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Abstract. We study the time evolution of a non-viscous incompressible two-dimen- 
sional fluid when the initial vorticity is concentrated in N small disjoint regions of 
diameter c. We prove that the time evolved vorticity is also concentrated in N regions 
of diameter d, vanishing as e ~ 0. As a consequence we give a rigorous proof of the 
validity of the point vortex system. The same problem is examined in the context of 
the vortex-wave system. 

1. Introduction 

This paper is devoted to the study of the behavior of the time evolution of  a non- 
viscous incompressible two-dimensional fluid, when the initial data becomes singular. 
Namely we study the case in which the initial vorticity is sharply concentrated in N 
small disjoint regions of  diameter r We prove that the time evolved vorticity is 
also concentrated in N small regions. More precisely we prove that, with the total 
vorticity of  each region fixed and an arbitrary time t > 0, the support of the vorticity 
is contained in N disjoint disks of radius d, d vanishing with e. We call this property 
"localization." 

The difficulty in proving this localization property relies in the divergent kernel 
describing the interaction among the vorticity elements. Actually, when e is very 
small, the velocity field in each blob becomes very large and it is difficult to exclude 
that the radial component of the velocity pushes away thin filaments of vorticity. We 
prove that this does not happen. 

At the same time, as a main consequence of the present result, we prove a general 
rigorous connection between the Euler Equation and the point vortex theory (for the 
first definition of the point vortex system see [1], for a review on the topic see [2, 3]). 
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e Tecnologica), CNR (Consiglio Nazionale delle Ricerche - Gruppo Nazionale per la Fisica 
Matematica) and CNR contract n.92.00544.01 
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Namely we prove that the vortex system describes the asymptotic behavior e ---+ 0 of 
the Euler flow. 

Partial results have been previously obtained for short time and vortex intensity 
of every sign in [4], for any time and vortices of the same sign in [5]. (Furthermore 
there are two particular results globally in time: one vortex [6] and two vortices of 
different sign [7] both cases in bounded regions.) 

Finally, we note that the localization property was already proved for the simple 
system composed by one vortex only in the absence of any external field [5]. The 
main statement of the present paper is a non-trivial improvement of  such a result. 

In Sect. 2 we establish the main result, which will be proved in Sect. 3. Then in 
Sect. 4 we discuss possible generalizations when the initial data do not have compact 
support. Finally in Sect. 5 we apply the result of Sect. 2 to the vortex-wave system. 

2. Main Results 

Consider the Euler Equation in ]I~ 2 in terms of vorticity: 

Otco(x, t) + (u . V)co(x, t) = 0 ,  

V . u ( x , t )  = O, 

co _= curl u - 01'//, 2 - 0 2 U l ,  co(x, t )  = coo, x = (Xl ,  x 2 ) .  

Here u = (Ul, u2) denotes the velocity field. 
If u decays at infinity, we can reconstruct the velocity field by means of co as 

u(x, t) = I K ( x  - y)w(y, t )dy ,  

(2.1) 

(2.2) 

(2.3) 

K =  V •  

V • ~ ( 0 2 , - - 0 1 ) ,  

1 
G(z)  = - 2 7  In Izl.  (2.7) 

As is well known, Eq. (2.1) means that the vorticity is constant along the particle 
paths which are the characteristics of  the Euler equations. Therefore 

co(x, t) = co(Xo(X , - t ) ,  0),  (2.8) 

where the trajectory x(x0, t) of  the fluid particle, initially in x 0, satisfies: 

d 
d~ x(x~ t) = u(x(xo, t), t ) ,  X(Xo, O) = Xo, (2.9) 

u(x, t) = ] K ( x  - y)co(y, t )dy .  (2.10) 

As is well known Eq. (2.8), (2.9), (2.10) imply the weak form of the Euler Equation: 

d 
d-t co[f] = co[u . U f] + co[Or f]  , (2.11) 

where f ( x ,  t) is a bounded smooth function and 

I co[f] = d x c o ( x , t ) f ( x , t ) .  (2.12) 

(2.4) 

(2.5) 

(2.6) 
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It is well known that there exists a unique solution aJ(x, t) E L 1 A L ~  to the initial 
value problem associated to (2.11) provided that co(x, 0) E L 1 N L ~ .  Moreover the 
divergence-free condition (2.2) implies that the time evolution (2.9) preserves the 
Lebesgue measure on R 2. 

We consider an initial datum of the form: 
N 

w~(x,O) = ~-~co~.i(x 0), (2.13) 
i = 1  

where co~#(x, 0) is a function with a definite sign supported in a region A~; i such that 

Ae# - suppw~; i c 2(zi1r S(zile) ['1 ~ ( Z j l S  ) = 0 if i r j (2.14) 

for e small enough, where S(z[r)  is the circle of center z and radius r. 
We denote by 

f dxwe.i(x O) = a i E (2.15) 

the vortex intensity (independent of 6) and we assume 

Iw~#(x,O)l < const6-  ~ ~/< 8 (2.16) 
- -  ~ 3 " 

A particular case considered in previous papers satisfying (2.15) and (2.15) is given 
by: 

~ # ( x ,  O) = ai6-2x(A~;i) , (2.17) 

where x(A) denotes the characteristic function of the set A and 

meas A~# ---- 6 2 . (2.18) 

We prove the following result: 

Theorem 2.1. Denote by we(x , t) the time evolution of toe(x, O) according to the Euler 
Equation. Then, for a fixed arbitrary T > O, 
i) for all d > 0 there exists 6o(d,T) such that, if6 < 6o(d,T ), then 

suppa~e;,z(x ,t) C ~(zi(t)ld) for any t C [0, T] ,  (2.19) 

where zi(t) is the solution of the ordinary differential system (called point vortex 
system) 

N 
d 1 

In Izi(t) - zj(t)l ,  
d-~ (2.20) 

j = l ; j r  

zi(O) = zi ,  

provided that such a solution exists up to the time T. Moreover d ---+ 0 as 6 ~ O. 
ii) For any continuous bounded function f(x) ,  

N g 

lim [ dx aJ~(x, t ) f (x)  = ~ aif(zi(t)) .  (2.21) 
~--+o j i=1 

The proof will be given in the next section. Here we briefly comment on the 
statements of the theorem, i) states that the blobs of vorticity remain localized until 
time T for any d and T, provided that we choose 6 small enough, ii) states that 

N 

t) > ~ a~(zi(t)) (2.22) & e ( X ~  
e--~0 

i = 1  
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weakly in the sense of  measures, where 6(.) denotes the Dirac measure. This last 
statement gives a rigorous justification of the point vortex model. 

We observe that the singular nature of the right-hand side of Eq. (2.20), diverging 
when two vortices are close to each other, does not guarantee the existence of the 
solutions of Eq. (2.20) for every time. In many cases (for instance for a i > 0) 
collapses are forbidden by the first integrals of the motion, but there are cases in which 
singularities do happen. However  it can be proved that the collapses are exceptional 
[2] in the sense that the initial configurations developing singularities have Lebesgue 
measure zero. In general we can either restrict ourselves to this full measure set or 
say that theorem 2.1 holds up to the time T for which the solutions of Eq. (2.20) 
exist. 

3. P roof  of  Theo rem 2.1 

First we consider a single blob of unitary vorticity moving in an external, divergence- 
free, uniformly bounded, time dependent, vector field F (x ,  ~), satisfying the Lipschitz 
condition 

I F ( x , t ) -  F(y , t ) l  <_ L I x -  y l ,  L > 0 .  (3.1) 

Equation (2.9) becomes 

d 
d~ x(t)  = u(x,  t) + F(x ,  t ) ,  (3.2) 

while Eqs. (2.8), (2.10) remain unchanged. The Euler equation in weak form reads 

d 
d--t w[f] = w[(u § F)  . V f]  + w[Otf] . (3.3) 

Then we prove Proposition i) of  Theorem 2.1 for this particular evolution. Define 
the center of  vorticity as 

P 

B~(t) = J x a~(x, t) dx .  (3 14~ 

Theorem 3.1. Suppose that 

8 
supp~v~(x,0) c ~ (x* le )  and la~(x,0)l < conste ~' r / <  5 '  (3.5) 

and fix an arbitrary T > O. Then for any d > O, there exists co(d,T) > 0 such that, if 
e < E o, we have: 

suppco~(x,t) C Z(B( t ) Id )  for any t E [0, T ] ,  (3.6) 

where t3(~) is the solution of the ordinary differential equation 

d B( t )  = F(B( t ) ,  t ) ,  B(0) = (3.7) X * .  

Moreover 
lim/7~(t) = B(t )  uniformly in t C [0, T ] .  (3.8) 
c--+0 

Remark. The above theorem does not assert that the motion of the fluid particles 
supporting the vorticity aJ~ converges, in the limit c ---+ 0, to B(t) .  In general, this is 
false. The motion of such fluid particles, due to the singularity of the kernel K ( x  - y), 
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is very irregular and is not converging at all. However the motion of the center of 
vorticity converges to the motion of a single point vortex in the velocity field F .  

The above theorem is a basic preliminary step in proving the validity of the vortex 
model: we are looking to the behaviour of a single vortex, assuming that the field 
generated by all the others is given and smooth. 

Proof. The difficulty of the proof arises from the singularity of  the kernel K which 
forces a fluid particle rotate with a very large velocity around the center of vorticity. To 
overcome this difficulty we study the motion of the center of vorticity which will turn 
out to be much more regular than the motion of a given fluid particle. Moreover, the 
moment of inertia is almost conserved during the motion, so that we can also control 
the spreading of the vorticity distribution around the center of  vorticity. However, 
as we shall see, the control given by the moment of inertia is not enough for our 
purposes. 

We introduce the moment of inertia I~ with respect to B e: 

Ie(t) = / cJe(x, t) (x - Be(t))2dx. (3.9) 

Then we study its growth in time. If  F would vanish, B e and I e would be constant 
along the motion. For F ~ 0 we have 

d B~(t) = f F(x,  t) we(x, t) dx,  

ddt I~(t) = 2 / ( x  - Be(t)). F(x, t) we(x , t) dx ,  

(3. lO) 

(3.11) 

where we have taken into account the antisymmetry of K.  Making use of the fact 
that 

(x Bs(t)). F(Be(t) , t)aJe(x , t ) =  (3.12) dx 0 

and the Lipschitz condition on F ,  we have 

d ie(t ) / -~ << 2L we(x , t)(x - Be(t))2dx = 2LIe(t ) (3.13) 

from which 

Ie(t) <_ I~(O)exp(2Lt). (3.14) 

Therefore ~im Ie(t ) = 0, uniformly in t E [0, T], since 

I~(O) = / w~(x, O) (x -- x*) e dx 

= f w~(x ,O)(x-  x*)2dx < c 2 --* 0 

~(x* le) 

as ~ ~ 0,  (3.15) 
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Then it is easy to prove Eq. (3.8). In fact 

t 

IB(~) - B~(~)l _< ix* - -~(o)l + f d~lF(~(~), ~ ) -  f dx F(~, ~)~(x,  ~)l 
0 

t 

<_ ix* - B~(o)l + f asIF(B(s), s) - F(B~(s), s)l 
0 

$ 

0 

t 

_< I x* - Be(0) I + L f f  ds lB(s  ) - B~(s) I 

0 

t 

+ L f ds f dzlB~(s),s)-xl~(z,t) 
0 

t 

_< 12 - B~(o)I + L / dslB(s) - BAs)[ 
0 

+ L T  sup V/~( t ) .  (3.16) 
O<t<T 

By the Gronwatl Lemma, because the first and the third term in the right-hand side 
of  (3.16) are vanishing in the limit e --~ 0, we finally achieve the proof of statement 
(3.8). 

We now proceed in proving the last step, namely statement (3.6). We study the 
vorticity amount crossing the boundary of  a small disk around B~(t). We prove that 
it is small and so the radial part of the velocity field is also small and the particle 
paths cannot go far apart from B e. 

To control the vorticity flux we introduce, for R > 0, the following function 
W R E C~(]R2), r -+ WR(r)  depending only on Irt, defined as: 

1 if Irl _< R (3.17) 
WR(r)  = 0 if Irl > 2R 

such that, for some C 1 > 0: 

Define the quantity: 

tVWR(r) I < C1 

C1 Ir - r'l IVWR(r)-  VWR(r')] _< ~-~ 

UR(t) = 1 -- f dx WR(X -- B~(t))~(x, t). 

(3.18) 

(3.19) 

(3.20) 
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Notice that, i f  we(x , t) C ~(Be(t), R) then #R(t) = 0. Thus we choose # n  as a 
measure of the localization of w e (x, t) around B e. Then we evaluate the time derivative 
by using (3.3): 

d#n(t) 
dt 

d B~(t)}we(x,t ) - f dx V W R ( x -  B~(t). {u(x, t)+ F(x, t ) -  -~ 

= f d x ~ ( x , t ) V W n ( x -  BAt)). / dy K ( x -  y)co~(y,t) 

f 
- ] dxwe( z ,  t ) V W R ( X  -- B A t ) )  

] dy ~e(Y, t) [F(x, t) - F(y, t ) ] .  x (3 ~21~ 

We now estimate the first term in the right-hand side of Eq. (3.21). By the 
antisymmetry of  K ,  it can be written as: 

1 
2 / d x f f d Y ~ ( x , t ) w e ( Y ,  t) 

• { v w R ( x  - Be(t))  - v w i { ( y  - B A t ) ) } -  K ( z  - y) .  (3.22) 

To estimate this term we split the integration domain in the following sets: 

T 1 = {(x,y)ix E i:C(B~(t)lR)y �9 Z(B~(t)17 } , 

T 2 = {(x,y)]x �9 I?,C(B~(t)]R)y ~ Z(B~( t ) IT} ,  

T 3 = {(x,y)[y �9 ~r �9 Z(B~(t ){7},  

T 4 = {(x,y)ly �9 Z~(B~(t)]R)x ~ Z ( B r  

1 where "7 = R~ (a  > 1 will be fixed later) and, from now on, R < g so that 7 < R. 
Notice that the integrand in (2.22) vanishes in the complement of  T 1 U T 2 U T 3 U T 4. 
Thanks to the identities VWR(x-Be(t)).K(x-Be(t)) = 0 and VWn(y-Be(t)) = 

0 if y �9 ~(Be( t ) [~) ,  the contribution of the integral (3.22) due to T l is bounded by 

dx dy c%(x, Oc%(y, t ) V W R ( x  - Be( t ) ) .  { K ( x  - y) - K ( x  

Z(Be(t)k~) 

_< [by (3.18) and the fact that VWn(x - Be(t))  = 0 if  Ix - B~(t)l < R] 

Jy - BAt)]  x ( I B A t  ) _ y[ > R) -< C--!2 f dx f dya%(x,t)a2~(y,t)-~(~ - - - ~  
(B~(t)[7) 

--< ~ T/~fi(/~) /~(R~_ 0/)2 ~-- C2mt(]{)Ii{ct-3" (3.23) 

Here we set: 
/ .  

mr(R) : / a2~(x, t) dx , (3.24) 

12C(Bz(t)lR) 

that is the amount of  vorticity outside E(Be(t), R). 
To estimate the contribution due to T 2 we use, thanks to the obvious inequality 

IK(x)l < Clx1-1, (3.19) and the bound: 

]{VWR(x - B~(t)) - VWn(y - B~(t))} �9 K(x - Y)I < C3 R-2 (3.25) 
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from which we estimate such a contribution by: 

rat (')')rat ( R) (3.26) C4 /~2 

The contributions due to T 3 and T 4 can be handled exactly in the same way. 
To achieve the estimate of the time derivative of  #R, we evaluate the second 

integral in the right-hand side of Eq. (3.21). It is: 

We split the domain of integration in y into the two regions Ig - B A t )  I > R and its 
complement. The first contribution is bounded by: 

rat(R)2 (3.28) 
211FIl~ R ' 

while the second one is certainly bounded by: 

Csrat(R) , (3.29) 

since from Eq. (3.18), 

IVWR(x -/3~(t))l Ix - Yl - Cons t .  (3.30) 

Before collecting all the above estimates we evaluate mr(R) in terms of Ir 

1 [ I~(t) e 2 
rat(R ) < R---- ~ J dxws(x , t ) x  2 ~ - - ~  ~ C 6 --~ (3.31) 

S(s~ (t)l R) 

[here we used (3.14)]. In conclusion 

d#R < Csmt(R ) + A(R,e)  (3.32) 
dt - 

where 
A(R, ~) = CTc:(R '~-5 + ~2R-2c~-4 q- ~2R-5) .  (3.33) 

On the other hand, we can bound mr(R) in terms of Pn/:: 

1 - i dxw~(x,t) <_ 1 - i d x w ~ ( x , t ) W R / z ( X  - B~(t)) (3.34) mt(l~) 
, J  , J  

S(B~(t) IR) 

so that from (3.32) we arrive at the integral inequality: 

t 

#R(t) < TA(R,  ~) + C 5 J d'r #R/2('r) + #R(O). (3.35) 

0 

The term #R(0) vanishes if R > ~. 
We iterate inequality (3.35) k-times, with k satisfying the conditions 

2 - k R  > E. (3.36) 
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1 1 We choose R = e6, 5 < ~, and k = integer part of  D I lne  I, D < 5 so that Eq. (3.36) 
is satisfied for e < 1. Therefore: 

C~tk k - I  
#R(t)<- k! + Z T s + I C ~ A ( R 2 - 8 ' e ) "  (3.37) 

8=1 

We see now that the first term in the right-hand side of inequality (3.37) can be 
bounded by e -~ with ~ arbitrary large provide that e is small enough. This follows 
by observing that k! > kke -k .  Moreover the sum in (3.37) can be bounded by [see 
Eq. (3.33)1: 

ff--D log CE2(E6o~--55 + r log 2 ~_ e2--55-5D log 2) .  (3.38) 

From this expression we realize that, choosing D and 6 small and c~ large, such that 
O{5= 2 5' we have 

pR(t)  <_ constc ;~ (3.39) 

8 8 with/3 < 5 but arbitrary close to 5" The definitive choice of  D, 5, c~, and consequently 
/3 will be done later on. 

So we have proved that the amount of  vorticity escaping from the disk Z(Be( t ) ,  ~ )  
is vanishing at least as eZ. This information allows us to conclude the proof. Consider 
the disk ~ 2  : ~(Be(t)[e6/3) �9 A particle localized in x, outside the boundary of such 
a disk, is moving under the action of three fields: the one generated by the vorticity 
inside the disk Z(Bs( t ) ]c  6) = Z 1, say u l, the other one, u 2, generated by the vorticity 
outside the disk $1 and u 3 due to the external field. Let n be the versor in the direction 
Be(t)  - x. Then: 

lug(x), nl = In" f dy a3e(y , t ) K ( x  - y)l 
E1 

= n .  f d y ~ e ( y , t ) { K ( x  - y) - K ( x  - Be(t)) } 

S1 
~6 

C l l  (e6/3 _ e6)2 § 0 as e ---+ 0.  (3.40) 

Moreover 

f 
lU2(X)I ---- ~Jc dycJ~(y , t )K(x  - y) 

/ 1 
< Ce -~  dy ~ ,  

~(Ol~) 

where r is defined by 

(3.41) 

Ce-~77rr 2 = mt(e~) .  (3.42) 

The last inequality (3.41) is a consequence of the fact that lu2(x)l, among all the 
vorticity distributions we(y , t)X(Z~),  bounded by Ce -~ and whose total mass is given 
by mr(e6), is maximized by a constant vorticity distribution, valued Ce -~,  on a circle 
of  radius r [given by Eq. (3.42)]. 
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By Eq. (3.42), 

from which: 

7" ~ CE/3/2+rl/2 , (3.43) 

1 
lu2(x)[ ~ conste ,7 d y ~  = constc 3/2-~/2 ---+ O, 

~(olr) 

as e -~ 0 if/3 > r/. (3.44) 

(3.44) fixes the choice of/3:/3 ~ (% 3)" Equation 
% ] 

Finally the Lipschitz condition on the external field assures that "/Z 3 ---+ 0 as e ---+ 0. 
Therefore the fields which could be responsible for bringing the particle paths far 

from B~(t) are arbitrary small and it follows that in a finite time T, suppc, a~(z, t) 
must be contained in a fixed circle Z(B~(t)ld), for an arbitrary d, provided that r is 
sufficiently small. Then the proof of  the theorem follows immediately by observing 
that B~(t) --+ B(t) as e --+ 0. [] 

Remark. Notice that estimate (3.14) on the momentum of inertia is not enough to 
prove that u 2 is vanishing. Actually it gives only that the amount of  vorticity outside 
a disk of a fixed radius d around Be(t ) is of order r 2. It generates a bounded field not 
vanishing a priori. Thus we need a more sophisticated analysis to prove the complete 
localization. 

We give now the proof of Theorem 2.1 which', after Theorem 3.1 is almost obvious. 
Single out a blob, and consider the action of  the others on it as an external perturbation 
field. If  all the other blobs are rather far apart, they generate a Lipschitz vector field. 
On the other hand we proved that the blobs remain localized. Thus it is not difficult 
to achieve the program. 

The proof follows readily by the following considerations. Let b be the minimal 
distance at which any couple of  point vortices can arrive in the time T, according 
to the vortex dynamics, for the initial datum {xi}i=l, W. Consider, for the initial 
condition toe (with e to be chosen later) the following regularized dynamics for the 

b Euler equation: two disjoint blobs interact via a kernel K,7, r? = ]-6 "K~ is defined as 

a C ~ function which coincides with K(x) when Ixl >_ ~. Each blob interacts with 
itself via the singular K.  By Theorem 3.1 it is not difficult to prove Theorem 2.1 with 
the Euler dynamics replaced by this regularized dynamics. In fact the blobs remain 
localized around their center of  vorticity, and hence around zi(t). Moreover we can 
choose ~ so small that the minimal distance between two blobs is larger than b/2. 

b Finally, by the choice of r/ = g6' we argue that this regularized dynamics coincide 

with the real one. This concludes the proof. 

4. Generalizations 

First we note that we have studied the problem in the whole I~  2 only for sake of  
simplicity, but all the results hold also in a region with boundary. Of course in this 
case we must consider initial data for which the point vortices never develop collapses 
or hit the boundary up to the time T. 

In the present paper we have proved that the "localization" property is a sufficient 
condition for a rigorous justification of  the point vortex model. We can ask whether 



Vortices and Localization in Euler Flows 59 

such a derivation is still possible without localization. When all the vortices have 
intensity of  the same sign we can prove the following more general theorem: 

Theorem 4.1. Consider an initial datum of the form 
N 

w~(x,O) = Ew~ . i ( x  0), (4.1) 
i = 1  

where w~;i(x,0 ) E LI(]R 2) f-) L~(]R2), w~.i(x O) > 0 and 

/ we;i(x , O)dx = a i = vortex intensity. (4.2) 

Moreover for any bounded continuous function f ,  
N 

lim f f(x)co~(x, O)dx = Z aif(zO" (4.3) 
~--,o J 

i = 1  

Then 
N 

lim [ f(z)  we(x, t)dx = E a~f(zi(t)) (4.4) 
~-~0 d 

i=1 

where wE(x , t) is the Euler evolution of the initial datum we(x , 0) and zi(t ) is the 
solution of the vortex equation (2.20) with initial datum z i. 

We do not give here the explicit proof, which is essentially the same as in [5] (see 
also the technique of  [8]). 

When a i have different sign we do not have, at present, a result like the previous 
one. However we can generalize the result of the previously section supposing that 

f w~#(x, , a~ O)dx (4.5) 
E---*0 

and co~;i(x , 0) is bounded outside ~(zile).  Then we consider this last vorticity as the 
source of an external field that turns out to be uniformly "quasi-Lipschitz." We recall 
that a bounded vorticity w(y) produces a velocity field such that 

f dy[K(x - y) - - y) w(y) << const([]w[[~ + [Iwl[l)r - (4.6) K(x' x t l )  ~ 

where 
r ( 1 - 1 n r )  if r < l  (4.7) 

~(r)  = 1 otherwise ' 

Hence, following the same lines of Sect. 3, we can prove: 

N 

Theorem 4.2. Let we(x , 0) = ~w~; i (x  , 0), where w~.i(x O) have a definite sign and 
is such that i=1 

f w~#(x, ~ a~, (4.8) O) dx 
~----+0 

8 (4.9) tw~;i(x,O)l _< constc -~  , ~/< ~, 

]we;i(x,0) ] < const if x C ~C(zile), (4.10) 

N 

f dx we(x , Off(x) = E aif(z~)' (4.11) lim 
e---->O i = 1  
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for any continuous bounded function f . Then 

N 

lim f dx f(x)w~(x, t) = Z ai f(z i( t )) '  
~--+0 

i=1 

(4.12) 

where w~(x, t) is the Euler evolution of the initial datum we(x , 0) and zi(t ) is the 
solution of the vortex equation (2.20) with initial datum z i. 

5. Vortex-Wave System 

The technique we use for proving Theorem 2.1 gives us also a rigorous justification 
of the so-called vortex-wave system. This is a model in which point vortices (vortex) 
and a smooth flow (wave) coexists. More precisely, we consider the initial value 
problem in R2: 

N 
d 
d~ r = u(Ct(x)) § ~ aiK(Ct(x)  - zi) x • zi(O), (5. l)a 

i= l  

N ! 
zi(t) = u(zi(t) ,t) + ~ a jK(z i ( t )  - zj(t)) ,  (5.1)b 

dt j=l;js~i 

u(.,t) = (K  * w)( . , t ) ,  (5.1)c 

~(r o) = ~0(x) c L 1 n L ~ ,  r = x, z~(0) = zi.  (5.1)d 

It describes a system composed by N point zi, each of them moving along the 
velocity field produced by the others and by an incompressible fluid with a bounded 
vorticity. At the same time this fluid moves along the whole velocity field. When 
the point vortices are absent this system reduces to the usual Euler equation [notice 
that here we denote by Ct(x) the quantity that in Eq. (2.9) we indicated by X(Xo, t)]. 
The system (5.1) has been studied in [9], where a global existence theorem has been 
proved. Moreover with the additional hypothesis that: 

suppw0(x) fq z i = 0 for any i and zi ~ zj if i r j ,  (5.2) 

the uniqueness of the solutions and their regularity have also been proved. 
We can justify this model by a result analogous of Theorem 2.1: 

Theorem 5.1 Consider an initial datum of the form 

N 
~ ( x ,  0) = ~0(x) + Z ~ ; i  (x' 0), (5.3) 

i= l  

where wz;i(x, 0) is a function with a definite sign supported in a region Ac; i such that 

A~; i - supp w~; i C S ( z  i[c); S ( z  ilC) A S ( z j  IE) = ~) if i r j (5.4) 

for C small enough and where S(zlr) is the circle of center z and radius r. Moreover 

distance (Uzi; w0(x)) > r 0 fixed (5.5) 

and 

f dx we.i(x O) = a i E (vortex intensity) (5.6) 
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and 
s (5.7)  [w~;i(x,O)l < conste - ' l  r / <  5" 

Then for  all d > O, d << r o there exists eo(d , T)  such that, i f  e < eo(d , T),  then 

suppa3e;i(x, t) C S(z i ( t ) Id)  for  any t E [0, T]  (5.8) 

and 
d ~ O as e ~ O. (5.9) 

Moreover for  any continuous bounded function f ( x )  

N 

f dx~(x,t)f(x)= f d x w ( ~ S t ( x ) , t ) f ( x ) +  ~-~a i f ( z i ( t ) )  , (5.10) 
i=l 

where w~(x, t) is the time evolution of  w~(x, O) via the Euler equation and w(qSt(x) , t), 
zi(t  ) are the solution of  the vortex-wave system (5.1). 

The p roof  is analogous to that o f  Theorem 2.1. 
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