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Abstract. We show that the q-difference systems satisfied by Jackson integrals of 
Jordan-Pochhammer type give a class of the quantum Knizhnik-Zamolodchikov 
equation for Uq(~a) in the sense of Frenkel and Reshetikhin. 

1. Introduction 

One of the most interesting features of the Knizhnik-Zamolodchikov equation 
originated in conformal field theory is the relation between its connection matrix 
and the trigonometric solutions of the quantum Yang-Baxter equation 
[TK, K, D]. It is related to the fact that certain hypergeometric type integrals give 
solutions to the Knizhnik-Zamolodchikov equation [DJMM, Ma, Ch, SV], etc. 
This fact is also looked at from the viewpoint of the free field realization, e.g. 
[Ku, ATY]. Besides them, the structure of the hypergeometric type integrals had 
been studied, e.g. [A1, A2]. Recently it attracts attention to construct a q-analogue 
of these theories. 

The Jackson integrals of Jordan-Pochhammer type are the simplest multivari- 
able generalizations of Heine's basic hypergeometric function which is a q-ana- 
logue of Gauss' hypergeometric function. They satisfy a system of first order 
q-difference equations, whose connection problem was solved by Mimachi [Mi]. 
Recently Aomoto and others [AKM] showed that the connection matrix deter- 
mined by Mimachi is related to the ABF-solution of the quantum Yang-Baxter 
equation [-ABF]. On the other hand, Frenkel and Reshetikhin [FR]  studied 
a q-analogue of the chiral vertex operators of the WZNW model, along the line of 
Tsuchiya and Kanie [TK]. In particular, they introduced a q-difference system 
called the quantum Knizhnik-Zamolodchikov equation, and discussed the relation 
of the connection matrix with elliptic solutions of the quantum Yang-Baxter 
equation. Then it seems possible to understand the result of [AKM] in the 
framework of Frenkel and Reshetikhin. 

In this article, we shall explicitly give solutions to a certain class of the quantum 
Knizhnik-Zamolodchikov equation for Uq(~z) by Jackson integrals of Jordan- 
Pochhammer type. More precisely, we show that the q-difference system for the 
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Jackson integrals of Jordan-Pochhammer type is written in terms of trigono- 
metric quantum R-matrix, and that this equation gives a class of the quantum 
Knizhnik-Zamolodchikov equation. When q goes to 1, our expressions of solu- 
tions go to the integral solutions of the Knizhnik-Zamolodehikov equation given 
by [Ch]  in the trigonometric form. 

The paper is organized as follows. In Sect. 2, we write the q-difference equation 
for Jackson integrals of Jordan-Pochhammer type, whose proof will be given 
in Sect. 4. In Sect. 3, we identify the equation with the quantum Knizhnik- 
Zamolodchikov equation. In Sect. 5, we give some comments on the connection 
problem according to current literatures. 

2. q-Difference System for Jackson Integrals 

Let p be a fixed complex number such as 0 < [Pl < 1. Let us denote 

(a)o~ = f i  ( 1 -  ap") (2.1) 
n=O 

as usual. For a value s~C* and for a function ~b(t), we define 
soo  

~. (~(t)d,t = s(1 - p) ~ ~(sp")p" (2.2) 
0 n = - o o  

whenever it is convergent. This is called the Jackson integral along a q-interval 
[0, s co ], which is a q-analogue of the ordinary integration. The q-shift operator Tk 
is defined by 

( TkF)(xa . . . . .  x,) = F(Xl . . . .  , pxk . . . .  , x,)  (2.3) 

for a function F(xz  . . . .  , x,). 
Now consider the Jackson integral of Jordan-Pochhammer type: 

S00 

Fo(x) = S tp- i  H (t/xj)oo dfl (2.4) 
o i <_s<_, (pPJt/xj)oo ' 

where flj are complex parameters and x = (xl . . . . .  x,) is a variable in (C • )". We 
are interested in the q-difference system associated with Fo. Take the set of 
functions (F1 . . . .  , F,) defined by 

soo  

Fi(x) = S q~i(t)dpt (2.5) 
0 

where, for each i = 0 . . . . .  n, we have set 

�9 , ( t )=t  a-~ H~=~(pt/x;)~176176 
]75=] (p,~+lt/xj)o~ H%i(ppst/xj)oo" (2.6) 

Let us calculate the q-difference system satisfied by F~. We set 

f x i /x j  if i < j ,  
xij = 1 if i = j ,  (2.7) 

pxl/xj  if i > j .  

Then the result is summarized as the following proposition. 



Jackson Integrals 265 

Proposition 1. We define the n x n matr ix  A k with entries ai k as fol lows.  I f  i = j 4= k 
then 

k X k i -  1 
a i j  - -  p f l k  " 

Xk i  - -  

I f  i < j  <= k or k <__ i < j  then 

. . . .  n p~'x~,_ - p 9  ~ k (1 -- p~')Xki 1 -- ptJ~, .i-1 
a ij I 

I f  j <_ k <_ i then 

~.~.: / _1 -~2  / 1:  p_~,)~, J__iii /,x~_, = p/~ (I 
lj Xk J -  pflk Xk i __ pPk Xkl - -  P'#~: l=i + l 

Otherwise a kij ---- 0 . 

Then we have 

pll* Xk l - -  pfl~, 

Xkt -- p~k 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(TkF1 . . . . .  TkF,)  = (F1,  . . . , F , ) A k  . 

Remark .  For  each i , j  (i ~ : j ) ,  let Si,j denote the n x n-matrix defined by 

fl 

1 
p ~ x i  j _ pfli 

Xi  j - -  p f l i  

(1 - pt~J)xij 

X i  j __ pf l i  

1 

1 - pP~ 

Xi  j __ pi l l  

1 
x u - 1 

X i j  - -  pfl~. 
1 

it h 

We also consider the n x n-matrix Pk defined by 

1 
p '  

1 

f l 

jt~ 

k th 

1 

(2.12) 

i th 

(2.13) 

j th  

(2.14) 
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Then, by an explicit calculation, we see 

Ai = S k ,  k + l  . . .  Sk, nPkSk,* . . .  S k ,  k - 1  �9 (2.15) 

Matrices &, j form a set of unitary quantum R-matrices. Namely we have 

Si, j(TiSj,  i) = id, and S 1 , 2 S 2 , 3 S 1 , 3  = S 1 , 3 S 2 , 3 S 1 ,  2 . (2.16) 

Finally, let us discuss the relation among Fo, �9 �9 �9 F,.  

Proposition 2. We put flo = - f l -  (fl, + " "  + ft,). Then the following relation 
holds: 

~ pfl,+~ + "'" +ft,(1 - p~')F~ = 0 .  (2.17) 
i = 0  

Therefore Fo is recovered f rom F1 . . . .  , F ,  i f  p p~ =I = 1. 

Remark. The identity (2.17) is a q-analogue of Aomoto's linear relation in the sense 
of [A2] and [ DJMM] .  

3. Comparison with the Quantum Knizhnik-Zamolodchikov Equations 

Let us briefly review t h e q u a n t u m  enveloping algebra and the t r igonometr ic  
R-matrix in the case of d2. The quantum enveloping algebra U~ = Uq(d2) is 
defined as an algebra with the generators: 

X+ v +  v_+l v + l  (3.1) 

and the relations: 

K o K I  = K 1 K o ,  K o K o  I = K * K ~  l = l , 

K , X + K (  * = q ' + a x 3 ,  K ~ X f K 7 *  = q-y-2xf  (i * j ) ,  

I x  +, x ; ]  a, K, - K~_I 
, j  _ , 

q - - q  

( X + ~ 3 X  + ,, , - (q~ + I + q-~)(x+)~x'+x?j �9 +(q~+ 1+q-~x+x.~(x+~ , , 

X+(X+)3 -- ; ,  . ----0 ( i ~ : j ) .  (3.2) 

Here, q^ denotes a general complex parameter. The comultiplication 
A: U~ ~ Uq | U~ is defined by 

A ( X + ) = X +  |  + K T * |  + , 

A ( X T ) = X (  |  I Q X T ,  A (K O = K ,  Q K , .  (3.3) 

We put A ' =  a oA where a ( a @  b ) =  b Q a  in 0q@ 0q. Next we consider the 
subalgebra Uq --- Uq(~12) generated by X f  = X ?,  K -+ = K ~. For each x ~ C*, we 
define the algebra homomorphism q~x: Uq --+ Uq by 

~x(X~) = x'+~x ~, ~ox(x~) = x +- , 

~x(Ko) = K -~, (p.(K,) = K . (3.4) 
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Let  (V~, zc~) be representations of Uq with the highest weights 2i. Then  
(V~(x), r~i) = ( V/, rc~ o (Px) gives a representat ion of Uq for each x e C. The opera tor  

Rv ,v j (X ) :  Vi(x)  | Vj(1) --+ V/(x) | Vj(1) (3.5) 

such that  

A ' ( a ) R v i v j ( X )  = R v i v j ( x ) A ( a ) ,  a e  Oq 

gives a t r igonometr ic  R-matrix. Let  vl be the highest weight vector i n  V~. We fix 
a choice of normal izat ion such that  

R v , v  ,( X )Vi | vj = "l) i @ l)j . (3.6) 

Then  Rv ,  v j (X)  acts as 

X mj ml q2mj q - q  _ 1 - -  
R v , v j ( x ) X - v i |  vj = ; ~  q-~,T~m X vi | vj + x -  q m'+m v i |  x - v ' i  ' 

X(1 ._ q2m ) xqm, __ qm, 
Rv ,v j (X)Vi  | X -  v~ = x-q"'*"Jz X -  vi | vj + x -  q,",+m v~ | X -  v i . (3.7) 

Here ml = (2~, ~) for the simple root  e. 
Let  '~1, �9 �9 �9 ;~,, 2 be a set of weights. Let  V~ be the irreducible representat ion of 

Uq with the highest weight 2~ and the highest weight vector v~. Let  v be a complex 
parameter  and put  p~ = q. We set p = eft2, the half sum of the positive roots. For  
a weight #, we denote  by (qu)k the action of q" on the k th component  of the tensor 
product  V1 |  | V,. For  instance, 

q"(Vk) = q("'~k)Vk, q " ( X -  vk) = q(" '~k -~)X-  Vk �9 (3.8) 

The quantum Knizhn ik -Zamolodch ikov  equat ion introduced by Frenkel  and 
Reshetikhin [ F R ]  is written as the following system of q-difference equations: 

T k ~  = RV~V~_~(pxk /Xk-1) .  . . RV~v~(pxk/xa)(qZ+20)k  

x q- (~ '~)Rv~+ ~v~(Xk+ a /Xk) -  1 . . . R V , v k ( X , / X k ) -  1 . ~ ,  

k = 1 . . . . .  n ,  (3.9) 

where ~ = ~ - (x l ,  � 9  x,)  is a function valued in Va | . . .  | V,. 
Let  us compare  Eqs. (2.12) and (3.9). Take the weights 2o, 2oo such that  

2 o +  " ' "  + 2 , - 2 o o = ~ ,  2 0 + 2 o o = 2 ,  (3.10) 

and put  the parameters  as: 

fl = - 2 ( 2 ~  + ~,e)v,  fl~ = 2(2~,c~)v. (3.11) 

We set 

(-pi(X1, . . . , Xn) = p(fl~+ t+ "" +/~")/2Xq~ . . . xfln"Fi(pflt/zxl,  . . . , pfln/2Xn) , (3.12) 

for each i = 1 . . . . .  n, and define the V1 | � 9  | V,-valued function ~ by 

= ~ q h ( x ~ , . . . , x , ) v ~ | 1 7 4 1 7 4 1 7 4  (3.13) 

Then, by rewriting Eq. (2.12) in terms of o ~ ,  we have 
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Theorem 3. The sys tem (2.12) is equivalent to the restriction o f  the sys tem (3.9) to the 
weight  subspace wi th  the weight  21 + " " " + 2 ,  - a, and the func t ion  ~ defined by 
(3.13) is a solution of(3.9). 

Remark .  When q goes to 1, ~ defined by (3.13) goes to a special case of the integral 
solutions to the Knizhnik-Zamolodchikov equation obtained by Cherednik [Ch]  
in the trigonometric form. 

We shall give another description of the equation. Let 2o . . . .  ,2,,, 2oo be a set of 
weights such that 

2 o +  " ' "  + 2 , - ~ = ~ .  (3.14) 

Let V~ be the irreducible representation of Uq with the highest weight 2i and the 
highest weight vector vi. The quantum Knizhnik-Zamolodchikov equation for 
a Horny,( V~, Vo | �9 �9 | V,)-valued function ~- is written as: 

T k Y  = RVkVk-,(pXk/X*--1)  " " " Rvkv l (pxk /Xl )Rvkvo(O)(q2P)k  

x R v ,  vk(O)-aRv~+ivk(Xk+l/Xk)  -1  . . . R v . v ~ ( X , / X k ) - l ~ .  (3.15) 

Here we understand ~ as an element of Vo | � 9  | V, | V*. Next we consider 
the set Wz(Vo | . . .  | V,) of highest weight vectors in Vo | . . .  | V, with the 
weight 2~o. We have an injection 

Homvq(Voo, V o |  . . .  N V , ) ~  W 2 ~ ( V o |  . . .  | V,) (3.16) 

by evaluating the highest weight vector voo. Then Eq. (3.15) is regarded as a restric- 
tion of the following system: 

T k f f  = R V k V k _  1 ( p X k / X k - 1 ) "  " �9 Rvkv~ (pxk/xl)Rv~vo(O)(q;~ + 2P)k q - ('~=' "~*) 

X Rv~ +~ v~ (Xk + 1 / X , ) -  1 . . . n v ,  v~(X, /Xk) -  1 ~ ,  (3.17) 

where f f  is a ovf,~| | . . .  @ V,)-valued function. 

Remarks .  (1) If all V/are the Verma modules or are the finite dimensional modules, 
then the linear map (3.16) is surjective, and the system (3.15) is the same as (3.17). 

(2) If q2(Zo,~) 4: .1, then the system (3.17) is same as the restriction of the system 
(3.9) to the weight subspace with the weight 2 ~ + �9 �9 �9 + 2, - a, hence is equivalent 
to the system (2.12). 

We define the Vo | �9 �9 | V,-valued function ~- by 

o ~ = ~ ~oi(xl . . . . .  x , ) vo  | �9 �9 �9 | 1 7 4  . �9 �9 | v , ,  (3.18) 
i = 0  

where ~o~ is defined by (3.12) for each i =  0 , . . . ,  n. Then, by interpreting the 
identity (2.17), we have 

X + f f  = 0 .  (3.19) 

Therefore ~ is one of the highest weight vectors in Vo | �9 �9 �9 | V, with the weight  
2~o. Thus we finally obtain: 

Theorem 4. The Jt~ ( Vo | . . . | V,)-valued func t ion  Y defined by (3.18) is a solu- 

tion o f  the quantum K n i z h n i k - Z a m o l o d c h i k o v  equation (3.17). 



Jackson Integrals 269 

Notes. (1) In the situation of [FR] ,  Vo and V~ are integrable Uq-modules and 
1 

V1 . . . . .  V, are finite dimensional Uq-modules, and v corresponds to 
2(k + 9)' 

where k is the fixed level and g is the dual coxeter number. Moreover the quantum 
Knizhnik-Zamolodchikov equation for the correlation function is written in terms 
of the image of the universal R-matrix, which differs from our Rv,vj by a certain 
scalar factor. 

(2) For n = 2, our expressions of solutions to (3.9) coincide with those given in 
[FR, Sect. 7]. 

4. Proof of Propositions 

We write q51(t) ~ q ~ 2 ( t )  if 

Sot) Sot) 

(al(t)dpt = ~ (~2(t)dpt (4.1) 
o o 

holds for any s e C*. For example, we have 

�9 i(t) ~ pq~i(pt). (4.2) 

Proof of Proposition 1. The following is obvious from the definition: 

soo 

TkF, = ~ Tkq~i(t)dpt. (4.3) 
o 

Therefore the q-difference system (2.12) is equivalent to 

T k ~ j ( t )  ~ ~ a~j~,(t). (4.4) 
i = 1  

Now, because of (4.2), the following lemma is enough to prove the proposition. 

Lemma 5. 

(a) For j < k, we have 

J 

pTkq~J(P t) = P Z a~j~i(pt) + ~ a~jcI)i(t) . 
i = 1  i = k  

(b) For j = k, we have 

j - 1  

pTkq~J(P t) = P 2 a~j~i(pt) + ~ a~j~i(t) . 
i=1 i = j  

(c) For k < j, we have 

J 
= y ,  . 

i = k  

Proof Since all the eases are treated in a similar way, we will exhibit detailed 
k for simplicity. calculations only for the most difficult case (b). We put alj = aij 
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Multiplied by appropr ia te  factors, (b) is equivalent  to 

j - 1  

pPxj [ I  ( p ~ ' p t -  x,) ( I  ( p P ' t -  xt) 
l = l  l = j + l  

j - 1  i - 1  j - 1  n 

= P~ ~ aij xi H (PPzP t -- xl) 1-[ (pt -- Xl) I-I (p~ t  - xt) 
i=1  /=1  l = i + l  l = j  

j - 1  i - 1  

aijxi H (pt - x,) I ]  (pP~t - xt) ( I  (t - xt) .  (4.5) + 
i= j  /=J. l = j  l = i + l  

Since bo th  sides are polynomials  of degree n - 1 with respect to t, it suffices to 
check the equality at  n different values of  t. Put t ing t = x, , /p for m __< j - 1 in (4.5), 
we have 

j - -1  j - 1  i--1 j - 1  

pxj ~[ (pB'x,, -- xt) - E aijxi(P ~Jx,. - pxj)  I~ (pP'x,, - x~) l~ 
l=m i=m l=m l = i + 1  

( x , .  - x l )  = 0 .  

(4.6) 

We put  t = x J p  p J, then we have 

j - 1  

PP I-I (pP'pxj -- pPJxt) ( I  (pP~xj -- pPJxt) 
/=1  l = j + l  

j - -1  

-= a j j  H ( p x j  - -  p P J x t )  F I  ( x j  - -  p # J x l )  . ( 4 . 7 )  
/=1  l = j + l  

We finally put  t = x, , /p pm for j + 1 < m, then we have 

i - 1  

a,jx, 1-[ (p~'x,, - p~mx,) ~I (xm - p~"xl) = O. (4.8) 
i= j  l = j  / = i + 1  

N o w  let us consider the explicit values of aij defined by (2.8)-(2.10). Substitute them 
in the left of  (4.6) inductively as i = j  - 1,j  - 2 . . . . .  N. Then  we have 

J~r 1 pP'pxj -- p~x t  ~ r  1 j -  1 
p x j  11 . . . .  . ,~ . ~  11 (pP'xm - x i )  1-I ( x ~  - xz) 

l=N F'~j  - -  F Xl  l=m l=N 

N i - 1  j - 1  

- Z a , jx , (p~x , ,  - pxj)  I~ (pP'xm - xz) I~ (xm -- x l ) .  
i=m l=m l = i + l  

When N = m, this is zero and (4.6) is verified. Equa t ion  (4.7) follows easily f rom 
(2.10). To  verify (4.8), it suffices to substitute the values of aij, i = j , j  + 1 , . . . ,  N 
inductively. Hence (4.5) is shown and the p roof  of  (b) is completed.  Q.E.D. 

Proof  o f  Proposition 2. By the relation (4.2), it suffices to show the following lemma.  

L e m m a  6. We have the following relation: 

p~ '+'"+~"~o( t ) - -p-~+l<bo(pt )  = ~ p ~ ' + ' + " ' + ~ " ( p ~  - 1)~i( t )  . (4.9) 
i=1  
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Proof Multiplied by an appropriate factor, (4.9) is equivalent to 

p~l+'"+~, f i  ( 1 - t / x j ) -  f i  ( 1 - p ~ J t / x j )  
j = l  j = l  

i--1 

i = l  j = l  j = i + l  

The right becomes 

i--1 

~ Pth+'"+a" l-[ ( 1 -  PaJt/xJ) FI ( 1 - t / x j )  
i=1  j = l  j = i + l  

x pP,+,+"-+t~. I-[ (1 - p~t /x j )  (1 - t/x3) 
i=1  j = l  j = i + l  

i - 1  

= ~ p , , + . . . + , . [ i ( 1 - p , , t / x , ) ~ ( l _ U x j )  
i = 1  j = l  j = i  

i ' fi x P~+~+ "'" +P" [ I  (1 -pPJ t /x j )  (1 - t / x j ) ,  
i=1  j = l  j = i + l  

which yields the left of (4.10). 

(4.10) 

Q.E.D. 

5. Discussions 

In this paper, we have constructed a Jackson integral representation of solutions to 
the quantum Knizhnik-Zamolodchikov equation in the simplest case for Uq(~2). 
Let us briefly review the results of [ A K M ]  and [FR] ,  and discuss the relation of 
our result and the connection problem of q-difference equations. 

Let F~ = F~(xl . . . .  , x.) be the function defined by 

F}-- Jo 1 ~ t]xi I-Ij=a(p t /xj)~ 
dqt n PS 

Consider the system satisfied by F~: 

(TkF'~ . . . .  , TkF') = (F'I . . . .  , F')A'k . (5.1) 

The asymptotic behavior in 

{(xl  . . . . .  x . ) ;  Ixo(1)l >> " ' "  > Ix (.)l > 1} 

characterizes the fundamental solution E,  = E,(xl  . . . . .  x,) for a permutation 
o-e ~n. Let e be the identity in ~n. In the sense of [Mi],  the elementary connection 
matrix Pi is defined by E,, = PiEe for a transposition a1 = (i, i + 1)e ~ , .  Then it is 
shown in [AKM],  for fll = " " " = ft,, that PI depends only on the ratio xi/xi+~ 
and satisfies the Yang-Baxter equation: 

P~(u)Pi+ I (uv)Pi(v) = Pi+ l (v)Pi(uv)Pi+ l (u) . 



272 A. Matsuo 

This is equivalent to the Boltzmann weights of the eight vertex SOS model, i.e., the 
ABF-solution of the star-triangle relation (cf. [ABF, JMOl). 

On the other hand, Frenkel and Reshetikhin [FR]  studied a q-deformed chiral 
vertex operator along the line of [TK], for a quantum affine algebra U~(~). 
They showed that the correlation function satisfies the quantum Knizhnik- 
Zamolodchikov equation, which is written in terms of the universal R-matrix, and 
considered the connection matrix as a q-analogue of the braiding matrix in 
conformal field theory. In some situations, they proved that the connection matrix 
of the quantum Knizhnik-Zamolodchikov equation for a simple transposition 
depends only on the ratio of two arguments and it satisfies the quantum 
Yang-Baxter equation. The most remarkable point of their theory is the factoriz- 
ation property, from which it is possible to determine the connection matrix by 
computing it for n = 2, namely by considering the 4-point function as in the 
discussion of [TK]. Using this argument and considering Jackson integral solu- 
tions for n -  2, they calculated the connection matrix in the simplest case for 
Uq(~2) which includes the ABF-solution [FR, Sect. 7]. Therefore the connection 
matrix of the quantum Knizhnik-Zamolodchikov equation for a special case 
coincides with that of [AKM]. 

Now our Eq. (2.12) for the function F~ defined by (2.5) is obviously equivalent 
to Eq. (5.1). In fact, F, and F', are related to each other by a triangular 
matrix: 

i 

Fi = ~ b i j F ~ .  
j = l  

The explicit form is given by 

( p ~ J x j - -  Xk (if k < i) 
i ~ X j  - -  X k 

b i j = 1-[ b i k ,  b i k =  
k=l ~(pP ' - - I )xi  (if k = i ) .  

k X j  - -  X i 

Since Theorem 3 says that Eq. (2.12) is equivalent to the quantum Knizhnik- 
Zamolodchikov equation (3.9), we have seen the coincidence above explicitly at the 
level of the q-difference equation before going to the connection matrix. Finally, 
combined with the discussions in [ FR], the results in the present paper enable us to 
observe the surprising phenomenon revealed by [ AKM], that a very rich structure 
is contained in such a simple expression: 

Set? 

o 1 <=j<=,, ( p P J t / x j ) ~  ' 

from the viewpoint of the representation theory of quantum enveloping algebra 
vq( t2). 

Acknowledgements. The author is grateful to K. Mimachi, M. Jimbo and A. Tsuchiya for useful 
discussions and comments. 
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