this section we will t ransform the gauge 
of the TL  hierarchy and discuss the 1-dimensional T L  hierarchy reduced from the 
original one by freezing the evolution to the "space" direction. 

First, regarding x •  as the light-cone variables, we introduce new 
space-time variables z, t by 

z , = � 8 9  t , = � 8 9  n = l , 2  . . . . .  
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Then (1.2) is represented as 

L+ W (~) = W(~)A, L_ W (~ = W(~ 1, 

az W = Q . W  with Q , = B , + B _ , ,  

at .W= X , W  with X . =  B . -  B_,. 

For  example, Q1 and X 1 are of the well known form as follows: (cf. [ M - O - P ] )  

1----- 

. .  ~ 1 7 6 1 7 6  . 

�9 . .  � 8 9  

e(U(O) - u( - 1))/2 

e(,(o) - . ( -  1))/2 

~a,,u(O) 
e(U( 1 ) - u(o))/2 

e(U(1) - u(O))/2 

ia,~u(l) 
, �9 

0 

X I =  

0 

"'. "'. . 0 ]  
"'. laz ,u  ( - 1) e(.(o) .(- 1))/2 

- e  ("(~ ~))/2 �89 e ("")-"(~ . 

- e  ("(1)-"(~ �89 -. 
. . 

The 1-dimensional TL  hierarchy is defined as the TL hierarchy with the 
additional gauge invariant constraint 

L+ + L +  1 = L _  + L _  -1, 

or equivalently 

o r  

a z f ' = o ,  for all n--- 1,2 . . . . .  

z' can be chosen so that  az3 '  = 0 for all n. 

(cf. [U-T] ;  note the arbitrariness of the z function mentioned in Sect. 1.1.) 
Hence if we set 

V(~ ~'(~ (~(t, A) - ~(t, A -  1)) 

= W(~ t) exp ( - ~(z, A) - ~(z, A - 1)), (1.13) 

we get the following proposition by the same method as Proposit ion 1.17 of [U-T] .  

Proposition 1.4. 

(i) I f  L+, Q, and X ,  solve the 1-dimensional TL hierarchy, then they depend on only t. 
(ii) Under the same assumption as above, V(t) solves the linear problem 

Q1V(t) = V(t)(A + A-l) ,  

a,~ n =  1 , 2  . . . . .  (1.14) 
The compatibility condition of this system amounts to the Lax representation 

at .QI=[X.,Q1 ], n = l , 2  . . . . .  (1.15) 
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Especially atlQ1 = [X1, Q1] is the first Lax representation for the Toda lattice 
obtained by Flaschka. 

Hereafter we fix the gauge ~ = 0. Then, using (1.8) and (1.9) with ~" and ~', the 
following symmetry is easily seen. 

Proposition 1.5. 

For the 1-dimensional TL hierarchy 

' Q . =  Q., 
,f~(~) = (f~(o,)- 1, 

,V(~) = (V(O))- 1 

Moreover the bilinear relations characterizing the 1-dimensional TL hierarchy 
are expressed in terms of only V. 

Theorem 1.6. 

(i) For the l-dimensional TL hierarchy, 

V(~O)(t) V(O~)(t,)- 1 = v(O)(t) v(O)(t,)- i 

holds for all t and t'. 
(ii) Conversely, for an invertible lower triangular matrix f'(t), suppose 

V(~~ ~'(t) exp (~(t, A) - ~(t, A - i)) 
and 

V(O):= tV(OO)- i 

satisfy 
V(OO)(t)V(OO)(t,)- 1 = v(O)(t)v(O)(t,)- x, 

V(~176 + A - 1 ) V ( ~ 1 7 6  1 _- v(O)(t)(A + A - 1 ) V ( ~  1 (1.16) 

for all t and t'. Then V(~ are wave matrices of  the 1-dimensional TL hierarchy. 

Proof. 
(i) According to Proposition 1.2 and (1.13), 

V(~176 exp (~(z, A) + r A - 1 )  _ ~(Z', A)  - ~(z', A - 1 ) ) V ( ~ 1 7 6  1 

= V(~ exp (~(z, A) + ~(z, A - l) _ r A)  - ~(z', A - i))V(~ i. (1.17) 

Equation (1.13) and 3 z W  = Q , W  imply 

V(t)(A" + A - " )  = Q,V(t). 

Since ~(z,A)+ ~ ( z , A - i )  = ~ z . ( A " +  A-" ) ,  applying the above formula to (1.17), 
n = l  

we obtain 

z lex (  lZ 0"' ) 
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Hence 

(ii) First we set 

Then 

Vr -1  = v(O)(t)Vr -1  

Q(t):= vt~176 + A - 1)Vt~ 1. 

O(t) = 'Q(t), 

Q(t)V(~ = V(~  + A - 1) 

follow from the second equation of (1.16). It is also shown by induction that there 
exists the polynomial q. of degree n such that 

qn(Q(t) )V(~ = V(~  ~ + A - ~ ) .  (1.18) 

Now we show that 

I2/~~176 = ~'(t) exp ~(y, A - 1), l~to):= t ~ ( t ) -  1 exp ~(x, A) 

satisfy the condition in Proposition 1.2. Since 

v~ ~ = v~~ exp F~ z.(A" + A -"), 

we have 

W~~176 t) Wt~ ', t ' ) -  1 
= V~~176 exp (~  z . ( A "  + A -")  - ~ z ' . (A" + A - " ) ) V  r176 

(l~s) exp (~  z.q,(Q(t)))V(~176176 -1  exp ( - ~  z'nq,(Q(t')) ) 

(L16) exp (~  znq.(Q(t)))V!~176 ') -1  exp ( - ~ z'nqn(Q(t')) ) 

(l~s) W~O)(z ' t)W~O)(z, ' t ' ) -  1. [] 

R e m a r k  1.7. We can formally write 

~(V(O)(t)- 1 V(O~)(t)) = tV~)( t ) tv~O)( t  ) -  1 = v(O)(t)- i V~OO)(t). 

Hence the 1-dimensional TL hierarchy corresponds to the Riemann-Hilbert 
decomposition of a symmetric matrix. 

2. The 1-Dimensional System and the Conservation Laws 

1. Class ical  r M a t r i x  and L a x  Pairs .  Here we recall about the relationship between 
Hamiltonian system and Lax pairs, making use of the classical r matrix [O-T1],  
[Ko]. 

Suppose for a dynamical system the time evolution of the observable f is 
determined in terms of the Poisson bracket {,} and the Hamiltonian H as 

af  
dt - {H,f}.  
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We assume that  there exists an n x n matr ix  valued function A = (alj)~,j such that  

(i) {A ,@ A} := ({a,j, ak,} ),kjt = [r, A | 1 + 1 | A], 
(ii) H = 1IN Tr  A N. 

Here r is an n 2 x n 2 cons tant  matr ix  called the classical r matr ix,  which satisfies 
the classical Yang-Baxter equation: 

[r12,r23 ] + [r13,r23 ] + [r12,r13 ] = O, 

where ro's are defined as follows: if r = ~ ra | r a, then 

r x 2 = ~ r a | 1 7 4  r 2 3 = ~ l | 1 7 4  a, r la=~.~ra |174  ". 

(i) yields 

{TrAm, A} = [ m T r  1 ((A m-1 | 1)r), A], (2.1) 

where Tr l  indicates trace on the indices of the first entry and Poisson bracket  of  
the left-hand side is taken elementwise. Directly f rom (2.1) we obta in  for all k, l, 

{Tr A k, Tr  A t } = 0. (2.2) 

Consequent ly  t ime evolut ion of A is expressed by the Lax representat ion 

dA 
d~- = [B, A] with B = Tr l  ((A N- ~ | 1)r), (2.3) 

because of (ii), and  Hm =TrAm+~/(m+ 1) are shown to be constants  of  mo t ion  
commut ing  with each other. This allows us to consider commut ing  t ime flows with 
respect to Hami l ton ian  Hm and cor responding  t ime variable tin, and we get a system 
of evolut ion equat ions 

cOA 
= [Bm, A ] with Bm=Tr~((Am| (2.4) 

Otm 

For  the T o d a  molecule (i.e. the finite T o d a  lattice with free boundary)  we can set 

" ' .  �89 u ( -  1) e(.(o)-.( - 1))/2 

A = e(.(o)-.( - 1))/2 �89 e ("(1)-"(~ 

e(u(i )-u(o))/2 163tlu(1) 
.. .  

as stated in Sect. 1 and  

H = H  1 = � 8 9  2, r = ~ (Eli | Ejl -- Eji | Eij). 
i>j 

For  the infinite T o d a  lattice the trace diverges, as A is an infinite matrix.  (As 
the system has infinite size, total  energy, for example,  diverges inevitably.) Never the-  
less, applying the above  a rgument  formally,  we can obta in  a system of evolut ion 
equat ions of type (2.4). Tha t  is to say, (2.4) (m = 1,2 . . . .  ) can be regarded as a 
system with infinitely m a n y  time variables tm and corresponding Hami l ton ians  Hm. 
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We take (2.4) as the s tar t ing point  of  the following discussion. 

2. The I-Dimensional T L  Hierarchy of r Matrix  Type. Let Q be the following 
Z x Z " t r i -ogonal"  symmetr ic  matr ix  valued function of t = (t 1, t 2 . . . .  ): 

Q = diag [a(s)]A + diag [b(s)] + A - 1 diag [a(s)], 

with a(s) = a(s; t) # O, b(s) = b(s; t). (2.5) 

Set 

Y,:=(Q")+ - ( Q " ) _ ,  n =  1,2 . . . . .  (2.6) 

The 1-dimensional T L  hierarchy of r matrix type is, by definition, the system 

0Q 
= [I1,, Q], n = 1, 2 . . . . .  (2.7) 

c3t, 

This cor responds  to the system in Sect. 2.1 under  the identification 

�9 A = Q with a(s) = e ~"~s+ t)-,~s))/z, b(s) = Onu(s)/2, 
�9 H,  = T r Q " + l / ( n +  1), 
� 9  
�9 r = Z (Eu | e j i  - E j, | Eu). 

i>j 

The  equat ion  (2.7) n = 1 is the original T o d a  lattice equation.  
N o w  we discuss the Z a k h a r o v - S h a b a t  representat ion,  the l inearization and 

the bilinear relations of this system, following the same strategy as that  in [ U - T ] .  

Proposit ion 2.1. The 1-dimensional T L  hierarchy of r matrix type (2.7) is equivalent 
to the Zakharov-Shabat representation 

~Y. ~Y~ 
+ IV.,  % ]  = o. (2.8) 

Ot,, tgt, 

Proof. Set 

co:= ~, Q"dt,, 
n = l  

O+:=(~)+, 

Oo := (~O)o, 

3:= ~ Y, d t , = O + - O _ .  
n = l  

Since Q is symmetric,  O = tO+.  Equa t ion  (2.7) is rewrit ten as 

dtc9 = [3, co] + ( = ~ A co + co ^ ~), 

hence (2.7) is equivalent  to 

dtO o = O, 

dtO + = 2-(2+ ^ .(2+ + -(2+ ^ -(2 0 + -(2 0 ^ -(2+. 

(2.7') 

(2.9) 
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The second equation of (2.9) is equivalent to 

aQ"+ aQ"~ 
- -  - 2 [ Q ' ~ ,  g~_] + [g'~,  Q~] + [Q~', Q ~ ] ,  

c~t," c~t. 

ag"- ~ og,"- = 
at," at. 2[g~-' Q"-] + [Or"-' Q~] + [o~'' Q"-]" 

Here we abbreviated (Q")+ as Q"+. The identity 

0 = [Q,", Q"] = [Q"~, Q"+ ] + [Q"~, Q~] 

+ [Q"~, O"_] + [Q~, O"+] + [O"~, Q"_] 
+ [Q~_, Q"+] + [Q,"_, Q~] + [Q,"_, Q t ]  

yields 

(2.10) 

[Y,", }I.] = 2[Q'~, Q~.] + 2[Q,"_, Q"_] 
+ [Q'~, Q~] + [Q~', Q"+] 
+ [Q~', Q"_] + [Q~_, Q~]. 

Adding the two equations of (2.10), we obtain, using the above identity, 

aY. arm 
- -  + [Y, ,  Y,"] = 0. (2.8) 

at,. c~t. 

Next we assume (2.8). Comparing the upper and lower triangular parts of both 
sides of (2.8), equivalence of (2.8) and (2.10) can be shown by the same argument 
as above. Using Q'~ = Q," - Q~_ - Q~', from (2.10) we see 

c~,.Q," - [Y . ,  Q ' ]  = a,~Q"+ + a,.Q"_ + a,.Q"d + [Q", Q"~] + [Q~-, Q"] 

= a,.Q"+ + a,.Q"_ + a,.Q"d + [Q", _Qm_ _ Q~,] + [Q,"_, Q,]. 

Since all the matrices in the right-hand side are of order less than n, the order of 
the left-hand side should be bounded for fixed n; 

ord (0,. Q," - [, Y,, Q,"] ) ~ n. (2.11) 

If O,,Q m -  [Y,, Q,"] # O, then it is easy to see that 

ord (a , ,Q , " - [Y , ,Q , " ] )~  + oo ( m ~  + oo) 

which contradicts (2.11). Thus we have proved 

t~t,Q m = [y, ,  Q'] (2.7) 

for all m. �9 

In the above proof "order" of a matrix A = ~ diag [aj(s)]A j means 
j~Z 

ord A:= max {jEZl(aj(s)),~ z # 0}. 

Proposit ion 2.2. 

(i) Suppose Q is a solution of the 1-dimensional TL hierarchy of r matrix type. The 
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linear problem for  a Z x Z matrix valued function V(t) 

QV(t) = V(t)(A + a - ') ,  

~t~. V(t)= Y.V(t), n = 1,2 . . . . .  (2.12) 

has a solution V(t)= V~~ of  the form 

V(V)(t)= f/(t)expC~=l t.q~.(A) ) ,  

V(t) = ~' diag [0j(s ; t ) ]A-J,  with Oo(S) :~ O, (2.13) 
j=o 

where 

(ii) Then V~~ = t(V~)(t))-  1 = ~P(t)- 1 exp t.q~.(A) is also a solution of(2.12). 
n 

Proof. 
(i) First we rewrite (2.12) into the linear problem of V(t); 

QfZ(t) = V(t)(A + A - 1), 

6 ^  
~ V ( t )  = Y . f / ( t ) -  f/(t)~o.(A), n = 1,2 . . . . .  (2.12') 

It is also written as 

QfZ(t) = l/(t)(a + a - 1), 

~ V ( t )  = (Y.  - Q")l/(t) + V(t)((A + A -1). _ ~0.(A)). (2.12") 

By the assumption a(s) r 0 in (2.5), we can prove by induction that there exists a 
invertible lower triangular matrix f~o satisfying 

QVo = f 'o(a  + A -1). 

Let us consider the Cauchy problem 

^ 
--Or. V = - (Qo+2Q_)V+" " ^ V ( ( A + A - 1 ) " o + 2 ( A + A - 1 ) " _ ) ,  

V'l,=o = Yol ,=o.  (2.14) 

The first equat ion of (2.14) is nothing but  the second equat ion of (2.12"). Thanks 
to (2.7) and (2.8), 

[ ~ _ +  ( Q . _  y . ) ,O@+ ( Q m  y, . ) ]  = 0 ,  
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hence (2.14) is a compat ible  system. Since all coefficients of f'(t) in (2.14) are lower 
triangular, (2.14) has a unique solution of a lower tr iangular matrix. Tha t  solution 
satisfies 

63 A 
~ ( Q V  - VZ(A + A - 1)) = ( y ,  _ Qn)(Q~ __ V/(A + A - ~)) 

+ (Q v - f~(A + A - ~))((A + A - ~)" - q~.(A)), 

i.e. ( Q f ' -  f '(A + A -  1)) is a solution of the Cauchy problem (2.14) with the initial 
value 

(Q~" -  f~(A + A  -1))[,= o = (Qf'o - f'o( A + A  -1))It= o = 0. 

F rom the uniqueness of the solution we see 

Q re(t) = f ' ( t )(A + A - 1) 

for all t. It is clear from (2.14) that  

63 
~13o(S; t) = some function x 13o(S; t). 
or. 

Hence 

Z3o(S; t) = ~3o(S; 0) x exp (some function). 

Since Z3o(S; 0) # 0 by the initial condit ion of f'(t), 

~o(S; t) # 0 

for all t. So we have obtained the desired solution of (2.12"), i.e. (2.12). 
(ii) By the symmetry of Q and A + A  -~ and the ant i-symmetry of I1, and q~.(A), 
t ransposing (2.12'), we get 

QtfZ- ~(t) : - t f ' - ~ ( t ) ( A  + A -1), 

63 t V - l ( t ) =  y ,  t v - l ( t ) - t V - l ( t ) q ) n ( A ) ,  n =  1,2 . . . . .  
63t~ 

This shows that V (~ is also a solution of (2.12). �9 

As in the case of 1-dimensional TL  hierarchy of Ueno and Takasaki,  that  of 
r matrix type can be characterized by the bilinear relations of these wave matrices 
V(~ 

Theorem 2.3. 

(i) V(~ in Proposition 2.2 satisfy the following condition; 

63~ V(~)(t)V(~)(t)-  1 = 63~V(O)(t)v(O)(t)- 1 (2.15) 

for  all multi-indices ct = (~1, ~2,. . .) .  Or, equivalently, 

iA~)(t)V(~)(t,)- 1 = v(O)(t)vtO)(t,)- 1, (2.16) 

for  all t and t'. 



Toda Lattice Hierarchy and Conservation Laws 297 

(ii) Conversely,  i f  V(~)(t) o f  the form (2.13) and 

v(o):= tV(m)(t ) - i 

satisfy (2.15) or (2.16), and i f  

V(~176 + A - 1) V(~~ 1 = V(O)(t)(A + A - ~)V(~ - ~( =: Q) (2.17) 

holds, then Q is a solution o f  the 1-dimensional T L H  o f  r matr ix  type and V(~ 
are wave matrices corresponding to it. 

Proof .  
(i) This s tatement can be easily deduced from 

~t V(~O)(t)V(~)(t)- 1 = Ot V(O)(t)V(O)(t)- i 

= Y,, n =  1,2 . . . .  (2.18) 

by induction (cf. [ U - T  ] (1.2.17), (1.2.18)). 
(ii) The assumption (2.15) and (2.16) are equivalent to (2.18) as shown in the proof  
of(i). We set Y, as in (2.18). F rom (2.13) we obtain for all n, 

~,V(~o)V(~)- i  = ~, p p , 1  + p~o,(A)~,- l, 

0, v(O)v(O)- 1 _- _ , ? -  i,O,. ? + , p -  lq~,(A),p. 

Hence 

which shows 

r .  = - *  + P o.(A)P - i  

= - ' P -  l '0,~ + f i ' ,  

' Y . =  - Y , .  

Not ing that ~" is lower triangular, we get 

(Y,)+ = (c~, P P -  1)+ + (Vcp.(A)~'- ~)+ 

= (pqon(A) p -  i)+ 

= (Pq~. (a)  + V -  i)+ = (V(A + a - 1)~_ p -  1)+ 

= (~'(A + A  - * ) " P -  1)+. 

This formula and 

imply 

Q = V(A + A - 1 ) p - i  

(2.19) 

(2.20) 

(2.21) 

~,, V(~ = Y ,  V(g)(t). 

(Y,) + = (Q") +. (2.22) 

Since assumption (2. ! 7) means that Q is symmetric, from (2.20) and (2.22) we obtain 
Y, = (Q')+ - ( Q " ) _ .  It is easily seen from (2.19) that 
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Finally, (2.21) and the symmet ry  of Q assures that  Q is expressed as 

Q = diag [a(s)]A + diag [b(s)] + A - 1 diag [a(s)], 

where a(s) ~ 0 for all s. �9 

3. Comparison with the Resul t  o f  Sect. I. In Sect. 1.2 we have seen that  the solution 
of the 1-dimensional T L  hierarchy of [ U - T ]  is determined by wave matrices which 
satisfy the bilinear relations; i.e. 

(I) An invertible lower t r iangular  matr ix  ~'(t). 

(II) V(~~ = V(t) exp - A -") , V(~ = tV(~)( t)-  1. 
n 

(III) V(~)(t)V(~~ - t = V(O)(t)V(O)(t,)- 1. 
( I V )  V ( ~ 1 7 6  -t- n - 1 ) r ( c ~  1 = V(O)(t)(A + A -  1)V(~ 1. 

On the other  hand, in Sect. 2.2 it was shown that  the solution of the 1-dimensional 
T L  hierarchy of r matr ix  type is also determined by the following da ta  (in order  
to avoid confusion with the above hierarchy, t ime variables are denoted by 
s = ( s l , s 2  . . . .  )); 

(I') An invertible lower t r iangular  matr ix  ~'(s). 

( s )  (II') V(~176 = ~'(s)exp s,q~,(A) , V(~ = tV(~176 
n 1 

(Ill ')  V(~~ - 1 = g (O) ( s )g (O) ( s ,  ) -  1 

(IV') Vr176176 + A - 1)V(~)(s)- 1 = v(O)(s)(A + A - 1)V(~ 1. 

N o w  it is obvious  that  the two 1-dimensional T L  hierarchy are identical to each 
other  under  the identification of t ime variables 

o -  

n = l  n = l  

w h e r e q ~ " ( 2 ) = ~ " s g n ( 2 k - n ) ( ~ )  2 2 k - " ' I n ~ 1 7 6  

linear combina t ion  of each other  and setting t = '(tl, t2 . . . .  ) and s = '(sl, s2 . . . .  ), the 
relation can be writ ten explicitly as 

where 

C = (C., .)  ..... N, 

C,,, = m + n)/2 ' 

Hence if we set 

then 

t = C s ,  

if n < m  and n - - m ( m o d 2 ) ,  

otherwise. 

~ ' , = ( ~ , , , ~ ,  . . . . .  ) , - # ~ = ( ~ , , ~ , . . . ) ,  

~ ' ,  = ~ , c .  
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As for the r matrix type there is a correspondence Os. = {H.,.}. By the above 
equation we obtain (formal) Hamil tonian/4 .  corresponding to time t. as follows; 

( B . / ~ , . . . )  = (/4~,/-/~ . . . .  ) c -  ~, 

1 1 
H. - Tr Q(s)" + 1 = Tr  Q 1 (t)" + '. 

n + l  n + l  

So far the result concerns the 1-dimensional TL hierarchy. 

3. Hamiltonian Structure of TL Hierarchy 

1. Review of the Toda Lattice Field Theories of Olive and Turok (I). Here and 
in the subsequent section we recall the theory originated from the quantum inverse 
scattering method and applied to the Toda lattice by Olive and Turok [O-T2,  3]. 
In this section the generalized 2-dimensional Toda lattice of Mikhailov, Olshanetsky 
and Perelomov [ M - O - P ]  associated to an affine algebra g is transformed into 
an equation in the principal subalgebra ~ of ~ by a special gauge transformation. 
The transformed gauge potential makes it easy to write down the transition matrix 
of the space direction and gives the conserved current, because of the abelian 
property of ~. We generalize the theory to all affine K a c - M o o d y  algebras, while 
Olive and Turok worked only on the non-twisted case. 

For  terms of the theory of K a c - M o o d y  algebras we refer to the standard 
textbook [Ka],  but to fix the notations we briefly recall what is needed. Let g = X~ ) 
be an affine Lie algebra. We mainly use the following principal realization: 

= Q ~ % e  Cc �9 Cd, 
j~Z 

where ~ = Xu, a finite dimensional simple Lie algebra and ~ = ( ~ 7  is its 
h(~)(x-Coxeter number) gradation. The Cartan subalgebra of g is b = go • Cc @ Cd. 

The Lie algebra, on which the whole theory lives, is 

~:= [g, g]/Cc ~- O~J, ~J = ~%, 
jeZ 

and decomposed as follows: 

~ = 6 @ n + @ n _ ,  

~:= ~o = C a r t a n  subalgebra of ~, 

I"1+ :=  O .~J" 
jX0 

1 ! 
A+ = ~ 6i and A_ = ~ f i  are called cyclic elements of ~, where el and 

i=0 i=O 

f i  (i = 0 . . . .  , l =  rank of g) are Chevalley generators of g and ~ is the image of x~g 
in ~. The subalgebra of ~, 

= { x ~ l  Ix, A +] -- 0} = { x ~ l  Ix, A _ ]  = 0}, 

is abelian and called the principal subalgebra of ~ (cf. [Ka] Chap. 14). g is graded: 

j~Z 
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and the integers of  the set which contains j with multiplicity dim gj are called 
= n , )  and j = 2m - 1 exponents, dim gi < 1 in all cases but  one: dim gj = 2 when ~ = ~'2m 

(mod 2m -- 2). 
Hereaf ter  we restrict ourselves to the cases dim gj < 1 for all j and denote  the 

set of  positive (respectively negative) exponents  as E+ (respectively E_). Fix the 
basis of  gj=CAj(j~E+_) so that  (AjlAk)=6j+kO. ('1") denotes the canonical  
invar iant  bilinear form of g, which is non-degenera te  on ~. (Excluding the case 
g -- ~'2mn") is not  essential at all, but  only for the sake of simplicity of notations.)  

The  generalized T o d a  lattice equat ion in the sense of [ M - O - P ]  is 

[ ~ z - Q , ~ t -  X]  = 0  

of the unknown  function u(z, t)eb, where 

c3tu + e~d~/ZA e-ad~/2A _, O=-y- ++ 

t3zU X = ~ -  + eadU/2A + -- e-adu/2A _. 

The class of functions considered is a suitable subring ~r = d z  of functions (or 
formal  power  series) of ( = Or/L)z and t, closed under  differentiation and exponent ia-  
tion. Here  L is a (formal) pa rame te r  designating the per iod of the system, i.e. we 
impose  on u the periodic condi t ion in z: 

u(z, t) = u(z + 2L, t) u((, t) = u(~ + 2rr, t). 

u is also regarded as a function on a cylinder S 1 x R. 
The solution T(z 1, z z, t) of the following Cauchy  p rob lem is called the transition 

matrix f rom z 1 to 2"2: 

0 T(zl ' z2 ) = Q(zl)T(zl, z2), 
cqz 1 

az2 T( zl,  z 2) = - -T(z  1, z2)Q(z2), 

T(z, z) = 1. (3.1) 

The monodromy matrix TL is defined as 

T L = T(z 1 = - L, z 2 = L) = T((  1 = - n, (2 = n), 

which plays a central role in the q u a n t u m  inverse scattering method.  
The main  goal of this section is to give the explicit form for the t ransi t ion and 

m o n o d r o m y  matrices, making  use of "abelianization," a special kind of gauge 
t ransformat ion.  

Remark 3.1. T(z 1, z 2, t) is considered as an element o f d ~  | d ~  | U(~), where U(~) 
is formal  comple t ion  of the universal  enveloping algebra of ~. But we can use any 
Z graded associative a lgebra  containing ~ and its appropr ia te  complet ion instead 

of u@. 
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N o w  we define several gauge groups  acting on (~) = (formal comple t ion  of ~): 

H : =  { e x p H  1 . . . expH.In~NH,~b}  c C [ [ b ] ] ,  

N+ := {expX 1 . . .exp X ,  lnaN Xi~n+ } c U(n+ ). 

Let G = H or N+ and A(z, t) be a function with values in (~). When  A(z, t) is regarded 
as a gauge potent ia l  with respect to z (e.g. Q in the T o d a  lattice), gauge transformation 
of A by g(z,t)eG is defined as follows: 

A~ t):= Ad (g- 1)A(z, t) + Ozg- i(z, t)g(z, t)~(~). 

A 9 is algebraically well defined if: 

�9 A:a rb i t ra ry  ; geH, 
�9 Ae  @ 2)~j for some No; gEN_, 

j<=No 

�9 A~ @ )J~) for some No; g~N+. 
No_<) 

Example. The gauge potent ia l  Q is t ransformed by h_+ = h + 1 := exp ( -T- u(z, 0/2) into 

Qh+ = A + + �89 z + c~,)u + e-aduA _ ,  

Qh- = A _ + �89 - Ot)u + e aduA +. (3.2) 

Definition 3.2. f e d  is called local if f is a differential po lynomia l  of  coordinate  
c o m p o n e n t  of u(z, t). 

Theorem 3.3. (Abelianization [ O - T 2 ] )  There exist local functions 9+(z,t)EN_, 
g_(z,t)~N + such that 

a+ (z, t):= (Qh+_)o_+ eg. (3.3) 

Proof. As g _ e N +  is determined in the same way, we only show how 9 + e N -  is 
determined.  Fo r  simplicity of  notat ions,  we d rop  the sign + :  h = h +, g = g +, a = a +. 

First let Qk(Z, t), ak(z, t) be elements of  gk such that  

Qh= 2 Qk, a= ~ ak. 
k < l  k < l  

By (3.2) Q1 = al  = A + ;  Qh =A+ + Qo + Q-I  + "", a = A +  + ao + a_t + .... Take  
g(z, t )eN_ of the form: 

g ( z , t ) = e x p ( - - k ~  ~ Xk(Z,t)), Xk(Z,t)~gk. 

NOW we determine X k recursively, so that  (3.3) holds. By definition 

ak=(Qh)O=exp ad --k 1 
k ~ l  

= e x p ( a d ( - ~ k ~ _ l X k ) )  Qn+ ~k<=-~Yk" 

Here Yk is a differential po lynomia l  of X _  1 . . . .  , X k. Taking  the gk c o m p o n e n t  of 
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where T_+ is the solution of the following Cauchy problem: 

T_+ (z I, z 2) = a• (z 1 )T_+ (z I, z2), 

Oz 2 T-+( zl, z z) = - T+(z 1, zZ)a+(z2), 

T+(z,z) = 1. 

Thanks to the abelian property of a+, i.e. a+ ~ ,  (3.6) is explicitly solved: 

Toda Lattice Hierarchy and Conservation Laws 

T +_ (zl,z2) = exp (  - ~ a+_ (z)dz)eU(g). 

(3.6) 

(3.7) 

Then, from (3.9), 

Then Ceg. 

Proof. Lemma 3.4 yields the decomposition 

C =  Cs+C. ,  
where 

[8~ - a +, d r - C] = 0, 
(respectively [ ~ ~ - a_ , Oy - C] = 0). 

C~ ~g, 

Crt = Z I~kcu, k' 
k<=N 

Cn,k ~ YI, S,k. 

0 =  [ 8 z - a + , S y -  Cs] - [~ - a+ ,C , ] .  

(3.9) 

variable y (e.g. t) that 

C(y)  G 
k<=N 

for N >> 0 and 

(respectively C(Y)ekg  g-k) ,  

Therefore we obtain the transition matrix explicitly from (3.5) and (3.7)~ 

Remark 3.5. T_+ is algebraically well defined by "rescaling" of z, 

T+(zl, z 2 ) = e x p ( - ~ L i a •  ~ = L / n ,  (3.8) 

as a power series of E. 
The importance of a+ does not consist only in solving (3.1). In the next section 

we regard a+ as the generating function of mutually commuting Hamiltonians. 
Here, before ending this section, we show that this gives conserved currents. 

Next lemma is a consequence of Lemma 3.4 and used also in the following 
section. 

Lemma 3.6. ([O-T2]).  Let C be such a gauge potential associated to an independent 
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both hand sides, we see that 

B k : =  a k - -  I X  k _  1,A+] (k < 0) (3.4) 

is expressed as a differential polynomial of Qo, . . . ,  Qk, X _  1 . . . . .  Xk" 
We need several facts about the principal subalgebra of ~. (This was not 

mentioned by Olive and Turok, but (iii) seems essential.) 

Lemma 3.4. 

(i) In the principal realization of  g = X ~  ), 

~j = ; i s}  ~, Aj  = ,~JAj, 

where S~)= @ S(-~) is ~c-principal subalgebra of  ~,S(-~)=St~)c~j and ,?l.sS(- ~). 
feZ/h(~) z 3 ! J .! 

(ii) S ~ is a Cartan subalgebra of  ~. Let  A s is the set o f  roots of  ~ with respect to 
S ~) and G(~sAs )  is root vectors. Then ~ is decomposed as 

= S~) O ns, ns = @ C G  
~ed s 

(this is obvious), and ad A, acts non-degenerately on ns. 
(iii) 

ns=@rts ,? ,  ns,?:=nsC~j, and ~S---S}~IOns, j. 

Admitting this lemma, we can set 

B k = 2k(Bk)s + 2k(Bk)s • (Bk)seS~ ~, (Bk)s~ens,~. 

Being non-degenerate on ns, ad/11 induces a linear isomorphism ns, ~ --. ns,k + ~ , 

a k = 2k(Bk)s, 

X k -  ~ = 2 k-  ~(ad A11,s,k)- ~(Bk)s• 

are the desired solutions of (3.4). �9 

Proof  of  Lemma 3.4. 
(i),(ii) See [Ka] Sect. 14.2. 
(iii) There exists an h~)-th order automorphism a such that fi= @~;  is its 
eigenspace decomposition (ef. [Ka] Ch.8). Since A1 belongs to ~ ,  the centralizer 
of A~, S (~), is invariant under the action of a. 

Hence a(G)(eeAs)  is also a root vector with respect to S ~). This means ns is 
invariant under the action of a. The eigenspace decomposition of ~r[,, s is 

n s = @ns,y. �9 

Using the above gauge transformation, the solution of (3.1), the transition 
matrix, is written as: 

T(z 1, z z, t) = O • ( zl, t)T +_ (z ~, z z, t)O + (z 2, t)- 1, 

with 

O(z, t) = h +_ (z, 09 +_ (z, t), (3.5) 



304 T. Takebe 

The first term belongs to g, while the second belongs to O•kns,k . Hence 

[ ~  - -  a + ,  C , ]  = 0 .  ( 3 . 1 0 )  

Suppose C, # 0 and fix N so that C,, N # O. Since a + = A + + ..., the highest degree 
term of (3.10) is 

[A+, C,,,N ] = 0. 

By definition of g, this means C,,N~g, which is contradiction, i.e. C, = 0, Ceg. �9 

For  the solution of the Toda lattice equation 

[ ~ z - Q , a , - x ]  = 0 ,  

let Ad(0~ 1) act on the both hand sides to obtain, 

[0~  - a + ,  0 ,  - b + ]  = 0 ,  

b+ = X ~+~ = Ad (9_T 1)X + c3,0~ 10+. (3.11) 

Lemma 3.6 says b+eg, and therefore (3.11)means 

O~a ++_ = ~zb + . 

This shows that a+ (or a+,k ) is the conserved current of the system. 

2. Reviews of  the Toda Lattice Field Theories of  Olive and Turok (11). In this 
section a + (z, t) obtained in the previous section is shown to be a generating function 
of mutually commuting Hamiltonians, provided that u(z, t) is a (classical) free boson 
field. The equation of motion with Hamiltonian density a+,k is written in the form 
of 0-curvature condition between Q and a certain gauge potential Bk. We will 
also see that Bk'S satisfy 0-curvature conditions mutually, and this 0-curvature 
conditions = integrability condition allows us to introduce a non-local element 
c+, ~o+ of gauge groups, which simplify (3.7) and (3.5), as well as connect this theory 
to the TL hierarchy. Again we closely follow the argument of Olive and Turok 
[O-T2,  3], but avoid using Tr, so that representation independence is obvious. 

Suppose there is the local simultaneous canonical commutation relation 
between u(z, t) and v(z, t) = Ou/Ot: 

{uo(z, t), vb(z', t )} = ~~ - z ' ) ,  

where subscripts a,b specify orthogonal components of b with respect to ('[-). 
(For exact meaning of the Poisson bracket {,} we refer to [G-Ch] ,  [G-D] . )  

Then the fundamental Poisson relation: 

{ Q(z, t; 2)@ Q(z', t;/t)} 

\ jEZ / \ jeZ / 

(3.12) 

holds with the classical r matrix r = r +_ : 

t o  , r _  
r+ - 2 ~=1 2 j--~l ~ . (3.13) 
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Here tj is ~-| ~_~- component of t = (canonical tensor corresponding to ('l') of 8). 
Belavm and Drinfel'd [B-D]  proved that these matrices satisfy the classical 
Yang-Baxter equation: 

rr12,r13 ] -{- [-r12, r23 ] + [r13,r23 ] --0. 

In order to give the equations of motion in the form of 0-curvature condition, 
we proceed in two steps. First we prove 

Proposition 3.7. ([O-T2]) .  Set 

L.:= Ad (0+)A,, B,:=(I |  
L_.:= Ad (9_)A_,, B_.:=(I|  (3.14) 

for neE+. ('1")2 indicates taking ('t') of the second entries. Then B, is such a local 
gauge potential that 

i o+ 0.. -L " ~z + [Q,B,], 

Proof. Again, for the moment, we are concerned with only nsE+ and a+. 
Encapsulating the left side of (3.15) into 

we calculate this, making use of the transition matrix obtained in Sect. 3.1. 
According to the abelian property of a+, 

9_. a+(z)dz = {QO, T+,L}(I|  

= (1 |  z)-1){Q ,@T+,L}( 1 |  -- L)-1). (3.16) 

As Q and g+ are local, 

{Q(z,t)@, ~+( +_L,t)} =0.  

This with the explicit form of T (3.7) yields 

{Q~T+.L} =(1| (3.17) 

The following important lemma is a consequence of (3.1), and due to the 
Leningrad school. 

Lemma 3.8. (Continuous Leibniz rule; [Fa], [Ski) 

L 

{Q(z) ,@ TL} = ~L (1 | T(L, w)){Q(z) @, Q(w)} (1 | T(w, - L))dw. 

Thanks to the fundamental Poisson relation (3.12) and (3.1), the right-hand 
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side of this lemma is rewritten as follows: 

= (1 | T(L, z)) [Q(z) | 1 + 1 | Q(z), r] (1 | T(z, - L)) 

= [Q(z) | 1, (1 | T(L, z))r(1 | T(z, - L))] 

0 
8z (1 |  z))r(1 @T(z, - L)). 

From (3.5), (3.16), (3.17), Lemma 3.8 and (3.18), we get 

QQ' JL a+(z)dz = [Q(z)| 1,K+] - 3 ~ - z  + [1 @a+(z),K+], 

where 

T. Takebe 

(3.18) 

(3.19) 

L 

H+,:= ~ -Ta+,;,(z)dz (nEE+) 
- L  

are mutually commuting with respect to {,}. 

Proof. Similar to that of the previous proposition. 
{Hk, H,} = 0 (kEE +, nEE +) is A_k (~) A_, component of 

{~La+(z)dz, H,}=O. (3.21) 

Now we prove (3.21). Just like we get (3.17), the left-hand side of (3.21) is 

{ i a+(z)dz'H"} 

+ 0+ (L, t)- I{TL, H,}O+ (L, t)T+,~L. (3.22) 

Proposition 3.9. 

K+ := (1 | Ad (~+ (z, t))- 1)r. 

As O+EHN_,K+ is well defined for r =  r+. 
f 

In order to extract ~Q, [-a§ i.e. ~ |  component of (3.19) 
( - L  - ) 

(nEE+), one only needs to take ('l 1 | = (']A,) of the second entry of both 
hand sides. Since g is abelian, 

([a + (z), x] I A,) = (x] [A,, a + (z)]) = 0. (3.20) 

Hence the last term of (3.19) does not contribute to the final result. The invariant 
property also yields 

(1 | A, tK+) 2 = (1 | L, Ir+)2 = -- B,, 
and substituting this into (3.19), we obtain (3.15). �9 

As the second step, so as to interpret (3.15) as 0-curvature condition, we check 
the compatibility; 
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By Lemma 3.8, (3.15) and (3.1), it is easy to see 

{TL, H,} = - B ,T L + TLB,. 

Replacing (3.23) into (3.22), we obtain 

a+(z)dz, H. = - C + Ad(T+,L)C, 

where 

(3.23) 

(3.24) 

for neE+, and 

B I + B _ I = Q ,  B 1 - B _ I = X .  

Hence we may identify z and t as 

z=�89 + x _ l ) ,  t = � 8 9  (3.26) 

Now we study the gauge potentials B, (n e E + w E_ ) in detail, following [O-T3] .  
Because of the fact ,j++eHN~ and the explicit form of r =  r e (3.13), 

n 

k<=n k = O  

n 

L_,~ ( ~  ~k, B - , ~ O ~ - k ,  (3.27) 
k_--> - n  k = O  

[ (L,,) k, k > 0 (respectively k < 0), 

(Bn)k = ~ �89 k = 0 (respectively k = 0), 

~0,  k < 0 (respectively k > 0), 

for neE+ (respectively neE_). Here (x), is the ~k component  of x. 

(3.28) 

that  is, 

C = g+ (L, t)- 1 {g+ (L, t), Hn} --~ g+ (L, t)- 1Bng + (L, t). 

As T+.L~exp(g), the same argument  as (3.20) shows that  (3.24) implies (3.21). �9 

Taking this proposit ion into account, we introduce new independent variables 
x, (neE • conjugate to the Hamil tonian H,.  Thus (3.15) becomes the 0-curvature 
condit ion 

[c~z -- Q, 0x. - B,]  = 0, (3.25) 

as was expected. 

Example. Honest ly following the proof of Theorem 3.3, we obtain 

3,u + O~u 
B1 4 "J- eadU/2A+' 

atU -- t3zU e-adu/2A 
B-1 4 + - '  
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Theorem 3.10. For all n,m~E+ ~ E _ , B .  and Lm satisfy the Lax equation: 

[Ox -- B, ,Lm]=O. 

Proof. Fix nsE+. Then 

(3.29) 

(3.30) is equivalent to 

where 

g+ = ( ~  ij, 
j ~ E  + 

g - =  @ g i "  
j E E  - 

[0=. - (B=) ~ 6== - (a=) ~* ] = o, 

(B j +  ~ @ i , .  (B.) =- ~ @ ik, 
k=<n k>=0 

and, applying Ad (0_+)-1 to (3.25), we obtain 

[6z - a• ~== - (B j-+3 = 0. 

So the assumption of Lemma 3.6 are satisfied. Hence (B j *  zg and 

[Ox. - ( B . )  ~* ,  A=] = o 

for any exponent m. Applying AI(0• (3.29) is proved. The case neE_ is 
similar. �9 

Olive and Turok [O-T3] derive the 0-curvature condition: 

[3~. - B,,8=m - Bm] = O, n,m~E+ u E _ ,  (3.30) 

from Lax equations (3.29) by making use of the classical Yang-Baxter equation. 
But, noting that B, is the "upper (or lower) half" of L, (3.28), exactly the same 
argument as the proof of Proposition 1.1 stands to prove (3.30) more easily. This 
fact may suggest some interpretation of the role of the classical r matrix and the 
classical Yang-Baxter equation in the theory of integrable systems. 

Remark3.11. Under the identification (3.26) the original Toda equation is recovered 
as (3.30) n = 1, rn = - 1. 

We now introduce non-local elements co• of gauge groups, which behave just 

like wave matrices ~to~ of the TL hierarchy. As shown in the proof of Theorem 3.10, 

(B J •  e~. 

Along with (3.28), it implies 

C. + := (B.) ~+ - A . ~ _ ,  
for n~E+, 

C2 := (B,) ~ Eg+, 

c .  + := (B j +  e~_,  
for n~E_,  (3.31) 

C~- := (B,) ~- - A , ~ L ,  
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therefore also equivalent to 

E a x . -  c.+, G ~ -  c .  + ] = G ~ c .  + - G o c ~  + = 0, 

[8~,,, - C 2 , a x ~  - C,7,] = 8~,,, C ~  - a:,, C,7, = O. (3 .32)  

They describe the integrability condition of the linear problems for C + eg_ and 
C - e g + :  

G C + = C +, 
n~E+ w E _ .  (3.33) 

8~ C -  = C 2 ,  

Gauge transformation by c + := exp C + eN~ yields from (3.31), 

_0} 
(B")~ for n e E + ,  (Bn)~ for n e E _ .  
(Bn)O -~- (Bn) o-~- = A n 

Setting co+ := O+c+ = h+g+c+,  we obtain 

Theorem 3.12. 

Oxe,(ni = B+n(n+_ -- (n+A+n, 

Ox+n(n-v = B!n(n_v, 

L+n = Ad((n+)A+,, 

for  n e E + .  

R e m a r k  3.13. C +- is determined up to an additive constant which is the initial value 
of the system (3.33). Hence co+ is unique up to a constant multiplier in exp g. 

Corollary 3.14. 

T(z l ,  z2) = (n + (zi ) exp  (zi - z2)A +_ (n + (z2) -1,  

T+(zi, z 2) = c + (zi ) exp  (z i _ zZ)A + c + (z2) - i. 

Proof .  It suffices to check the defining equations of T, T +, i.e. (3.1) and (3.6), using 
the identifications (3.26) and Theorem 3.12. �9 

3. Generalized TL Hierarchy.  The analogy of the TL hierarchy (Sect. 1) and the 
system studied in Sects. 3.1, 2 is now obvious. Observing (1.1) c~ = 0 and (3.28), (1.3L) 
and (3.29), (t.3ZS) and (3.30), (1.2) and Theorem 3.12, we present here a candidate 
for the generalized TL hierarchy attached to the affine Lie algebra which includes 
the system of Olive and Turok (Sect. 3.2 (3.29) and (3.30)) as a special case. 

Let A co) ho(x )eH ,  W o ( x ) e N  +, fV~o~)(x)eN_ be unknown functions depending on 
x = (xn;neE+ w E _ ) ,  and set 

L, := Ad(ho ~o*))A,. 

L. := Ad(h o ' I2V(o~ 

Here ()+,o means 

(x)+ := ~ x~, 
k>0 

B.:=(L.)++�89 n e E + ,  

B.:= (Ln)_ + �89 n e E _ .  

(x)_ := ~ xk, (X)o:= Xo, 
k<O 

(3.34) 
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for x = E Xk, Xk~'~k. We call the following system the generalized TL hierarchy 
associated to the affine Lie algebra g: 

t?xLm = [B,, Lm], (3.35L) 

for the exponents n, m, or equivalently 

[8~, - B,, O~,, - B,J = 0. (3.35ZS) 

Equivalence of (3.35L) and (3.35ZS) is proved similarly to Proposition 1.1 of Sect. 
1, and parallel to Theorem 3.12 there exist wave matrices of the form 

W (~o)(x) = h + (x) l?v "(~)(x) exp Cg (x + ), 

W(~ = h_ (x) I?r176 exp ~,(x_), (3.36) 

he(x  )=  h(x) +-l eH,  l?r176 +_, 

and C q(X_+) = ~ x , A , ,  which are the solution of the linear problem: 
n e E  + 

8x W(~ = B,W(~ (3.37) 

for the exponent n. The characterization of the solution by the bilinear relation 

T:= W(~~176 ')- ' = W(~176 - 1, (3.38) 

is also the same as the TL hierarchy of Ueno and Takasaki [U-T].  
An important ingredient of Sato-type theory for integrable systems still lacking 

here is the theory of generalized z functions. This will be treated in the forthcoming 
paper. A promising suggestion is found in [Ch2], and it must be closely related 
to (and probably included in) the theory of generalized hierarchy [K-W].  The 
intimate relations between the TL hierarchy and the KP  hierarchy must inherit 
in the above system, and should also be further studied (cf. Sect. 4) 

4. The Case O'= A~I_) 1. In this section, apart from the general theory, we restrict 
ourselves to the case g = A~L)I and investigate the relation of the TL hierarchy 
and Hamiltonians in detail. When g is represented as infinite matrices, the 
generalized TL hierarchy presented in the previous section is shown to be the 
/-reduced TL hierarchy of [U-T],  and the Hamiltonian obtained in Sect. 3.2 is 
expressed in terms of the z function. We keep the notations of the previous section. 

It is well known [Ka] [K-R]  that ~ = All_) 1 has a faithful representation as 
Z x Z matrices, such that Asg is represented as 

�9 . .  " . ,  " .  

"'. Ao A1 A2 

A =  "'. A_ 1 A o A 1 "'. = ~ A i |  i, A i ~ l ( l , C ) ,  

A -  2 A-1  Ao i~z 
�9 . " . ,  

where A t = 0 for all but finite i. Exponents of g are integers ~ 0 (mod h (~) = l). 

where 
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The principal subalgebra is g =  @ CA",A+ = A  +-1. (A is the shift matrix as 
in Sect. 1.) n~0(modl) 

Theorem 3.15. The solution of the generalized T L  hierarchy associated to All_) 1 in 
this representation gives the solution of the l-reduced TL hierarchy (~ = 0 gauge) and 
vice versa in natural way. That is, they are considered identical with each other. 

In particular, e)+ of Theorem 3.12 are wave matrices of the TL hierarchy ITV (~ 

Proof. Suppose the solution of the generalized TL hierarchy is given. Then in the 
above representation L, = (L1)" and L_ ,  = (L_ t)" for neE+, and B,'s are identical 
with those determined by (1.1) ~ = 0 .  We consider them as dependent on x, 
( n - 0 ( m o d l ) )  trivially. Since they satisfy (3.35), they are solutions of the TL 

A O �9 -i- 

hierarchy. Moreover, as h o and W (~) are l-periodic matrices, (L+I ) t=A -~. 
Therefore we obtain the solution of the/-periodic reduced TL hierarchy. 

Conversely, suppose the solution of the/-reduced TL hierarchy is given. Using 
the loop algebra representation of periodic matrix algebra, it is easy to see that 
(L+)" and B+, are in All_) z (cf. [ U - T ]  Proposition 1.15 (2)). Let l?V(~ be wave 
matrices and set 

ho:= e-"/z, ITv(~ hgllTV(~ 

where u = diag [u(s)]. ITv (~ (respectively rTV ~~ is an/-periodic and lower (respect- 
ively upper) triangular matrix with the diagonal part 1. Hence 

~ o )  = ~ ~o~)| Ak:= log IYV ~), 
k < 0  

" ~ ( 0 )  k > O  
(respectively A = ~ X(k0)| log tTV (~ 

is also /-periodic and strictly lower (respectively upper) triangular, though, in 
general, J~~ C) and ~(o) may not belong to ~. But subtracting the trace part 
which commute with A _+, we get X(| 

~(o, -(o, 
X (~ = ~ (Xk ~1- Tr Xk ~j Idl)|  A k, 

and W(o~ expX (~~ gives the same L_+ as 17r 

L+ = Ad(h o W(~~ L_ = Ad(ho 11T~(o~ _. 

Clearly, (L +)" and B _+, of the TL hierarchy satisfy the algebraic constraints for L, 
and B_+, (3.34), and (1.3) says that they satisfy (3.35). 

The last statement is obvious from Theorem 3.12. �9 

Especially, the Hamiltonian system constructed in Sect. 3.2 is one of solutions 
of the TL hierarchy. 

As the TL hierarchy is entirely described by the z function, Hamiltonian densities 
of the system of Sect. 3.2 should also be expressed in terms of the z function. 

Theorem 3.16. In the notations of Sect. 3.2, 

L 

H , = -  ~ p,(-O~+)t?~logzdz, 
- L  



312 

L 

H_.= I P.(-Ox-)Ozl~ vdz" 
-L 

For the definition of pj, see Sect. 1.1. 

Proof. Set in the matrix representation 

g+_ = h• = ~ diag[O+j(s)]A +j, 
j = O  

C+ = ~ c+jA~J, C += ~ Cf  A -z-t , 
j = O  j = O  

09• = ~ diag [o)+_j(s)]A -T-t, (3.39) 
j = O  

and with an indeterminant 2 

0+(s;2) = ~ diag [(t• -v j, 
j = O  

c• c+/% c• 
j = 0  j = 0  

co+_(s;2) = ~ diag [o9• -vj. 
j = O  

(2 is identical with that in principal realization of g.) Then, as co• = O+c+ and 
c• = exp(C-+), 

e)+_(s;~) = 0•177 c• = exp(C• 

Hence 

T. T a k e b e  

C -+ (2) = log o9_+ (s; 2) - log 0_+ (s; 2). 

Equations (3.33) and (3.26) imply ~3~C-+~ = a+_,~_:, i.e, 

-T- ~. H . j 2  v-j= i ~ C+(2)dz" (3.41) 
j = O  - L  

Substituting (3.40) into (3.41), we obtain 
L L 

-T- ~ H• -vj= ~ Ozlogoo+_(s;2)dz - S &logO• (3.42) 
j = O  - L  - L  

As ~ is local, the last term vanishes because of the periodicity in z. On the other 
hand, being wave matrices of the TL hierarchy, 09• is described by the r function 
(cf. Theorem 1.7 [U-T]) :  

l o g  o~ + (s; 2) = - �89 x) + ~ p j ( -  ~x§ l o g  ~(s; x) ,~-J,  
j = l  

log ~o _ (s; 2) = �89 x) + ~ pj ( - ~_ ) log T(s; x))J. (3.43) 
j = l  

Equations (3.42) and (3.43) prove the theorem. �9 
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The fact that log co _+ (s; 2) = log ~(~ 2) is generating functions of conserved 
quantities, will be derived from completely different point of view in Sect. 4. 

4. Conservation Laws for the Multi-Component KP Hierarchy 

In this section, we extend the theory of conservation laws for the KP hierarchy 
([Chl, W, F1; Sa]) to the multi-component KP  hierarchy. In particular conservation 
laws for the 2-component KP  hierarchy include the Hamiltonian densities of the 
TL hierarchy embedded in it. 

1. Reviews of the Multi-Component KP Hierarchy. First we recall the multi- 
component KP  hierarchy briefly, following the Appendix 1.3 [U-T].  

The independent variables of the r component theory are x = ( x  (1) . . . . .  X(r)), 
x(~) =t~lt'~t'),~z'~('),.-.J,~ and functions concerned belong to ~r a suitable differential 
algebra of r x r matrix valued functions of x with the derivation 

a =  ~ O~,.,. (4.1) 
at=l  

Let L, U, (~ = 1 . . . . .  r) be the following micro-differential operators: 

L =  ~ ujd j, with u j E d ,  u a = I d , , u  o = 0 ,  
j_-<l 

U, = ~ u~.,O J, with uj,~ed, Uo = E,. (4.2) 
j_-<o 

E, is the matrix element (5~Sj,)x<~,j<,. We assume that L and U,'s satisfy the 
following algebraic conditions: 

EL, U~] = 0, 

~ U ~  = Ida, 
a = l  

for a, fl = 1 . . . . .  r. Set 

[U~, Ua] = 0, 

U~ Ua = cS~a U~, (4.3) 

B(n ~):= (L" U~) +, 

where P+ means the differential operator part of a micro-differential operator P. 
The r component KP hierarchy is, by definition, the compatibility condition of 
the linear problem, 

LW = 2W, U~W = WE~, 
= 1 . . . . .  r, n = 1, 2 . . . . .  (4.4) 

~,)  W = B (~) W, 

where 2 is a formal parameter, on which W depends. Explicitly, the KP  hierarchy 
is the following system of unknown functions u j, u~,, for all a = 1 . . . . .  r, n = l, 2,...  : 

(34,,L = I-B(2 ), L], Ox(~,U a = I-B(, ~), Ua], (4.5L) 

or equivalently 

[a~)- B(, ~), Ox~) -- B~ )] = 0. (4.5ZS) 
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Suppose L and U,'s are a solution of the r component KP hierarchy. Then the 
linear problem (4.4) has a solution of the form: 

W(x; 2) = ~j(x)2-2exp ~ , (4.6) 
j = O  :t 

with ~ 4  and Wo = Ida.  Setting 

lYV(x;0):= ~, ~j(x)~ -j, (4.7) 
j = O  

we can rewrite (4.4) into 

LITV = [,V6~, U~I?r = IeVVE=, 

Matrix elements of W(x; 2) are written in terms of r functions, r and r=p: 

(4.8) 

Sr(x  - ed2))/~(x), ~ = fl, l,~(x; 2)~p (4.9) 
( ~ ( x -  ~a(2))/~(x), o~ # fl, 

where e~(2) = (0 . . . .  ,0,~(2),0,...,0), e(2) = (2,22/2, 23/3 . . . .  ). One of important results 
of [ U - T ]  is the embedding theorem of the TL hierarchy. 

Theorem 4.1. ( [U-T]) .  The v function of the TL hierarchy v(s;x+) coincides with 
that of the 2-component KP hierarchy up to a signature factor under the 
identification of the independent variables x(1)= x+, x (2) = x_ ; 

T(xm, x ~2)) = ~(0;x_+), ~12(x%x ~2~) = ~(1;x_+). (4.10) 

For  the correspondence between r(s;x_+), s ~0 ,  1 and v functions of the KP 
hierarchy, see [U-T] .  The statement cited above is the minimum of what.we need 
(cf. also [T]). 

2. Conservation Laws for the Multi-Component KP Hierarchy. Here we show that 
the diagonal part (or exactly speaking, logarithm of the diagonal part) of the wave 
operator W gives the conservation laws. The v function is shown to be its generating 
function, and the relation to the Hamiltonian densities of the TL hierarchy is 
discussed. 

As in Sect. 3 we call those functions local, which can be expressed as differential 
polynomials of coefficients of L and U,, i.e. uj and uj,~. Suppose there exists a 
"good" boundary condition for a variable z = (a linear combination of x(,')), under 
which a local quantity is constant on the boundary; for example 

. Periodic condition for L and U,, 

L(z + Lz) = L(z -- L~), U,(z + L~) = U,(z -- L~). 

�9 Rapidly decreasing condition at z = + oo for L and U,. 

Then 

~z(local quantity)dz = O, 
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t Lz where f is the integration over the whole period i.e. Periodic case: ~ ; Rapidly 
--Lz 

decreasing case: -S~o)" The following proposition is trivial but fundamental. 

Proposition 4.2. Le t  H(x)  be a (possibly non- local ) funct ion ,  and suppose t~,~H(x) is 
local. T h e n  

~ ;:,( f O~H(~)az) = O. 

This means that fO~H(x)dz  is conserved with respect to x~ ). 
We define 

r/(x.2)=(rh(O, 2) ."  0 "] (loglTV,~. 0 ) (4.11) 
r/,(x, 2 ) / / := \  0 "" 1ogI?r ' 

and 

r/,(x, 2) = ~ H,a(x)2-J. (4.12) 
j = l  

Note that I?r is obtained by integrating L and U,, and hence ~/and H,,s are not local. 

Theorem 4.3. For  ~ = 1 . . . .  , r, n = I, 2 . . . . .  

c3x~,)q(x; 2) or, equivalent ly  Ox(,)H~a is local. 

By Proposition 4.2 this means fazH~,s(x)dz  is conserved with respect to any xp ). 

Proof .  First we prove a lemma: 

Lemma 4.4. W,a(x; 2)/Waa(x; 2) (~ # fl) is local. 

Proof .  From (4.9), 

~,~ ~ _  ~ r~,p(x') 2 -  ~ ~ ' -- - -  = ( 1( X))at/}[x'=x-e#(A)" 

So, we need only to prove that (#l(X))~a is local. 
On the other hand, Yl.v, the coefficient of 2-1 in Uv(x; 2)= ff'EvW-1, is 

Ul, y = ~I(X)E~ -- E~I(x) ,  

Thus (~(x)),Z is local, if a ~ ft. �9 
Set 

ff/(x; 2):= W(x; 2)e- "~;~). (4.12') 

By Lemma 4.4 this is local and as 

VI'Z(X; 1].) = 1 -]- O(.~.- 1), 

it is an invertible matrix. Using these facts, the rest of the proof is the same as the 
arguments of [Chl,  F1, Sa and Fu-T-]. 



316 T. Takebe 

Equation (4.8) implies 

@,,, W(x; ~3) = - (L" U~) _ (x; (3) I7r ~), (4.13) 

where P_ := P -  P+. Using the Leibniz rule for micro-differential operators, we 
can expand the total symbol of (4.13) as follows: 

@=,l~(x; 2) = ~ ~ v~",}(x)(~rW(x; 2)) ~-j-~. (4.14) 
j = l r = O  

Here local functions v~a's are defined by - (L"  U~)_ = ~ v ~")~,j 2 -j. Substituting (4.12) 
j = l  

into (4.14), we obtain 

{ } = ~-V -1 -O~,,ff-V+ ~. ~ k V(~n'}(x)OkVV(X;2)C3r-ke'ttx;'Z)e-'Itx;;O;~-J-r" 
j = l r = O k  

(4.15) 

Note that (Oke")e- ~ is a differential polynomial of t?q and not of r/itself. Therefore, 
if Otl is local, (4.15) proves the theorem, for the rest of the right-hand side of (4.15) 
is local as already mentioned. 

Now we prove that 07 is local. Summing up (4.15) n = 1 for all ct, we get 

Off(x; 2) 
oo ~ r - - "  r 

= ffr _Offr V r r "]V.(x)OkW(x;2)or-ke"(X;%-"'x'~)2-J-r'~, ( J'] ( 
~% r-~-o k~=O \ r J \ k J  ' J 

(4.16) 

where vj =v]l,} +. . .  u) + vr.j. It is an easy induction to show the locality of OH,,j (and 
hence the locality of t?t/), comparing the coefficients of 2-J's in (4.16). m. 

Equation (4.9) yields 
t/~(x; 2) = log z(x - s~(2)) - log z(x), 

H~,j(x) = p j ( -  ~) )  log z(x). 

The conserved quantity obtained above is, by this formula, 

Ozp j( - 0~')log v(x)dz. 

In particular, when r =  2 and z =�89 x]2)), and provided that the solution 
considered is that of the TL hierarchy (cf. Theorem 4.1), then this is nothing but 
the Hamiltonian obtained in Sect. 3, Theorem 3.16. These conserved quantities 
and the coincidence of them play an important role in 2 dimensional field theory 
(cf. [Fu-T]) .  

Finally we make some remarks on this point. 

Remark 4.5. Applying the method adopted in Sect. 4 to the TL hierarchy seems 
difficult, because the KP  hierarchy is a system of differential equations while the 
TL hierarchy is a differential-difference system. Exactly speaking, the last argument 
in the proof of Theorem 4.3 does not work for the TL hierarchy. 

0~p~(x;2) 
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Remark 4.6. Conversely, applying the machinery in Sect. 3.2 to the KP hierarchy 
is, at least for the present, impossible, since the fundamental Poisson relation for 
the KP equation (or some reduced system of the KP hierarchy) has not yet been 
found. 

So, it remains still mysterious that the conserved quantities of 2 component 
KP hierarchy and those of the TL hierarchy obtained through these methods 
coincide. Satisfactory explanation should be found in future studies. 
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