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Abstract. We obtain in closed form averages of polynomials, taken over hermitian 
matrices with the Gaussian measure involved in the Kontsevich integral, and prove a 
conjecture of Witten enabling one to express analogous averages with the full (cubic 
potential) measure, as derivatives of the partition function with respect to traces of 
inverse odd powers of the external argument. The proofs are based on elementary 
algebraic identities involving a new set of invariant polynomials of the linear group, 
closely related to the general Schur functions. 

1. Introduction 

In their papers on intersection theory on moduli spaces of Riemann surfaces, Witten 
[1] and Kontsevich [2] discussed certain identities on matrix integrals. We provide 
here algebraic proofs for these statements which read as follows. 

Let X, Y, A , . . .  denote N x N hermitian matrices. For A positive definite, hence 
A-1 well defined, introduce the measure 

N 

d'~ N)(v) = (2~)-N2/2 H a v .  H dReYijdlmYij  exp --~trAY 2 
l<_i<j<_N i=1 

1 
= dY exp - xtrAY 2 . 

z 
(1.1) 

Proposition (K). For any polynomial P in the traces of oddpowers of Y ("odd traces" 
for short), there exists a polynomial Q in odd traces of A-  1, such that, independently 
of N large enough 

f d~ N)(Y)P(Y) 
(P)(N)(A -1) = f dP(AN)(y ) = Q(A-1). (1.2) 
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In Sect. 2 we exhibit more precisely the surjective map K : P ~ Q (Proposition 
(W)) which turns out to be defined over Q, the rationals, and obtain its kernel. Upon 
applying Wick's theorem to the computation of IP}, i.e. performing a "fat graph" 
expansion [1,2], the proposition amounts to intricate algebraic identities, since each 
graph contributes a symmetric rational function of the eigenvalues of A. In a previous 
paper [3], two of the authors proved what amounts to a special case of this conjecture 
(P was a polynomial in t ry  3 only) by a detailed but painful analysis, which admitted 
however a generalization to more general integrals not considered here. 

It follows from (K) that the integral 

~N(A_ l )= fd# (N) (Y )exP6 t rY3  I i ) 
fd#(~V)(y) = exp~ trY3 (N)(A-1) (1.3) 

admits as N -+ oc an asymptotic expansion ~=(0.), each term of which is a polynomial 
in the normalized odd traces 

2 trA 2k 1 (1 .4)  
02k+1- 2 h + 1  

which become independent variables. Fore a more accurate definition see [3]. Similarly 
for P a polynomial in the odd traces of Y, the quantity 

i tr y3)(N)(A_I) ((P))(N) = {P(Y) exp (1.5) 

admits an asymptotic expansion ((P})(0.), each term of which is independent of N 
for N large enough. We then have the second proposition conjectured by Witten and 
discussed in Sect. 3. 

Proposition (W). For each P as above there exists a polynomial R in the derivatives 
0o. - { 0o~ , 003,...} such that 

((P))(O.) = R(Oo.)Y(O.). (1.6) 

The invertible mapping P +-+ R, defined over Q, is given explicitly by Proposition 
(W'). 

The idea underlying these proofs is simple enough as it reduces to compare 
calculations for matrices of size differing by a finite amount. To make this rigorous, 
we have to follow an indirect path which unfortunately tends to obscure the proofs 
in a maze of cumbersome notations. On our way we are led to introduce a set of 
polynomials denoted f.(O.), in infinitely many variables 0 = {01, 03 , . . . ,  02k+l,.. .}, 
closely related to the generalized Schur functions, in terms of which our results are 
most simply expressed [see Eqs. (2.18) and (2.27)]. We tabulate the first few f . ' s  as 
well as some expressions obtained in the text (Tables 1-4). 

The reader might rightly wonder about the meaning of such results. The answer is 
that both (K) and (W) enable one to construct general "observables," or topological 
invariants, in the combinatorial treatment of moduli spaces [1,2]. 

This work was prompted by questions raised by E. Witten and M. Kontsevich [4]. 
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2. Proof of Proposition (K) 

2.1 Preparation 

For X a generic N • N hermitian matrix with eigenvalues xl, x2 , . . .  , XN, and u a 
complex variable, the rational function 

1 - u X  
Fl(U; X) = det 1 + u ~  (2.1) 

{ 1} 
admits for u in the disk D(X)  = lul < sup~ ]x~[ a convergent power series 

OQ 

FI(~; x)  = ~ ukpk(X). 
k=0 

Each p~ is a polynomial in the odd traces of X, normalized in this section as 

(2.2) 

homogeneous of degree k, by assigning degree 2n + 1 to  02n+l , as follows from 
identifying 

c~ x 2 n +  1 ~ ec 

FI(U; X) = exp - 2 ~ u 2~+~ tr ~ i - /  = ~'~ ukp~(X)" 
n=O k=O 

(2.4) 

Considered as a polynomial in the infinitely many variables 0 we therefore have 

Z II o? (2.5) 
uj_>0,jodd j=l ,3, . . .  /2j! 

k=Vl +3u3+... 

By abuse of language we will call these functions Schur polynomials, although they 
are obtained from the standard ones by setting all the even variables 02j to zero. We 
also extend the standard definition by setting p~ = 0 for/~ < 0. 

More generally, for kl, k2 , . . . ,  k~ non-negative integers 

Chk I ..... kn(O. )  = 

P k  I - n + 1  P k  l - n + 2  " " " Pkl  

P k 2 - n + l  Pk2--n+2 �9 . . Pk2 

P k , ~ - n + l  Pkn - -n+2  " " " Pkn  

(0.) (2.6) 

is a polynomial in the odd traces 0., antisymmetric in its indices, of degree 

d { k ) = ~ k ~  n ( n -  1) 
2 

r = l  

(2.7) 

which has to be non-negative for ch to be non-vanishing (observe t h a t  Chkl ,kn 0 = 

chk~-i ..... k~-l). Again we extend tl~e definition by requiring ch. to vanish'if any of 

t r  x 2 n +  1 

02n+l(X ) = - 2  2n + 1 ' (2.3) 
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its indices is negative. Expressed in terms of 0 's, ch is akin to an ordinary character 
of the linear group when we let the even 0's  vanish, q 

We introduce the following generating function 

F ~ ( u ~ , . . . , u ~ ; X ) = r  u~) I I  d e t l - u i X  
' l + u i  X ' 

l < i < n  
(2.8) 

u i - u j .  
qS~(ul' " " " ' u ~ )  = I I  ~ u j '  r 1 7 6  

l<_i<j<_n 

luk~,..., uk~ I chk~,...,k~(X), (2.9) 
k 1 ,...,kn 

such that 

1 
H (~t i@~tJ)Fn(~l ' ' ' ' '  un; X )  ~- 

l<i<j<_n 

where the short-hand notation stands for 

u~ ~ . . .  u kn 

l u k l , . . . , u  k~] -- �9 . . .  �9 (2.10) 

kn 

and F 0 = 1, F n = 0 for n < 0. We can then think of F~ as a function antisymmetric 
in the n variables u i and of infinitely many variables 0., by substituting for ch in the 
series expansion its expression as a polynomial in the odd 0 's. The following enables 
us to replace in the statement of Proposition (K) any polynomial P in the 0 's by a 
polynomial in the ch. (0.). 

L e m m a  1. Any homogeneous polynomial in the 0 's admits an expansion in terms of 
c h ' s  of the same degree with ordered positive indices. 

Indeed if to k I > k 2 > . . .  > k~ we let correspond the Young tableau T with 
k 1 - n § 1 boxes in the first row, k 2 - n § 2 in the second . . . .  the standard Frobenius 
duality relation takes in our case the following form: 

o~ 

1~0 ) u2j+l = ~ XT([I~'13 "3 . . . ] )ChT(0.) .  (2.11) I I ( ( 2 J  + J 2j+1 
j = 0  Z;lTl=~(2j+l)u2j+l 

J 

So on the one hand the definition (2.6) of ch. yields its expression in terms of 
0's through Schur polynomials, and on the other hand the above relation, where 
XT([ l '~3~3. . . ] )  denotes the character of the symmetric group on ITI symbols 
evaluated on the corresponding class (involving only odd cycles), yields reciprocally 
an expression of any monomial in the 0's as combination of ch 's. We remark that 
all coefficients involved are rational since XT takes only integer values. 2 

Of course for the standard characters one sets 0 n = tr Xn for any positive n 
n 

2 The lemma does not imply that the ch.(0) are linearly independent for if T is the Young tableau 
dual to T, ch~(0.) = ChT(0 .) as a consequence of the fact that )iT and X~, which differ only by the 
signature of the permutation, are equal on classes involving only odd cycles, the latter corresponding 
to even permutations. Unfortunately, these are not the only relations on the ChT(0.) which form an 
overcomplete system of generators. For a better choice, see below 
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To understand the origin of the property expressed by (K), consider the Gaussian 
integral 

1 (2.12) 
d#(ff)(Y) = (det A)I/2 I-[ (;~ + ;~j) ' ZN(A) 

l<i<j<N 

where )h, �9 . - ,  AN are the positive eigenvalues of A and we use the positive square 
root of  det A. After performing the "angular" average over the argument Y [5], this 
becomes 

ZN(A) = I I  ()~i - -  " ~ j ) Z N ( A )  
l<_i<j<_N 

1 .k i - Aj 

(det A)I/2 I I  ,k i T)~j 
l<_i<j<_N 

(--1)N(N--~)/2/~=~ dYi xzy 2 
N!  = ~ det[e 2 ] l < / , m < N  I I  Yi -- Yj (2.13) 

l<_i<j<_N Yi --~ Y'-~j " 

The integral over the eigenvalues Yi of Y is well defined since for i # j as y~+yj --+ 0 
the determinant in the numerator vanishes, whereas the exponential factors (for A > 0) 
ensure convergence at infinity. Both sides are antisymmetric in the ,~'s and up to 
factors we see that the (antisymmetric) Gaussian transform of I~ (Y~ - Yj)/(Yi + yj)is 
a similar expression in the ~ - l , s .  ~<J 

This suggests to compare ZN+ n to Z n with an argument of  the form A / | A, where 
A / is an n • n matrix with e igenva lues /~] , . . . ,  ) ~  and A as above. We can also split 
the integration variable y t |  y in the diagonal form occurring in (2.13). We integrate 
separately over Y and Y~ to get averages over functions F,~ of the argument Y in 
terms of similar functions of  A -1.  Both admit expansions in odd traces of  X - 1  and 
are at the origin on the property expressed in Proposition (K). 

For analytic reasons it is however difficult to carry out this program directly. 
Therefore we take an indirect route based on the same idea which can be summarized 
as follows. 

We have first traded polynomials in odd traces (of Y or A -1)  for linear 
combinations of ChT(0.). In a second step we will substitute for chT(0.) an equivalent 
complete set denoted f .(0.)  indexed by positive integers, also antisymmetric in its 
indices, and shall prove the main result of this section ( ( -1 ) ! !  = 1) 

Proposi t ion (KP). Any polynomial in odd traces admits a unique expansion in terms 
of f . ' s  and vice versa. Moreover, independently of N large enough 

(fkl ..... kn)(N)(A - I )  = 0 if at least one of the h i is odd , (2.14a) 

n 

(fzki ..... 2k }(N) (A- l )  = H ( 2 k 8  -- fkl ..... kn (O.(A-1)) (2.14b) 
s=l  
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We have therefore (i) to define the f ' s  (ii) to show their equivalence with the ch 's  
and linear independence (iii) to obtain the integrals (2.14a-b). Completing these three 
steps will prove the proposition. 

2.2 Definition of the f. (O.) 

For X hermitian N x N ,  let x l , . . . ,  x N be its eigenvalues assumed all distinct. We 
define X~ as hermitian N - 1 x N - 1, with eigenvalue x~ omitted, similarly for 

Xal ,a2~. . ,"  
As a meromorphic function in the variable uT 1, F~(%,... ,%;X)  defined in 

(2.8) can be expanded as a sum over its simple poles plus a contribution at infinity 
(arguments with a hat are to be omitted) 

F n ( U l  , . . . , Un;  X )  

= (--1)n--l~b~n_l(?~l,U2,... ,Un; X )  

UlXa Fn- l (Ul ,  u2 , . - -  ,un;Xa) 
- 2 E .  1 ~ - U l X  a FI(Xal;X a) 

a=l  

n 

§ 2Z(_I)Z ?~1 ^ 
/=2 Ul -~- ~/'-"7 Fn--2(~l '  U 2 ' ' " " '  U l ' " ' " '  ?/%; X ) .  (2.15) 

Upon iteration, this yields 

F n ( U l ,  ... , Un;  X )  
o~ 

= Z ( -2)~  E r  ... ,~2q, ... ,~2i~ , .... u n ) ( -  1)~{ i} 
r=0 1<_i I <.-.<ir<_n 

(--1) r(r-1)/2 det [ UjsXa~ ] �9 
• E fr(X~ll,"" x~rl;Xal ..... a~) l+ui~XatJl<s,t<r 

l < a i < . . . , a r < N  

(2.16) 

Here (-1)~{ r is the signature of the permutation ( 1 , . . . ,  n) -+ ( i l , . . . ,  i~, 1 , . . . ,  ~1, 

. . . ,  ~T, . . . ,  n) and r is defined in (2.8). The first term (r = 0) on the right-hand side 
is r and 

( - -  1)r(r- -  1)/2 

FT(z21 , . . . , zg~;X~ ..... ~ )  

: H II 
1< 8<~<'c Xa~ Xa~ l<8<r 

1C{1,2,. . . ,&I, . . . ,&v,. . .N} 

Xas  @ X l 

Xas  - -  X 1 
(2.17) 
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For n, k i > 0 define 

2~( 1)kl+"'+kan 

l <_al <...<an <_N 

(_  1)~(n- 1)/2 kt 
• F n ( X a l  1 ' ' ' ' '  XanI; Xai ....... ) det[Xa~]l<-sr (2.18) 

and extend this definition to n = 0 by setting f ( X )  = 1. These functions 
(anfisymmetric in k l , . . .  , k~) appear at first as rational symmetric functions of  X.  
We shall soon see that they are in fact polynomials in O.(X) and thus still well 
defined when some eigenvalues coincide. Let us insist on the fact that we assume all 
indices positive, otherwise let f. = 0. We can now compare the two expansions of  
H (Ui -- Uj)Fn(Ul, ' ' ' ,  Un; X )  on the polydisk ui C D(X) ,  namely 
i<j 

where 

1 
. uk'~lchkl ..... kn(O.(X)) 

kl,...,kn>O 

1 
= H ( U i -  Uj)-- ~ ~y. ~ fk 1 ..... k~(X) 

l<_i<j<_n r = l  k l , . . . ,kr  >0  

kl 

1<i  1 <...<ir<_n l<i<j<n ? k,i_~ 
. . o  

o. , 

= ~ - 1 i f i , j  E {1 , . . .  , ~ l , . . . , ~ r , . . . , ~ }  
~ij [ 1 otherwise 

u~ T 
ZT" 

(2.19) 

(2.20) 

We need a few extra notations. Let the generalized antisymmetric Kronecker symbol 
be 

6k l ..... k~;m~ ..... m~- = det[tki,mj ]l<i,j<j (2.21) 

and define a shift operator by 

gm ---+ (pI g)m ~ gin+l, 1 C ~ .  (2.22) 

Finally we write I U J for a partition of { 1 , . . . ,  n} into two disjoint ordered sets 

I - { i l , . . .  ,i1II} and d = { J l , . . .  , J l J [ } ,  I~l + I J[ = n, and denote by ( - l ) ~ ,  J the 

signature of  the permutation ( 1 , . . . ,  n) --+ (il , .  "-, i1II, J l , ' " . ,  J LJI ). 

Identifying the antisymmetric coefficient of lu kl . . .  u k'~ [ in the previous equality 
yields the desired linear relation between c h ' s  and f. 's, 

IoJ r<sCI iCI;jEJ 

• fkq ..... ]qli I(X)(~kjl ..... kdlji;lJl-l,lJl-2 ..... 0" (2.23) 
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Explici t ly for n = 1, 2, 3 this reads 

chk(X)  = p~(X) = ~k,o + f k (X)  , 

chkl,k2(X) = (~kl,k2;1, 0 -~- fkl_l(X)(~k2,0 + fkl(X)(~k2,1 
-- fk2_l(X)Skl,0 -- fk2(X)Skl,1 -]- fkl_l ,k2(X) q- fk l ,k2_l(X),  

Chkl,k2,k3 (X  ) =- (~kl,k2,k3;2,1,O 

-~- S(fkl_2(X)(~k2,k3;1, 0 -7 flCl_l(X)(~k2,k3;2,0 -1- fkl (X)(~k2,le3;2,1) 
cycl. 

q- ~ ([fkl-l,k2 (X)  q- flc,,k2_l(X)]~k3,2 
cycl. 

-t- [fkl_2,k2_l(X) -t- fki_l,k2_2(X)]~k3,0 

-}- [fkl_2,k2(X) -'}- 2fki_l ,k2_l(X ) -}- fkl,k2_2(X)](Sk3,1 ) 
21- Al_2,k2_l,k3 (X)  oF s ) 

-'}- fkl,k2_2,k3_l(X) q- fkl_l,k2_2,1c3(X) 
4- fki_2,ki,k3_l(X ) -[- fkl,k2_l,k3_2(X) -~ 2fkl_l,k2_l,k3_l(X ) . 

(2.24) 

Whi le  kl ,  h 2 , . . . ,  ]~n are non-negat ive  on the 1.h.s. of  (2,23), we recall once more  that 
on the r ight-hand side any f.  with a negat ive or zero index is set equal  to zero. 3 

We can rewrite (2.23) as follows: 

ch/r l + n -  1,k2q-n-2 ..... kn (X)  

= Z ( - 1 ) ~ / ' J {  H (1-]-S/c~Pk, 1) 1-I  ( l + P k i P 4 1 ) •  1-I  Pkp} 
IUJ r<sEI iEI;jEJ p<qCJ 

( X ) 6 k  k ;IJl-1 ..... 0 '  (2.25) • fkil,"',kili I 31,'", 3lj I 

The operator (1 + Q), Q = PkP1-1 admits as formal inverse (1 + Q ) - I  = ~ (_Q)~  
r_>0 

or -- ~ ( _ Q ) r .  W h e n  acting on both sides of  (2.25), either form yields equal finite 
r_<--I 

sums as the reader will check. We can therefore invert  (2.25) as 

I I  (1 § Pk P ~ l )  -1 Chkl+n_ 1 ..... k~(X) 
l < i < < n  

= ~ fkq ..... k~l• (X)  I I  Pk~ (1 + Pk~P~l)-l(Skji,...kjl<;IJl-1 ..... O' (2.26) 
IUJ r<sCJ 

For k l , . . .  , k,~ > 0 the only  non-van ish ing  contr ibut ion on the r.h.s, of  (2.26) 
corresponds to J = (~. Indeed when J r ~, the ant isymmetr ic  Kronecker  symbols  

3 Equation (2.24) suggests a way of extending the definition of f. 's to zero and negative indices. 
For instance we could have defined ~m = f m  for m > 1, and Cpo = 1 to get ch k = ~k = P~ for all 
k > 0. In the more interesting case with two indices, one can extend ~k 1 ,k 2 = fkl ,k 2 for kl, k 2 > 1, 
to ~pkl ,o = fk 1 for k~ > 1, ~o,k 2 = - f k  2 for k 2 > 1, ~0,0 = 1, and finally ~P-1,1 = -2 ,  in order 
to get Chkl,k 2 = ~kl_l,k2 + ~kl,k2_ 1 for all kl~k 2 ~ 0. For a general expression for qo see Ap- 
pendix A 
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For ]g l , ' ' ' ,  ]~n > 0 the only non-vanishing contribution on the r.h.s, of  (2.26) 
corresponds to J = 0. Indeed when J r 0, the antisymmetric Kronecker symbols 
always contain the constraint that at least one of the k~ be zero or negative. 
Consequently, with r an antisymmetric Z-valued n x n matrix, if we mean by r > 0 
the conditions ri j  > 0 for i < j ,  we find the inversion formula 

fk~ ..... k,~(X) 

= ~_.~(-- 1) ~<3 Chkl+n-l+Zrlj,h2+n-2+~r2j ..... kn+~rnj( x ) "  
r>O 3 3 J 

(2.27) 

The sums over the r ' s  on the r.h.s, are finite, since ch . (X)  vanishes whenever 
k p + n - p + ~ r p j  < 0. We see that f. is indeed a polynomial in 0 . (X)  and 

J 
since no reference is made to the size of the matrix X ,  the two inverse formulas 
(2.23), (2.26) can be thought of  as relating two families of  polynomials in infinitely 
many variables 01,03, . . . .  Furthermore, 

77, 

deg fk  1 ..... kn(O. ) = ~ /gs (2.28) 

we have therefore 

L e m m a  2. Any polynomial in Or, 03,... admits a unique expansion in terms of f =_ 1, 
f~, k > O, fht,k2' ]r > ~2 > 0, . . . .  

Uniqueness is a consequence of a dimensional argument. The dimension of the 
vector space of polynomials of  degree n > 0 in 0l, 03 , . . .  is equal to the number of 
partitions of  n in odd integers, while the dimension of  the linear span of f.  's such 
t h a t k  1 > k  s > . . . > k ~ > 0  ~ k 8 = n , r  > 0 ,  is the number of  partitions of n 

l < s < r  
into unequal parts. The two are equal by virtue of Euler 's identity 

I~(1 + C) 
n>0 

1 
= ~gI (1 - -q2n+ l )  

n_>0 

= 1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + 5q7 + 6q8 + . . .  , (2.29) 

and of course all coefficients in f. 's are again rational. 
The reader will find in Appendix A some relations enabling to compute f. 's 

efficiently. We illustrate the change of basis from f. 's to monomials in 0 in Tables 

1 and 2, where we use the notation 011~ 13,3...1 for the monomial  0~1 0~3 
/./1 [ /J3 [ . . . .  
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Table 1. The f polynomials up to degree 8. The notations 011~ 13u3...(2k+l)u2k+l ...] is a shorthand 

for 011 033 ~2k+l r 1 

u I ! u 3 ! u2k+l ! 

f l  = 0111] 

f2 = 0112] 

f3 = 01131 +013l l  

f2,1 = 01131 --  201311 

f4 = 0114] ..0[11311 

f3,1 = 20114] --  0[11311 

f5 = 0115] "0112311 "0151] 

f4,1 = 301151 -- 20151 ] 

f3,2 =201151 -- 0[12311 "201511 

f 6  = 

f5,1 = 

f4,2 = 

f3,2,1 

01161 ' '011331] ' '011151 ] ..0[321 

401161 "011331] --011151 ] --20[32 ] 

50116] -- 011331] " 20[32 ] 

20116] --0113311 "20111511 --40[32 ] 

f7 

f6,1 

f5,2 = 

f4,3 = 

f4,2,1 = 

0117 ] " 011431 ] ~- 011251 ] " 011132 ] " 0171 ] 

50117 ] " 20114311 -- 011132 ] -- 20171] 

90117 ] --  011251 ] " 201711 

50117] --  011431] --  2011132] --  201711 

70117 ] --  20[1431] " 20112511 --  2011132 ] 

f 8  z 

f7,1 

f6,2 

f5,3 = 

f5,2,1 

f4,3,1 

01181 " 01153t ] " 011351 ] " 0112321 " 0111711 " 013151 ] 

60[181 " 3011531 ] - -  0[13511 --  011171] --  2013151] 

140118 ] " 2011531 ] --  011351 ] --  011232 ] " 2013151 ] 

1401181 -- 0[15311 -- 0[13511 " 2011232 ] --  0131511 

160118 [ - 20[15311 . .  011351 ] - 2011232] . .  2011171 ] - 20131511 

1201181 - 30115311 . .  2011351 ] - 2011172 ] . .  20131511 
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Table 2. Expression of  0 monomials in terms of  f. 's up to degree 8 

203 

0[11] : f l  

0112] : f2  

1 2 
01131 = 5 [  f3 -1- f2,1]  

0131] : 3 [ f 3  --  f2,1] 

1 
0114] : ~[f4 + f3,1]  

011131 ] = 3 1 2 f 4  -- Y3,11 

1 
01151 = ]~[2f5  -}- 3fa,1 + 2 f 3 ,  2] 

011231 ] = ~[2f5 - f3,21 

1[ 
0151 ] = ~ f5  --  f4,1 -~- f3,2]  

1 
0116 ] = ~ [ 2 f 6 @ 4 f S , l - r - 5 f 4 , 2 - -  f3,2,1] 

1 
011331 ] = ~[4f6 + 2f5,1 -- 2f4 ,  2 --  f3,2,1] 

0111511 = ~[2f6 - f5,1 + f3,2,1] 
1 

01321 = ~[f6 - f5,1 + f4,2 - f3,2,1] 

0117 ] : 

011431 ] : 

011251 ] : 

011132 ] : 

0171 ] = 

1 
3 ~ [ 4 f 7  + 10f6,1 + 18f5,2  q- lOf4 ,  3 + 7f4,2,1]  

1 
~[2f7 + 2/6,1 - f4,3 - -  f 4 , 2 , 1 1  

~ [2fv - f5,2 -}- f4,2,1] 

~ [2f7  - f6,1 + 2f4,3 -- f4,2,1] 

1 
i f [ f7  q- f5,2 - Y6,1 --  f4,3] 

01181 = 

011531 ] ~- 

011351 ] = 

011232 ] = 

0111711 = 

0[3151 ] = 

1 
~15 [f8 -t- 3f7, I q- 7f5, 2 + 7f5,3 § 4f5,2,1 q- 3f4,3,1 ] 

14f8 + 6f7,1 § 4f6 ,2  - 2f5,3 - 2f5,2,1 - 3 f4 ,3 , l ]  

14f8 + 2f7,1 - 2f6 ,2  - 2f5,3 + f5,2,1 -l- 2f4,3,1 ] 

~ [2f8 - f6,2 - -  2f5 ,3  - f5,2, i1 

+ [2 f8  --  f7,1 -r- f5,2,1 -- f4,3,11 

~ 5  [2f8  -- 2f7,1 -}- 2f6 ,2  -- f5,3 -- f5,2,1 -1- f4,3,11 



204 P. Di Francesco, C. Itzykson, and J.-B. Zuber 

2.3 Averages 

To complete the proof of  (K ~) it is now sufficient to perform the averages 
(f.(O(Y)))(N). For this we insert the original definition (2.18), taking the size of  
the matrices large enough (in particular N > n, the number of  indices). Of course 
n > 0, since for n = 0 we have nothing to prove. Thus 

( fkl  ..... ~. (O.(Y))}(N) 

= (--I)N(N-~)/Z2~(--1)~'+'"+k'fN~IN,ZN(A) = -~dya det[ e-v~ab ll<_a,b<N 

Ya--Yb Z ~ Ya~+Ya~ 
X 1-I (/~a---~b~(ya@Yb) 

l<a<b<N l<al<...<an<_N l _ < r < s < n  Yar Yas 

• 1-I Yat + YZ det[Yka~]l<~,p<n. (2.30) 
l < t < n  Yat -- Yl 

/ E { I  ..... 81 ,...,a~,...,N} 

(fki ..... I~(O.(Y)))(N) 

--__ (--1)N(N--1)/22n(--1)k'+-+k~./'Narll~ ~ -~aC~b) = v/~dY~ 

l<_a<b<_N 
E 

l<al<...<an <_N 
l <bl <...<bn < N 

• l ~  (__l)bl+..'+bn Ya - Ya' det[e 2 ] a E { 1  ..... 81 ..... & . . . . . .  N }  

a<a ! Ya "q- Ya t b~{1, . . . ,b  I ,...,l)n,...,N } 

a,dE{l,...,g 1,...,an,...,N} 

y2a s ;~bt 
kt • det[e 2 ]t<s,t<_ndet[Ya~]l<_s,t<_n" (2.31) 

For each set 1 < a 1 < a2.. �9 < a~ < N the integral over the corresponding y ' s  yields 
equal results while the integral over the remaining y ' s  yields a factor ZN_ n (Abl ..... b~ ), 

(fkl ..... k~(O.(Y)))(N) 
(_  1)~(2N-n- 1)/22~ (_  1)k~ +.-.+k~ ZN-n(Abl ..... b~) 

n! ~ ZN(A) 
l<bl<...<bn <N 

II (~b - "Xb') 
• ( _ l ) b l + . . . + b  n b < b ' c { 1  ..... b 1 ..... b . . . . . .  N }  

[ I  (;~b - ;~b,) 
l<_b<bt<_N 

r~ 2 

• de t [e-  2 ]i<~r ]l<s,t<_n 

y2~ b 

(2.32) 

We expand the N x N determinant det 2 according to Lagrange's  formula as an 
alternating sum of products of determinants of  size n and N - n respectively, take 
signs carefully into account and note vast cancellations, to get 
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The last integral vanishes whenever one of the k i at least is odd, hence we get (2.14a) 

(2.33) <fk~ ..... kn(O.(Y)))(N) = 0 if at least one ki # 0 m o d 2 .  

whereas using f dy y2% -~y2/2 = V/~- /A (2k - 1)! !A -k ,  we get 

{f2kl ..... 2kn (O.(Y))}(N) 
n 

: 2 n ( - - 1 )  n ( 2 N - n - 1 ) / 2  H ( 2 ] ~ 8  -- 1)!! Z U 

s=l l < b l < . . . < b n  < N  l < s < t < N  

• /~bs q- Abe H )%s 2Ab det[/~k$]l<s,t<n. (2.34) 
Ab~ -- Abt l<s<n Ab8 Ab 

bE{1 ..... 81 ..... b . . . . . .  N} 

Since (A b + Ab,)/(A b - Ab, ) = --(AD 1 + A~I)/(AD 1 - A~I), comparing with the 
definition of f.(O.(A-l)), we obtain (2.14b) in the form 

n 

<f2k, ..... 2kn(0.(Y))}(N) : ( - -1 )  kl+' ' '+k '~ 1-I(2< - 1)!!fk 1 ..... k~(0(A-1)) (2.35) 
8=1 

as claimed. This completes the proof of Proposition (K').  We add a few comments.  
(i) As shown along the way the map K �9 P(O.) --* Q(O.) is defined over Q. 

(ii) Since f. 's generate all polynomials in odd traces, this map is surjective. Its kernel 
is the linear span 

Ker (K)  = {linear span of fkl ..... k~(0.), n > 0, 

such that at least one of the k i is odd}.  

Indeed any P(O.) is a finite sum 

P(O.) = a o § ~_~ E ak 1 ..... k,~ fkl ..... k~(0. ) (2.36) 
n>O kl >k2>...>kn>O 

if K(P)  = O, it follows that 

Z a2kl ..... 2k~fkl ..... k~(O.) = 0 =::k a 2 k  1 ..... 2kn = 0.  (2.37) 
k l > . . . > k n > O  

Therefore if d(n) denotes the dimension of the vector space of polynomials of  degree 
n in 0 's and do(n) the dimension of the subspace annihilated by K ,  we have 

o~ 

Z d ( n ) q ~  = r i ( 1  + qn) 
n=0 n>0 

Z d o ( n ) q ~  = H (  1 + q ~ ) _  U (  1 +q2~) 
n=o n>0 ~>0 (2.38) 

1 1 0  
-- n[I__>0 (1 -- q2n+l) ~H>0 (I § 

= q + 2 q 3 + q 4 + 3 @ + 2 q  6 + 5 q  7 + 4 q  s + ' ' "  . 
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3. Proof of Proposition (W) 

Notations being as before, we consider the integral (1.3), 

~N(A_I) fd#(AN)(Y)exp~try3 I i /(N)(A 1) fdp(AN)(y) = exp g t rY 3 , (3.1) 

which admits an asymptotic expansion, each term of which is for N sufficiently large 
an N-independent polynomial in the odd traces of A 1. We keep the normalization 
(2.3) 

2 02~+1(A-1) - 2k + ~  TrA 2,~ 1, (3.2) 

As N tends to infinity these become independent variables and the asymptotic expan- 
sion is denoted Z(0.). For any polynomial in odd traces P(Y) =_ P(trY, t r y 3 , . . . )  
set 

((P)}N = IP(Y)exp (~ try3) )N(A-1) . (3.3) 

From Sect. 2 it admits an N-independent asymptotic expansion /(P}}(0.) in the odd 
traces 02k+1 (A-l) .  Explicit calculations performed by Witten [1] suggest that one can 
express this average as 

0 
where R is again a polynomial (with constant coefficients) in the derivatives - - ,  

002k+1 
and conversely that for any such R there exists a P. Using techniques developed in 
[3], one can for instance derive closed expressions for R a monomial in 01 or 03 (see 
Appendix B) 

~(0.) = Z tr 6~n!m! ra,n>O 
3~+r~=k (3.5) 

( 0 ) k 1 trrg'3 
�9 l/e ))l v=0 Y(0 ) =((1 + 3y/4)30y)k(1 + 3y/4) 15 " y t~7, " '  

and a more cumbersome, although perfectly explicit formula for R being any 
polynomial in both 00i and 00~ (see Appendix B for details)�9 

The proof of Proposition (W) is based as before on the comparison of the 
integral over N x N matrices Z N, defined in (3.1), to the same integral ~lv+~ 
over (N + n) • (N + n) matrices. Indeed it is easy to see for n = 1 that in the 
expansion of ~N+I(A -1 | A- l ) ,  where A is a real positive number and A a positive 
definite diagonal N • N matrix, the terms of degree 3k _< N are obtained from those 
of the same degree in the expansion of ~N(A l) by translating the variables O.(A 1) 
according to 

2 A-zj-1. (3.6) 02j+l( A 1) __+ 02j+1(.~ 1 @ A - l )  = 02j+I(A-I) 2j + 1 
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Therefore in the usual N --+ co limit, we can write 

oo 2 0 (A_I) 
~(A 1 @ A - I )  = e x p Z - 2 j  + 1/~-2j-loo2j+l 

i = 0  

oo 

= ~ )<~Pk(O.) ~ .  
k = 0  

(3.7) 

We see that the power series m A i on the r.h.s, is a generating function for the Schur 
polynomials (defined in (2.5)) of derivatives 0 

2 0 0 j+l 
2j + 1 b02j+l (3.8) 

02j = 0  

acting on 2 ,  as a function of the infinitely many variables 022+1. Increasing n amounts 
to iterating this process, and we get in general a generating function for any product 
of Schur polynomials of 0. acting on ~=. These products span the whole space of 
polynomials in the variables 02j+l. 

We are left with the task of computing the 1.h.s. of (3.7) and its generalizations. 
Proposition (W) will follow if we can find expressions of the former as generating 
functions for expectation values of polynomials of the form (1.5). This last step 
turns out to be elementary, and leads to explicit expressions for the aforementioned 
polynomials. It is summarized in the following 

Lemma 3. Let A = A 1 | A 2 be the decomposition of the diagonal matrix 
A = diag(A1,... ,AN+,,) into the direct sum of two diagonal matrices A 1 = 
diag(A1,... , An) and A 2 = diag(A~+l,.. .  , An+N). We have 

H ~i2~kJ ~ gA--1 
l<_i<j<n )ki -~- "~J ~ n + N ~ ' ~ X l  @ A~-I) 

k H__I 2 i ( / ~  - Ap) + Ym - Yv 
= d.~(y~) H 2i(~.~ 7 ~p) + y,~ + yp 

l <_m<p<n 

• det \ 2 ~ z  + Yz ~Y2 N 
/=1 

(3.9) 

1 

where du~ (y) = (A/27r) ~ exp(iy3 /6 - /~y2 /2)  dy is the measure of integration over 
the eigenvalues y adapted to our problem, and the double bracket denotes the integral 
over the N • N matrix Y2 as defined in (3.3). 

The lemma will be used to expmld both sides of (3.9), when N ---+ oc, as formal 
series in Aj 1, 1 < j _< n, for large ),'s. On the 1.h.s. of (3.9) we get as coefficients 

of this series polynomials in the derivatives w.r.t.O.(A~I), whereas on the r.h.s, one 
gets averages of polynomials in the odd traces of ]#2, which completes the proof of 
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Proposition (W). Before proving Lemma 3, let us illustrate the mechanism in the case 
n = 1, where (3.9) reduces to 

~,N+l(A-l G A-1)= / dz/x (y)lldet ( Y + 2iA- 

Expanding both sides in powers of 1-1,  using 

[ & ' x ( Y )  ~ 2 ) - m  ( . ( ~ ) ) ~ N  (3"11) ~N_HI()~--I @ A - l ) :  ] ((m>o(.,X- $!] ~Om 0 ]l- 

with N --4 o0, and integrating term by term over y, we can identify the coefficient of 

A -~  in (3.7) as 

(( Pk(O.)~(O.) = ~ (-- 1)ses,/~ Pk-3s O. 
o<~_<[k/3] N 

(3.12) 

where 

2s 1 (k - 3s + l - 1)! (6s - 21 - 1)!! 
(3.13) 

/=0 

and [:c] denotes the integral part of  x. For k = 0, (3.12) reduces to the identity 
((1)) = ~(0.) .  The general case with n > 1 will be dealt with below. Let us turn to 
the proof of  Lemma 3. 

At first the matrices A, A 1, A 2 involve diagonal real positive elements, but if we 
introduce a cut in the complex plane along the negative real axis, the integrals make 
sense for each eigenvalue having a positive real part - as absolutely convergent 
integrals; as semi-convergent ones we can even extend them to the imaginary axis 
except the origin. To give a meaning to the following operations we will first 
continue analytically the Aj to imaginary non-vanishing values. Similar techniques 
were implicit in both [2] and [3]. With this proviso in mind we return to 

~" --1 1 f l tr(y3) 12tr(Ag2) 
~r~+N(A ) -  Zn+N(A) dYe ~ , (3.14) 

where Z~+N(A) is defined in (2.12). We perform the change of variables Z = 
Y + 2i(A 1 | 0), with the obvious definition for the (n + N )  x (n + N)  matrix 
A 1 �9 0 = diag(A1, . . . ,  An, 0 , . . . ,  0). Due to the relation 

(A 1 @ 0)(0 | A2) = (0 �9 A2)(A 1 O 0) = 0,  

the trace in the exponential becomes 

i t r ( y 3 ) _  1 i 1 2 3 ~ tr(AY 2) = ~ t r(Z 3) - ~ tr([(0 �9 A2) - (A 1 @ 0)]Z 2) + ~ tr(A1) �9 (3.15) 

We see that except for a constant term, the form of the exponential term is conserved, 

up to the substitution A = A 1 |  --~ A =  (OGA2)-(A 1 GO). We can now perform 
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the "angular" average over Z [5], which results in 

~n+N(A -1) 

209 

n 

I I  + l<i<j<_N+n~J -~i k:lH duxk(%) p=l I_<Z<~<N+~H ZZ ~ 7-~m ' (3"16) 

where the ), 's are the diagonal elements of .4, i.e. 5~ = - a k  for 1 < k < n, 5~ k = .k k 

for n + 1 _< /~ <_ n + N (recall that the 5~'s are purely imaginary, so that the minus 
sign causes no harm in the integral). As usual the antisymmetry of the integrand in z ' s  
in (3.16) automatically takes care of  the denominators z z + z,~, by antisymmetrizing 
the measure. We now perform the opposite change of variables, but this time on the 
eigenvalues z by setting 

z k = Y k + 2 i ) ~ k  1 < k < n  
(3.17) 

% =Yk n +  1 < k < n + N  

which leads to 

--=~+N(A7 ~ �9 A2 ~) 

= H )~ + Xj l<i<j<n ai =~JJ H a l l  + aml 
n+l<l<m<_n+N a l l  aml 

f N+n 

• H Yi - Yy H Yz + 2iaz - yj 
n+l<_i<j<_n+N Yi + Yj l</<n Yl + 2iAt + Yj 

n+l<_j<n+N 

(3.18) 

and amounts to the statement of  Lemma 3 since 

N+n 

II + i II n-t-l<l<m<_n+N a l  1 ~k~r~l k=n+l 

• H Y i - Y j  H 
n+l<_i<j<_n+N Yi + Yj l<l<n 

n+l<j<_n+N 

= det ~ + 2 i a / ; U  2 
1 n N 

du ),k (Yk ) 

YZ + 2iaz - Yj 

Y~ + 2ia 1 + yj 

(3.19) 

Remarks .  (i) Once we are through with the proof, the lemma remains valid as a 
statement on asymptotic series for real positive eigenvalues A's. 
(ii) The lemma enables us to give several expressions for the same ~ N  by splitting 
the N eigenvalues of A into two sets N = N 1 + N 2. For instance we find for N = 2 
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the various expressions with A = diag(As, A2), 

~ 2 ( A - i )  = f 1-I dzJ,xk (Yl~) Yl -- Y2 + 2i(Ai -- A2) 
s Yl 7 Y2 + 2i(A1 q- )~2) 

= f H &'ak(Y~) Yl + 2iks - Y2 
/~=1,2 Yl + 2iA1 T Y2 

_ A 1 -~- A 2 = H &'xk (yk) yJ Y2 x - - ,  
k=1,2 Yl + Y2 A2 - -  A1 

A s +A2 
x - -  (3.20a) 

A s -- A 2 

(3.20b) 

(3.20c) 

where (3.20b) admits an alternative expression with A 1 +--> A 2 and (3.20c) is understood 
after antisymmetrization of the measure. It is interesting to check that the difference 
of any two of  these expressions can be written as the integral of  a total derivative 
(and therefore vanishes)! 

With Lemma 3 in hand, we can now obtain the most general combination of 
derivatives acting on ~(0.).  The 1.h.s. of  (3.9) for N --+ oo converges as an asymptotic 
series in O.(A -1) to 

A i --  Aj '-~(A1 s @ . . .  @ A~ 1 @ A _ l )  
I I  ai T a j l<~<j<~ 

l_<i<j<n ) , iT  )'J ~,, 2,...,~,~ ~=1 k i p~l(0.) . . .p, ,n(O.)~(O.(A-S)) .  (3.21) 

Expanding the prefactor as a power series in the domain A7 s > A2 ~ > - . .  > A~ l 
and performing a similar expansion on the r.h.s, of  (3.9), it is possible to rearrange 
the series in terms of  our f. 's. More precisely, it is simpler to use the extension ~o of  
f described in Appendix A, to zero or negative indices, generated by the series 

F n ( A l S , . . . , A n l ; x )  -~ ~I  A - ~ ' ~ ,  ..... ~,~ (o. (x)) 
miEZ /~=1 

H A~ -1 7 - E fiA:~iP~i(O.(X)) (3.22) 
s_<i<j<n Aj s n~_>0 i=s 

expanded in the domain A7 -1 > . . -  > A~ s. The 1.h.s. of  (3.9) reads therefore 

n(n--1) ,~-1 _ A}-I Z(A7 -1 |  �9 A~ 1 | A -1) 

l<_i<j<_n 

n(n l) f i  
= ( - 1 )  2 E ,~mk~gmi ....... (O.)~(A-1). (3.23) 

mkEZ k=l 

To perform such an expansion on the r.h.s, of  (3.9) we should similarly order the 
arguments A k q-(yJ2i) (in modulus). This looks at first unreasonable since the y ' s  run 
along the whole real axis. However we recall that we look for an asymptotic expansion 
of  an absolutely convergent integral over Yl,.. . ,Y,~, as each A1,. . .  , A n goes to 
infinity. With an exponentially small error we can therefore bound the domain of  
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integration in the y ' s  and assume the )~'s large enough so that the I,~+(Yk/2i)l remain 
ordered. This means that in the sense of asymptotic series we can perform an expansion 
similar to the above (3.23) but this time with ~. (Y/2i) in the integrand. Integrating 

on the y ' s  as we did before, we can identify the coefficient of ~ 1 ~ . . . ) ~ ' ~ ,  
m 1 > - . .  > m n > 0 in the resulting asymptotic expansion. We obtain the main 
result of this section in the form of 

Proposit ion (W ~) Any polynomial in derivatives acting on ~(0.) can be expressed as 
an average over a polynomial in odd traces of Y and vice versa. More precisely for 
ml > . . . > m ~  > 0 ,  

f ~  ....... (o.)~=(o.) 
n 

= Z I I ( - -  1)si Csi,mi ((#gm1-3sl ..... m~ 3 s , ~ ( O . ( Y / Z i ) ) ) ) N "  
Sl , . . . ,sn>O /=1 

3sj<_ ~ m k 
j < k < n  

(3.24) 

We recall the notations and make a few comments. 

(a) 0 = 2/c + 1 002k+1 

(b) The ~. 's are reduced to f. 's with positive indices according to the rules (i)-(iv) 
of  Appendix A. 

2~ 1 ( m -  3s + l - 1 )  (6s - 21-1) , ,  
(c) cs, ~ = ~ ~ l 6-~-~(2-s-T_ ~ ! '  where the combinatorial factor 

can be seen as a polynomial in the variable m - 3s with integral coefficients, hence 
remains integral and well defined for m - 3s < 0. It is easy to rewrite 

1 2~: ~ . ( 4 s - 2 1 ~ ( m - 3 S l + l - 1  ) _ 6z(6s - 2l - 1)[ T 
e~,~ (12)2s (4s 21 1)!! \ 2s - 1 J  

exhibiting (12)2~c,,~ as an integer. Since the ~. 's are linear combinations of f. 's with 
integral coefficients (see Appendix A), the relation (3.24) involves at most rational 
fractions with denominators (12) 2.i as coefficients. 

(d) The "leading" term in (3.24) corresponds to sl . . . . .  s~ = 0 and Co, ~ = 1, 
hence for m 1 > . . .  > m n > 0, 

fml,-",mr~ ( 0 ' ) Z ( 0 . )  = ((f,~l ..... ~,~(O.(Y/2i))))x + l ower . . .  , (3.25) 

where by lower we mean averages over polynomials with smaller degree in Y. 
Therefore the system of equations (3.24) is triangular and can be inverted, vindicating 
the statement (W'). 

(e) In Table 3 we have recorded explicitly the first few cases of (3.24) up to degree 8 
(the argument in the average is O.(Y/2i)). The reader can check - as we did in Table 
4 - that these data are in agreement with formulas (3.5) of  this section, expressing 
derivatives w.r.t 01 and 03. Also one can make contact with earlier results by E. Witten 
[1] expressed in terms of variables t related to our 0 's (1.4) through 

(2k + 1)!! 
~ -- 2 02k+l. (3.26) 
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(f) There exist simple cases of  (3.24) when successive ra ' s  differ by 3 and the last 
one is 1 or 2, where, due to the antisymmetry of f. 's, the relation (3.24) reduces to 

f~+3k,~+3(k-1) . . . . .  a+3,a(O.)'-'~(O.) = ((fa+3k,a+3(h--1) ..... a+3,a(O.(Y/2i))))N (3.27) 

f o r a =  1,2. 

Appendix A. Calculation of f. 's 

To make the computation of the polynomials f. simple and explicit, let us use the 
definition of the characters ch in terms of our Schur polynomials p. (2.5) to rewrite 
(2.27) as 

r)---ykjl --I pkl (0.)Pk2 (0.)... Pkr~ (0.) fkl ..... kn(O'): { l<i<j<nH 11TPkiPs Pki ) 

= ~ > 0  ( H c%~j)Pk,+~lj(O.) '"Pk~+~r~(O') '  (A.1) 
l<i<j<n 9 J 

where % = ( - 1 ) r ( 2  - (it,0) is the coefficient of  y~ in the small y expansion of 

(1 - y)/(1 + y), and the sum over r (defined as in (2.27)) is finite (kp + ~. rpj >_ 0). 
3 

The second line of  (A.1) makes it straightforward to extend the definition of f. 's to 
~. 's including negative or zero indices. Namely define for m l , . . . ,  m~ C Z ,  

~l~frtl ...... rLn----r~O ( H O~?'ij)PmI4-~i?~li'''Pmn+~rni _ l<i<j<n i 
(A.2) 

with the convention that Pm = 0 as soon as m < 0, then one has obviously 

~ 1  ..... m,~ = fml ..... "~,~ for m l , . . .  , m ~  > 0.  (A.3) 

This definition enables one to rewrite the expression (2.23), (2.24) for the characters 
in a very simple way, 

ch. = H ( P / - I  + p f l ) ~ .  (A.4) 
i<j 

The generating function (2.19) for characters also simplifies drastically. Namely in 
the region lull > ]u21 > . . .  > ]unl of the polydisk D(X) ~, we can expand F defined 

n 
in (2.8) as 1 - (uj/ui) H det 1 - ukX 
F~%,.. . ,u~;X) = I I  1T %/~0  1 + ~kX 

l<_i<j<_n k = l  

= u ~  Pk~+E ~j (X)  
r ~ O  kl,...,kn~O l<i<j<_n m = l  J 

(x). (A.5) 
= _ . _  . . . . .  

m 1,...,mnEZ i = 1  / 
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Table 3. The derivatives of the Kontsevich partition function with respect to the 0 's expressed 

as averages over polynomials in odd traces. The notation 0 stands for 2k + 1 002k+1 ' 

0 ~- 0(A-I), while on the r.h.s, the matrix argument of f. 's is Y/2i 

fl (0.) ~ = ((fl)} 

f2(o)z = ((f2>> 

f2,1 (0.) ~ = ((f2,1 -- ~2 ) 

Y4(O)~ =l(y 4_17 
f3,1(0.) 3' -~'((f3,1q- 2 ~ f l ) )  

35 

f4,1 (0.) '-'~ = ((f4,1 )) 
5 

f3,2(0.) ~ = ((f3,2 -}- ~ f2/)  

( /  59 131@2)) /6(0.) ~ = f6 - ~ f3 + 

35f 
fsd(0.) z = ( ( S 5 , 1 - 2 4  a , ' + 5 ~ 6 )  ) 

$4,2(0.) S = ((f4,2 17 35 
+ g & ~ -  57g/1 

f3,2,1(0.) "-'~ = ((f3,2,1 5 

( 89 1801 / /  
f7(0.) ~ = f7 -- ~ f4 -~ 1--~ Yl 

59 
f6,1 (0.) ~ = ( ( f6 ,1 -  ~ f3,1 131@2 fi ))  

f5,2(0.) '-'~ = ((f5,2)) 

f4,3(0.) E = ((f4,3 17 + ~ f3,t -- ~ f4 + ~6fl)) 
1 

f4,2,1(0.)~'~ =- ((f4,2,1 -- ~ f4-- ~-~ fl~ 
II 125 5005 \ \  

ys(o.)~ = s - 5 ~  Ys + ~ Y @  
89 

f7,1 (0.) ,-~ = /(f7,1 - ~ f4,1)) 
59 385 f \ \  

f6,2(0.) '-'~ = /(f6,2 -- ~ Y3,2 -- 1 ~  2/// 
35 5 1 7 5 . , ,  

/5,3(0.) s = 3"5,3 q- ~ f3,2 - Is -t- ~-~J2// 

/5,2,1(0.) ~ = ((/5,2,1 -- ]2 /5  + 5 ~ 1  35 f2//\\ 

f4,3,x(O.),~'~=llf4,3,1-}-5 f41111 
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Table 4. Monomials in the derivatives acting on the Kontsevich integral expressed as averages of 
polynomials. The notation 0~...(zk+1),2k+l ...1(00. ) stands for 

_1 ,q~'2/~+1 ...  = u2-11 !k+ (-(2/2k + 1)O02k+ 1) u2/r �9 ' �9 z,2h:+l ! ~2/r ' " " 

0[11 ] (0.),~,~ = ((0[11])) 

0[121 (0.)~ = ((0[12])) 

0[13](0.)~ = ((0[13] -- ~ ) )  

01,q(O.)~ = (<013q - 1 ) )  

0114](0.)~ = ((0[i41 -- 10[ii1)) 
13 

0[1131](0.)~ ~ /(0[1131] -- 2"40[11]~ 

0[I5](0.)~ ~- 110[15] -- ~0[12111 
25 

011231](0.)~= ((0[12311-- ~0112]~ 

01511(0. )~ = {(01511- ~0[12[~ 

0[16](Gq.),_~ = //0[16 ] _ 1 

0[13311(0 ),~ = //0[1331 ] _ 37 1 ~01131-- 601311"}- 1 ~ 4 ~  

0i~isl]( 0 )E = (<0[115q 3 3 

( (  19 2 5 ) )  
0t321(0.)~ = = 01321 - ~ 0 [ 9  1 + 

0117]( 0 ),.~ = //0[17 ] _ 1 �9 ~0[t41-}-10[111)) 

0114311(0.),_, ~ = //0[143l I 49 1 -- ~ 0[14] -- 60[1131] -}- 1~4 011l] ~ 

0[12511 (0")~ = //011251 ] _ 3 0 3 0 5 [ 14] - ~ [ 1131] -}- ~0[i1]// 
l /  31 481 _ \ \  

0il132j(0 ),-~ = 011132 ] -- 2~0[1131] q- 1~20111]//  

017~3(0 )E =/I0[7~ ] 3 0 1 

O[~s](O)~ = //01181 _ 10 + 

0[1531](0.)~ = //011531 ] 61 1 49 ~0[lS ] -- g0[1231 ] -]- 1~0[12]/)  

0[1351](0.),~ ___ ((0[1351] 5 0 3 1 0 ~0[12] ~ _ 2 [151 _ ~0[i231] _ g [511 ~- 7 

0112321(0.),~ = ((011232 ] 43 1225 \ \  -- ~011231 ] q- 1 ~ 0 1 1 2 ] ) )  

0[11711(0.)~ = //0[ll71 ] _ 3 5 0 5 ~0[1231 ] - ~ [ 51 ] q- ~0[12]// 

0131511(0)3 = //0131511 -- 1 0 61 0 49 0 \ \  �9 4 [ 1231] -- ~ [511 q- ~ I12] / /  
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But as shown in Sect. 2, the f.  's form a basis of the vector space of polynomials in 
the variable 0., therefore the extension (p. is overcomplete. In fact as already apparent 
on the r.h.s, of (2.19), the (?. 's can be expressed simply in terms of f. 's only: we get 
the following set of rules easily derived from the definition (A.2), 

( i )  ~?fr~l . . . . . . .  = fro1 . . . . . . .  , for all m~ > 0. 

(ii) ~ml ..... ~ , ~ , 0 = ~ l  ..... ~ , f o r a l l m  i E Z .  

(iii) ~m~ ..... ~,~,~ = 0, whenever a < 0. 

( i v )  ~.r~ 1 ..... mj+l ,mj , . . . ,mn ~ ~ml  ..... ~'rtj,rrtj+ 1 ..... van 

+ 2 ( -  1)~5 (Sraj +mj+~ ,o~mt ..... r~,raj+l . . . . . . .  " 

The only non-trivial rule is the last one, which follows from the identity 

( - 1 ) r c ~ c ~ - ~ .  = 6 ~ ,  0 . 

0 < r < m  

Starting from s o m e  ~ral,...,rrzn, to reexpress it in terms of f . ' s  one has to use the rule 
(iv) repeatedly to "push" the negative indices to the right, which results in either (ii) 
or (iii), and ends up with an expression of f through (i). Note that in this way ~ . ' s  
are expressed as linear combinations of  the f.  's with relative integer coefficients. We 
have for instance 

~--ml,m2,m3 = 2(-- 1)ml[(Sm 1 ,m2 fro3 -- (~ml ,m3 fr~2] 

TYtl~ ~7Z2~/Yt 3 ) 07  

Tt'bl~TYt2~T/Z 3 ~ 0~ 
(A.6) 

which should be compared with (2.24). 
We now turn to the actual computation of the f. 's in terms of 0 's. From the last 

equality in (A.1), we get a recursion relation for f . ' s ,  

kn+l  

s=0 r i  ,...,rn_>0 
rl +...+~n =8 

n 

(A.7) 

Let us use the shorthand notation 

O{r'} = O[lu13u3...] = I I  03j 
odd j>0 YJ! 

(A.8) 

for any set {u} = ua, u3 , . . ,  of  non-negative integers (or alternatively any permutation 
[1 ~ 3 "3 . . . ]  of ~ j u j  elements with odd cycles only), then the coefficients A in the 

odd j 

expansion 

fki ..... k,~(0.) = ~ A {~} a (A.9) k 1 , . . . ,kn v { v }  
vj >O,j odd 

Vl +3v3 + . . . .  kl  + "  ' + k n  
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satisfy the recursion relation 

A { - }  kl ,...,kf~+l z 
/~j _>0,j odd 

/~j <vj;(Vl --/x 1)+3(v3--/~3)+' '" ~< kn+l  

rl,...,r~>_O 
~1 +"'+'r'n=kn+l +(,aI --Vl)+3(/z3--V3)+"" 

i=1 

(A.10) 

Considering that only integer coefficients enter the recursion relation and that 

A~ ~} = 1 for = ~ juj  = k, we deduce that all A ' s  are integers. It is now easy to 
j odd 

compute the first few A ' s ,  we find (the multi-index superscript {u} is always related 
to the indices through ~ j u j  = ~ hi). 

3 

A~ "} = 1, 

A{-} k,1 = P l  - 2  , 

A { ~ }  (u  I - -  1 ) ( U  1 - 4 )  
k,2 = 2! 

A { . }  (U 1 -- 1)(u 1 - 2 ) ( u  l - 6 )  
k,3 = 3! + u 3 '  

A{.  } (u 1 - 1)(u 1 - 2 ) ( u  1 - - 3 ) ( V  1 - - 8 )  
k,4 = 4! + ( u l  - 2 ) u 3 '  

A { . }  k,5 
= (U 1 - -  1)(U 1 - 2 ) ( u  1 - 3 ) ( u  1 - 4 ) ( u  1 - 10) 

5~ 

+ (u I - 1)(u 1 - 4 )  
2l u3+u5 '  (A.11) 

A { ~ }  v l ( u  1 - 4 ) ( v  1 - 5)  
G2,1 =" 3! - 2/ '3  ' 

A{'}  = 2 Ul(Ul  --  2)(ul - 5 ) ( u l  - 7 )  
k,3,1 4! - (ul - 2 ) / / 3  ' 

A { " }  = 3 u l ( U l  - 2 ) ( u l  - 3)(//1 - 6 ) ( u l  - 9)  _ 2u5, 
k,4,1 5!  

A{-} k,3,2 
= 2  Ul(Ul  - -  1 ) ( u l  - - 4 ) ( V I  - 7 ) ( u l  - 8 )  

5! 

(~1 - -  1)(ul - 4 )  
m 

2~ 
u 3 + 2u 5 . 

Table 1 is obtained by using these expressions. 
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Appendix B. Two Illustrative Cases 

For any invariant polynomial f (Y ) ,  i.e. depending only on the eigenvalues of Y, one 
may write following the steps of [3] 

( ( f (Y  + iA)}} 

= 1-I A{ 1--[(Ai + Aj) d Y  f ( Y  + iA)e gt~Y3 ltr y2 A 

i ~<j 

1 ltrA3 f . 1 3 1 
= I I  Aii Y I  (Ai + )b)e ~ j d Y  f ( Y ) e  ~(~ t~Y +g t r Y A  2) 

i i < j  

l f [ i i dY  i 1 x2,/X3 , i ~  1 3 , 1 A 2 1 (~j _yj ) 
i < j  

[ I ( Y i  -- Y j )  
= ~---[ / I I  dyi �9 ~ 3 , 2 1 3 - .  �9 

_ _ 2  - • 

1 1 3 i ~ l  3 , 1  . 2  
dYi 2 H ( y  i - yj)e gYi+2Yi"~i 

X l - I ~ A i e 3 ; h i <  j 

1 
-- f(iD)A(A)~T , (B.1) 

A0,) 
where the double bracket denotes the weighted average (1.5), A(A) the Vandermonde 
determinant of the A's and 

2 1 0 
D~ = l~ + 

I i A{ Oli 
!-? 1 20 _! 1.3 (B.2) 

/Xi e 3 = - e 3 ~ ; ~ 0 ; 9  2 --~.  

The second equality in (B.1) is obtained by a translation Y ~ Y - i A  for an analytic 
continuation to pure imaginary A (see Sect. 3). The next one follows from an angular 
integration. 

The above relation is in particular true for arbitrary powers of tr(Y + iA) 

I ( [ t r ( Y + A ) ] P ~ I  = 1 p [tr D] A(A)=. (B.3) 
\ \ L  X - -  / J  I /  

One forms a generating function for the averages of powers of tr Y in the form 
Y Y ((&v)) : ~-s~((&(v+A)>> 

= e-s~A 1 , ,  d~DA(A)S  

/ 1 ~ trA3 det AI'~ e-2~ E ~ 1 1 ---- e - s t r A  ~ e ) OX2 (det A- i e-  5 tr A 3 Z~(A),_.~) . (B.4) 
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The operator e shifts all variables A 2 by -2s .  Hence, using the expressions 
displayed in [3], one finds after some algebra 

r 0 
((e strT )) = e ga(s) exp s Z t~+l Ot~ ~ '  (B.5) 

r~_>0 

where the variables t are related to our 0 defined in (1.4) through 

(2k + 1)!! 
tk - 2 02k+1 (B.6) 

and ~ is the function given by 

1 3 31 Z ( A 2 _  2.s) ~ 

+ Z l n  k ~ + a ~  l l n  A 2 . 2 s  s ~ k  i.  (B.7) 
~<j ~ - 2 s +  v ~2-2s 4 k 2 

The differential operator /-1 that appears in the exponential of the r.h.s, of (B.5) 
is part of a Virasoro operator that annihilates the function i ,  namely L_ 1 = 

0 
t,~+1~2- ~ + This may be used to rewrite (B.5) as 

n_>0 

Y 
((estrT}} = er - s c  1Z .  (B.8) 

Denoting K(s )e~ ' (S )e~k~  e-SO-1, one finds that O K ( s ) ( O  ~ ~ ) = = s 2 K ( s )  

whence 
Y=_)) 0 s 3 

((e str = eS~70 6 ~ ( B , 9 )  

or equivalently 
0 ~ , Y ,  s 3 

e-2~~176 = ((eS~lk~)-~-)) (B.10) 

in terms of our 0 's. Therefore in this particular case, we have a very explicit 
expression of correlation functions in terms of derivatives of ~,  vindicating the general 
Proposition (W). 

The averages of powers of tr y3 may also be treated simply. By a rescaling of the 
integration variable Y, it is easy to derive 

((ey tr ~t27,Y x3 >) = e 2 ln(l+(3y/4)) ~ (2 rz+ l ) tn  O~n ,_.~. (B. 11) 

0 
Here too, the differential operator l 0 = ~(2r~ + 1)t ,~7- ' in the exponential is a part 

- -Tb 
1 3 0 

of the Virasoro generator L 0 = 10 4- 16 2 0 t  1 that annihilates Z. As above, we 

define K~ (z) = e2ZZOe -2zLo and compute that 
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Thus Kl(z) = exp-  I(e-3~ - 1 ) ~  + 81. This leads to 

Y 3 
((e ytr(~) }) = (1 + (3y/4))-~e-[(l+(3y/4))-2-1]~ (B.12) 

showing again that any tr ~ is given by a polynomial in the derivative 

0 
Ot 1 acting on ~. The two special cases (B.9) and (B.12) may be combined into 

63 ) ,_~(J~ -I ) (B.13) 

1 

where A =  (y/8)-3A, hence t'~ and g = (y/8)-Ss. 

((e str (+y  tr(g~) )) exp 

2 2 

= (y/8)r 
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