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Abstract. The primitive ideals of the Hopf algebra Cq[SL(3)] are classified. In 
particular it is shown that the orbits in Prim Cq[SL(3)] under the action of the 
representation group H ~ C* • C* are parameterized naturally by Wx W, where 
W is the associated Weyl group. It is shown that there is a natural one-to-one 
correspondence between primitive ideals of Cq [SL(3),] and symplectic leaves of the 
associated Poisson algebraic group SL(3, C). 

Introduction 

The primitive spectrum of a noncommutative affine algebra is the natural general- 
ization of the variety associated to a commutative affine algebra. When the 
noncommutative algebra A is a deformation of a commutative algebra B, one 
expects to find a close correspondence between the primitive ideals of A and the 
symplectic leaves of the associated Poisson structure on the variety Max(B). For  
instance if g is a solvable complex Lie algebra, then the primitive ideals of the 
enveloping algebra U(g) correspond to the coadjoint orbits in g*, which are the 
symplectic leaves for the Kostant-Kiril lov Poisson structure on g*. 

A similar close correspondence seems likely to occur for quantum groups and 
related algebras. Let G be a semi-simple complex Lie group and let Cq[G,] be the 
associated quantum group as defined in [16,]. There is a standard Poisson Lie 
group structure on G associated to Cq[G]. The primitive ideals of Cq[G] are 
expected to correspond bijectively to the symplectic leaves of G. This correspond- 
ence may be verified for SL(2) by direct calculation. In this paper we study the 
primitive ideals of Cq[SL(n)] and prove that the primitive ideals of Cq[SL(3)] 
correspond exactly to the symplectic leaves of SL(3). 
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When q is real, q :# 1, Cq[G] together with a natural involution * can be viewed 
as a deformation of C[K] ,  the algebra of functions on a maximal compact 
subgroup K of G. In a series of articles in [18, 19, 20] Soibelman, and Vaksman 
showed that the unitary representations of Cq[K]  correspond to the symplectic 
leaves of K. 

Fix a maximal torus H in G. Then G has a natural H-invariant Poisson 
structure [4]. A description of the symplectic leaves of G may be deduced 
from the work of Semenov-Tian-Shansky and Lu and Weinstein [11, 17]; an 
outline of this description is given in Appendix A. Let W be the Weyl group 
of G. The symplectic leaves fall into H-orbits parameterized by W x W. Let 
D = G x G, identify G with the diagonal subgroup of D and let Gr be the dual 
group. Denote by p the natural projection G ~ D/Gr. The symplectic leaves 
of G are precisely the connected components of the inverse images of the left 
Gr-orbits in DIG, Set /" = kerp and G = p(G). Then F is a finite subgroup 
of H and G = G/F is an open subset of D/G,. For  each w ~ W x W, let (gw be the 
image of the corresponding Bruhat cell of D in DIGs. Denote by cgr a fixed G~-orbit 
in Cgw. Then cg~ ~ C ~ x (C*) s and Cgw is the union of the H-translates of cg~. Each 
symplectic leaf of G is then a finite cover of hCg~ c~ G for some w ~ W x W and some 
h~H. 

In section two we prove some preliminary results about the primitive 
spectrum of Cq[SL(n)]. The group H occurs again in the quantum case as the 
character group and Prim C~[SL(n)] therefore decomposes into the union of the 
H-orbits. Following ideas of Soibelman [18, 19], we define for each we Wx W 
a locally closed H-invariant subset Primw of Prim Cq[SL(n)]. It may be shown 
that Primw is nonempty for all w and that PrimCq[SL(n)] = [ [wPrimw. We 
conjecture that each Primw is a single H-orbit and that the elements of Primw 
are in bijection with the leaves of type w. This conjecture is proved in sections 
three and four for Cq[SL(3)]. The truth of the conjecture for Cq[SL(2)] was 
proved earlier by S.P. Smith and the first author. This .result is outlined in 
Appendix B. 

In order to describe the symplectic leaves of G one passes first to G. Similarly, in 
order to describe the primitive ideals of Cq[G], we first_study the invariant 
subalgebra Cq [ G] = Cq[G] r. The quantum analog of cgw ~ G is a certain localiza- 
tion of a homomorphic image of Cq[G] denoted by Bw. The key result in section 
three is the decomposition of B~ as the tensor product B~ | C[H~] ,  where B~ is 
a quantum analog of cg~ n G and C [ H ~ ]  is the algebra of functions on the torus 
Hw = H/StabnCg~. 

1. Preliminaries 

1.1. In this section we introduce the basic definitions and notation that we shall be 
using. We denote by g the Lie algebra sl(n, C) and by G the Lie group SL(n, C). We 
follow the Standard notation in Bourbaki for the roots, weights, Weyl group etc. 
associated to g. Other notation is listed at the end of the paper. 

1.2. Let q ~ C*. We shall assume throughout this paper that q is not a root of unity. 
We denote by ~ the set { q"ln ~ Z }. Let [alj] be the Caf tan  matrix associated to g. 
Recall that the quantum universal enveloping algebra associated to g is defined to 
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be the algebra Uq(g) generated by K ~  1 , X/t: , 1 _< i --- n - 1 with relations 

Ki-IK~= K~Ki-1 = 1 ,  KiX~ =q+-~ 

K2 _ K[-2 
[X~-,X~-] = iS ~ q-2 , KiKs= KsK~, 

2 (--1) k -a~s (X~)kX?(X~) I -~" -k=O,  i f i # j  
k=O k 

where = . . 
J =1 q 2 j  __ q - 2 j  

(see, for example, [12]). The algebra Uq(g) is a Hopf  algebra. The comultiplication 
A is defined by 

A ( X g ) = X g |  -I + K ~ |  A(K~)=K~| 

and the counit and antipode by 

e(X/-+)=O, e ( K , ) = l ,  S(K , )=Ki  -1, S ( X ~ ) = - q ~ a x ~ .  

There is also a C-linear antiautomorphism at---,a* given by ( X ~ ) * =  X { ,  
(Ki)* = Ki. It is easily verified that A(a*) = A(a)* (where (a | b)* = a* | b*) and 
S(S(a)*) = a*. 

1.3. Set U ~ = C [ K ~  111 _< i _< n - 1]. Let M be a U~ Ifx is a character of 
U ~ define the x-weight space of M by M z = {xeM[ux  = Z(u)x, VueU~ Set 
O(M) = {Z] Mx # 0}. Let P be the set of weights of g and let {el . . . . .  ctn_ 1} be 
a fixed set of positive roots. Each weight 2 s P  induces a character of U ~ via 
2(K~) = q(X' ~o, 1 _< i < n - 1. We denote by Mz the associated weight space. 

Define ~ to be the category of finite dimensional Uq(g) modules such that 
M = @ , ~ v M , .  Since ~f is closed under finite direct sums, tensor products and 
passage to the dual module, we may define the restricted dual of Uq(g) with respect 
to cr This is the associated quantum group rgq[G]. Thus 

Cq[G] = { f s  Uq(g)* ]Kerf___ A n n M  for some M s ~ }  

The algebra Cq [G]  then has a natural Hopf algebra structure induced in the usual 
way from that on Uq(g). There is also an anti-automorphism on Cq[G] induced 
from that on Uq(g) by f*(u) = f(S(u)*) for all f s C q [ G ]  and all u s  Uq(g). 

Let re: Uq(g) -o End(M) - Mm(C), 7z(a) = [~is(a)], be an m-dimensional repre- 
sentation of Uq(g), where M is an object of ~. The elements rciss Uq(g)* are called 
the matrix elements or matrix coefficients of the representation re. It is clear that 
these rc~s belong to Cq[G] and that the set of all such rc~s for all possible M in ~, 
spans Cq[G] as a vector space. Recall the following useful formulas: 

ATrij = E 7Zik | XkJ, XiflZkl = (Xij | Xkt) o A, S(~zlS ) = Irijo S, e(~zij ) = 7rij(1) . 
k 

1.4. The category ~ is in some sense a deformation of the category of finite 
dimensional modules over the Lie algebra g [121. Denote by P+ the set of 
dominant weights of g. For  each dominant weight A s P § there is a simple module, 
L(A) in ~f and an element vasL(A) such that 
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1. L ( A ) =  Uq(g)VA = Ou~p ,u<=AL(A)u ;  
2. L(A)A = CVA, X+VA = O, 1 < i <- -n -  1; (VA is called the highest weight 

vector of L(A) )  
3. the set of weights O(A) = f2(L(A))  and the multiplicities are the same as for 

the corresponding simple g-module. 

Any M ~ (~ decomposes as M = @A~P+ L ( A )  mA. The representation ring of (~ is 
generated by the classes of the simple modules L(ml) corresponding to the funda- 
mental dominant weights mi, 1 < i < n - 1. Moreover each L ( A )  occurs as a sub- 
quotient of a suitable power of the standard representation L(wl). On the other 
hand the dual of L(mt) is isomorphic to L(wn-1) which is isomorphic to the 
(n - 1)-th quantum exterior power of L(mt). Hence if the matrix coefficients with 
respect to the natural basis el . . . .  , en of L(tot) are denoted by Xi~ then the matrix 
coefficients corresponding to L(to,_ 1) are the quantum minors defined by: 

Dij = ~ ( - - q 2 ) e ' ( a ) X t , c r ( 1 )  . . . X i - l , o ( i - t ) X i + t , a ( i + t ) . . .  Xn, a(n) , 
a~Sn- 1 

where S,_ t denotes the symmetric group acting in the usual way as bijections from 
{1 . . . .  , i - 1 ,  i + 1  . . . .  ,n} to {1 . . . .  , j - l , j + l  . . . .  ,n}. 

From these and related facts one deduces the following well-known description 
of the Hopf algebra Cq1,G]. 

Theorem 1.4.1. (a) The algebra Cq[G] is generated by the Xu ,  1 < i , j  < n, with 
relations: 

X i t X j r  = q 2 X j t X i r  , V[, Vi < j, X d i X e j  = q 2 X e j X e i ,  V[, Vi < j ,  

X a X m j  = X ~ j X a ,  V[ < m, Vi > j , 

X l i X m j  __ XrnjXd i = ( q 2  _ _  q - 2 ) X t j X m i ,  V[  < m, Vi < j , 

Detq = }-' ( -q2)t t*~X, Ii~,l . . .  X ,~ ,n  = 1 . 
~r~Sn 

(b) The Hopf  algebra structure is given by 

A(Xi j )  = ~ Xik | Xkj,  S(XIj)  = ( -q2) i -JDj i ,  e(Xij) = ~ij. 
k 

(c) The involution * is given by (Xij)* = ( - q Z ) J - i  Dij. 
(d) Furthermore 

~ij = ~,k(--q2)k-JXikOjk = ~,k(--q2)i-kDkiXkj  = Ek( - -q2) j -kDjkXik  

= ~k( - -q2)k - iXk jDki  . 

The reader is referred to 1-16] and [14] for further details concerning this 
algebra. 

1.5. The generators described in the above section are not well suited to the study 
of the primitive ideals. A more natural set of generators is the following. This 
notation was first introduced by Soibelman in 1,-18]. 

Recall that L(Ok) ~-- A k L ( m O  (the k th quantum exterior power of L(tot)) and 
that s Wmk, where I,V denotes the Weyl group. Recall that W may be 
naturally identified with the symmetric group S~ by letting the reflection with 
respect to the simple root ~ correspond to the transposition (i, i + 1). Let 
i = {it . . . . .  ik} be a subset of {1 . . . . .  n - 1} such that il < . . .  < ik. Define 
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e~ = e~ ^ . . .  ^ %.  Then the weight spaces of L(~Tk) a r e  exactly the Ce~. For any 
w s W define ew~ to be the element of e~ of L(Wk), where/ is  the ordered multi-index 
associated to {w(1) . . . . .  w(k)}. It is easily verified that e~eL(mk)w~,~. Define 
e*-w,,~eL(Wk)* to be the dual basis element corresponding to ew~,~ and denote by 
( - ,  - )  the natural pairing between a vector space and its dual. 

Definition. For each k = 1 , . . . , n -  1 
C~weCq[G] by: Vue Uq(g), 
( e*~wo~._~, Ue~o~._~). 

and each w e W  we define elements 
C~,w(U) = ( e*w~, ue~),  c~,~(u) = 

Thus c +k,~ (respectively c~,~) is a matrix coefficient of L(wk) (respectively 
+ + L(W.-k)). In particular we have that c L . , 0  = X . ,  c._~,, , .)  = D~., c;-,. ,0 = D . ,  

c~_ ~, (i, .) = Xi.. The general element c ~  can be interpreted as a general quantum 
minor as defined in [14]. In the notation of that article, 

C+ = ~w{1 . . . . .  j} C~,w 3:w{j+ 1 . . . . .  n} j , w  ~{1 . . . . .  j} ~ = ~ { j + l  . . . . .  n} , 

where w{1 . . . . .  k} = {w(1) . . . . .  w(k)} etc. 
One of the key properties of these matrix elements is that they generate Cq [G]. 

In fact a slightly stronger statement is true. Let A+ be the subalgebra of Ca[G ] 
generated by the elements of the form C~,w and let A_ be the algebra generated by 
the elements of the form c[w. 

Theorem 1.5.1. The linear map A_ |  given by a| is an 
epimorphism of C-vector spaces. 

Proof. This result is Theorem 3.1 of [19]. It suffices to check that the definition of 
A • given there is in fact the same as the one given above. [] 

1.6. On occasion we will need a notation for a coordinate function coming from an 
arbitrary representation in ~g. Our notation again follows Soibelman 1-19]. 

Let AeP+.  Recall that L ( A ) =  @~mA)L(A)z,  L(A)* ~ L ( - w o A )  and 
L(A)*_, = [L(A),]*.  Each module L(A) carries a non-degenerate bilinear con- 
travariant form ( - I - ) a  such that (avlw)A=(vla*w)a for all aeUq(g) and 
v, w e L(A). Such a form is unique up to a scalar multiple [7]. Choose an orthonor- 
mal basis {v~J)l#e f2(A ), 1 < j  < dimL(A)u } of L(A) with respect to ( - [ - - )A" Let 
{d~)x} be the dual basis in L(A)*. Then each E~)z identifies with (v~)[-)a  and 
d(i)~eL(A)*_~, Hence (~(i)~.,v(J))"~--'(V~)Iv~J))A=I~.ut~ij. We define elements 
ca_~,i,~,,j of Cq[G] by: 

V U e  U q ( g ) ,  CA- 2, i , # , j ( u )  = <~(-/)2, UV(J)> = (V(~)Iuv(J))A . 

For convenience we use the following abbreviations: 

f A 

C -  )~,lt, j 

A c A 2 ,  i ,~ , j  = C_2 ,  i, ~ 

A 
C - 2,1~ 

if dimL(A)x = 1 

if dim L(A)u = i 

if dimL(A)z = dimL(A)u = 1 

The first two parts of the following lemma are taken from [19]. The third part is 
a consequence of the general formula in Sect. 1.3. 
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I+(w ,A)  = A (C_u,i, AI 1 < i < dimL(A)u,  v~)r U~(b+)vwa) , 

I - ( w , A )  = / ~ - w o a  'I < i < d i m L ( - w o A ) - , , v ~ ) u C U q ( b - ) v - ~ a )  \ t~ l t ,  i, - A  I - -  - -  

Notice that in the d~finition of I -(w, A) the v(!~u's belong to L ( - w o A ) _ , .  Notice 
also that the condition v~)r can be expressed in the form 
ca_,,i, wa(U) = 0 for all ue  Uq(b+). 

Define z to be the involutive automorphism z = * o S. For  any Uq(g)-module 
M we denote by M ~ the twisted module where the action of an element u E Uq(g) on 
an element v e M  is given by u ' v = z ( u ) v .  Then it is easily verified that 
L ( - w o A )  ~ L(A)  ~. This isomorphism takes v S ) u e L ( - w o A )  onto v~)~L(A), .  
Since z (Uq  (b + ))  = U~ (b - ) we obtain that 

v~)r Uq(b + )v~a <:~ v(~u r Uq(b - )v-wa.  

Therefore Lemma 1.6.1 shows that I +(w, A)* = I - ( w ,  A). 

1.8. We shall need some elementary facts about the Bruhat ordering on W. We 
take the reverse of the usual Bruhat ordering introduced in [-3]. Thus e < w < Wo 
for all w e W. For each fundamental weight m~ we denote the stabiliser ofm~ in Wby 
W~ = Stab(mi). Denote by ~ a fixed transversal of W~ in W. 

Definition. Fix i e { 1 , . . .  , n - 1}. Let y, wE W. We say that y <iw if and only if 
y w i  >= W W i .  

It is clear that <i  is right W/-invariant and that the induced ordering on W/Wi 
is a partial ordering. In order to keep the notation consistent, we shall sometimes 
use the notation =~ for equivalence modulo W~. The proof of the following 
proposition is similar to standard arguments concerning the Bruhat ordering (for 
instance [3, w 

P r o p o s i t i o n  1.8.1. Let i~{1 . . . .  , n - 1} and let y, w~ W. 
1. The following are equivalent: (a)y<=iw; (b)vy~,SUq(b+)vw~j 

U~(b-)v~,. 
2. y < i w . ~ y w o  >,-iWWo. 
3. y <__ w ~ y  < i w f o r  all i. 

(C) Vwr~i 

Example. If we identify W as above with the symmetric group S., then the 
subgroup W~ = Stabw(m~) identifies with the group S.-1 = Sym{2 . . . . .  n} and 

Lemma 1.6.1. (a) S(cA_~,i,u,j)6.~.,~, _x,i,  

[C A ~* ~ - (b) t -~,i,~,,j, Ccx,~,~ 
A (c) A(c~ ,~ ,~ ,A = ~ , ~ c - ~ , ~ , ~ , k |  ~ C - v , k , t ~ , j  �9 

Notice that c~,w~Cc~-~k,~ and c~,wECc~,-~,_~ = C(c~,w)*. 

1.7. Let R • denote the set of positive and negative roots respectively. Denote by 
b • = h �9 n +- the Borel subalgebras associated to R • We denote by Uq(b • the 
Hopf subalgebras of Uq(g) generated by {K~, X~ ] 1 _< i < n - 1} respectively (we 
call them the Borel subalgebras). 

As in [-19] we define the following ideals of Cq[G] which play a fundamental 
role in what follows: 
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we may take fiel to be {e = (1, 1), (1, 2) . . . . .  (1, n)}. The ordering < 1 is then given 
by 

W1 <i(1 ,2)W1 < i  . . .  <i(1,  n)W1 �9 

Similarly IV,_ ~ = Sym{1 . . . . .  n - 1} and we may take the transversal f i e  ~ to be 
{(n, 1), (n, 2) . . . . .  (n, n) = e}. The ordering < , - 1  is then given by 

141,-1 < , - i  (n, n - 1) l,V,_l < . - 1  . . .  < , - l ( n ,  1) W,_i . 

In the case we shall be most interested in (when n = 3) these are of course the only 
two cases. 

2 .  T h e  A l g e b r a s  A w, Bw a n d  C ~  

2.1. In order to study Cq[G] in more detail we introduce algebras Aw, Bw and Cw 
defined for each w e W x W. The motivation for the definitions of these algebras 
comes from the structure of the symplectic leaves in G. Recall the notation of 
Appendix A. There are natural maps G ~ G ~ D/G, and a symplectic leaf of G is 
a connected component of the inverse image of a left Gr-orbit of D/Gr. The Bruhat 
cells ~w of D/G~ are disjoint unions of isomorphic leaves of "type w." Just as in this 
geometric case it is natural to study the symplectic leaves by type, so in the study of 
Cq[G] it is natural to classify primitive ideals by type. The algebras Cw, Bw and Aw 
correspond to the cell c~  and its inverse image in d and G respectively. 

2.2. Setting A = mi in 1.7 we obtain the ideals I -+ (w, to~). From Lemma 1.6.2 and 
Proposition 1.8.1 it follows that 

I+-(w, wi) = (c i~y ly~iw)  �9 

Henceforth, the principal objects of interest will be the ideals defined for each 
w = (w+, w_)e  W x  Wby:  

n - - 1  

Iw = ~, (I+(w+,wi) + I - (w_,roi ) )  = (c~,rll  < i < n -  1, y'f, i w , ) ,  
i = 1  

and the sets, defined also for each w = (w+, w_)e  W x  W b y  

= C + , _ = . , 1 }  . ~w { i . . . .  CiTw li 1 , . .  n -  

We shall also occasionally use the following notation. For  y e W we define 
i+ (y) = ,-1 ~+ ~,=~ I+(y, wi) and (y) = {e~+yli = 1 . . . . .  n}. For  w = (w+,w_), we 
define I~  = I+(w+_), and d~ = g•  

Theorem 2.2.1. Let w e W. The image of c~, w is normal in Cq[ G]/ I"(w, vJi). In fact we 
have that 

ca-i,i,u, jC~,w = ?c7,wcax, i,u,i(modU(w, ml)) for some ? e ~  . 

Proof. Recall that Cq[G] = C[ca_a,i,u,~lAeP+] and that c "+,,w is a scalar multiple 
of c~_'w~,,~,. The ideal Jo(wml, mi) defined in [19] is precisely the ideal I + (w, mi) 
defined above. The result for c .+ then follows from [19, Prop. 3.2]. Applying the ~ ,w  

involution �9 yields the result for c~w. [] 
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Corol lary  2.2.2. For any w = (w +, w_ ) ~ IV x IV, the elements o f  8w (respectively 
o~)  are normal in C~[G]/ Iw (respectively Cq[G]/I~w). 

Now let w = ( w + ,  w_)e Wx IV. Denote by Ew the multiplicatively closed set 
generated by the images of the elements of d~ in Cq[G]/Iw.  Since Ew consists of 
normal elements we may localize with respect to this set. Denote the localized 
algebra 

Aw = (cq [o] / Iw)~w.  

It is not immediately clear that Aw :t: 0 since it could happen that E~ c~ I~ =4= 0. 
In the next few subsections we shall prove the following result: 

T h e o r e m  2.2.3. For all w ~ W x IV, Aw =t= O. 

The idea of the proof is to construct a non-zero Aw-module by tensoring 
together certain "fundamental" Cq[G]-modules. This technique was used by 
Soibelman in [19, w the idea is apparently due to Drinfeld. It is a quantum 
analog of the proof that p-~(c6~) :# 0 given in Appendix A. 

Def in i t ion .  A non-zero Cq [G ]-module is said to be o f  type w ~ IV x W/ f ( i )  Iw M = 0 
and (ii) Vc ~ gw, M = c M  (i.e., M is #~-divisible). 

It is a standard fact that a module of type w has a natural structure as an 
Aw-module. Thus the theorem will be a consequence of the existence of a nontrivial 
module of type w for all w e W x W. 

2.3. For each ie {1 . . . . .  n - 1}, denote by Uq(sli(2)), the Hopf subalgebra gener- 
ated by { X ~ - , X T , K ~ } ;  denote by Uq(b~) the subalgebra generated by 
{X~, K/+- ~ }. Consider the following commutative diagram of inclusions: 

Uq(b~) -~ Uq(sli(2)) 

U~(b ~) -~ Uq(g). ~o~ 

Since Uq(b ~) is a Hopf subalgebra, the subspace Uq(b~) • = 
{fE Cq[G] ]f(Uq(b~)) = O} is an ideal of C [G]. Define C~[B ~] = Cq[G]/Uq(b~) • 
and define similarly Cq [B~] and Cq [SLi(2)]. Then we have a commutative diagram 
of surjections, 

Cq[B~] ~ Cq[SL,(2)] 

cq(B ~) ~ Cq(G). 

It is easily verified that the canonical isomorphism, Uq(sli(2))~-Uq(sl(2)) 
induces an isomorphism Cq[SL(2)] ~-Cq[SLi(2)]  such that the kernel of 
Cq [SLi(2)] ~ Cq [B~ + ] is I(e, s) (and likewise Ker(Cq [SLi(2)] -+ Cq [B~- ]) = I(s, e)). 
From the theorem in Appendix B, we know that there exist Cq[SL(2)] modules 
M + a n d  M - of type (s, e) and (e, s) respectively. Define M/~ to be the modules M • 
considered as CqEG] modules via the map Cq[G]--*Cq[SLi(2)]-7->CqLSL(2)]. 
Then in particular we have that Ann M~ _ ker cp* -v. 
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Proposition 2.3.1. The modules M[  ~ and M ~ are of  type (si, e) and (e, si) respectively. 

Proof. We give the proof for M ff . We first need to show that Its, e ) c Ann M + ; i t  is 
enough to show that I + (s ,  m) + I - (e, w) c Ann M + for each fundamental weight 
m. Notice that I-(e,m)=(c~,~_%~lv_.q~Uq(b-)v_~)=(c2,~_~Lq)*__(c~,~_~ 
= 0) c Ker ~0" ~ Ann M ~+. On the other hand, I + (si, m) = 

(c~_z,~lvaCUq(b+)v~,~). Suppose that I+(si ,  m)C_Kerq) *. Then there exists a 
2 such that va r Uq(b + )v~,~, and va e Uq(sli(2) )v~. Since Xi + v~ = 0 and X~- v~,~ ~ Cv~, 
we obtain va t  Uq(sl~(2))v~ = Cv~ + Cvs,~ _ Uq(b +)v~,~, a contradiction. 

It  remains to show that M [  is g(~,, ~)-divisible. Recall that elements of 8t~,, ~) are 
of the form cj = c~_J,,w,~j or c) = cgT~ j. We first compute ~0*(c~) acting on M + 
via the identification CqI-SLg(2)] = Cq[SL(2)]. The Uq(sli(2)) module generated by 
v w is either trivial (when (m~, cq) = 0) or is the fundamental representation with 
highest weight vector v~, (when (m j, c~) = 1). It  follows that ~0" (c j) = (c p_ so, o)~J' ~'~ 
for which M~ + is divisible by definition. A similar reasoning gives that 
~,*(c~) " ~ ~ ' ~ ' )  = tc-~p,~pj which again acts divisibly by definition on M § [] 

2.4. We now show that modules of type w --- (w+, w_) can be constructed by 
forming the tensor product of modules of the form M ~  using the reduced de- 
composition of w + and w_. The fundamental result is the following. 

Theorem 2.4.1. Let  M be a Cq[G]-module of type (w +, w_ ). I f  slw + > w+ (respec- 
tively s lw-  > w_ ) then M ~ | M (respectively M | M ;- ) is a Cq[ G]-module of  type 
(siw + , w_ ) (respectively of  type (w +, siw_ )). 

Proof. We prove the assertion in the case s~w+ > w+. 
(i) 1 -  (w_, m) ~ Ann (M/+ | M)  for all fundamental representations w. 
We denote ca, u-w~ by ca,~. A standard generator for I - ( w _ ,  w) is then of the 

form ca,-~,  where v-a  ~ Uq(b-)v_~_~,. The action of ca,-~ is given by the comul- 
tiplication A (ca,-~) = ~.~m_wo~,)ca,. | c_. ,  _~. Suppose that the action is non- 
trivial. Then there exists a/~ such that both  factors ca,. and c_., _~ act non-trivially 
on M~ + and M respectively. Since M is of type ( w + , w _ )  this implies that 
v.E Uq(b-)V_w ~. Since Ann(M~ +) ~_ Ker(~0*_), we must have that q~*-(ca,.) �9 0; 
thus v-a  e Uq(b-)v .  _ Uq(b-)v_w_~, a contradiction. 

(ii) I + (siw+, m) c_c_ Ann(Mi + | M)  for all fundamental weights m. 
For  these calculations we abbreviate c~,. by ca,.. Then a standard generator of 

I + (s~ w +, m) is c _ z, ~, where va ~ Uq (b + ) v~,~ + ~. The action on M~ | M is given by: 
A(c-a,~)  = ~.~r~t~)c-a,.  | c_. ,~.  Suppose that there exists a/~ such that both 
c-a,u and c_.,~ act non-trivially on Mi + and M respectively. Then by definition 
and Proposition 1.8.1, v. e Uq(b +)vw+~ ~ Uq(b +)v~, ~+ ~. On the other hand, since 
Ann(Mi+)~_Ker(q~ *) we must have vaeU~(sli(2))v~. Since s i w + > w + ,  
X ; v  . . . . .  = 0. Since moreover [ X  + , X i - ]  2 - 2  -1 2 = 6,k(q -- q ) (K,  - K~-Z), it fol- 
lows easily that 

Uo(sl,(2)) Uq(b + )v . . . . .  ~ Uq(b + )v . . . . .  

which implies that va ~ U~(b + )v . . . . . .  a contradiction. 
(iii) M + | M is g~,, . . . . .  )-divisible. 

Let m be a fundamental representation. We continue with the notation of part  
(ii). The action of e . . . . . . .  is given by: 

~(c_~,  . . . . .  ) =  y~ c_~ . . . . .  ~ |  
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Suppose # is such that the corresponding summand is non-trivial. Then we have 
that (a) v,~Uq(b+)Vw+~ and (b) V~,w+~Uq(bF)vu. Consider the Uq(sli(2))-sub- 
module of L(m) containing vw+~. Since siw+ > w+ it has highest weight w+ ~ and 
lowest weight slw+~. If (w+w,~i )=  0, the representation is trivial; otherwise 
(w+ m, ~i) = 1 and the representation is the fundamental representation. From (b) 
we obtain # = siw+w + p ~  = w + w  + ( p -  (w+m, ~0)cq, where p is an integer 
between 0 and (w+m, ~i). From (a) we deduce that p = (w+m, ~i) and so # = w+m. 
Thus for any m' ~ M i + and m ~ M, 

C_s~w+w,~m' | m = C-s~w+ro , w+,~m' | c-w+~j,  w m  . 

* c  By hypothesis M is C-w . . . .  -divisible. On the other hand, ~p~ ( _~ . . . . . . . .  ) 
=(c~ ~ . . . . . .  ) and Mi + is divisible with respect to this element. Hence 

M~ + | M is c ~_ . . . . . . . .  -divisible. The proof for dements of the form cw_~,,-w~ is 
similar. [] 

Corollary 2.4.2. Let  w+ = sl, . . . si~, w_ = sj, . . . s j= be reduced expressions for  w+ 
and w_ in w. Then 

M,  +, | 1 7 4  + @M]-  @ . . . |  

is a module o f  type (w +, w_ ). 

This completes the proof of Theorem 2.2.3. These results generalize slightly [19, 
Propositions 5.1, 5.2]. 

2.5. Let R(Cq[G])  denote the set of one-dimensional representations of C~[G]. 
Since Cq[G] is a Hopf algebra, R(Cq[G]) has a natural group structure. Let 
X = (Xu)  be the matrix of coordinate functions as described in 1.4. Since the 
Xij  generate Cq[G], there is a natural map from R(Cq[G])  to M,(C) given by 
)~-+ ( z ( X u ) )  = z (X ) .  It is easily verified that this is an isomorphism of R(Cq[G])  
onto the set of invertible diagonal matrices. Since R(Cq [G])  is naturally isomor- 
phic to this complex toms we shall denote it by H. 

For any Hopf algebra A, there is a natural action of R ( A )  as automorphisms of 
A given by rz(a) = ~ ao)z(a(2)) for all z ~ R ( A )  and a e A .  In the case A = Cq[G] 
the action of H on Cq[G] is therefore algebraic and given by rz (X  ) = X z ( X ) .  

Denote by F the subgroup of H corresponding to matrices with entries equal 
to _ 1. Denote by ?i for i = 1 . . . . .  n - 1, the element with - 1 in the (i, i) and 
(i + 1, i + 1) position and l's elsewhere. Obviously F is generated by the y~. Using 
the description of of, w as a quantum minor given in 1.5 it is easily verified that the 
action of ~ on the elements c~, w is given by 

{ c ~. if j : #  i Ce j, w 
~ ) i ( j , w )  ~- --C},w if j = i .  

Definition. We denote by B = Cq[G] = C~[G] r the algebra o f  elements o f  Cq[ G] 
invariant under the action o f  F. 

Definition. Let  w = (w +, w_ ) e  W x W. Recall that A~ = (A/Iw)Ew. Since ?(Iw) ~- Iw 
and ?(Ew) c Ewfor all ? e F ,  there is a natural induced action o f F  on Aw. We define 
B w = A  r. 

Notice that Bw = ( B / ( I w n B ) ) r  In order to simplify the notation we 
continue to denote by c~.y the image of c~,y in Aw. 
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It  is fairlyeasy to see that Aw has a natural structure as a crossed product of the 
dual group F over Bw. Denote b y / ~  the dual group of F and denote by Pi the 
element of f such that p i ( ? j ) = ( - 1 )  a'J. Define a map q S : f ~ A w  by 
~(~il �9 �9 �9 ~i,) = Ch,w+ + �9 �9 �9 ci~,,~++ if il < . �9 �9 < it. Then Aw is a crossed product of 
F over Bw via ~b in the sense of [13, 1.5.8]. 

2.6. Fix w = ( w + , w _ ) e  W x  W. 

e ~ e - 1  = C -  (C + ~ - 1  Definition. Let  y~  W. In Aw set zi, r = ci, y(Ci,w~) and h i,~_~ i . . . .  �9 

Clearly these elements belong to B.,. We define Cw to be the subalgebra of B .  
generated by the set 

{z[ ,y le= + , i =  l , . . . , n -  l, y e W } u { t ? ~ l i =  l , . . . , n - 1 } .  

Clearly z~,y ~ = 0 for y >~w~ and z ~.~, ~, = 1. Thus 

c ~  c [ t  +~ ~ . . . ,  1]. = ,zi, yle = - t - , y < i w ~ , i =  i, n - -  

We now show that B~, is the localization of C~ with respect to an appropriate 
normal element. Recall [14, w that the relation Detq = 1 may be written, for each 

+ -- 
i = 1 . . . .  , n - 1, as 1 = ~r~eeei,  rci, rci, y, where e~,re.~ and ~ is a transversal of 
W~ in W. Using Theorem 2.2.1 and the description of the c~, w as quantum minors 
given in 1.5, we obtain that Cw contains the elements 

C + ) - i  i -- d, ( ,,~+ (ci.~_)- = ~ fli,,z+rzi, r ,  
y~ Wi 

where fl~.ye.@. Define d to be d l d z . . ,  d,_~. 

Theorem 2.6.1. The element d is a normal element o f  Cw and Bw = C ~ [ d - t ] .  

Proof. It  follows easily from Theorem 2.2.1 that d A w =  A~d. Since each z~,r is an 
eigenvector for conjugation by d, it is clear that dC,,d - ~ = C~. Thus d is a normal 
element of Cw. It  follows from Theorem 1.5.1 that Aw is spanned by elements of the 
form vd t, where v is a word in the e~, r and t is a non-negative integer. Such words 
are clearly eigenvectors for the action of F. Hence Bw is spanned by the words with 
eigenvalue 1; that is, words for which the number of occurrences in v of elements of 
the form c~, y, for a fixed i is even, say 2rag. For  such words it follows from the 
normality of the elements c~, w~ (Theorem 2.2.1) that if t > m~ for all i, then vdte  Cw. 
Hence for all b e B~, there exists a positive integer m such that bd~e  Cw. [] 

2.7. We shall also be interested in the subalgebras of elements invariant under the 
action of the whole group H. There is a natural induced algebraic action of H on A~ 
and Bw. Let 2 e C *  and let h = ~e u + ) t - l e i + L i + t .  Then it follows from the 
description of the cf, y as quantum minors that 

f2-+1c~,  i f j = i  
h(c f r )  

' = ' [ c + y  i f j . i .  

It  is thus clear that the elements zf, r are H-invariant. 

Theorem 2.7.1. (i) C~ = C[z~,r[e = +, 1 < i < n - 1, y e W ] .  
H - 1 ] .  (ii) A~ = B~ = Cw [d 

(iii) The monomials t~J . . . t'#__-~ for  (rt . . . . .  r ,_ l ) e  Z " -  l form a basis for Cw as 
a left or right C~-module and a basis for Bw as a left or right B~-module. 
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Proof Denote by S the subalgebra of Cw generated by the z~, y. Clearly S ~ C~. On 
the other hand, since Cw is generated over S by the h which are invertible elements 
normalising S (hS = Sh), it follows that the given monomials span Cw as a left or 
right S-module. It  is also clear that if h = 2eu + 2-1 ei + 1, i + 1, then h( h ) = 2-  2 ti and 
h(tj) = t i fo r j  ~ i. Thus each distinct monomial  corresponds to a different charac- 
ter of H. Hence the monomials must be linearly independent over Cw ~. Thus 
Cw = ( ~ z .  ,St', where t r = t ]  . . . . . . . .  tn_l if r = (r l, . . . , r,_ 1). This proves (i) and 
the first part  of (iii). The remaining assertions then follow easily. [] 

2.8. We are now in a position to formulate more precisely the conjectures made in 
the introduction concerning Prim Cq [G]. Although we only consider here the case 
when G = SL(n), similar conjectures may be made in the general case. The reader is 
referred to Appendix A for a description of the symplectic leaves of G. Denote by 
A the algebra Cq[G]. 

Definition. For each w~ W x  W, define SpecwA = { P ~ S p e c A I P  ~_ Iw and 
P n Ew = 0} and SpecwB = { P e Spec B] P ~_ Iw n Bw and P n Ew = 0}. Elements of 
SpecwA and SpecwB are said to be of  type w. Set PrimwA = SpecwA c~ Prim A and 
PrimwB = Specw B c~ Prim B. 

The action of H on A described above induces an action of H on Prim A for 
which the locally closed subsets PrimwA are invariant for all w e W x  W. Since the 
action of H is algebraic, StabHP is a closed subgroup of H and H/S tabnP is a torus 
for all P e Prim A. 

Conjecture 1. P r i m a  = [Iw~w• and PrimwA is a non-empty H-orbit  
for all we  W x  W. I fP~ is a primitive ideal of type w, then H/Stabn P~ is a torus of 
rank r k G - s ( w ) .  Hence there is a bijection fl: P r i m A - ~ S y m p G  such that 
fl(PrimwA) = SympwG. 

Conjecture 2. One may define a bijection fl: Prim A ~ Symp G as in Conjecture 
1 such that fl is order reversing and GKdim A/P = dim fl(P) for all P e Prim A. 

Both conjectures are known to be true in the case G = SL(2, C) (see Appendix 
B). Conjecture 1 is proved in Sect. 4 in the case when G = SL(3, C). 

3. The Adjoint Action 

3.1. Henceforth we restrict our attention to the case G = SL(3). We shall denote 
the algebra Cq [SL(3)] by A. In order to study the ideals of A we look at the ideals 
of Cw and Bw invariant under the adjoint action. At the same time we study in detail 
the structure of the algebra C~, showing that it is an iterated Ore extension in the 
sense of [13]. We shall therefore be interested in bases consisting of standard 
monomials  as defined below. 

Definition. Let ~ = {Yl, Y 2 , . . . ,  Yt} be an indexed set of elements. The standard 
monomials in ~ are defined to be the elements y r = y ] ~ . . ,  rt Yt , where 
r = ( r l ,  �9 �9 �9 , r t ) ~ N  t. 

3.2. We shall show that for each w, there exists a certain set of z~, y such that for 
a suitably chosen ordering, the standard monomials  in these z's form a basis for 
C~. Clearly we should exclude from such a set all the zi, y~ for which y ~;iw~. The 
Plucker relations imply that certain other generators are redundant. 
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Definition. Fix w ~ W • W. Define 

= {z~.rJ5 = •  < iw~ , i  = 1,2} -- {z~2,W:~ol5 = •  . 

Define I to be the corresponding index set; that is, 

I = {(5, y, i)[e = •  < i w , , i  = 1,2} - {(5, 2, W~Wo)} . 

Theorem 3.2.1. C~ = C [ ~ ] .  

Proof. F r o m  Theo rem 2.7.1 and the remarks  at the beginning of 2.6, it suffices to 
show that  if w, wo < w~, then z~2,,:~wo~C[~]. The Plucker  relat ions given in 
Theorem 1.4.1 (d) imply that  in Aw, 

ctyc~.rc2,+ two = 0, for some cry ~ .~. 
yeWl,y<=lw+ 

+ 1, we obtain: ~ c  + ~-~ and  using the fact that  z~,~+ = Mult iplying by (c1+,~+) - t 2,~+1 
+ 

Z2, w+wo L + + ~ -  ~yZl,yZ2, ywo , for some ~r~ .~ .  
y e  I~' l ,y < 1 w+ 

+ e C [~e],  as + is either 0 or an element of ~ .  Hence z2 . . . .  o N o w  for y < 1 w+, z2,ywo 
required. A similar a rgument  works  for z2, w_ wo. 

Remark. I t  is impor t an t  to notice that  if w + < 2 w + Wo, then the above relation 
+ only occur when w+ or w_ collapses to 0 = 0. Nont r iv ia l  relat ions for z2 . . . .  o 

belongs to {(1, 3), (1, 3, 2), (1, 2, 3)}. 

3.3. The ordered indexing on the set X will be induced f rom the following ordering 
on the set S = {(e, i, y)le = _ ,  i = 1, 2 and y e  [~}. 

Definition. Define a total  ordering on the set S by: 

f 
i' < i; or 

(d, i', y ' )  < (e, i, y) iff i' = i and y' >iY; or 

i' i and y ' - - ~ y  and d =  + , e = - .  

Since I~  is totally ordered by < ~, it is easy to see that  this defines a total  
ordering on S. 

The required c o m m u t a t i o n  relations on the z~,y follow f rom the following 
c o m m u a t i o n  relat ions in Cq[SL(3)] .  

Proposit ion 3.3.1. Suppose that (d, i', y ' )  < (5, i, y). Then there exists an ~ C *  such 
that 

O~Ci, yCi,,y, j a j a j  , Ci, y,Ci, y ~ .-~ 
J 

where f l j~C ,  a je{c~ ,~ l (~ , i ,u )<(5 ,  i , y ) } a n d  aj~{cv,~l(5,~; ~' ' "' u ) < ( ~ , i , y ) } .  

Proof. The result m a y  be deduced f rom the c o m m u t a t i o n  relations given in [8, 2.1, 
2.2, 2.13-2.16] using the equat ions in Sect. 1.5. Alternatively, one m a y  use the more  
general formula  [19, w which follows f rom the form of the universal  R-matr ix  
for Uq(sl(3, C)). []  

3.4. We define R(5, i, y) = C[z~,~h(q,j, u) < (5, i, y)].  
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Proposition 3.4.1. The algebra R(e, i, y) is spanned by the standard monomials in 
~" ~ 

{zi , ,r ,~[(e ' ,  z , y ' ) <  (e, i,y)}. In particular, the algebra C~ is spanned by the 
standard monomials in the elements of .~. 

Proof It follows from the proof of Theorem 3.2.1 that z~ . . . . .  ~R(e, 2, W~Wo). On 
the other hand Proposition 3.3.1 implies that R(e, i, y)[z~,y] is spanned as a left 
R(e, i, y) module by the powers of z~,y. The result then follows by induction. [] 

3.5. In order to show that the standard monomials from Proposition 3.4.1 form 
abas is for  n Cw, we consider the adjoint action of C~[SL(3)]. Let us recall the basic 
definitions and properties for the adjoint action of a Hopf  algebra on a bimodule. 

Let (R, A, e, S) be a complex Hopf algebra and let M be an R-bimodule. The 
adjoint action of R on M is defined by: (ad h)x = h(x)xS(h(2)) for all h ~ R and x E M, 
where we are using the Sweedler notation together with the obvious summation 
convention. We set M ad= {xeMl(adh)x = e(h)x, 'r It is easily seen that 
M a~ = {xEmlhx  = xh, VhER}. 

The map ad: R ~ EndcM is a homomorphism of algebras and in this way 
M becomes a left R-module via ad. Suppose now that M also has the structure of 
a C-algebra compatible with its bimodule structure; i.e. 

Vx, yEM, VhER, h(xy)=(hx)y  and (xy)h=x(yh) .  

Then under the adjoint action, M has the structure of a R-module algebra in the 
sense that (ad h)(xy) = (ad hm)(x)(ad htz))(y). 

3.6. These generalities apply to the Hopf  algebra Cq[SL(3)] and any bimodule M. 
Recall that Cq[SL(3)] = C[XIjI1 < i,j < 3], where the Xij are the coordinate 
functions for the standard 3-dimensional representation of Uq(sl(3, C)). Since 
A(X~j )=~Xgk |  the adjoint action of X~j is given by (adX~j)m= 
~k X~kmS(Xkj) for all m ~ M. Denote ad Xii by ad~i, and define the adjoint matrix of 
m to be lad m] = [ad~j m] 1 __< ~, j =<,. Denote by X the matrix of coordinate functions 
(X~j) ~ M,(A) and by S(X) the matrix (S(Xij)). It follows easily from the coalgebra 
structure of A that S(X) = X -  1. 

Proposition 3.6.1. Let ~o: C~[SL(3)] ~ B be a C-algebra map. Then for any b~B, 
[ adb]  = c~(X)b4)(S(X)). The map [ad - ] :  B --* M,(B) is an algebra map. In par- 
ticular, lad bc] = [ad b] [adc] for all b, c ~ B. 

Proof The formula for lad b] is clear. For simplicity, drop the ~b and consider 
M,(A) as acting on M,(B) via 4~. Then [adbc]  = X b c S ( X ) = X b l c S ( X ) =  
XbS(X)XcS(X) = [adb]  [adc] .  [] 

3.7. In this section we study the adjoint action of A on the subalgebra generated by 
the elements t (  1, t f  1 defined in Sect. 2.6. To simplify the notation a little, set 

a = w _ ( 1 ) ,  b=w+(1 ) ,  c=w+(3 ) ,  d = w _ ( 3 ) .  

In this notation, tl = D a l X b l  1, t2 = X a 3 D ~  1 and tit2 = q2(~,.~ a~'")t2tt. Recall that 
by Theorem 2.7.1, the elements t]t"~ for n, m e Z  form a basis for the subalgebra 
C[t~ 1, t f  1 ]. Denote by F~(~) the diagonal scalar matrix with the scalar ~ in the 
( i ,  i)  th position and l's elsewhere on the diagonal. 

Lemma 3.7.1. With the above notation we have that 

[ a d t l ]  = Fb(q2)Fa(q-2)tl and [adt2] = Fc(q-2)Fa(q2)t2 . 
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Proof It  is easily verified that XblX = Fb(q2)XFi(q-Z)Xbi (modlw) and sim- 
ilarly that D, tS (X)=  Fi(qZ)S(X)Fa(q-2)Daa (modlw), Combining these two 
identities gives the formula for [ ad t l ] .  The proof of the second equality is 
similar. 

Proposition 3.7.2. The algebra C [ t ~  1, t2~l] ad is a subalgebra of the centre of Aw 
equal to: 

(i) C [ t [  1,t2 ~ l ] / f w +  = w_; 
(ii) C[ t  + 1 ] / f w +  = w_(W/) and w+ 4: w_; 

(iii) C if w+ + w_(Wi)for i = 1 and 2 but w_ 4= W+Wo; 
(iv) C [ ( t i t ~ l )  i i ] / f w _  = W+Wo. 

Proof It  is clear that C[-t~ 1, t f ~ ]  ad has as a basis the set of all monomials  t]t"~ 
which are ad A-invariant. Now 

[ad t] t~'] = Fb(q2")Fc(q - 2")F,(q-Z")Fd(q2")t"~ t'~. 

The result then follows easily. [] 

Notice that the dimension of C [ t ~  i, t2 �9 1 ],d is therefore 2 - s(w), where s(w)is 
the length of a shortest expression for w+ w Z ~ as a product of reflections. 

3.8. The adjoint action of A on C~ is a little more complicated. As usual let 
w = ( w + , w _ ) e  W x  W. As before, set a = w_(1), b = w+(1), c = w+(3), d = w_(3) 
and set p = q2 _ q-2  

Lemma 3.8.1. Let y be an arbitrary element of Wand set r = y(1) and s = y(3). The 
adjoint action on z~, y is given by 

b 

[adz ~-,,] -2 2 + + = F~(q )fb(q ) z l , r - -  ~ PZl,(1,O ei,,  
i = r + l  

[adz~-,r ] Fr(q-2)F~(q2)z~,y + q2tr+l-~) ~ r-i-~ - = ( - - I )  pzi,(1,i)e,i, 
i = r +  i 

S--1 
[adz~ ,] Fc,,,,/l~,-2~Fi st'-/t"2~2+! 2, y q 2 ( S - c - i )  ~ (__ 1 ) s - i -  1 + , ~-  _ p g 2 , ( i ,  3 ) e s i  , 

i=c  

s -1  
[adz2-, r] = Fd(q-2)F~(qZ)zE, r + ~ pzz,(i, 3)ei~. 

i = d  

Proof Recall that ZLr+ = Xr~X~x ~. One verifies first that for r < j  =< a, 

X X j l  = X j i F j ( q - 2 ) X F i ( q 2 ) - (  ~ pXiielj) XFi(qa)(modlw) �9 
i = j + t  

Hence X X ~  1 = X ~  ~ F,(q2)XF~ (q- 2). Putting these two formulas together yields 
the desired result. A similar calculation proves the other three formulas. [] 

3.9. Thus for each z~,,r the matrix [adz~,r] is of the form D + N, where D is 
diagonal and N is a strictly upper or lower triangular matrix with all its non-zero 
entries in a single row or column. Furthermore the nonzero entry in N that is 
furthest from the diagonal is a scalar. Since this entry is of particular importance we 
define q5 to be the function that associates to z~, y this position. That  is, for a fixed 
w we define 
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~(z?,,) (w+(1), y0)), + = q~(z2,,) = (y(3), w+ (3)),  

r  = (y(1), w_(l)),  r 1 6 3  ) = (w_(3), y(3)) .  

This map  is not  injective on the set of all z~,y since for instance when w+ = (13), 
+ r = (3, 1) = r  +, e)" However  when r is restricted to ~ we do have injectiv- 

ity. 

Lemma 3.9.l. The map r restricted to ~dr is injective. 

Proof  Clearly r c {(k, l ) lk  > l} and r ~ {(k, l ) lk < l} so we may con- 
sider the two cases separately. Suppose that  + z + r  = r  where y < lW+ and 
y' < 2 w + .  This means that (w+(1), y(1)) = (y'(3), w+(3)). Hence y = W+wo(W1) 

+ woCLr, the result follows. The other  case is and y ' =  W+Wo(W:). Since Zz, w. 
similar. [] 

Proposition 3.9.2. Let  y e W and suppose that r ) = (k, l). Set [ad z[,r] = [ a i i ] .  
Then [ad(z~,r)" ] = [adz~,r]"  = [aq(n)], where 

(i) au(n) = a u E C  (zi, y 
(ii) aij = 0 implies aij(n) = O. 

(iii) akl(n) ~ n . ~ , - 1  = adki(Zi, r) ~ C  (zi, r) �9 

Proof  Write [aij] = D + N,  where D is diagonal and N is strictly upper or lower 
triangular. Then because of the part icular  form of N, we have that N D I N  = 0 for 

V " -  1 n s ~ r ~ , - s -  1 The first two asser- any i. Hence [aij(n)] = (D + N)" = D" + ~s=o . . . . .  
tions are then clear, as is the fact that  

n - 1  

akt(n) = ~ (qZ)• 
S = 0  

Since q is not  a root  of unity, the coefficient on the r ight-hand side is non-zero. [] 

Z g The lemma states that  if (k, I) = r  then adkl behaves rather  like a partial  
differential opera tor  with respect to z~,r. However,  on an arbi t rary s tandard 
monomial  it is impor tant  to apply these operators  in the correct order. This 
necessitates defining a new ordering on the s tandard monomials.  

Let I = { ( e , y , i ) l e =  + , y < i w ~ ,  i = 1 , 2 }  - { ( + , 2 ,  W~Wo)} be the index set 
corresponding to the set ~e and let K = r  (where r is the obvious induced map  
on I). For  each w let < be a total ordering on the set {( i , j )[ i , j  = 1,2, 3, i + j }  
satisfying 

(1, i) ~- (1, i ') >- (2, 3) >- (3,j) ~- (3,j ') ~ (2, i) 

and i and i' are chosen so that i f ( l ,  i) and (i, i') are both  in r  then the ordering 
reverses the ordering induced by r We denote by -< the induced ordering on 

the subset K. The ordering induced by ~ on I via r - 1 will also be denoted by M. 
The ordering -< on I extends naturally to a lexicographic ordering o n  N I which will 
again be denoted by <~. 

Theorem 3.9.3. Let  m e N  I and let r  be its image in N K. Let  M m be a standard 
monomial in the z~,y with respect to the order defined in 3.3 and let X r be the 
standard monomial in the Xi j  with respect to the ordering on K defined above. Then 
(i) ad X r M m e C * ;  (ii) adXr = O for  all n ~ m. 
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Proof. Define Supp(m) = {r/elIm, * 0}. For ( i , j )eK, define j~j to be the element 
of N ~ such that (f~j)~ = 6~, ~_ 1{~,~). It suffices to prove that for any monomial M m 
and any (i , j)  ~ Max(qS(Supp(m)), 

c M  m- f ' j  if ( i , j ) =  Max(q~(Supp(m)) ; 
( a d X q ) M "  

o if (i , j)  >- Max(qS(Supp(m)) ; 

for some ceC*.  Suppose that M m = Z]" . . .  Z~ '~, where Z~e~ .  Then ad i jM m is 
the (i, j)-entry of ad(Z] '~) . . .  ad(ZT"). The form of these matrices was computed in 
Proposition 3.9.1. A lengthy but routine calculation shows in all cases that if k is 
such that (i,j) = 4 (Zk)  = Max(q~(Supp(m)), then 

= ,nk ,nk+ 1 . . adj jZ,~ (adXij)M" aduZT ~ . . .  aduZ~'~-~ ~ad~jZk adjjZk+l �9 

and that if (i ,  j )  )- Max(gb(Supp(m)), then (ad X i j ) M  m = 0. Hence the result above 
follows from Proposition 3.9.1. [] 

3.10. We now come to the most important results of the section. For each 
character v ~ R(A)  let us denote by C~, the v-isotypic part of C~ under the adjoint 
action. Denote by Soc C,~ the socle of C,~ under this action. 

Theorem 3.10.1. 1. The algebras Cw and C~ are iterated Ore extensions. Hence Cw, 
C~ and Bw are all domains. 

2. SocCw = @~R(a)C~, = C[ta *1,t2~1]. Hence C ~  = C[ t t  e l ,  tzel] "d is as de- 
scribed in Sect. 3.7.2. 

3. If v ~ R ( A )  is such that C~ + O, then there exists a invertible element u~ such 
that C~ = u~C"~ d. 

Proo f  Theorem 3.9.3 implies that the standard monomials in the elements of 
form a basis for M n.  Cw. The fact that Cw is an iterated Ore extension is an induction 

based on [2, 1.3] using Proposition 3.4.1. Theorem 2.7.1 implies that C~ is an Ore 
extension of C~. Thus Cw and C~ are both domains. Since Bw is a localization of 
Cw (Theorem 2.6.1), it too is a domain. 

Now let f e C w .  We may write f in the form f =  ~ . z ~ . ~ . M * ,  where M" is the 
monomial described in 3.9, c~. e C [t ~ 1, tz~ t ] for all n and em* 0. By Theorem 3.9.3, 
there exists an a e A such that a is a product of elements of the form Xij and such 
that 

01 i f n < m  
(ad a)MD = i f  n = m .  

Now ~. = ~ R t A ) ~ . ,  x, where cq, x ~ C[ti-+ 1, tz~l]z" Moreover, 

(ad a)~., xM. = (ad a(1))~., z(ad a(z))Mn ~- x(am)~., zad a(z)Mn 

= ~ . , zad ( rx (a ) )M. .  

But rz(a ) = 2za for some non-zero scalar 2 x. Thus 

( a d a ) f =  ~2z~m,z~C[ t~  1 , t f l ] \ { O } .  
Z 

Since C [ t [  1, t~ 1] is a semi-simple ad-A module, this proves the second assertion. 
The third statement then follows easily from 3.7. [] 
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Remark. We can identify C~ with C[Hw], the algebra of functions on the torus 
Hw = H/Stabtfg~ (see Theorem A.3.1). 

4. Primitive Spectrum of Cq [G] 

4.1. We begin with a result showing that the study of Spec A and Spec B may be 
reduced to the study of Spec Aw and Spec Bw, w ~ W x W respectively. 

Proposition 4.1.1. Let P ESpecA (resp. SpecB). Then there exists a unique 
w~ W x W sueh that P ~ Iw (resp. P ~ Iw n B) and P n Ew = O. 

Proof Let P ~  Spec A. Define the elements w~ ) ~ l/~i, i = 1, 2 to be the smallest 
+ We want to show that there exists elements of W~ such that c~+,y~P for all y > w,). 

a w+ ~ Wx Wsuch that w+ = w%)(W~) for i = 1, 2. It is easily verified that this will 
occur if and only if w ~) Wo 4: w ~) (W2). Suppose that w ~) Wo = w ~)(W2). Recall the 
Plucker relation 

Z t ~ 2 ~ y ( 1 ) - i ~ +  ~ +  =0 
I--r ] ~ l ,yW2,  ywo �9 

+ Now for y > l w ~  ), c l , y~P by definition. On the other hand, if y < l w ~  ), then 
+ s P. The remaining ywo >2 w~)wo = w~)(W2) by Proposition 1.8. Hence c2.y~o 

of c~. ~,+~c:.~,~,, must therefore lie in P also. However term, which is a scalar multiple + + 
neither c ~ , n o r  C~w~)lie in P by hypothesis. Moreover C~w~is normal modulo P by 
Lemma 2.1. This contradicts the fact that P is prime. 

A similar argument produces an analogous element w_. Thus there exists an 
element w = (w+ w_) such that c .-+ e P  for all y > w+ and ci,~• ~P  for i = 1, 2. In ~, y - -  

other words, P ~ I~ and P n E~ = 0. It is clear that such an element must be 
unique. 

Now let P~SpecB.  By [13, 10.2.10], there exists a Q~SpecA such that P is 
minimal over Q n B. By the first part of the proof there exists a w such that Q = Iv: 
and Q n E~ = 0. Hence it is clear that P ~ Iw n B. Suppose that e ~ P n E~. From 
the minimality of P over Q n B and the fact that c is normal modulo I~ it follows 
easily that c ~ Q, a contradiction. [] 

Corollary 4.1.2. Identify SpecA with {P~SpecA]P  ~ Iw, P n E ~  = 0}. Then 
SpecA = ~Jw~W• SpecA~, where U denotes the disjoint union. Similarly 

SpecB = ~w~w• SpecBw. 

The analogous result concerning the primitive spectrum is also true. However, 
this is a subtler question and the proof requires the characterization of the 
primitive ideals as the locally closed elements of Spec A. 

4.2. We now return to the study of B~ and C~. Define the algebra C~ by: 

I 
C~, if w+ = w_; 

H • = w-(W0 and w+ =~ w_(Wj); C~[ t  i ], if w+ 
C~ 

ICw[taH •  2+1], if W+ ~ w_(W/) for i = 1,2 but w_ :t: w+wo; 
/ 

H •  ~,Cw[tl ], if w_ = W+Wo, 

and define B~ to be C~[d-1]. Then it is clear from 2.7.1 and 3.7.2 that 
Cw ~- C~ | C~ d and B~ ~ B~ | C~. Moreover both C, and B~ are integral 
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domains by 3.10.1. We now show that B~ is simple. It will then follow that all prime 
ideals of Bw are induced from C~ a. 

Lemma 4.2.1. Let I be an ideal of Bw (respectively Cw). Then I is an adA-submodule 
ad if and only if I = ~r n ~c7 ad~~ (respectively I = (I n Cw )Cw). 

Proof. Since B~ is a localization of Cw and C~ is ad-invariant, it is enough to prove 
the result for Cw. Let I be an ideal of C~ and suppose that I strictly contains 

ad ad (I n C~ )Cw. Choose f ~ I \ ( I  c~ Cw )C~ and write f (as in the proof of 3.10.1) as 
f =  ~ . z , ~ . M " ,  where ~.~ Soc C~ for all n and ~. :# 0. Assume that m is minimal 
for such elements. The argument used in the proof of 3.10.1 implies that I contains 
~x Zx~m, x for some non-zero scalars Z z. Since I is ad-invariant, it therefore contains 
each ~zCtm x" But ~z~, z~(Cw)x = uzC~ for some unit u x. Thus ~x~m z~(I  ~ C~)C~ 
and so c ~ , M . e ( I  ~ C~)Cw, contradicting the minimality of m. 

Theorem 4.2.2. B~ - B,, | aa C~, where B~ is a simple algebra. The center of B~ 
is C~ and all ideals of B~ are 9enerated by their intersection with the center. 
Thus Spec B,~ ~ Spec c a  a and Prim Bw ~- Prim C~ d. All primitive ideals of B ,  are 
maximal and all prime ideals are completely prime. I f  P ePrimBw then 
GKdim B~/P = l(w) + s(w). 

Proof. Let Pe be the ideal of B~ generated by elements of the form t - 1, where 
t ~ { t] t"~[n, m ~ Z } n C~. Then clearly B~ ~- Bw/Pe. Hence P~ is a completely prime 
ideal of Bw. From the lemma we have that P~ is a maximal ad A-invariant ideal of 
Bw. Since A~ is a finite normalizing extension of B~, it follows from "Lying over" 
and "Going up" [13, 10.2], that Pe is in fact a maximal ideal of Bw. Hence B~ is 
simple. Because B~ satisfies the nullstellensatz [13, 9.1], it follows that B, is central 
simple and the assertion concerning the spectrum is a consequence of [3, 4.5.1]. By 
the nullstellensatz again, the primitive ideals are generated by the maximal ideals of 

ad Cw. Since the quotient of B~ by such an ideal will always be isomorphic to B,, all 
the primitive ideals are completely prime. Since every prime ideal is an intersection 
of primitives it follows easily that all the prime ideals are completely prime. The 
assertion concerning the Gelfand-Kirillov dimension follows from the description 
of B~ as a localization of an Ore extension and a slight generalization of 
[13, 8.2.10]. [] 

4.3. We may now use Corollary 4.1.2 to deduce some global results about the 
primitive spectrum of B. We shall say that a Noetherian C-algebra R satisfies the 
Dixmier-Moeglin condition if the following conditions are equivalent for a prime 
ideal P: (a) P is primitive; (b) P is rational (the center of the ring of fractions of R/P 
is C); (c) P is locally closed in SpecR. Recall that the action of H by right 
translation on B induces a natural action of H on Prim B. 

Theorem 4.3.1. In the notation of Sect. 2.8, we have that 

PrimB = U PrimwB. 
w ~ W x W  

Moreover PrimwB is a nonempty H-orbit for each w e  W• W. I f  Q~ is a primitive 
ideal of type w, then H/StabnQ~ is a torus of rank 2 - s(w). All primitive ideals of 
B are completely prime. B satisfies the Dixmier-Moeglin condition. 

Proof. Let P be a primitive ideal of B of type w. Then by the nullstellensatz [13, 9.1] 
and [-3, 4.1.6] PB~ is maximal. On the other hand if P is a prime ideal of B of type 
w and PBw is maximal, then any prime ideal strictly containing P intersects the set 
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gw of regular elements nontrivially. Hence the set P is locally closed in Spec B and 
again by the nullstellensatz [13, 9.1.81, P must be primitive. The fact that all prime 
ideals of B are completely prime follows immediately from 4.1.2 and 4.2.2 by 
standard facts about localization. [] 

Remark. Notice that these results imply that for any primitive ideal P of B there 
exists an Ore set Ew and a normal element d such that (B/P)~w ~- C , [ d -  1] and C~ is 
an iterated Ore extension. This should be compared with the structure of primitive 
factors of the enveloping algebra of a solvable Lie algebra [13, w 

4.4. We now deduce the main theorem. Recall that A = Cq[G]. 

Theorem 4.4.1. In the notation of Sect. 2.8, we have that 

PrimA = U PrimwA. 
w E W x W  

Moreover PrimwA is a nonempty H-orbit for each w ~ W x  W. The map P ~ PAw is 
an isomorphism between PrimwA and Prim Aw. I f  P ,  is a primitive ideal of type w, 
then H/S tabnP,  is a torus of rank rk G - s(w). GKdim A/P~ = l(w) + s(w). A satis- 
fies the Dixmier-Moeglin condition. 

Proof Let P,  be a primitive ideal of A of type w. It follows from Sects. 4.2 and 4.3 
that P,  Aw is a primitive ideal of Aw and that P,  c~ B is a primitive ideal of B of type 
w. Furthermore the prime ideals of A lying over a given primitive ideal of B form 
a F-orbit and are all primitive. The fact that the Dixmier-Moeglin condition passes 
from B to A follows from [91. [] 

4.5. As noted in the proof of Theorem 4.4.1, it follows from the description of the 
primitive ideals of Bw that if P e Prim Aw, then P c~ Bw is a primitive ideal of Bw and 
that the primitive ideals lying over a fixed primitive ideal of Bw form a nontrivial 
F-orbit. Using a detailed analysis of the structure of Aw as a crossed product of 
f over Bw, one can calculate the exact number of primitives of A w lying over a given 
primitive of Bw. 

Proposition 4.5.1. Let P c  Prim Aw. Then P c~ Bw is a maximal ideal of Bw. Con- 
versely for all maximal ideals Q of Bw the number of primitive ideals P of Aw such that 
P c~ Bw = Q is: 

i if w=(e,e); 
if w+ = w_ = e(Wi) and w+ or w_ ~ e(Wj) 

otherwise. 

All primitive ideals of Aw are maximal and completely prime. 

In particular this last result implies that all prime ideals of Cq[G1 are com- 
pletely prime. Goodearl and Letzter [61 have recently proved that all prime ideals 
of Cq[SL(n)] are completely prime. 

Remark. The authors have recently generalized the results of this section, proving 
Conjecture 1 of 2.8 for Cq[SL(n)]. 
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List of Notation: 
1.2 2, Uq(g) 3.2 ~f , l  
1.3 Cq[G] 3.3 S 
1.4 X u 3.4 R(e,i, y) 
1.5 c~. w 3.5 R "d 
1 . 6  a 3.6 [ad m] C-~,,i,#,j 
1.7 Uq(b• 3.7 Fi(cQ ^ 

1.9. Wi, Wi, <i ,  = i  3.9 q~ 
2.2 Iw, Nw, Ew, Aw 3.10 ~d C~, Hw 
2.5 H, F, B, Bw 4.2 C,, B, 
2.6 z~.~, ti, C~, di, d 
2.7 Cw 
2.8 Prim~, Sympw 

A. Symplectic Leaves in a Semi-simple Poisson Lie Group 

A.1. Let G be a connected complex semisimple Lie group with Lie algebra g. Let 
h be a Cartan subalgebra of g, let R be the associated root system and R § a choice 
of positive roots. Denote by x ( - ,  - )  the Killing form on g. Let n • = @,~R + g~, 
and let b • = h �9 n 5. Let d = g x g. The Iwasawa decomposition of d (as defined in 
[3, 1.13.14]) is then d = g O  a O u +, where g is identified with the diagonal 
subalgebra of d, a = {(x, - x ) l x e h }  and u + = {(x, y ) l x e n  +, y e n - } .  Define the 
bilinear form ( - ,  - )  on d by: 

1 
( (x l ,  Yl), (x2, Y2)) = ~ (~c(xl, x2) -- x(yl, Y2)). 

Denote a G u + by g,. Then (g, g,, d) is a Manin triple in the sense of [4]. There is 
then a Poisson Lie group structure on G associated to this triple [4]. The 
corresponding Poisson tensor is the tensor rc defined by n(g) = lo, R - ro, R, where 

x E R = 2~,>o , ^ E _ , e g  ^ g and lo, and ro, are the differentials of left and right 
translation respectively. The associated local double Lie group is then (G, G,, D), 
where D = G xG; G is identified with the diagonal subgroup {(x,x)lxeG}; 
Gr = AU +, where A = { (x , x -1 ) l xeH}  and U + = { (x ,y )eN +, y e N - }  and H, 
N ~ and B -+ are the closed connected subgroups of G associated to h, n -+ and b +- 
respectively. 

Consider the map p: G ~ D/G,. Define F to be G n G, = kerp. It is easily seen 
that F = { (h, h) e H lh z = 1 }. Hence F is a finite subgroup of D isomorphic to Z~ kG. 
Define G to be G/F ~ GG,/Gr. Since GG, is open in D, it follows that G is an open 
subset of D/G,. Since n is H-invariant (and therefore F-invariant), it induces 
a Poisson tensor on G. 

Recall that a symplectic leaf of a Poisson variety is defined to be a maximal 
connected symplectic subvariety. We denote by Symp G the set of symplectic leaves 
of G. There is a natural partial order on Symp G by inclusions of closures. 

Theorem A.I.1. 1) The symplectic leaves of G are of the form G n G~xG,/G, for some 
xeG. 

2) The symplectic leaves of G are the connected components of the inverse images 
of the symplectic leaves of G. 
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Proof Since p : G ~ 2  is 6tale, we have that for all x e G ,  TxG~-Tp(x)2 
_~ Tp~x)D/Gr. We recall some results from [-11]. The left action of Gr on D/G~ 

induces a map o- from the Lie algebra g~ to the Lie algebra of vector fields on D/G~. 
For  ~ e g, we denote by ax(c~) the corresponding element of Tx G. The bilinear form 
( - ,  - ) identifies gr with g*. Therefore, each c~ e g, induces a right invariant 1-form 
c~, on G. Define the right dressing vector field on G by (p~(c~), ~)  = rc~(c~(x), ~) for 
all C e T*G. By Eli, 3.13], Px(~) = -crx(c~) for all c~egr and x e  G. Hence 

rk rex = dim o'x(g,) = dim GrxG~/G,, Vx e G.  

It is easily seen that G~xG~/Gr n 2 is a Poisson subvariety of G; hence it is 
a symplectic subvariety by the above equality. The theorem then follows 
easily. [] 

A.2. Denote by Q = TU § = HG~ the positive Borel subgroup of D. Recall the 
Bruhat decomposition D = [ [w~w • w QwQ = [Jw~w • wQwG~. For  each w e W x  W 
we fix a representative ~ of w in the normaliser of T and we set: cg~ = G~G~/Gr, 
cKw= QwGr/G~ = Uh~nhCg,. Hence D/G~= [ [w~W• Set ~ = c g ~ n 2 ,  
~ = cg~ n G, d w  = p -  ~ (~w). Fix a connected component  d ~  o f p -  a ( ~ ) .  Notice 
that QwG, ca G ~: 0 for all we  W x  W. This can be proved as follows by induction 
on l(w) (the length of w). Assume that s is a simple reflection; so s = (s,, e) or (e, s,) 
for some ~ e R  +. If s = (s,, e) we have that QsQ n G = (B+s~B +, B - )  ca G 4= 0 
since B+s,B + n B -  4= 0; similarly for s = (e, s,). In the general case, set w = sw', 
where s is a simple reflection and l (w)= l(w')+ 1. Then by induction 
QwQ n G ~ (QsQ ~ G)(Qw'Q n G) + O. Therefore ~w = Cgw n 2 ~ 0 a n d  since 
cgw = Uh~Hh~g~o, we have that hog, n 2 ~= 0 for all h e l l .  These observations to- 
gether with the theorem of section one give the following description of the 
symplectic leaves. 

Theorem A.2.1. 1) Each symplectic leaf of 2 is of the form hN,  for some h e H and 
we  W x  W. 

2) Each symplectic leaf of G is of the form hsr for some h e l l  and some 
we  W• W. 

Let w = (w+, w_)e  W x  W. Define A~ = w ( A ) n A  = {aeAlakG,  = kGr}. Set 
A~=A/A '~ .  Then Aw is a torus of rank s ( w ) = d i m A - d i m A ~ =  
codimhker(w + w -  1 _ 1). When G = SL(n, C) we have that s(w) = 
min {mlw+ w--~ = rl . . .  r,,, where r~ is a transposition for all i}. 

Define U~ = w(U +-) ca U § and recall that we have an isomorphism of varieties 
U +'v= U7 x U~ +, and that Uw ="~ C ~(~'). Thus we have that r = AU+~GJG~ 
= AU~, ffG~/G~. Using a standard argument one verifies that the multiplication 

A w x Uw ~ cg, is an isomorphism. Thus we have proved the following proposition. 

Proposition A.2.2. cg~ ~ Aw x U g , where A~ is a torus of rank s(w) and U 7 ~- C t~). 
Hence dimff ,  = l(w) + s(w). 

A.3. Let we  W x  W. Set Hw = {heHIhG, ffG, = G,~G,}. Then H~ is a closed 
subgroup of H and H~ = H/H'~ is a torus of rank rk G -  s(w). We have that 
~ = HOg, and the same argument as in the previous subsection shows that the 
multiplication map Hw x cg~ ~ ~gw is an isomorphism. 

The group G~ acts by left translation on ~ and therefore on the product 
H~ x cg,. It  is easily seen that the algebra of G,-invariant functions on ffw is C[H~]. 



Primitive Ideals 603 

This proves the first part of the theorem below. The second part is a consequence of 
the description given above. 

T h e o r e m  A.3.1. 1) The G,-orbits in (~w are the fibres of the natural projection 
~w - '  G, \ \~w ~- Hw. 

2) The symplectic leaves of type w in G are the fibres of the induced projection 
Nw -~ Hw. 

We now summarize the results about the set Syrup G of symplectic leaves in G. 
Denote by Sympw G the set of symplectic leaves of type w e W x W. 

T h e o r e m  A.3.2. 1) Syrup G = Uw~w • w Symp~,G. 
2) For each we W x W, SympwG is a nonempty H-orbit. I f  ~r is a fixed 

symplectic leaf of type w, then H / S t a b u d ,  is a torus of rank rkG - s(w). 
3) The dimension of a leaf of type w is l(w) + s(w). 

B. The  Case  G = S L ( 2 ,  C)  

B.1. In this appendix we outline the classification of primitive ideals of Cq[SL(2)] 
and of symplectic leaves of SL(2, C). The proofs of the two theorems below are 
straightforward calculations. In the notation of Sect. 1.4, Cq[SL(2)] is generated by 
the elements a = X l l ,  b = X12, c = XEt, and d = X22 subject to the relations 
ab = qEba, ac = q2ca, bd = q2db, bc = cb, ad - da = (q2 _ q-2)bc, and 
ad - q2bc = 1. The Weyl group in this case is just W = {e, s}, where s 2 = e. The 
ideals Iw for we Wx W are given by I(e.~)= (b, c), I(5,~)= (b), I(~,5)= (c) and 
1(5, ~) = (0). 

T h e o r e m  B.I.1. The following is a complete list by type of the primitive ideals of 
Cq[SL(2)]: 

( e , e ) :P(e ,~ ) ,~=(b , c ,a - ;~ ,d -2 -1 ) ,  2 e C * ,  

(s, e): P(5, e) = I(5, ,) = ( b ) ,  

(e, s): P(e, 5) = I(~, 5) = (c),  

(s, s): P(5,5),~ = (b - 2c), 2~C* . 

All prime ideals of Cq[SL(2)] are completely prime. 

Remark. Let M + and M -  be modules with annihilators P(5, e) and P(e, 5) respec- 
tively. Then M + and M_ are modules of type (s, e) and (e, s) respectively. The 
existence of such modules is used in Sect. 2.3. 

B.2. We now describe explicitly the symplectic leaves of SL(2, C). We continue to 
denote the coordinate functions of the standard representation of SL(2, C) by a, b, 
c and d as above. The standard Poisson bracket is then given by: {a, b} = -ab ,  
{a,c} = -ac ,  {b,d} = -bd ,  {b,c} = 0 and {a, d} = -2bc.  

T h e o r e m  B.2.1. The following is a complete list by type of the symplectic leaves of 
SL(2, C): 
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fE 0 01t (e, e): 2_ 1 , 2 e C *  

Combin ing  these two theorems yields a posi t ive answer  to all the conjectures  
given in Sect. 4. 

Corollary B.2.2. There is an order preserving bijection fl: P r i m C q [ S L ( 2 ) ]  
Syrup SL(2, C). Furthermore, if L = fl(P), then dim L = GK dim C~[SL(2)]/P. 

Acknowledgements. The authors would like to thank S.P. Smith for many interesting conver- 
sations concerning these questions. The first author would also like to thank H.J. Koelink for 
bringing his work to his attention. Much of this work was done while the first author was visiting 
the Universit6 de Bretagne Occidentale. 

References 

1. Bernstein, 1.N., Gelfand, I.M., Gelfand, S.: Schubert cells and the cohomology of the spaces 
G/P. Russ. Math. Surv. 28, 1-26 (1973) 

2. Cohn, P.: Skew field constructions. Cambridge: Cambridge University Press 1977 
3. Dixmier, J.: Enveloping algebras. Amsterdam: North Holland 1977 
4. Drinfeld, V.: Quantum Groups. Proc. ICM, Berkeley, 1986, pp. 798-820, Am. Math. Soc., 

1988 
5. Feng, P., Tsygan, B.: Hochschild and cyclic homology of quantum groups. Commun. Math. 

Phys. 140, 481-521 (1991) 
6. Goodearl, K.R., Letzter, E.S.: Prime factors of the coordinate ring of quantum matrices. 

Preprint 
7. Joseph, A., Letzter, G.: Local finiteness of the adjoint action for quantized enveloping 

algebras. J. Algebra 153, 289-318 (1992) 
8. Koelink, H.T.: On *-representations of the Hopf *-algebra associated with the quantum 

group Uq(n). Comp. Math. 77, 199-231 (1991) 
9. Letzter, E.S.: Primitive ideals in finite extensions of Noetherian rings. J. London Math. Soc. 

(2) 39, 427-435 (1989) 
10. Levendorskii, S., Soibelman, Ya.S.: Algebras of functions on compact quantum groups, 

Schubert cells and quantum tori. Commun. Math. Phys. 139, 141-170 (1991) 
11. Lu, J.-H., Weinstein, A.: Poisson Lie groups, dressing transformations and Bruhat decomposi- 

tions. J. Differential Geometry 31, 501-526 (1990) 
12. Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. 

Math. 70, 237-249 (1988) 
13. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings. New York: Wiley In- 

terscience 1987 
14. Nuomi, M., Yamada, H., Mimachi, K.: Finite dimensional representations of the quantum 

group GLq(n + 1, C) and the zonal spherical functions on Uq(n)\Ug(n + 1). Preprint. 
15. Passman, D.S.: The Algebraic Structure of Group Rings. New York: Wiley Interscience 1977 
16. Reshetikhin, N.Yu., Takhtajan, L.A., Fadeev, L.D.: Quantization of Lie groups and Lie 

algebras. Leningrad Math. J. 1, 193-225 (1990) 



Primitive Ideals 605 

17. Semenov-Tian-Shansky, M,A.: Dressing transformations and Poisson group actions. Publ. 
RIMS, Kyoto Univ., 21, 123%1260 (1985) 

18. Soibelman, Ya.S.: Irreducible representations of the function algebra on the quantum group 
SU(n), and Schubert cells. Soviet Math. Dokl. 40, 34-38 (1990) 

19. Soibelman, Ya.S.: The algebra of functions on a compact quantum group, and its representa- 
tions. Leningrad Math. J. 2, 161-178 (1991) 

20. Soibelman, Ya.S., Vaksman, L.: Algebra of functions on the quantum group SU(2). Funct. 
Anal. Appl. 22(3), 170-181 (1988) 

Note added in proof. Conjecture 1 of Sect. 2.8 has recently been proved by A. Joseph for 
G a simply connected semi-simple complex Li e group. 

Communicated by N.Yu. Reshetikhin 


