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Abstract. By examining the lattice gauge approximation we show that the small 
volume limit of the 2-dimensional Yang-MiUs functional integral is the natural 
symplecfic measure on the moduli space of fiat connections. 

O. Introduction 

The subject of this paper is the small volume limit of the 2-dimensional Yang-Mills 
functional integral. By examining the lattice gauge approximation, we show that 
this limit is precisely the natural symplectic measure on the moduli space of fiat 
connections. This answers affirmatively a question raised in [$2]. 

We begin by placing this result in context. Let S be a compact orientable 
surface of genus g > 1, G a compact Lie group with finite center, and P ~ Z 
a principal G-bundle. We suppose further that Z is endowed with a volume form e, 
and G is equipped with a bi-invariant Riemannian metric with total volume 1. For 
any connection A on P, we associate the curvature Fa. (See [A-B] for details). 
We have 

FA 
for some ad(P) valued function fa.  The Yang-Mills functional is defined by 

YM~(A) = $ Ilfa 112~, 
z 

Let ~r be the affine space of connections on P. We are interested in the partition 
function 

Z(Z ,e , k ,P )  = ~ ~ A e  ~vra.(A), 
d(e )  

where k 2 is a coupling constant. More precisely, the object of interest is 

Z(Z, ~, k) = Z Z(S,  e, k, P) ,  
P 
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where the sum is over representatives P of all topological equivalence classes of 
principal G bundles. Note that if G is simply connected, then all principal G bundles 
over Z are trivial, so that 

Z(Z,  e, k) = Z(Z ,  e, k, P) 

for any fixed P. 
One difficulty is that this integral cannot converge because the measure 

~ A e  - ~VM,(A) 

is invariant under the infinite dimensional gauge group 

(~ = ~2~ A d P ) .  

Nonetheless, for the time being we foUow [Wi] and examine the desired properties 
of Z. If go is any diffeomorphism of Z, then go pulls back d ( P )  to ~r and 
DA(P) to DA(x*P). Thus 

Z(~-,, go*e, k, go*P) = Z(Z ,  e, k, P) . 

Summing over P, we learn that for any diffeomorphism 

go : ,Y, ~ ,Y, 

we have 
z ( &  go*e, k) = z (~ ,  e, k).  

Moreover, by a Theorem of Moser [Me], if el and e2 are volume forms on Z such 
that 

vol(el) = vol(e2) 

(where vol(e,) = ~z ei) then there is a diffeomorphism go such that 

go*e 2 ~--- e I �9 

Therefore, the partition function depends only on 

v = vol (e) 

and we can denote it by 

Z(Z,  v, k ) .  

Fix a volume form eo with vol(eo) = 1. Then 

YM~o(A) = S II fA 112eo, 
Z 

where 

Since, for any v~R + 

FA = f A e 0  . 
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we have 

and 

YM,  o (A) = ! 1 YM,o(A ) 

Z(Z, v, k) = S ~Ae  - ~  YM~~ , 

where d is the disjoint union 

d = ~J d ( p ) .  
P 

Thus, Z depends only on vk 2. For simplicity, we will set k = 1 and write 

Z(E, v) = I ~Ae-! YM~~ 

d 

Let 

g : d ~ C  

be a ~r invariant functional. For example, if 7 is an oriented loop in X, one can take 

g(A) =f(T~(A)), 

where T~(A) is the parallel translation operator around the loop 7, and f is any 
function on G constant on every conjugacy class. Then we can consider 

~ Az~z ,  vo g(A)e -!YM~~ " 

The measures 

~ A z~z,  vo g(A )e - ~YMs~ 

are rigorously constructed in [F2] and [$2] (in the case that g = f(T~) for a large 
class of ?). See also [F 1] and [-S1] for the case S = S 2. 

In this paper we examine lattice approximations to the Yang-Mills functional. 
Let ~ be a partition of Z into polygons such that each face is contractible. Let V, E, 
F denote the space of vertices, edges and faces, respectively, of ~.  Choose an 
orientation for each edge and face. We approximate the space d by 

d ( ~ )  = Maps (E, G).  

For  a ~ d ( ~ )  (we will use a small a to denote an approximate connection), e ~ E, we 
think of a(e) as parallel transport along e. In this case, the gauge group is 

~ ( ~ )  = Maps(V, G) ,  

where 7 ~ ( ~ )  acts on a ~ r  by sending a(e) to 

7(el)a(e)7- l(eo) , 

where eo and el are the vertices at the tail and head, respectively, of e. To each face 
u, we associate p,,  the ~o area of u, and T,, the parallel translation around the 
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boundary of u. Now define for each a ~ d ( N ) ,  

eYMv(a) = I ~  K(vpu, Tu, 1), (1) 
u ~ F  

where 

K(t ,x ,y) :  R+ • 2 1 5  

is the heat kernel of G. (The definitions and properties of K are reviewed in Sect. 1). 
We then consider 

Z(Z,  v, ~ )  = ~ ~ae-YMo(a) 
~(v) 

where ~ a  is the natural product measure on 

lq G. 
e~E 

As shown in [Wi] if ~ '  is any refinement of ~ ,  

v, = z ( z ,  v, 

Now let 

(2) 

be any gauge invariant function. For  example, if 7 is any closed loop which is 
a union of edges in ~ ,  and f is any function on G which is constant on every 
conjugacy class, we can let 

g(a) = f(T,(a)) , 

where T~ is the parallel transport operator around 7. We can then consider 

Z(Z,  v, g, ~ )  = ~ ~ag(a)e-YM"(a) . 

Again, if ~ '  is any refinement of N, g extends in a canonical way to a function on 
~ ' ( ~ ' )  and 

Z(~, v, g, ~ )  = Z(Z, v, g ~ ' ) .  

In [$2] (see also [Dr])  it is shown that for any g, v and ~,  

Z(Z,  v; g, ~ )  1 - ~ ~ A  ~ g(A) e - YMo(A) , (3) 
Z(Z, v, 2~) 

where the right-hand side is the infinite dimensional integral defined in [F 2] and 
[$2] (applied to the canonical extension of g from d ( ~ )  to d ) .  

In [$2], Sengupta asks for the limit as v -~ 0 of the measure 

1 ~ A  - -  e - YM .(A) 
z ( z ,  v) 
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We answer this question by examining the lattice approximation. Witten proved in 
[Wi] that 

lim Z(Z, v, # )  = vol dr/o/# Z(G) ,  (4) 
v--*0 

where Z(G) is the center of G, j//o is the moduli space of irreducible flat connec- 
tions on P, and the volume of d//o is that induced by the natural symplectic form on 
J / ~  (see [A-B, Go] and the remark at the end of this section). Witten proved (4) by 
independently calculating both sides (compare (2.67) and (4.72) of [Wi]). We show 
that this limit is true on the level of measures. That is, in this paper we prove 

Theorem 1. For any gauge invariant function 

we have 

g: d ( ~ )  ~ C 

lim Z(Z,  v, g, ~ )  - 1 ~ (On 
v- .o  # o g 

where co is the natural symplectic form on d/g~ and n = {dim rig. 

Using (3) we learn 

Corollary 2. The measure 

is the measure 

on J/l ~ 

1 
lim N A ~ e - YM~(A) 
v"*0 

1 (O n 

vol jgo n! 

Remark. We are using a different normalization for the symplectic form on d/{ ~ 
than that in [A-B] and [Wi]. Namely, if c~, fl~f21(Z, adP) represent tangent 
vectors to ~ o ,  [A-B] and [Wi] define a symplectic form 6) on jgo by setting 

With this normalization, 6) represents an integral cohomology class. However, we 
shall use the symplectic form 

E 

thus avoiding the spurious factors of 2~ which would otherwise appear in each 
formula. 

1. The Heat  Kernel on G 

In this section we collect the necessary facts concerning the heat kernel on G. First, 
we recall the definition. Let A denote the Laplace Beltrami operator acting on 
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functions. Then K(t, x, y) is the fundamental solution of the operator 

O 1 
�9 

That is, for all t > O, 

and 

) +~A:,  K ( t , x , y ) = O ,  

lim K(t, x, y) = 6(x - y) ,  
t~0  

where 6 ( x - y )  denotes the Dirac delta function on G centered at y. If { f }  is 
a complete orthonormal set of eigenfunctions of A with corresponding eigenvalues 
{2i}, then 

K(t, x, y) = ~ e - ~  f~(x)fdy) . (5) 
i 

We require the following well-known estimates on the heat kernel on a compact 
Riemannian manifold M. 
1) There are constants C1 and C2 such that for any x, y e M and t near 0, 

- d i m M  

K ( t , x , y ) < C l ( l  + t  2 )e-C21XN-12. (6) 
- y  

2) There is a neighborhood U of the diagonal 

A c M x M  

such that for (x, y) e U and t near 0 
- d i m M  Ix - y l  2 

K ( t , x , y ) = ( 2 n t )  2 e 2, ( l + O ( t ) ) ,  (7) 

where I x - y [  denotes the Riemannian distance from x to y. 
We note that in [Wi], Witten takes a different approach, and defines 

e -YMv(a) = Y I  F(T,,  vp , ) ,  
f a c e s  u 

where 

vp.cdcO 

F(Ta, vp,) = ~ (dim cO)~(T,)e 2 (8) 
of 

The sum runs over all isomorphism classes of irreducible representations, dim c~ is 
the dimension of the representation c~ and c2 (~) is the quadratic Casimir operator of 
the group G. 

To see that (1) and (8) are equivalent, let ~ be an irreducible representation and 
let V denote the representation space. Choose an inner product on V such that ~ is 
unitary, and a basis for V which is orthonormal with respect to this inner product. 
Then for each g e G, c~(g) is a dim ~ x dim c~ matrix. Denote the matrix elements by 

vii(g) 1 <_ i,j <_ dimcr 
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By the Peter-Weyl theorem, the (dim a)2 functions 

 ,Ag) = aC-d v,Ag) 

are orthonormal eigenfunctions of A, each with the same eigenvalue 

,L = e 2 ( ~ )  �9 

Then 

45 

(dim c 0 Z~ (g) = dim ~ ~, vii(g) 
i 

= Z [ ~ v , j ( g ) ] [ ~ v , y ( 1 ) ]  
i j  

= Y. •,j(g) re,j(1). (9) 
i , j  

It also follows from the Peter-Weyl theorem that as a runs through all irreducible 
representations, the functions 

dN/ / -~  v i j 

form a complete set of normalized eigenfunctions. Therefore, substituting (9) into 
(8) (and then comparing with (5)) yields the desired equivalence. 

2. The Proof of Theorem 1 

(i) Restriction to Flat Connections. We call a connection a e d ( ~ ) f l a t  if, for every 
face u, 

r,(a) = 1 , 

where Tu(a) denotes the parallel transport operator around the boundary of u. We 
denote the space of fiat connections by ~ .  

Let N be any open neighborhood of ~ .  There is a c > 0 such that for all a r N ,  

inf I Tu(a) - 11 > c .  
faces u 

Thus, using the estimate (6), there is a c > 0 such that for small v ,  

~ag(a)e-  VM,(a) ~ e-C/v = O(v") for all n .  
aE,~t\N 

Thus, up to errors which vanish to all orders in v, the integral Z(S,  v, g) can be 
replaced by 

j ~ag(a)e YM~(a), (10) 
aEN 

where N is an arbitrary neighborhood of .~. 
(ii) Reduction to Non-Singular Connections. In this section we reduce the evalu- 
ation of (10) to an integral over a neighborhood of the space of non-singular flat 
connections. To each connection a ~ d and each face u we associate the parallel 
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t ranspor t  a round  the bounda ry  of u so that  

T:d- - ,H  G. 
u 

The flat connections are precisely 

~" ---- T - l ( 1 ,  1, 1 , . . . ,  1).  

We denote by ysing the set of points  in ~- which are critical points  of the m a p  T, 
and 

~ - 0  __ ~ \ ~ s i n g  . 

The set ~ o is an open dense set in ~-  ( [Go]) .  It  follows f rom the implicit function 
theorem that  ~ o is a smoo th  submanifold  of ~r 

We express the integral (10) as a sum of 2 integrals: one over  a ne ighborhood  of 
si,g and one over  a ne ighborhood  of ~ o. With  this is mind, set 

Br(~'sing) = U Br(a)'  
a E ~r sing 

where 

and 

Let 

Br(a) = { b ~ d l  [a - b l  < r} 

~ r  ~ = ~ \ B r ( ~ s i n g ) .  

(~o)- _~ T~od 

denote the normal bundle to ~o  ~ aft. The exponential map takes (~-o)• to d .  
Let 

v __ (~o)•  

denote a neighborhood of the zero-section of ( ~  o)• with the property that 

exp: v --* d 

is a diffeomorphism. Fo r  r > O, set 

V r = V [ ~ o .  

Then, for every r > 0 

N r = B 2 r ( ~  sing) u exp(Vr) 

is an open ne ighborhood  of ~ ,  and thus 

Z(S, O, g) = lim S Nag(a)e VMo(a) 
V--*O N r 

= lim S + lim 
v ~ O  Bzr(~-sing)\exp(vr) v--"O exp(vr) 



Small Volume Limits of 2-d Yan~Mil ls  

Now, letting r ---> 0, 

Z(Z, O, g) = lim lim ~ + lira lim 
,"->0 v ~ 0  B2~(,~ing)\cxp(vr) r -*0  v ~ 0  exp(Vr) 

= lira lim IS~g(Z, v, g, r) + lim lim I~ v, g, r) .  
r ~ O  v ~ 0  r ~ 0  v ~ O  

The proof is concluded by the following two lemmas. 

Lemma 3. 

Lemma 4. 

1 W n 
lira lim I~  v, g, r) - - -  ( g - - .  
,-~o,~o # Z(G) Ao n! 

lim lim/sing(~', V, g, r) = 0 .  
r ~ 0  v--+0 

Before proving Lemma 3, we show that Lemma 4 follows from Lemma 3. 

Proof of Lemma 4 (Assuming Lemma 3). 

IlSing(Z, v, g, r)l <= clSing(Z, v, 1, r) .  

Thus, Lemma 4 follows from 

lira lim/sing(z, V, 1, r) = 0 . 
r ~ 0  v ~ 0  

Setting g = 1 in Lemma 3 

Thus 

1 W n 
lim lim I~ v, 1, r) - - -  
r-+O v-.o # Z(G) o 1 ~. 

= V o l ( y g ~  Z ( G ) .  

47 

Z(Z, 0) = lim lim/sing(~', V, 1, r) + lim lim I~ v, 1, r) 
r-~O v ~ O  r-~O v---~O 

= lim lim Isi.g(2, v, 1, r) + V o l ( J / / ~  Z(G). 
r ~ O  v ~ 0  

From Witten's calculation (4), 

Z(Z,  0) = Vol (~g~  Z(G) 

which implies the desired conclusion. [] 

Remark. We used Witten's calculation (4) to show that the singular flat connec- 
tions do not contribute in the limit. To prove this directly from the definition of 
/sing requires information about the singular set and the behavior of T near the 
singularities. A proof along these lines can be constructed using the results of 
Goldman in [Go].  In particular, Goldman proves the essential fact that all 
singularities of T are at worst quadratic. 
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(iii) Proof of  Lemma 3. 

I~ = ~ ~ag(a)e -YMo(a) 
exp (Vr) 

Using the exponential map, we pull the integrand back to v~. The natural volume 
on v, is the product of the volume form on f ro  and the volume form on the fiber. 
Denote this volume form, at 

by 

Then, at (a, b) 

where 

So 

I~  v, g, r) = 

Now from (7) 

(a, b ) e ~  ~ x V a 

d vols~o(a)dvol~o(b). 

exp* Na = d volvo (a) d volvo (b) h (a, b), 

h(a, O) = 1.  

dvol~o ~ dvol~.g(expa(b))h(a, b)e - YM~ 
a ~  ~ b e y .  

I U  IGI I T~ (exp,~b)- 112 "-I 
e -YMv(exp"(b)) : (2nvp,,)- 2 e-  2vp~ / (1  + O(V)), 

where I G[ = dim G, and 

I Z~(expa(b)) - 112 = [[dZ,(a)] (b)l 2 + O(I b]a). 

Since dTIvo is invertible, we have b = ~b,, where [dT,(a)-I(b,,) = 0 if u # u'. Then 

IG[ IFI 
10 = (1 + O(V)) Js~ dvols~o S dvoL.g(expa(b))h(a,b)(2nv)- 2 

a ~ b e y .  

b~ 2 IOI ][dT~(a)](~)l  + O(Ib[ a) 

u 

dvol o I 
oz-o 

a ~ ,  b E ~7 a 

[[dT.(a)](b.)l z + O(Ibl a) 

X H e  2v 
u 

Iol IFI 
dvol~, g(exp,,(b-)) h(a, ff)(2nv)- 2 

= ( l + O ( v ) )  f dvol~o 
a ~  ~ be '7 .  

where b '= ~ ~-u~b. and t7 a = {bl/~sva}. As v ~ 0  

IGI I[dT(a)](b)l z + O(Ib[ 3) 

dvol~og(exp.(ff))h(a,/~)(2nv) ~-e 2v 

= g(exp.(O))h(a, O) [det-~(dT(a))*(dT(a))] + o(1) 

= g(a)[det-~(dr(a))*(dT(a))lVa] + o(1). 

IOl[V[ 
dvol,og(exp~(b))h(a,b)(2nv)- 2 e 

I [dT(a) ](b)l 2 + O(Ibl a) 
2v 
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Thus, as v ~ 0 

I ~  v, g, r) = o-~~ d v o l ~ o ( g ( a ) [ d e t - ~ ( d T ( a ) ) * ( d T ( a ) ) ] v , ]  + o(1)) 

so that  

lira lim I ~  v, g, r) = j d v o l ~ o g ( a ) [ d e t - ~ ( d T ( a ) ) * ( d T ( a ) ) b o ]  . 
r ~ O  v--->O o 

Let t~ . . . . .  tlFIIG I denote a basis for (ker dT(a))  • Then 

de t_~(dT(a) ) , (dT(a) ) ]~"  = It1 A " ' "  A t lFiiGi [ 

I [dT(a ) ] ( tO  /x . . .  ^ [dZ(a)](tlFiisl)l  " 

We must  now reduce this to an integral over ~ ' ~  
First, we note that  N ( r 1 7 6  acts freely on ~ o ,  where Z(G) is embedded in 

~ ( ~ )  ( ~ @vl) along the diagonal  ( [Go] ) .  Let sa . . . .  , SlvnG I denote a basis of the 
Lie algebra of  if(N). Then the volume of the orbit  th rough a is 

V o l G ( ~ )  [sl(a) A �9 �9 �9 A Slvu~l(a)) 

# Z ( G )  Is1 A " "  A Slvltsl I 

Thus, if 

h : o ~ ~  

in any gauge invariant function, then 

hdvol~0 - (Vol G) Ivl 
~o # Z ( G ~  I hv , JI  ~ 

where, for any basis {r l , .  �9 �9 rk} of  Tad//~ 

Irx ^ " "  ^ rk ^ sl(a) A " ' '  A slvllsl(a)[ 
v(rl  ^ " "  ^ r k ) =  

Is1 A . . .  ASlvnGl[ 

Therefore 

1 
I ~  O, g, O) - # Z(G~ ~ g ~ '  

. go  

where, for any bas i s  { r l , . . .  , rk} o f  T a ~ / 0  , 

Jr1 /x " .  /x rk ^ sl(a)  /x . . .  /x Slvtlol(a ) A t 1 A " ' '  A t lF l lO i  ] 
~(rl , ~  " ' "  / ,  r k ) =  

Is1 A " "  /x SlvnGll][dT(a)](tO ^ . . .  /x [dT(a)](tlFnGO] 

(11) 

(iv) Rev i ew  o f  Re idemeis ter  Torsion. Consider  a differential complex 

d 1 d 2 
c g : O ~ C ~  - ~ C  ~ . . .  ~ C ~ - o O ,  

where each C i is equipped with an inner product  (as we will see, this is much more  
than is needed for our  later purposes). First, suppose cg is acyclic. Then, we define 
the torsion as follows. For  each i, let 

t~, . . i C i � 9  tm~ ~ (12) 
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be chosen so that 

d t i l  . . . .  , d t  i ,  

form a basis for the image of d in C i+*. Then, for each i, 

{ t } } v a { a t S - *  } 

forms a basis for C i. The torsion of (g, z (g)  is defined by 

z(eg) = I-[It i~ A ' ' '  A t ito, ^ d t , i -*  A �9 " A d t ' -*  I (-*)'+*,~,_1 
i 

It is easy to see that  z is independent  of all choices. 
If cg is not  acyclic, then zffg) is not  a number,  but  ra ther  a norm on 

~Iioad det Hiff  g) 

I-L . . . .  detHi(c~) 

(where, for any vector space V, we write det V for A a i m v  V ) .  

That  is, if 

{ s ~ , . .  s i c '  �9 , i ,} - - -kerdc~ 

are representatives in C i of a basis of H i, then 

i i i i i - 1  i - 1  
� 9  , dtto. s l ,  �9 �9 � 9  s l , ,  t l ,  � 9  tm, ,  dr1 , �9 �9 �9 ,_ 

i forms a basis for C i (with the t s chosen as in (12)). Now, for 

I-Iio.dS~ A " "  A sl, 1-IioaddetHi(C#) 
S ~ - -  

I I ,  . . . .  ~ ] A ' ' ' A s i , ,  I l i  . . . .  d e t W ( * )  

we set 

D(~e)J(s) = 
i i t ~ i -  1 d { -  1 

I J i o d a l s ~  ^ " " A s , ,  ^ t l  ^ " " ^ to, ^ d t ~  ^ ' " ^  ~ , - 1 1  

I-[i . . . .  ]s~ /x . . .  

Again, z is independent  of our  choice of t's. 
Now consider the following differential complex�9 Fix a ~ f r o  (e  G tel), 

where, for s e glWl 

and, for t ~ g  IEj 

i i ti i -  ~ d t i -  1 �9 A 81i A t l  A " " " A mi A d t l  A �9 �9 �9 A m i - t [  

o d 1 ~g,: 0 ~ glVj ~_~ gjEI _+ glej __+ 0 

d~ = s( . )  

d ~(t) = [ d T ( a ) ]  ( t ) .  

Since T is invariant under  the action of G, 

d 1 o d  ~ = 0 . 

For  a E Y  ~ d T ( a )  is onto, so that  

H2(cg~) = 0 .  

(13) 

(14) 
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By s tandard  duality 

H ~  = 0 .  

Therefore,  z (%)  is a n o r m  on det H t ( % ) ,  defined by 

E ~ ( % ) - I ( ~  A . . .  ^ r~ )  = 

Jr1 /x . . .  A rk /x t 1 A " ' "  A tiF[iGi A d~  /x " ' "  /x d~ (15) 

Is1 A ' ' "  /x SlvllGllldltl A ' ' '  /x dltirllGl] 

where: k = dimHa(Cga), {rl . . . . .  rk} -~ k e r d  1 are representatives of a basis of 
Hl (~a) ,  {sl . . . . .  SlvuG/} is a basis o f g  Irk, and { t l , . . . ,  tlrlLGi} is a basis of (ker d l )  =. 

Not ice  that  

ke rd  1 [ = ker  dT(a)  ] ~- T a Y  ~ 

and 

I m a g e d  ~ = span{s l (a )  . . . .  , slvlLGl(a)} 

is the tangent  space to the G-orbit  of a. Therefore 

ker d 1 
T a ~  '~ ~ i m a g e d  ~ ~ Hl(Cg~). 

Thus,  compar ing  (11), (13), (14) and (15) we see 

1 
I ~  O, g, O) - # Z ( G )  ~ o  g(a)z(cg'~) " 

Witten proved  in ([Wi] ,  (4.19) to (4.28)), that  

O)n a 

z ( ~ o )  = ~ ' 

where co is the natura l  symplectic form on jgo .  Therefore 

1 co n 
I ~  O, g, O) - # Z ( ~ )  a ~ o  9 (a )~ .  

as desired. [] 
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