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Abstract: We construct quantum groups at a root of unity and we describe their 
monoidal module category using techniques from the representation theory of 
finite dimensional associative algebras. 

1. Introduction 

In the representation theory of finite dimensional algebras, important techniques 
as quivers, almost-split sequences and irreducible morphisms have been developed 
these last two decades. Our purpose is to use these methods in order to study finite 
dimensional Hopf algebras which are neither commutative nor cocommutative 
together with their monoidal category of modules. Hopf algebras of this sort 
produce non-trivial braided categories through the representations of the quasi- 
triangular Drinfeld's double (I-8]) or through the "center construction" 
([10, 13, 18, 15]); according to Drinfeld [8] or Manin [19] these Hopf algebras are 
considered as quantum groups or rather better as functions on some hypothetic 
quantum group. Their representation theory through the double constructions has 
applications in various parts of physics and mathematics: one can use them to 
obtain solutions of the quantum Yang-Baxter equation or topological invariants 
(see for instance [24, 25, 17]). 

Quivers with relations allow to present finite dimensional associative algebras 
in a useful way, see [11]. If the algebra is of finite representation type, its module 
category can be presented using the Auslander-Reiten quiver of the category of 
indecomposable modules and relations given by the almost-split sequences. 

In this note we construct a family of infinite dimensional Hopf algebras over an 
arbitrary field k. To each integer n > 2 and each n th root of unity q in k we attach 
a Hopf algebra H,,(q) which is the path algebra of the cyclic quiver Z,. These Hopf 
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algebras are neither commutative nor cocommutative, except for q = 1 when they 
are cocommutative. 

Let d be the precise order of q; we will show that H,(q) has a finite dimensional 
quotient A,(q) of dimension nd with antipode of order 2d. Those quantum groups 
are not quasitriangular unless n is even and q = - 1. If the characteristic of k does 
not divide n and if in addition q is primitive then the Hopf  algebras A,(q) are 
isomorphic to the Hopf  algebras obtained by Taft [28]. If moreover n is odd, the 
Drinfeld double of A,(q) has been considered by several authors; it has a quotient 
isomorphic to a finite dimensional quotient of Uq(sl2) constructed by Reshetikhin 
and Turaev [25]. The presentation we obtain for these algebras allows to study 
their representation theory; the finitely generated A,(q) modules form a Krul l -  
Schmidt category with only a finite number of isomorphism classes of indecompos- 
able modules whose tensor product can be described. These algebras are not 
quasicommutative, now it turns out that the tensor product of modules is com- 
mutative up to canonical isomorphisms. The non-existence of an R-matrix insures 
that the category of modules is not braided, however left braidings can be con- 
sidered an at tempt to describe the module category of the Drinfeld double, see 
[10, 13, 18, 15]. The behaviour of almost-split sequences under tensor product is 
indicative in this respect: commutativity is only valid up to a non-zero scalar, and 
this is related to the R-matrix of Drinfeld's double. This aspect will be developed in 
a forthcoming publication. 

Actually the universal cover of the algebra we consider admits a Hopf  algebra 
structure over k(q); most of the properties described for the finite dimensional 
quotients can already be stated in the setting of this algebra, the associative side of 
which is isomorphic to the algebra of infinite lower triangular matrices. 

C. Kassel (see [14]) has made very useful comments at an early stage of this 
work, my special thanks to him. 

2. Path Hopf Algebras 

Let Z ,  be the oriented graph with n vertices {So, sl . . . .  , s,_ 1} and with n oriented 
edges {ao, a l , .  �9 �9 a,_ 1}, where al is an arrow from the vertex si to the vertex si+ 1. 
The indices belong to the cyclic group Z/nZ. 

Any finite oriented graph enables to construct a tensor algebra called the path 
algebra, and in that case an oriented graph is called a quiver, see [11]. For  Z ,  the 
path algebra kZ,  over a commutative ring k has the following description: let 7~' be 
the path of length m starting at the vertex si. This simply means that 77' is the 
sequence of arrows a~ +m-1. �9 �9 ai + l a~. We agree that 7 ~ = s~ and notice that 7~ = al. 
Let kZ,  be the free k-module with basis the set {7~'}g ~ Z/,Z,m ~ r~.The product is given 
by composition of paths whenever it can be performed and zero otherwise. Observe 
that vertices are orthogonal idempotents and that a~sj = 6i, ja~ and sja~ = 6j,~+ la~. 

Consider the commutative k-algebra A = x ~z/,z ks~ and let M be the k-free A- 
bimodule with k-basis the set of arrows and bimodule structure provided by the 
formulas above. Clearly kZ, is the tensor algebra TA (M) over A of the bimodule M, 
hence any morphism of algebras A: kZ,  ~ X is determined by an algebra map 
Ao: A ~ X and an A-bimodule map  A 1: M ~ X, where the A-bimodule structure on 
X is the one conferred by Ao. 
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Theorem 2.1. For each n tla r o o t  o f  unity q there is a Hop f  algebra structure kZ,(q) 
on kZ, .  

For the proof of this theorem we shall need the following easy lemma which is well 
known in its dual version, see [1, pages 159-160]. 

Lemma 2.2. Let A be a semisimple split commutative finite dimensional algebra over 
a field k. Let A = x e~Eke be its unique decomposition as a product of  simple 
subalgebras, where E is the complete set of  primitive orthogonal idempotents. There is 
a one-to-one correspondence between Hopf  algebra structures on A and group 
structures on E, given by A(e) = ~yg=e f  | g in case E has a group structure. 

Remark 2.3. The A-module category is semisimple; the simple modules are one 
dimensional vector spaces {Ue}e~E in bijection with the set E. We have 
Ue | U s = Ue I, where ef is the group product of e and f. 

Proof of Theorem 2.1. We first give a Hopf algebra structure to the k-algebra 
A generated by the vertices. The cyclic group Z / n Z  provides such a structure, as in 
Lemma 2.2: Ao(S~) = ~ + k = i  St | Sk, where j + k is sum in Z/nZ .  The antipode is 
given by S(s~) = s_~ and the eounit is e(si) = 0 i f i # 0  and e(So) = 1. We now provide 
an A-bimodule map AI: M ~ kZ .  @ kZ,; it will be completely determined by the 
values of A l(ai) which must belong to the free k-module A o(Si + 1) (kZ,  | kZ . )A  o(Si) 
with basis {V~ | V~}j+k=~,,+v= 1. We restrict ourselves to the case where 

j + k = i  j + k = i  

ignoring possible values for u and v different from 0 and 1; other Hopf  algebra 
structures may exist when considering general values. 

In order to insure coassociativity for the algebra morphism d we turn to the 
dual and look for associativity (we keep the same symbols for the dual basis). The 
cyclic group {So, sl . . . . .  s._ 1} transforms elements of the basis {ao, al . . . . .  a._ 1} 
through the formulas 

Sjak =" ~j, kaj+k and aflk = flj, kay+k �9 

The associativity is guaranteed by requiring that this gives a two-sided module 
structure over the cyclic group. Therefore the left and right transformations 
obtained with the generator s ~ determines the actions, provided that their n th power 
acts trivially. This translates into [-I~l,k = 1, I-Ifit,k = 1, O~j,k=(O~l,k) j and 
flj,  k = (ill,k) j" 

The left action can be normalized by replacing a~ by I-1 el,k ak (we keep the same 
symbol for the new a~). This change does not affect the multiplication formulas 
since each arrow has been replaced by a scalar multiple of itself. The left action is 
now the regular one, the bimodule associativity condition immediately translates 
into fll,o = fl1,1 = . . .  = fl1,.-1 and taking into account that Ylfil,k = 1 we 
obtain that the common value of the beta's is a n th root of unity q. Finally we have 

Al(al)= ~ s ~ |  ~, qJa j |  
j + k = i  j + k ~ i  

Actually the coassociativity property can be checked directly on this formula. The 
counit is extended by zero to the whole algebra. The antipode S has to be an 
anti-isomorphism of algebras, so S (ai) e S (sl) kZ,  S (si + 1 ) = s _ ikZ~ s_ i- 1. Let S (ai) = 
x~a~_~ with xl in k. The condition (S| (a~) = 0 translates into x~ = - qi+X and 
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this already gives the antipode for kZ.. Notice that S2(ai) = qai, hence the antipode 
is of order 2d, where d is the precise order of q. 

Remark 2.4. The above construction suggests that a tensor algebra TA(M) can be 
equipped with a Hopf algebra structure, provided that A is a Hopf algebra and M is 
an A-bimodule with some extra-structure. Indeed, if M is an A-bicomodule whose 
structure maps are A-bimodule maps, then TA (M) is a Hopf algebra. This fact has 
been established by Nichols [20], and Woronowicz in [29] has highlighted the role 
of these bicovariant bimodules (or Hopf bimodules) in relation to the braid 
equation�9 I am indebted to M. Rosso for pointing this out; in a forthcoming 
publication we are going to develop this aspect in order to obtain quantum groups 
based on the quiver of a group. 

Notice that the left normalisation we have made in the proof of the theorem 
corresponds to the fact that a Hopf bimodule is always free on the left with cotrivial 
left coaction, see [27, 29]. 

3. Quotients and Covers 

In order to get two-sided ideals of kZ,(q) preserved by A or to replace the root of 
unity q by an indeterminate, we first compute A of an arbitrary path ~m of the 
quiver Z,. At the end of this section we consider the universal cover of the Hopf 
algebras that we have obtained�9 

Recall that if x is a variable and m > u are positive integers, the Gauss 

( ~  ~  polynomial is where m!~ = m~(m- 1)~. 2~1~, for m~= 
u ~ (m-- u)!xu!~' "" 

l + x + x 2 + " .  +x=- l .  W e a g r e e t h a t O ! ~ = l a n d n o t i c e t h a t ( m )  (mu) 
U x = l  

The Pascal relation holds: 

( m + l )  ( m )  ( m ) 
= -~- X m - u + l  

u x u x u - l  x (m) 
This is used to prove that is actually a polynomial with coefficients in Z. 

U x 

Lemma 3.1. Let kZ,(q) be the Hopf algebra obtained from the quiver Z,  and an n th 
root of unity q. Then 

A ( , m )  = ~ ( m )  q"k T, @ ~; ~ . 
j + k = i  u + v = m  U q 

Proof. For m = 1 the formula agrees with the comultiplication of an arrow 
obtained in the preceding section. We have 

A(])m+ 1) = a(ai+mym) = A(a,+,,) A(7~') �9 

The proof follows by induction on m, using the Pascal relation. 

Lemma 3.2. Let q be a root of unity of order d. Then = 0 for 1 <_ u <_ d - 1. 
u q 

Proof The polynomial mx is the product of the cyclotomic polynomials ~t, where 
/ \ 

l divides m and l~a 1. Writing the numerator and the denominator of (m]  a s  
\ / / u  x 
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(m) a product of cyclotomic polynomials leads to the fact that ~m divides if u 4= 0 
U x 

and u~-m. 

Proposition 3.3. Let q be an n th root of unity of order d and let kZ~(q) be the 
corresponding Hopf algebra. Let Id be the two-sided ideal generated by the set of 
paths of length d. Then 

A(Id) = kZ,(q) |  a Jr Id | 

and the antipode preserves Id. Consequently kZn(q)/Id is a Hopf algebra which is 
k-free of dimension nd, and antipode of order 2d. 

Proof. By the preceding lemmas we have that 

= ~j| + ~ ~d~,d~,o 
t/  ~ ' j~ .~u �9 

j+k=i  j+k=i  

The value of the counit is zero on any path of positive length and the antipode is 
graded with respect to the length-grading. A basis for the quotient is provided by 
all the paths of length less than d; there are exactly nd such paths starting at each 
vertex. 

Remark 3.4. If the characteristic of k is p, there is a cocommutative Hopf algebra 
kZ,(1)/Ip, of dimension np" for any positive integers n and a. 

Remark 3.5. Let k be a field. An associative finite dimensional algebra A is 
selfinjective if the module A is isomorphic to the left A-module Homk(A, k), which 
is an injective module. The algebra is said to be symmetric if the resulting pairing is 
symmetric. 

The underlying associative algebra of a finite dimensional Hopf algebra which 
is Morita reduced has to be a Frobenius algebra, see [16, 22]. This is a well known 
property of kZJId: the linear form Y'(~-1), is the appropriate trace, i.e. the free 
generator of the dual. The corresponding bilinear form is symmetric if and only if 
d -  i is a multiple of n. Since d divides n, we infer that the underlying finite 
dimensional algebra of kZ,(q)/Ia is never symmetric. 

Remark 3.6. Recall that a left (resp. right) integral of a Hopf algebra is an element 
of the left (resp. right) socle which generates the left (resp. right) trivial simple 
module. By [27] the isotypic component of the left (resp. right) trivial module in the 
socle of the algebra is one-dimensional. Clearly ~a_'~l+ 1 (resp. ;~d-1) and their scalar 
multiples are the left (resp. right) integrals of kZn(q)/Id. They never coincide. 

Remark 3.7. Let q and q' be n th and n ' th  non-trivial roots of unity of order d and d'. 
The tensor product kZ,(q)/Id | kZn,(q')/Id, is again a Hopf algebra with quiver 
lying on a torus; this quiver is the evident "tensor product" of Z, and Zn,. The path 
algebra of this quiver presents the tensor product algebra by means of the 
two-sided ideal generated by the commutativity relations of each square and the 
monomial relations arising from Id and Id,. Despite this quite simple presentation, 
the module theory cannot be recovered from the representation theory of the 
tensorands; in fact the latter are of finite representation type while their tensor 
product is of wild representation type, 
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Proposition 3.8. Let n be a positive integer and let k be afield of characteristic not 
dividing n. I f  q is a primitive n th root of unity, the Hopf algebras kZ,(q) and kZ~(q)/Id 
are selfdual. 

Proof  The dual Hopf algebra has the following structure with respect to the dual 
basis {~}: 

�9 A( j) = | A( 7) = | + | 

'~j ~)k quk  ~ u + v = ~)j+k �9 
U q 

] - -  il i (i+ The elements O- i = ~,lEZ/nzq it and ai = q ~z~z/.zq 1)thz can be considered as 

the Fourier transforms of the given ones. They satisfy the multiplication formulas 
of kZ.(q) and the map which assigns a~ to s~ and ei to a~ is a Hopf algebra 
isomorphism. The same map gives also an isomorphism at the level of the finite 
dimensional quotients. 

Remark 3.9. If the characteristic of k divides n the Hopf algebra kZ,(q)/Id is not 
selfdual. Indeed, ~o is an element of order exactly n in the dual algebra while the 
original one has no such elements. 

For  q a primitive n th root of unity Taft has considered in [28] the Hopf  algebra 
generated by X and Y subjected to the relations X" = 1, IT" = 0 and Y X  = qXY.  
The comultiplication is given by A(X) = X |  and A(Y) = Y |  + I |  When 
q is a primitive n th root of unity, this algebra is isomorphic to (kZ,(q)/I,)* by 
sending X to ~o = 51 and Y to ,~ = ao. In case n = 2 and q = - 1 the Hopf algebra 
is isomorphic to Sweedler's 4-dimensional neither commutative nor cocom- 
mutative example constructed in [27] and quoted in [8]. 

Recently these algebras have been considered by several authors. It has been 
shown that their Drinfeld double (see [8]) for n odd has a quotient isomorphic to 
a finite dimensional quotient of Uo(sl2) introduced by Reshetikhin and Turaev in 
[25]. Simple Uq(sl2)-modules have been described in [26]; in the next section we 
consider the finitely generated indecomposable A,(q)-modules and study their 
tensor product. 

In [23] D. Radford has shown that Sweedler's 4-dimensional Hopf algebra is 
quasitriangular (see [8] for the definition). In fact there is a narrow subfamily of the 
Hopf algebras kZ,(q)/Id sharing this property, as the next result shows. 

Proposition 3.10. The Hopf algebra kZ.(q)/Id is quasitriangular if and only if n is even 
and q = - 1. In all other cases the Hopf algebra is not even quasicocommutative. 

Proof Let R = X?d."' ~ 7~' | 7~ be an invertible element such that A'R = RA, where Z.a t , j  

A' stands for the opposite comultiplication. This quasicommutativity condition 
expressed on the vertices of the quiver translates into the fact that the coefficient of 
fl | ~ in R has to be zero if the product of the sources of the paths fl and ~ differs 
from the product of their targets. In our case this means that di~,'y = 0 if u + v is not 
divisible by n. Quasicommutativity expressed on the arrows gives the following 
condition on the coefficients 

O, 0 ~jAO,  0 _kaO 0 O, 0 
dj ,  k + l  = t t t ~ j , k  , tt U j ~ l , k  = d j ,  k , 
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and for u~e0, v4:0, u + v = l(n), 

d . , . - 1  k J u - l , v  u - l , v  j+uAu, v - 1  
j , k + t  + q a j + l , k  ~-~ dj ,  k '1- q t*j,k �9 

In particular we have o, o o o o,o o,o o,o o,o do,1 = do',o and = But = and dl,o do,o. d1,1 qdt,o 

o,o = ldo, o q2 o,o dx, 1 q o, 1, so either = 1 or dj, k = 0 for all (j, k). Since R is invertible it does 

not lie in the Jacobson radical of kZ.(q)/Ie @ kZ.(q)/Id, which means that at least 
one dj ~176 is non-zero. Therefore q2 = 1, and notice that q = 1 is not allowed since 
kZ.(q)/Id inherits a Hopf  algebra quotient structure only for d equal to the precise 
order of q. 

If q = - 1, let us consider kZ.(  - 1)/12 for n even, together with its canonical 
basis given by the set of vertices and arrows of the quiver. The condition 
u + v = 0(n) implies now u = v = 0 for n > 2. This leads to dj~ '~ = ( - 1) Jkx, where 
x is an arbitrary element of k. The two remaining conditions for quasitriangularity 
(see [8]) enforces x = __. 1, therefore R = + ~ ( -  l)fi~Sj| are the two R- 
matrices of the considered 2n-dimensional algebra. 

In case n = 2, solutions with (u, v) = (1, 1) are allowed. The set of R-matrices 
(obtained previously by Radford in [23]) is 

+ (So | So - sl | s~ + So N sl + s~ | So) 

+ x ( a o |  ao + al | al + a o |  al -- al |  

where x is an arbitrary element of the field k. 

Remark 3.11. In [9] Drinfeld pointed out that the square of the antipode of 
a quasicommutative Hopf  algebra is an interior automorphism. It  is interesting to 
note that this is true for each Hopf  algebra kZ.(q)/Id regardless of its quasicom- 
mutativity property. The conjugating element is u = So + qsl + �9 �9 �9 + q" - i s . -1 .  

Let us consider now the quiver A~ with set of vertices {si}i~z and arrows {ai}i~z, 
where a~ goes from si to si+t. Let K = k(q) or K = Z [ q , q - 1 ] ,  where q is an 
indeterminate and let ~ be the K-module of possibly infinite K-linear combina- 
tions of elements of the set C of finite length paths of this quiver. Alternatively ~ is 
the K-module K c of all functions from K to C and we identify each element of 
C with the corresponding Dirac function having value i on it and 0-value other- 
wise; then f o r f e K  c we have f =  ~ c f ( 7 )  7. 

The set C is the union of objects and morphisms of the cofinite category 
determined by A~, where cofinite means that for any given morphism ~ there is 
only a finite number of couples of morphisms having composition 7. In this 
situation K c = ~ is an associative K-algebra: i f f and  g are in K c their productfg is 
well defined byfg(~) = ~t~=~f(fl)g(~); the unit element is the sum of all the objects 
and two non-composable morphisms are orthogonal as elements of K c. Notice that 
off = K c is actually isomorphic to the algebra of infinite lower triangular matrices 
when C is deduced from A~. 

The proof  of Theorem 2.1 suggests that ~ is a Hopf  algebra provided that we 
consider the adequate tensor product as a receptacle for the comultiplication since 
A(ai) = ~j+k=i sj | ak + 2j+k=iq j aj | sk is not an element of K c | K c. Never- 
theless C x C is again obtained through a cofinite category and the expression 
above lies in the algebra K c• of possibly infinite sums of couples (fl, ~) = fl @ ~, 
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Let us consider A: K c ~ K c • c given by 

A(T~n) = ~ ( m )  quk T~ Q T~ , 
j + k = i  u + v = m  IA q 

as suggested by Lemma 3.1. This gives a well defined map on the entire algebra 

  s ncefor,     ee,press on ,t    , = q JtTj+k) does not involve 
U q 

infinite sums. Notice that A is an algebra map and that the coassociativity has to be 
understood in the following sense: there is a map that we still denote A | 1 from 

/ + x 

given by (,4 | 1)(/)(7~ , 7~, 7~) = (ul  u2) KC• to KC•215 
\ u2 /q 

which is well defined. There is also an analogous map denoted 1 | A and it is easy 
to check that (A | 1)A -- (1 | A)A. Finally there is an antipode S and a counit 

given by IS(f)](7 m) ( 1)mf(Tmi_,) q-toO+m)+ re(m+1) = -- 2 and e(f)  =f(7o  ~ = f ( so ) .  
An important fact that we shall use is that the category of K-free finite rank left 

KC-modules still forms a monoidal category even if the receptacle of A is 
K c • c instead of K c | K c. Indeed if M is a K-free finite rank KC-module almost all 
elements of C has zero action on it since M = ~ , z s ~ M .  It follows that if M and 
N are two such modules the transformations of M |  N associated to elements of 
C • C are almost all zero and this enables us to consider M |  N as a K c• 
module. Using A: K C ~  K c • c we obtain the KC-module structure on M |  N. 

The free group on one generator acts on A~ by translations of amplitude n for 
each n __> 2; the orbits give the path algebra k(q)Z,. Actually specializing q to a n  n th 

root of unity allows to get a Hopf  algebra structure on kZ,  which is of course the 
one we have considered before. 

Remark 3.12. Let ~(~ be the k(q)-Hopf algebra attached to the quiver A~ and let 
Ia be the two-sided ideal of ~ generated by the paths of length d. Specializing q to 
a primitive d th root of unity enables us to consider the k-Hopf algebra ~(q)/Ia, as 
in Proposition 3.3; its quiver is still A~. Using analogous considerations than in 
Proposition 3.10 we obtain that ~ is not quasicommutative. The only Hopf  
algebra Jf(q)/Ia which is quasicommutative (and is in fact quasitriangular) is 
~ ( -  1)/I2. 

Notice that the free abelian group with one generator acts on ~(q)/Ia by 
translations of amplitude n provided d divides n. The quotient by this action is 
clearly the Hopf  algebra kZ.(q)/Id attached to the cyclic quiver Z .  and to an n th root 
of unity q of order d. 

4. Modules 

Let k be a field, and let A,(q) be the nd-dimensional Hopf  algebra kZn(q)/Id, where 
as before Z ,  is the cyclic quiver of length n and q is a n th root of unity of order d. 
This algebra is not semisimple since its Jacobson radical is not zero; in fact its 
radical is of dimension n(d - 1) and is generated by the arrows of the quiver. 
Therefore there exist indecomposable modules which are not simple. Any finitely 
generated module M is a direct sum of indecomposable submodules, and by the 
Krull-Schmidt Theorem such decompositions only differ by an automorphism of 
M. Actually An(q) is a uniserial algebra, meaning that each indecomposable 
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projective module has a unique composition series; consequently this algebra is of 
finite representation type, i.e. there is only a finite number of iso-classes of 
indecomposable modules (each indecomposable module is a quotient of an in- 
decomposable projective). 

More precisely let P~ be the left ideal generated by the primitive idempotent s~. 
This ideal is a projective module and any iso-class of a projective indecomposable 
module is obtained in this way. Let M~ be the quotient of P~ by the submodule 
generated by the path 7 u. In other words, M~ is the u + I dimensional cyclic module 
with generator si = 7 ~ subject to 7}' § 1 = 0. The vector space M}' has a canonical 
basis {7 ~ 7~ . . . .  ,7~} and the composition of paths provides the module structure. 
Notice that M~- 1 = Pi and that any simple module is isomorphic to M ~ = St for 
some i e Z / n Z .  

From this discussion we infer the well known fact that {MU}~z/,z,~<_u<_n 
provides the complete list of iso-classes of finite dimensional indecomposable A,(q) 
left modules. 

The module category of a k-Hopf algebra A is provided with an associative 
tensor product obtained via the comultiplication; notice that the tensor product is 
not necessarily commutative, the canonical switch map is not in general a map of 
A-modules. Actually the switch map from A | A to itself is a A-map if and only if 
the Hopf algebra is cocommutative. 

However if there exists an invertible element R such that the comultiplication 
A is quasicocommutative (i.e. A ' =  R A R - 1 )  and if M and N are arbitrary A- 
modules, the modules M |  and N |  are isomorphic; indeed, the action of 
R followed by the switch map provides a A isomorphism which is natural in M 
and N. 

The following Clebsch-Jordan-like result on tensoring indecomposable A,(q)- 
modules shows that the tensor product is commutative despite the fact that the 
Hopf algebra is not quasicommutative in general. 

Theorem 4.1. Let M~ and M~ be indecomposable A,(q) -modules for  i, j E Z / n Z  and 
0 = < u, v = < d - 1. Assume u > = v. There are isomorphisms 

a ) ~ u + v N d - 1  

u l t / l v , . ~  A f f u + v  l t / l ' u + v - 2  u - v  Mi | "" j  . . . .  i + j  ( ~  z v x i + j +  l ( ~  " " " ( ~  Mi+j+v �9 

b) I f  u + v > d - l, let the excess be e = u + v - (d - 1 )  , 

u v ~  Mi @ M j - - P i  + j (~ Pi + j+ 1 G " �9 " �9 Pi + j+e ~t'~ ~wti + j+e+ 2(e+ 1) 

7 t ~ u + v -  2 ( e +  2)  u - v  
(~ lvli+j+e+2 (~" " " (~ Mi+j+~ 

The same fact  holds for  M~ | M~. 

Notice that the dimensions of the involved indecomposable modules starts at u + v 
and decreases by 2 in case a) while in case b) the dimensions remains constant and 
equal to d - 1 until the vertex i + j + e is reached. 

Proof  The dimension at the vertex Sk of a A,(q)-module M is by definition the 
dimension of the vector space SkM; the simple module Sk has dimension 1 at Sk and 
dimension 0 at any other vertex. Clearly the dimension at Sk of M is the multiplicity 
of Sk in a composition series of M. 
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y u Recall that {7~' | 7j}o~x~.o~y~v is a k-basis of the module M, | My and that 
A(Sk) = ~x+y=kSx| this provides the following diagrams of dimensions for 
M~' | My 

a) u + v S d - 1  

dim 

v+l / 
i+j i+j+v 

~q 
i+j+u i+j+u+v vertices 

b) u + v _ _ > d - l a n d e = ( u + v ) - ( d - 1 )  

dim 

v$1 

e+l - -  ~m 
i+j i+j+e i+j+v i+j+u i+j+d-1 "vertices 

The dots of the next diagram represent the canonical basis elements of 
M~ | My; the edges provides the action of the arrows of the quiver, the label 
indicates the scalar multiple obtained (no label means that the scalar value is 1). 
The dots located on a same antidiagonal give the basis at the corresponding vertex 
of the quiver. When u + v exceeds d - 1 the appropriate identifications have to be 
performed in order to obtain the complete basis at some vertex. 

3'0 @ 3'~i q'+: q'+: i3'u @ 3'~ 

lq,i+2 qj+2 
�9 i - ,  o -  . 

i i T qJ D- qJ. qJ 
~,o o . , o  . . . .  

l qJ+Y 

"~ ~:, | .yo 
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The following is the diagram of the reverse tensor M~ | MT. 

lqi+X, 

469 

l qi+2 qi+2 

i "i "i qi D qi qi q i l  
"Yj | "r 

In order to determine the projective cover of M~ | My, notice that the linear 
maps provided by the action of ak from the vector space at Sk to the one at sk + 1 are 
injective when the dimensions increase, bijective when it remains constant and 
surjective otherwise. The projective cover of M~ @ My is determined by the simple 
modules at the top of the module, where the top is the quotient by the action of the 
Jacobson radical. The considerations on the action of the generators of the radical 
(i.e. the arrows of the quiver) shows that in both cases a) and b) 
top(M~ | M~)= S~+j �9 S,+j+I O " "  �9 Si+j+~; the corresponding direct sum of 
indecomposable projectives supplies the projective cover. The comparison of 
dimensions at the vertices determines the result by uniseriality. 

Remark 4.2. If M~ = Pi is a projective module, then e = v and the Theorem gives 
P i Q M y  = P~+jOPi+j+I ~ " "  P,+j+v which is a projective module, This was 
predicted since the tensor product of a projective module with any other module is 
projective; this fact is a consequence of the adjunction formula between Hom and 
|  see [7]. 

Remark 4.3. Let :,~(q)/Id be the infinite dimensional Hopf algebra associated to 
a primitive d th root of unity (see Remark 3.12). The finite dimensional indecompos- 
able modules are {M~}i~zu<__d-1, the projective ones are obtained With u = d - 1 
while the simple ones are given by u = 0. The tensor product of this module is given 
by the formulas of Theorem 4.1. 

Remark 4.4. Notice that the category of ~ (  - 1)/I2-modules can be identified with 
the category of complexes, and consequently this algebra is isomorphic to the dual 
of the algebra introduced by B. Pareigis in [21]. The tensor product of modules 
obtained through the comultiplication of this Hopf algebra corresponds of course 
to the usual tensor product of complexes. Recall that ~ (  - 1)/I2 is quasitriangular 
with R-matrix given by ~i.j~z( -1)iJsi | s j; the braiding of the category of mod- 
ules obtained via R is the usual isomorphism between C. | D. and D. | C. where 
C. and D. are complexes. 
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Our next aim is to show that the decomposition of Theorem 4.1 is unique; 
notice that in general there are various decompositions of a given module as 
a direct sum of indecomposable summands, the Krull-Schmidt Theorem "only" 
insures that such decompositions differ by an automorphism of the module. 

We consider from now on the category of finite dimensional modules over the 
K-Hopf  algebra Y:, where K = k(q) and k is a field (see the end of the previous 
Section); the corresponding truncations can be easily performed in order to deal 
with the quotients of W that we have considered�9 

It is convenient to denote Ni,, the indecomposable module starting at the 
vertex st and ending at s,; thus u > i and Ni,, corresponds to M7 -~ in the previous 
notation. 

Recall that a morphismf:  M ~ N is called irreducible if it has no factorisations 
b u t  the trivial ones, that is any factorisation of f is isomorphic to 

s (1,o)) N i(~-~) i G x ( S ' ~  N o r i  (~~ N ( ~ X  
The irreducible morphisms of the considered finite length category are of two 

sorts (see [12]): the canonical surjections Ni, u -~ Ni,.-1 and the natural monomor- 
phisms Ni,  u ---> N i - l , u .  

The following is the Auslander-Reiten quiver of the category of indecompos- 
able modules: it has one vertex for each isomorphism class of indecomposable 
modules and one arrow from IN] to IN'] if there is an irreducible morphism 
N ~ N ' .  

Ni--I,U " ~ i Ni,u 

+ 
�9 N i , , . , - 1  

4 ...... i4 

'i 

Notice that on a fixed diagonal the dimension of the modules is constant; 
simples are located on the principal diagonal�9 If q is specialized to a primitive d th 
root of unity, the Auslander-Reiten quiver of ~(q)/Id is obtained by deleting the 
vertices located above the d - 1 diagonal. For  kZ,(q)/Id, the corresponding identi- 
fications shows that the Auslander-Reiten quiver lies on a cylinder�9 

An almost-split sequence (see [3, 4] ) ending at an indecomposable module N is 
a non-split exact sequence 0 ~ M ~ X ~ N ~ 0 such that any morphismf." Y ~  N 
which is not a split surjection can be lifted to a morphism Y ~ X. Such a sequence 
is unique and always exists in case N is a non-projective indecomposable object 
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of a category of finitely generated modules over a finite dimensional algebra. In 
that case M is indecomposable and uniquely determined by N, it is called the 
Auslander-Reiten translate of N. 

The almost-split sequences in our situation are 

0 ~ Ni+ 1,u+ i "-~ Ni+ 1.u ~ Ni..+ i -~ Ni, u -* 0 

for a non-simple indecomposable module Ni,., and 

0 ~ Si+i --* Ni, i+ 1 ~ S i  ~ 0  

for a simple module S~ = N~,~. 
We recall some properties of this category (see [12] ). The mesh relations arising 

from the Auslander-Reiten translate indicates that the squares of the quiver 
commute and that the composition of two arrows of any triangle over the principal 
diagonal is zero. The important fact is that these relations are sufficient in order to 
present the category of indecomposable modules, see for instance [12]. 

The following is an immediate consequence of the preceding discussion: 

Proposition 4.5 ([12]). Let Ni,~ be a fixed indecomposable module. The indecompos- 
able modules X such that Homer(X, Ni,u)4=0 are located in the A-region of the 
following diagram; the indecomposable modules Y such that Homae(Ni, u, Y) 4= 0 are 
located in the B-region. 

Ni,u 

m z l  
m ~  

/ 
/ 

Theorem 4.6. Let Ni, u and N~,~ be finite dimensional indecomposable 9f-  modules. 
The decomposition of Ni,, | Nj,~ as a direct sum of indecomposable submodules is 
unique. 

Proof By Proposition 4.1 we have 

Ni, u @ Nj, v = Ni+j,.+v G Ni+ j+ l,u+v-1 0 "  �9 �9 ~ Ni+~,.+i 

when u - i >= v - j .  The indecomposable direct summands of this decomposition 
lie on the antidiagonal thick segment of the following diagram. 
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Ni+.7,u+v 
Ni,u ~ 

/ 

We consider the A and B regions of an indecomposable summand of 
Ni,, | Nj, v; there is no other indecomposable summand contained in these re- 
gions. Consequently any endomorphism of Ni, u @ N~, v preserves the considered 
decomposition; the Krull-Schmidt Theorem asserts that two decompositions of 
a given module into indecomposable summands differs by an automorphism, hence 
the given decomposition is unique. The result also holds for the reverse tensor 
product since this module is isomorphic to the original one. 

Remark 4.7. Clearly the endomorphism ring of any finite dimensional o~ff-module 
is isomorphic to the ground field K = k(q). The proof of the preceding theorem 
shows that Endue (N~,u | N~, ~) is a split basic semisimple K-algebra of K-dimension 
min{dimKNi, ~, dimKNj, ~}. 

5. Almost-Split Sequences 

Almost-split sequences are an important tool in understanding finite length mod- 
ule categories. In case of modular group algebras, their behaviour under tensoring 
by an indecomposable module has been described in [2, 6]; this has been useful for 
decomposing a tensor product into a direct sum of indecomposables and for 
describing elements of the Green ring of representations. 

In this section, we tensor on the left and on the right the almost-split sequence 
of the trivial module over W by a finite dimensional indecomposable module N. 
The result is always an almost-split sequence for N, so the two sequences can only 
differ by a scalar in the corresponding Ext-vector space. We compute this scalar 
which is non-trivial; let us point out that this is related to the left (or right) braided 
isomorphisms of functors between N | - and - | N, which in turn are the 
objects of the double category of modules, see [18, 10]. 

Notice that the results for W-modules lead easily to the corresponding results 
over the various truncations of Yf, the only special case occurs when N is 
projective: tensoring the trivial almost-split sequence by N is then a split sequence, 
of course. None of the Hopf-algebras considered has antipode of order 2, so the 
results in [5, pages 48-50] are not in force. Moreover the results concerning the 
tensor product of a module with its dual highlights the splitting between the Hopf 
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algebras with antipode of order 2 and those with bigger orders: the characteristic of 
the ground field does not intervene in the second case. 

Recall that a finite dimensional indecomposable ~ - m o d u l e  N~.. has dimension 
u - i + 1 and a canonical basis {7~,i, 7~,~+1 . . . . .  7~,.}, where 7~,j lies in sjN~,.; the 
element 7~,i is a generator at s~ which is uniquely defined by this property, up to 
a non-zero scalar. The choice of this generator determines uniquely the generator 
7~,~+ 1 of the unique maximal submodule of N~,., by means of 7~, ~ + 1 = a~Ti.~. 

The irreducible morphisms are ~: N~,. ~ N~.u-1 and I: N~,. ~ N i - l , . ,  where 
1(7i.~) = 7~-1,~. The canonical almost-split sequence for N~,. with u > i is 

~i,.: 0 --, N~ + 1,. + 1 ( - 5 ) .  l~l i,u+ l (~ Ni, u-1 (l'n) . ~ Ni,. "-~ 0 , 

and for u = i, 

I It 

O~i,i: 0 ---4. N~+1,i+1 ~ Ni, i+ l ~ Ni, i -'~ O �9 

Recall that No, o is the trivial W-module determined by the counit; in order to 
study N~,. | Cto, o and Cto, o | N,,. we need to identify the generators of the in- 
decomposable direct summands of N,,u | No, 1 and No, 1 | Ni, . .  

Lemma 5.1. Let  i > u and let N~,. be the corresponding non-simple indecomposable 
module. In the decomposition Ni ,  u @ No, 1 =- Ni ,  u + 1 (~ Ni + 1,. the element 7i, i | 70, o 
is a generator o f  Ni ,  u+ 1 a t  sl and the element 7i, i+l | 7o,o -t- Xi, uTi, i | 7o,1 where 

l + q + . . .  + q U - i - 1  
is a generator o f  N i +  l, u a t  si+ l. xi,, ,  = qU- i  

Proo f  The diagram representing N~,. • No, 1 is 

q:i " qlT qll 
~i,i @ "r 1 1 1 "r @"r 

From Theorem 4.1 we have that 7~.i | 70,0 generates Ni ,  u+ 1 and that a linear 
combination of 71, i+ 1 | 7o, o and 71, ~ | 7o, 1 generates N~ + 1,.; this linear combina- 
tion has image zero under the action of the path 7~+ 1,.+~. The image of 7i.~+ 1 | 7o, 1 
under this action is q"-17~,.@7o,1 while the image of 7i, i+1@7o.o is 
(1 + q + q2 -t-" �9 �9 d- q . - i - 1 )  7i , . |  70,1" 

Lemma 5.2. In  the decomposition No, t | Ni ,  u = Ni ,  u+l  ~ N i + l , u  the element 
z i , .7o,o|  i + 7 o , o |  i+l is a generator o f  N t + i , .  at si+l, where zi , .= 
_qi+l(1 + q + . . .  + q u - i - t ) .  
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Proof. The diagram representing No, 1 | Ni,. is 

C. Cibils 

"7o,o ~ 3"i,u 

1' 

1 

~/o,o | "7i,~ 

qU 3'o,1 @ 3"i,u 

qU--1 I 1 

l 

qi+l T 

qi _ T1 
"7o,1 ~ "/i,i 

As in the previous lemma, we compute the action of the path 7~+1,.+1 on 
70, o | 7i, i + 1 and on 70,1 | 7i, i. We obtain respectively (qi + 1 + . . .  + q.) 70, i | 7i,. 
and ~o, a | ~i,.. 

Remark 5.3. The element xi,. only depends on the dimension of the module while 
z~,u depends both on the dimension and on the starting vertex. 

Proposition 5.4. Let N~,. be the canonical non-simple indecomposable Jff -module and 
let ~i.. be its canonical almost-split sequence. Let ~to,o be the canonical almost-split 
sequence of the trivial simple ~-module No,o. Then Ni.. | ~o,o and ~o,o | N~,. are 
almost-split sequences ending at Ni,u and 

1 1 
N i u | 1 7 6 1 7 6  Xi, u__ 1 C~iu ~ o , o |  = " ' ' Z i ,  u - -  q i  O~i, u 

Proof. We compare the tensored morphisms of ao.o with the morphisms of 
~i.. through the identifications obtained via the generators. First we consider 
n: N o . l ~ N o ,  o and l |  N~,,,QNo. I~N~,u |  We have that 
(1 | re) (7/,i @ 70.0) = 71,1 @ 70,0 = the generator of Ni,. and (1 | re) (Ti, i+i @ 70,0 
+ xi,.7~,o | 70, 1) = 7~,~+1 @ 70,0 = the generator of the radical of N~,u. Conse- 

quently 1 | n coincides with the standard surjection of ~i... 
Next, consider I: Ni,1 ~No ,1  and 1 @I: N/+i , .+i  = N~, . |  

Ni,. | No,1. We have (1 @ I) (7i.i | 71,1)= 7i, i @ 7o.1, while the standard mono- 
morphism of the canonical almost-split sequence translated to this context sends 
the generator 7~,~ | 71,1 to the generator of Ni+ 1,. minus the generator of Ni,._ 1, 
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i.e. to 

~i , i+ i  @ Y0,0 + Xi, uTi, i @ ~0, l - -  (~)i,i+i (~ 70,1 - -  7i, i @ ~)0, i)  

= (xi,. - I) Yi, i |  7o, i �9 

1 
Hence I | I is the canonical injection multiplied by - -  

Xi, u--  1" 
We now apply the reverse functor - | N~,. to the trivial almost-split sequence: 

7C | 1: No ,  1 | N i ,  u ~ No,o | N i ,  u verifies (re | 1) (70.0 | 7i, i) ~-- ~0,0 | ])i,i = the 
generator of Ni, .  and (n | 1)(zi,.7o,1 | 7i.i + ~o,o | ~i,i+l) = 7o, o | 7i, i+l = the 
generator of the radical of N~,u. As before, rc | 1 coincides with the standard 
surjection of ai,.. 

Now, (1 | 1) (h,  1 | ~i,i) = 70,1 | ~,,i, while the canonical monomorphism of 
the almost-split sequence e,,. translated to this context sends 71 ,1 |  to 
Zi, u70,1 | ?i,i "~- 70,0 | ~]i,i+ 1 - -  (qiTo, i | ?i,i ~- ?0,0 | ?i,i+ l) = (Zi, u - -  q.i)70,1 | ~)i,i" 

Notice that the canonical generator of the radical of N~,.+ 1 is q'?o, 1 | ?~,~ + 
7o,o @ 7~,i+ ~ because 7o,o @ 7~,i is the chosen generator of N~,.+ 1. Consequently the 

1 
monomorphism of Co, o | N~. is the standard injection multiplied by q~. 

' Zi, u - -  

Theorem 5.5. Let  N~,. be the finite dimensional ~-~r from the vertex si to the 
vertex Su o f  A~o. Let  eo,o be the trivial almost split sequence o f  the module No, o. 

Then Ni, u | Co. 0 = qU eo,o | Ni, u" 

- ( u -  i -  1)q and zi.. = - q i + l ( u -  i -  1)q. Proof  For  u > i, recall that xi, .  = q._ 

1 _ q . - i  1 1 
C o n s e q u e n t l y - - -  . ,  - - -  xi,,  - 1 (u - Oq z~,. - q~ q'(u - i)q and their quotient value 

is q". The case i = u (simple modules) follows from the fact that S~ | Co, o = e~,~ and 
1 

eo,o | Si = ~ei, i. 

The following is a consequence of Proposition 5.4, compare with [-2]. 

Proposition 5.6. a) Let  N and M be indecomposable finite dimensional Jeg-modules, 
and let era be the almost-split sequence ending at M.  Then N | eM and eM | N are 
direct sums of  almost-split sequences. 
b) I f  q is an n th root o f  unity o f  order d, let N and M be aeg(q)/Ia or kZn(q)/Ia 
indecomposable modules. Then N | eM and ~M | N are direct sums o f  almost-split 
sequences and projective-injectives factors. 

Proof  Up to a non-zero scalar we have eM = M | Co, o, where Co, o is the almost- 
split sequence of the trivial module. Hence N | e~t = N | M | eo,o; the result 
follows from the decomposition of Theorem 4.1 and the fact that X | C~o,o is 
almost-split. In case b) the eventual projective summands of N | M provide the 
split factors. 

In [-6, 2, 5] it is proved that for a modular  k-group algebra (or a finite dimen- 
sional k-Hopf algebra with antipode of order 2), the trivial module is a direct 
summand of M | N if and only if M = N* and (p, dimk N) = 1, where M and N are 
indecomposable modules and p is the characteristic of the field k. This result 
allowed Benson and Carlson [-6] to give a proof  of the semisimplicity of the Green 
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algebra of representations when the Hopf algebra is of finite representation type: 
they prove that there are no nilpotent elements in this commutative algebra. 

The next result shows that for the k(q)-Hopf algebra ~ the condition concern- 
ing the characteristic of the field is dropped; for q a n  n th root of unity of order d and 
for indecomposable ~(q)  or kZ,(q)/Ia-modules this condition is replaced by 
requiring N not to be projective. Notice that both algebras have antipode of order 
2d, with d > 1. Moreover the analog of the Green algebra of representations of 
Sweedler's 4-dimensional example has nilpotent elements. 

Proposition 5.7. a) Let M and N be indecomposable finite dimensional oVf-modules. 
The trivial module No, o is a direct summand of M | N if and only if M ~ N*. 

b) For q a n  n th root of unity of order d and for indecomposable ~ / I n  or 
kZ,(q)/la-modules, the trivial module is a direct summand of M | N if and only if 
M ~ N* and N is not projective. 

Proof The dual vector space of a left ~ -modu le  is a right module which becomes 
a left module through the antipode. Note that the double dual is isomorphic to the 
original module, since the square of the antipode is inner, see Remark 3.11. Hence 
the dual N*u of the indecomposable module Ni, u is indecomposable; it begins at 
s-u and ends at s_~ since N i ,  u begins at si and ends at s., and S(sj) = s_j. From the 
proof of Theorem 4.6 we have that the indecomposable summands of N~,, | Nj, v 
are the vertices lying on the antidiagonal segment from N~+j,~+v to Ni+~,,+j which 
is entirely contained in the half plane up the principal diagonal, This segment 
contains No, o if and only if v = - i and j = - u. 

In case b) the eventual end of the segment up to the d - 1-diagonal has to be 
projected on this diagonal according to the vertical direction. The obtained broken 
segment records the indecomposable summands of N~, ~ @ N j, ~. The result follows. 

Remark 5.8. It would be interesting to know if part b) of the preceding Proposition 
holds for an arbitrary finite dimensional Hopf algebra with antipode of order 
bigger than 2. 

The representation ring a(H) of a finite dimensional Hopf algebra H is the 
Grothendieck group of the category of finite dimensional modules (iso-classes of 
indecomposable modules compose a basis) equipped with the multiplication given 
by the tensor product. The projective indecomposable modules form a basis of an 
ideal ~; the structure of the rings a(H) and a(H) /~  is certainly interesting from the 
point of view of quantum groups. The Sweedler's 4-dimensional Hopf algebra 
kZ2( - 1)/12 has 4 indecomposable modules: 2 simple ones k = So and $1, and 
2 projective ones Po and P1. The representation C-algebra has a basis composed by 
these modules and we have Po z = p2 = PoP1 = P1Po = Po + Pa together with the 
cyclic group {So, Sa} acting on {Po, P~}. This algebra is isomorphic to 
C x C x C[~]/e 2, where e = Po - P1. 
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