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Abstract, For a given braid group representation (BGR), a process of the Yang- 
Baxterization is formulated to generate solutions of the Yang-Baxter equation 
(YBE). When a BGR admits the Birman-Wenzl (BW) algebraic structure, this 
process can be explicitly passed through and two types of trigonometric solutions 
of YBE are generated from such a BGR. These two solutions have the essential 
difference to each other and both of them preserve the crossing symmetry property 
if the given BGR has. By taking certain reduction on the BW algebra, the rational 
solution is also generated. A practical condition to judge whether a BGR satisfies 
the BW algebra is given, from which one finds that not only the familiar BGRs of 
[5,7,9], but also some new ones obtained recently in [12] have the BW structure. 
Thus they can be explicitly Yang-Baxterized to solutions of the YBE. 

1. Introduction 

It is known, nowadays, that the Yang-Baxter equation (YBE) plays a central 
role in the study of integrable models in statistical mechanics and quantum field 
theory, and is also closely related to some other fields, such as the quantum 
group, knot theory and conformal field theory etc., in both mathematics and 
physics [14]. 

Based on the theory of quantum group, or the q-analogues of the universal 
enveloping Lie algebras, Jimbo [5] constructed a family of trigonometric solutions 
of the YBE associated with the fundamental representations of the Kac-Moody 
algebras, and they possess the classical limits of Belavin and Drinfeld [6]. By 
letting the spectral parameter be zero (or infinity in a different choice) on the 
other hand, these solutions give rise to the braid group representations (BGRs) 
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which satisfy the Jones, or cubic reduction relations [7, 8]. The BGRs obtained 
in this way can also be derived directly from the quantum group of the classical 
simple Lie algebras [9]. Recently, some nonstandard BGRs have been found by 
directly solving the braid relation (i.e., the parameter independent YBE) under 
the constraints of the weight conservations [10-12]. We call them nonstandard 
BGRs because of the nonexistence of the classical limits in the sense of [9]. 
For some of them, the eigenvalues have the essential multiplicity two and the 
correspondent Markov traces cannot be defined properly in the usual way [11, 
17]. 

The intention of this paper is as follows: starting from a given BGR, how 
to recover the solution of YBE which takes the given BGR as its suitable limit 
when the installed spectral parameter goes to zero. The process of answering 
this question is, now, called the Yang-Baxterization [13, 14]. We find that for a 
BGR S, the Yang-Baxterized S denoted by/~(x) solves the YBE if and only if 
S satisfies an identity and a sufficient condition such that S satisfies this identity 
is that S admits additional relations in the Birman-Wenzl (BW) algebra besides 
the braid relation. 

As is known, the so-called BW algebra is a complex algebra with unit 
depending on two complex parameters [15]. It was designed partially to help 
understand Kauffman's polynomial in knot theory. In a recent paper, Jones [13] 
briefly gives a beautiful theorem of Yang-Baxterizing the BW algebra. In this 
paper, however, we would like to discuss the Yang-Baxterization prescription 
from a slightly different viewpoint and its further properties. We find that 1) the 
structure of the BW algebra exists for many of the BGRs, not only for the known 
standard ones of  [5, 9] but also for the nonstandard ones of [11, 12, 14] which 
are not necessarily to be related to the usual link polynomials. For later use, a 
practical condition to judge whether BGRs have the BW structure is given. 2) For 
a given BGR satisfying the BW algebra, the trigonometric Yang-Baxterization is 
formulated, which gives rise to two independent types of trigonometric solutions 
of the YBE. In particular, for the BGR of [5, 9] besides the solution in the form 
of [13], there is another one corresponding to the Kac-Moody algebras. 3) The 
process of Yang-Baxterization preserves the crossing symmetry property which is 
in the sense of [8, 16], i.e., if the given BGR has the crossing symmetry property, 
so do its Yang-Baxterized solutions of YBE. 4) If  the generators and parameters 
of the BW algebra depend on a q-parameter, by taking a certain limit, the BW 
algebra reduces to the "rational" one which in turn gives rise to the rational 
solutions of the YBE through the rational Yang-Baxterization. We find that the 
BW algebras associated with all BGRs of [5, 9] and the nonstandard ones of [10, 
12] have the rational reductions. Thus, the correspondent rational solutions (and 
furthermore the S-matrices) can be constructed explicitly. 

2. Sufficient Conditions for the Birman-Wenzl Algebra 

The BW algebra is generated by the unit I, the braid operators Sj and the monoid 
operators Ej and depends on two independent parameters w and a [15]. Since it 
will be used to carry out the Yang-Baxterization in this section, we will discuss 
sufficient conditions for a BGR having the BW algebraic structure and give some 
typical examples of representations of BW algebra. Let us take the BW relations 
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as follows. 
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Sj - S~  1 = w ( I  - E j ) ,  (2.1.1) 

SjSj+_ISj = Sj+,ISjSj+I, SjSk = & S j ,  IJ - kl > 2, (2.1.2) 

E j E j ! I E  j = Ej ,  E j E k  = EkE j ;  ]j -- k] > 2, (2.1.3) 

E j S j  = S j E j  = erE j ,  (2.1.4) 

Sj+_ISjEj+_I ---- EjSj+_ISj = EjEj+_I,  (2.1.5) 

Sj+_IEjSj4-1 = $71Ej+_1S71, (2.1.6) 

Ej+_IEjSj+a = E j + I S ~  1, S j+IEjEj+I  = S ~ I E j + I ,  (2.1.7) 

E jSj+I E j = a - l  E j , (2.1.8) 

2 ( 1  i f - -  ~  
Ej  = w E j ,  {2.1.9) 

= w ( S j  - , ,E j )  + 1, (2.10) 

s }  = (w + o)s  + (1 - w , , ) s j  - o .  (2.1.11) 

I f  w = q - - q - l ,  then (2.1.11) is the following cubic reduction relation 

(Sj - q)(Sj  + q -1) (S j  - ~r) = 0. (2.2) 

In a series papers o f  Wadati  et al. (cf. [8]), the above BW algebra is derived 
from the solution of  YBE with the crossing symmetry proper ty  and the s tandard 
initial condition. What  we will show in this section is a sufficient condit ion such 
that  the BW algebra can be derived from a given BGR.  We assume that  the 
given B G R  S, S E End(C u | C N) satisfies the cubic reduction relation (2.2) and 

1. the charge (or spin) conservation condit ion:  

sa~ ~ 0 only for a + b = c + d ,  (2.3) 

2. the invariant  conditions under the CPT transformat ion:  

Sc~ = S~b',c~, ' , (2.4) 

where 
S = Z sab(eac | ebd), (2.5) 

and cab is the N x N matrix with (eab)ij = 6 ( a , i ) 5 ( b , j ) , 6 ( a , b )  = 1 for a = 
b ,3 (a ,b )  = 0 for a 5~ b. The indices run over 1,2, . . . ,  N and the nota t ion a' 
is unders tood as the charge conjugation, i.e. a' = N + 1 -- a. Define a matr ix 
E E End(C N | C N) as follows: 

1 
_ _  ab E = I -- (S -- S -1) = s Ecd (eac| ebd), (2.6) 
w 

then the sufficient conditions such that  

Sj = I |  | S |  |  (2.7) 

Ej  = I |  |  |  |  (2.8) 
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and w = q - q- l ,  a give rise to the representation of  the BW algebra are 

1) Ec~ = r(a)r(c)6 (a, b')6 (c, d'), (2.9) 

2) r(a)r(a') = 1, (2.10) 

3) Z sabr2(b) = a-1 (independent of  a), (2.11) 
b 

where I is the N x N unit matrix. The condition (2.9) implies that E is a block 
diagonal matrix with only the central N x N block being nontrivial. To check 
the conditions are sufficient to imply the BW algebra, one first uses (2.9)-(2.11) 
to get (2.1.3) and (2.1.8) simply by the direct calculation, then using the cubic 
reduction relation (2.2) and (2.6), the relation (2.1.4) can be obtained. As a result 

E 2 1 ( I + w S  S2)E (1 a - a - l )  . . . . . .  E (2.12) 
wo- w 

which implies (2.1.9). The other relations in (2.1) can also be derived from the 
well checked results. The following shows some examples of the BW algebra 
representations. 

Example 2.1. For the standard BGR of  Cn and Dn. 

They are obtained from [5,7,9] and have the form 

S : q Z eii | eii q- Z eij | eji -}- q- l  Z eii' | ei'i 
i ~ j,j, 

.-1- w Z (eii | ejj -- g.eigjqi-]ej, i | eft,), (2.13) 
i<j 

where the indices run from 1 to N = 2n, i' = N + 1 - i, ei = 1 for i < i', ~i = e for 
i > i', e = - 1  for Cn, e = 1 for Dn and 

[ = {  i +  l e  i < i ' ,  

i - - � 8 9  i > i ' .  

S in (2.13) satisfies the cubic reduction relation [5, 9] 

(S -- q)(S + q - 1 ) ( S  - -  eq-N+e) =__ O. 

The matrix E defined in (2.6) in this case has the form [5] 

E = - ~ eeiejqT-J(ej, i | eje). 

By calculations, we have 

S ab = q6(a, b) + wO(a, b)[1 - eaebqa-b6(a, b')], 

Ec ~b = --egcga, qe--a' 6 (a, b')6 (c, d') 

= r(a)r(c)6(a, b')b(c, d'), 

with O(a, b) = 1 for a < b, O(a, b) = 0 for a _> b and 

r(a) = exp 1 - e  eaq a 2 , 

a = 1.2 . . . . .  N ,  

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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here we have used d = N + 1 - ~ and ga' = ~.~a. One can then check that S and E 
in (2.13) and (2.16) satisfy the conditions (2.9)-(2.11) with a = eq-N+,, thus (2.7) 
and (2.8) satisfy the BW relations. This fact has been indicated in [5, 9]. 

Example 2.2. For nonstandard BGRs of C2 and D2. 

These BGRs are obtained by directly solving the braid relation under the 
constraint of the weight conservations [10], they are in the form of block diagonal 
matrix. 

S = block diag. (A1, A2, A3, A4, A3, A2, A1) (2.20) 

with the block submatrices [11] 

A3 = __q- I  , 

0 

and 

for C2, and 

A4 = 

I !  0 0 q-I 
0 --q --iw 

--q (1 +q2)w iq2w 
q 1 --iw iq2w (1 - -  q2)w 

(2.21) 

(2.22) 

! 0 0 q-t  

0 --q --iw (2.23) 
--q 0 --iw 

q a --iw --iw 2w 

for D2. These BGRs also satisfy the cubic reduction relation 

(S -- q)2(S + q-l)  = 0 (2.24) 

for C2, and 
(S - q)(S + q-l)2 = 0 (2.25) 

for D2, but in both cases, there are only two distinct eigenvalues with one having 
the essential multiplicity two. The matrix E defined in (2.6) for the present 
example has exactly the form (2.9) with N = 4 and 

r(1) = q-l ,  r(2) = iq -1, r(3) = --iq, r(4) = q (2.26) 

for C2 and 
r(1) = i, r(2) = 1, r(3) = 1, r(4) = - i  (2.27) 

for/)2. One can check that S in (2.20)-(2.23) and E in (2.6) with (226) and (2.27) 
respectively, satisfy (2.9)-(2.11) with a = q for C2 and a = _q-1  for D2. Thus in 
both cases of  C2 and D2, the BGRs have the BW algebraic structures. 

Remarks.  1) The standard BGR of Bn of [5, 9] and the nonstandard ones of Bn, 
Cn and Dn given in [12] have also the BW relations, however, to save space, we 
omit them. 2) The BW algebra was designed to help understand Kauffman's link 
polynomial [15]. The example 2 here shows that there exist BGRs having BW 
algebraic structure but the usual scheme of constructing the link polynomial is 
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not valid for them, since the correspondent Markov traces cannot be defined in 
the usual way [17]. 

In most practical cases, the parameters w in the BW algebra have the form 
w = q - q-1 and ~r is proportional to the (positive, or negative) power of q. Thus 
we transform w, a formally by 

w = q - q- l ,  ~r = +qS (2.28) 

to other parameters q and s, and assume the generators of  the BW algebra 
depend on q without singularity around q = 1. By defining 

Tj = ~im 1Sj, Fj = q--+llim Ej,  (2.29) 

we find 

T 2 = 1, Fj = 1 -- 2 d(Sj - - S f l ) / d q l q = l ,  (2.30.1) 

from (2.1.10) and (2.1.1). The other relations in (2.1) are reduced to 

TjTj+_ITj = Tj+_ITjTj+I, TiTj = TjTi, [ i - j l  > 2, (2.30.2) 

FjFj+IFj = Fj, FiFj = FjFi, ] i -  j] _> 2, (2.30.3) 

FjTj  = TjFj = +Fj ,  (2.30.4) 

Tj+I TjFj+I = FjTj+I Tj = FjFj+I , (2.30.5) 

Tj+IFjTj+I = TjFj+I T j ,  (2.30.6) 

Fj+_IFjTj++_I = Fj+_I Tj, Tj+_IFjFj+_I = TjFj++_I, (2.30.7) 

FjTj+_~Fj = +Fj, F 2 = (1 -T- s)Fj. (2.30.8) 

It is easy to see that the examples of representations of the BW algebra in 
this section admit this reduction and the "parameter" s in each case only takes 
the fixed value of integer. Some other reduction of the BW algebra by taking 
special value of one parameter and its mathematical significiences are discussed 
in [18]. 

3. The Trigonometric Yang-Baxterization 

In this section, we start from the given BGR to generate the trigonometric 
solution of  the YBE 

/~1 (x)/~2 (xy)/~l(y) =/~2(y)/~l(xy)R2(x) (3.1) 

through the (trigonometric) Yang-Baxterization. The theorem of Jones [13] in- 
dicates that the BGR satisfying the BW algebra can be Yang-Baxterized to the 
solution of YBE (3.1). What we shall do here is to formulate this process from 
other viewpoint and discuss the properties when the Yang-Baxterization is carried 
out. 

We will restrict our discussion on the BGR satisfying the following cubic 
reduction relation 

(S - ,~I)(S - 22)(S -/~3) = 0, (3.2) 

where 2i, i = 1, 2, 3 are eigenvalues of S. 
According to the analysis of  [14], we assume that the solutions of  YBE is in 

the form 
[~(x) = A(x)S  + B(x) I  + C(x)S -1. (3.3) 
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By the requirement that (3.3) satisfies 

1) the boundary condition: 

2) the initial condition: 

3) the unitarity condition: 

/~(0) oc S, (3.4) 

/~(1) oc I ,  (3.5) 

R(x)R(x -1) = f ( x ) I ,  (3.6) 

for some function f(x), then the coefficients A(x), B(x) and C(x) in (3.3) can be 
chosen in the followingways: 

Case (a), A(x) = 

B(x) = 

Case (b), A(x) = 

B(x)= 

Case (c), A(x) = 

B(x) = 

Notice that the functions A(x), 
obtained respectively from case (a) 

(21, 22, 

for case (b) and 
(41, 22, 23) "+ (21, 23, 22), 

for case (c). 
Corresponding to each case in 

YBE (3.1) if and only if the BGR S satisfies the following identity [14] 

f~O}  § f 3 0 3  § f202 § f+O + § f ; O ;  = O, 

where 

--231(X- 1), C(x) = 2 1 x ( x -  1), 

( 2 1 2 1 2 2 )  (3.7) 
l + g + g + g  x; 

- 2 7  l(x - 1), C(x) = 22x(x -- 1), 

( 2 2 2 2 2 1 )  (3.8) 
1 +  ~ + ~7 -+- ~-33 x; 

--221(x -- 1), C(x) = 2tx(x  -- 1), 
Q 21 21 23) (3.9) 

1 + ~-3 + g + ~-22 x. 

B(x) and C(x) in case (b) and case (c) can be 
under the permutation 

43) --+ (22, 41, 23), (3.10) 

(3.11) 

v 

(3.7), (3.8), and (3.9), R(x) in (3.3) solves the 

Of = S?I s~I  s1 +-1- ~?--1 q-T-1K'-I-1 '-'2 ~1 "2 , 
02 = S1S21 -- $2S11 § S21S1 - S11S2, 

= Sl  +-1 - s # ,  

and f-+, 3 f2, f+  are given by 

2 2 
=27 '  f ; -  

2,( 2t 22 2t) 
f 2 = - - ~ -  3 1 + ~ 2 + ~ 3 3 + ~ 7  , 

f +  = ~ 2  TI'c 2 J2,  

(3.12) 

(3.13) 

(3.14) 

for case (a). For case (b) and case (c), they can be written down from (3.14) by 
taking the transformation (3.10) and (3.11) respectively. 

The problem of demonstration that/~(x) in (3.3) solves the YBE now becomes 
to check whether the given BGR S satisfies the identity (3.12) for some of the 
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cases. We find that a sufficient condition for S satisfying (3.12) is that S admits 
the BW algebraic structure. Without losing the generality, we assume 

a = 23, w = 21 + 22, 2122 = --1, (3.15) 

()q)l, 2 = --1 can be realized by taking a normalization of  S) and S and E defined 
through (2.1.1) satisfy the BW relation (2.1). Then S satisfies (3.12) for case (a) 
and case (b), therefore we have two solutions of  the YBE (3.1) which are in the 
form of (3.3) with coefficients given in (3.7) and (3.8) respectively. 

In terms of the generators of the BW algebra (2.1), the solutions in (3.3) can 
be expressed as 

_R~(x) = a~(x)S + b~(x)E + c~(x)I, ~ = a, b, (3.16) 

with 
an(x) = ( x -  1 ) ( x -  xe), 

c o ( x )  = - w x ( x  - x~ ) ,  

and Xa, xb are fixed points given by 

Xa = --qG - I ,  

b ~ ( x )  = w x ( x  - 1), 
(3.17) 

= a,b,  

Xb = q-l  a--1, (3.18) 

here we have set 21 = q, )~2 = _q-1 since 2122 = - 1  was assumed before. 
One can also check directly that both/}a(X) and [~b(X) satisfy the conditions 

(3.4), (3.5) and (3.6), and solve the YBE (3.1). For instance, to check tha t /~ (x) ,  
= a,b solve (3.1), one substitutes (3.16) into (3.1) and considers the difference 

denoted by r  between two sides of (3.1). For a fixed value of  y, O(x,y) is a 
fourth order polynomial in x, it is sufficient to check that ~b(x, y) vanishes at five 
points. At x = 1, x = y- l ,  r y) = 0 trivially. At x = 0 (similarly at x = oo), 
(o(x,y) = 0 after using the BW relations (2.1.2), (2.1.3) and (2.1.5). At x = x~ 

r y)  = b(xo~)[E1/~2 (xc~y)/~l (y) -- /~2(y)R1 (xey)E2] (3.19) 

which is the fourth order polynomial in y. In the similar way, (3.19) vanishes at 
y = 0, 1, x~, x~ -1 and y = oo. 

The conclusion, now, becomes clear that each BGR satisfying the BW algebra 
(2.1) gives rise to two solutions of  YBE [i.e., (3.3) for case (a) and case (b), 
or (3.16)]. In particular, the first solution [~a(X) coincides with that in Jones 
theorem [13] by a suitable normalization. One explanation of  this "one to two" 
correspondence is in the sense that the BW algebra (2.1) admits the invariant 
transformation of  (3.10) (i.e., q ~ _q-Z, a ~ a) under the assumption (3.15), 
however, it is by no means that the result is trivial. For the standard BGRs of 
Bn and D~ in (2.13), the correspondent two solutions in (3.16) are Jimbo's [5] 
solutions which are respectively associated with the quantum group picture of  
B (1) and D (1) (for ~ = a) and the Kac-Moody types a(2) and a(2) (for ~ = b). l ~2n l ~2n-- 1 
Corresponding to the BGR of C, in (2.13), [~b(X) is Jimbo's of C, (1), and/~a(x) is 
a new one for which the Kac-Moody quantum group structure is not clear yet. 
For the nonstandard case we also have "usual" solutions and "twisted" solutions 
according to case (a) and case (b). 

It should be emphasized that the BW algebra is only the sufficient condition 
for the Yang-Baxterization since there exist some BGRs having no BW structure 
but satisfy the identity (3.12) [19] and so for these BGRs, one can still have the 
solution of YBE in the form of (3.3). 
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Let us discuss some other properties of the solutions of YBE in (3.16). 

Proposition 1. The solutions in (3.16) have the following fractional form: 

[~a(X) = fa(X) qx + S 
q + xS '  x =p--l, 

v - q - i x  + S 
Rb(X) = fb(X) _q-1 -t- xS '  x 5k - - l ,  

where 

(3.20) 

(3.21) 

then 

with 
C 2 = ( I |  Cbeing an NxNmatrix 
C = (Cab) , Cab=r(a)6(a ,b ' ) ,  

(3.24) 

R~(x) = P [~(x) also satisfies the crossing symmetry property 

R~(x) = F~(x)C2[P R~(x~x-1)p ]t2C21, (3.25) 

with F~(x) = x21x 2, ~ = a, b. Here P is the permutation operator: P (x | y) = y | x 
for  any x | y E C N | C N, "'t2" means the transposition acting over the second 
space when the matrix belongs to End(C N | cN). 

Proof. First of all, according to the assumption, one calculates that 

P E = c2pt2c21, (3.26) 

C2(EP) t2 C~ 1 = P .  (3.27) 

Then using S -1 instead of S in (3.16) through (2.1.1) we find 

[~(x~x -1) = Fg q (x)[a~(x)S -1 + e~(x)E + b~(x)I] (3.28) 

with F~(x) = x-alx 2, SO 

R~(x~x -1) = F~I(x)[a~(x)PR-1p + c~(x)PE + b~(x)P]. (3.29) 

This immediately implies (3.25) because of (3.23), (3.26), and (3.27). 
Proposition 2 indicates that the Yang-Baxterization procedure preserves the 

crossing symmetry property. The crossing point of the solution (3.16) in each 
case e = a, b is Xa and Xb respectively. The monoid operator E in the BW algebra 
is proportional to the value of  the Yang-Baxterized /}~(x) at the crossing point 
x = x~, e = a and b respectively. Note that in [8], starting from the solution of 
YBE satisfying the crossing symmetry property, the representation of the BW 
algebra is derived with the monoid operator being the value of the given solution 
of  YBE at the crossing point. Our Proposition 2 gives, in some sense, an invertible 
process of the result of [8]. 

f a(X) = q--1 (X -- q2)(X -- Xa), f b(X) = q(x -- q-2)(X -- Xb). (3.22) 

The proof is simply the calculation by multiplying the both sides of (3.20) with 
(q + xS) and (3.21) with (_q-1 + xS) and using the BW relations (2.1.4), (2.1.9), 
and (2.1.10). 

Proposition 2. Suppose S and satisfy the BW algebra (2.1) and E has the form 
(2.9) with r(a) satisfy (2.10). I f  R = PS satisfies the crossing symmetry property 
[8, 16] 

R = C2(R-1)t2c~ 1, (3.23) 
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4. Rational Yang-Baxterization 

Let us start from the reduced BW algebra (2.30) to generate the rational solution 
of the YBE 

R1 (U)/~2(bi q- d ) e l  (u t )  : i~2(u')/~l (u q- ut)R2(u ) . (4.1) 

Similar to the discussion of the trigonometric case, we suppose that the solution 
of (4.1) has the form 

R(u) = a(u)T + b(u)F + c(u)I,  (4.2) 

where T and E are N 2 x N 2 matrices and generate the reduced BW algebra 
(2.30) through 

T j = I  | 1 7 4  T | 1 7 4  (4.3) 

Fj = I |  | F |  |  (4.4) 

and I is the N x N unit matrix. By requiring that 

R(0) oc I ,  (4.5) 

/~(r oc F ,  (4.6) 

/~(u) * T  as u ~ o %  (4.7) 
a(u) 

R ( u ) k ( - u )  = f (u)I, (4.8) 

for some point ~ and function f(u), The simple choice of the coefficients of/~(u) 
in (4.2) such that it satisfies the first three conditions (4.5), (4.6) and (4.7) is 

a(u) = u(u - ~), b(u) = bou, c(u) = co(u - Q). (4.9) 

Then from the unitarity condition (4.8) and use of the relations (2.30.1), (2.30.4) 
and (2.30.9), we find functions in (4.9) must satisfy 

f (u) I  = [a(u)a(-u) + c(u)c(-u)]I 

+ [a(u)c(-u) + a(-u)c(u)] T 

+ {[(1 -T- s)b(u) -T- a(u) + c(u)]b(--u) + [+a(-u)  + c(-u)]b(u)}V. (4.10) 

By comparing the coefficients of I, T, F, we have 

+2~ = 2c0 + (1 T- s)bo, (4.11) 

f (u) = (u 2 - Q2)(u2 - c2), (4.12) 

namely, when the coefficients in (4.2) are given by (4.9) with the constraint (4.11) 
on the unknown quantities ~, b0 and co, then/](u) in (4.2) satisfies all conditions 
(4.5)-(4.8). Unlike the case of trigonometric Yang-Baxterization, the unknown 
quantities cannot be fixed in the present case only by the conditions (4.5)-(4.8). 
With these unknown quantities satisfying the constraint (4.11), we substitute (4.2) 
into the YBE (4.1) and denote by qS(u, u') as the difference between two sides of 
(4.1). For the fixed u', q~(u, u') is a fourth order polynomial in u. It is easy to check 
that the coefficient of the leading terms of q~(u, u') is zero. At u = 0, u = -u ' ,  
qS(u, u') vanishes trivially, At u = 

q~(Q, d) = b(Q)[F1/~2(~ q- u')/~l(U') --/~2(/A~')/~l (U ' q- ~)F2], (4.13) 
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and at u = - u '  + 

qS(-u' + O) = b(o)[/~1 (~ --  d ) F 2 / ~ l  (u') - / ~ 2 ( u t ) F l J ~ 2 ( ~  - u ' ) ] .  (4.14) 

For (4.13), we have 

4)(O,u') = b(Q){[-T-a(o + u')b(u') + b(o + d)b(u ' )  + c(o + u')c(u') 

+ c(o + u')a(u') - (1 -T- s)c(o + u')b(u') l f~ 

+ [a(~ + d)c(u ' )  -- b(~ + u')a(u')]F1T2} (4.15) 

from which, one finds that the coefficients of F1 and F1 T2 are zero only when ~, 
bo, co satisfy (4.6) and co = -bo.  Thus we have 

s + l  
c 0 = - b 0 - = t / , q _ + -  2 t/, (4.16) 

where s is in (2.30), t/ is a free parameter and "-I-" corresponds to the sign in 
(2.28) and (2.30). Similarly we find (4.14) to be zero if Q, co, b0 are given by (4.16). 
Therefore the rational of the YBE (4.1) is constructed, which is 

[~++(u) = u(u - Q+_)T -- t l u f  + ~1(u -- ~+)I , (4.17) 

with Q_+ given in (4.16). We emphasize that "__" in (4.17) correspond to the sign 
in (2.28), namely, when a BGR satisfying the BW algebra (2.1) is given, then the 
sign in (2.28) is fixed and the reduced BW (2.30) gives rise to the rational solution 
of  YBE in (4.17) with the same sign. The relation of the rational solution (4.17) 
and the trigonometric ones in (3.16) is as follows, by letting 

x = e x p ( h u ) ,  q = e x p ( - ~ ) ,  (4.18) 

in the trigonometric solutions (3.16), as h --* 0, one of  the solutions in (3.16) takes 
the rational one (4.17) as its limit while another one has no limit. More precisely, 
if (2.28) takes the sign " + "  (respectively "-") , /~+(u)  (respectively/~_(u)) in (4.17) 
is the limit of [lb(X) (respectively /}a(x)) and [~a(X) (respectively /~b(x)) has no 
limit at the same time. 

By a normalization and using u to replace ut/-1, (4.17) becomes 

[~+(u) = I + u T  - u u 2 F. (4.19) 

As is known, the matrix T in the representation of the reduced BW algebra 
(2.30) satisfies T 2 = I, it is an analogue of the permutation operator P and 
in some cases T = P exactly. When T = P, the first two terms together are 
the well-known S-matrix of Yang [1, 20]. Thus the rational solution of YBE 
in (4.19) is a generalized version of the S-matrix of Yang and Zamolodchikov's 
factorization constraints [21]. 

Let us see some examples of the rational solution of YBE (4.1). 

Example  4.1. Consider the BGRs of Cn and Dn in (2.13) and E in (2.16). The 
parameters of the correspondent BW algebra are w = q -- q-~ and a = ~q-N+L 
As q ~ 1, the BW relations in (2.1) are reduced to (2.30) with negative sign for 
C~ and positive sign for D~, s = --N + e and 

r = P ,  f = -- 2 g'~i~'j(ej'i Q eft,). (4.20) 
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Thus the rational solutions are 

[ ~ ( u ) = I  + u P - - u  u + - ~ - - e  F,  (4.21) 

where e = - 1  for C, and e = 1 for Dn. 

Example 4.2. Corresponding to the nonstandard BGRs of C2 and D2 and their 
representations of the BW algebra in Example 2.2 of Sect. 2. The reduced BW 
relations in (2.30) have the positive sign and s = 1 for C2, and negative sign and 
s = - 1  for D2. The rational solutions of YBE (4.1) are 

k~(u) = I + uT - u(u -- e)-l F~ , (4.22) 

with ~ = 1 for C2 and e = - 1  for D2 in this case. The matrix T is 

T = block diag (Ta, T2, T3, T4, T3, T2, T1), 

with 
T I = I ,  

T2 = anti 

T3 = anti 

T4 = anti 

diag (1, 1), (4.23) 
diag (1,-1,  1), 

diag ( 1 , - 1 , - 1 ,  1), 

block diagonal matrix, but only the central 
(F,)4 is given by 

and the matrix F~ is also a 16 x 16 
4 x 4 block is nonzero. This central 

ie --~ 1 (4.24) 
(Fe)4 : - - i  1 --5 

1 i --is 

with e = 1 for C2 and e = - 1  for Da in the present example. 
Using (4.17) we can determine the corresponding S-matrices up to the CDD 

poles [21]. 

5. Conclusion and Discussion 

In this paper, starting from the given BGR S satisfying the cubic reduction 
relation, the process of the Yang-Baxterization is formulated to generate solutions 

v 

of the YBE. By the assumption that R(x) has the form in (3.3), the conditions (i.e., 
the boundary, initial and unitarity conditions) (3.4), (3.5) and (3.6) immediately 
give rise to three kinds of explicit expressions of coefficients A(x), B(x) and C(x) 
in (3.3) and/~(x) in (3.3) solves the YBE if and only if the given BGR S satisfies 
the identity (3.12) with f+,  f2 and f+  corresponding to some of the cases (a), 
(b), and (c). We find a sufficient condition such that the given BGR satisfies the 
identity (3.12) is that S admits the BW algebraic structure. 

The general theorem of Jones [13] has already indicated that the BGR 
satisfying the BW algebra can be Yang-Baxterized to the solution of YBE. Our 
analysis coincides with Jones theorem; however, we find that for a fixed BGR 
S having BW structure (2.1), it satisfies the identity (3.12) for the case (a) and 
case (b), namely S is Yang-Baxterized to two types of solutions of the YBE, and 
both of them can be expressed in terms of the generators of the BW algebra 
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[i.e., (3.16)], in particular, only one of  them can be identified with Jones theorem 
by a suitable normalization. The reason of the "one to two" correspondence is in 
the sense that the BW algebra admits an obvious invariant transformation, but 
these two solutions have really the essential difference. The example is for the 
standard BGR of  Dn(Bn) (i.e., in Example 2.1), the correspondent two solutions 
of  YBE are Jimbo's solutions [5] associated with D(1)(B (1)) and the Kac-Moody 
algebra 4(2) ca(2)~ respectively. ~2n--1 ~" ~2n ) 

It is worth notice that there exists the concrete example that the given BGR 
has no BW structure but satisfies the identity (3.12) corresponding to at least 
one of case (a) and case (b) [19]. Thus this BGR also gives rise to the solution 
of YBE in the form of (3.3). There, presumably, exists a more general theory to 
prove, or classify whether a BGR satisfies the identity (3.12). 

According to the prescription in Sect. 3, we find that the Yang-Baxterization 
preserves the crossing symmetry property, namely if the given BGR satisfies the 
crossing symmetry property in the sense of (3.23) and so do the Yang-Baxterized 
solutions but in the sense of (3.25). Another property of the solutions in (3.16) 
is that they have the fractional form in (3.20) and (3.21). The significance (for 
example, the connection with Riemann-Hilbert transformation) of  this fractional 
form for the solutions of YBE is not clear yet. 

In Sect.4, we give a prescription of rational Yang-Baxterization, namely, 
by using the reduced BW algebra (2.30), the rational solution of YBE can be 
generated in a similar way to that in the trigonometric case. In terms of (4.18), 
one of the trigonometric solutions in (3.16) goes to this rational solution, while 
the other trigonometric solution has no such a rational limit at the same time. 

Since the BW algebra plays an important role in the process of u 
Baxterization, in Sect. 2, we give a sufficient condition to check whether a BGR 
admits the BW algebra and some examples which have BW algebra but the 
correspondent trace functions cannot be defined in the sense of [5]. This may 
also be interesting in the investigation of link polynomial and knot theory. 

Acknowledgements. We wish to express our sincere thanks to Professor C.N. Yang for many enlight- 
ening discussions and suggestions. M.L. Ge would like to thank Profs. M. Jimbo, H.C. Lee, H. Sah, 
L.Takhtajan, and Y.S.Wu for valuable discussions. M.L. Ge is supported in part by NSF Grant 
PHY-89-8495 through ITP, SUNY at Stony Brook and Paul and GabrMla Rosenbaum Foundation. 
Y. Cheng is supported by the Y.T. Liu Fellowship through the Committee of Educational Exchange 
with China and partially by the Fok Ying-Tung Education Foundation of China.. 

References 

1. Yang, C.N.: Phys. Rev. Lett. 19, 1312 (1967) 
2. Baxter, RJ.:  Exactly solved models in statistical mechanics. London: Academic Press 1982 
3. Yang, C.N., Ge, M.L. (eds.): Braid group, knot theory and statistical mechanics. Singapore: World 

Scientific 1989 
4. For reference book, see: Yang-Baxter equation in integrable systems. Jimbo, M. (ed.), Singapore: 

World Scientific 1990 
5. Jimbo, M.: Commun. Math. Phys. 102, 537 (1986), and in [3], pp. 111-134 
6. Belavin, A.A., Drinfeld, V.G.: Funct. Anal. Appl. 16, 159 (1982) 
7. Turaev, V.G.: Invent. Math. 92, 527 (1988) 
8. Wadati, M., Deguchi, T., Akutsu, Y.: Phys. Rep. 180, 247 (1989) 
9. Yu Reshetikhin, N. : Preprint LOMI, E-4-87, E-14-87 

10. Ge, M.L., Wang, L.Y., Xue, K., Wu, Y.S.: Inter. J. Mod. Phys. 4, 3351 (1989) 
Ge, M.L., Li, Y.Q., Xue, K.: J. Phys. 23A, 605, 619 (1990) 



208 Y. Cheng, M. L. Ge, and K. Xue 

11. Couture, M., Cheng, Y., Ge, M.L., Xue, K.: Preprint ITP-SB-90-05 
Lee, H.C., Couture, M., Schmeing, N.C.: Preprint CRNL-TP-88-1125R 

12. Ge, M.L., Xue, K.: Preprint ITP-SB-90-20 
13. Jones, V.: Commun. Math. Phys. 125, 459 (1989) 
14. Ge, M.L., Wu, Y.S., Xue, K.: Preprint, ITP-SB-90-02. Inter. J. Mod. Phys. (to appear) 
15. Birman, J., Wenzl, H.: Trans. A.M.S. 313, 249 (1989) 

Murakami, J.: Osaka J. Math. 24, 745 (1987) 
16. Takhtajan, L.: Introduction to quantum group. NankaJ Mathematical Physics Lectures. Singa- 

pore: World Scientific 1990 (in press) 
17. Lee, H.C.: Preprint, CRNL-TP-90 
18. Wenzl, H.: Ann. Math. 128, 179 (1988) 
19. Ge, M.L., Gwa, L.H., Zhao, H.K.: Preprint ITP-SB-90-09 
20. Yang, C.N.: Phys. Rev. 168, 1920 (1968) 
21. Zamolodchikov, A.B., Zamolodchikov, A1. B.: Ann. Phys. 120, 253 (1979) 

Communicated by N. Yu. Reshetikhin 


