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Abstract. We study a three-particle Schr6dinger operator H for which none of the 
two-particle subsystems has negative bound states and at least two of them have 
zero energy resonances. We prove that under this condition the number N(z) of 
bound states of H below z < 0 has the asymptotics N(z) ~ 9~olloglzll as z --, - 0 ,  
where the coefficient 9,1o depends only on the ratio of masses of the particles. 

1. Introduction 

We are going to discuss the following remarkable phenomenon of the spectral 
theory of the three-body Schr6dinger operators, known as the Efimov effect. Let h=, 

= 1, 2, 3, be Hamiltonians describing two-particle subsystems of a three-particle 
system with the internal short-range potentials v,(x), x e ~R 3. Suppose that none of 
h, has negative eigenvalues and at least two of the hamiltonians h, have zero energy 
resonances. Then the three-particle operator H will have infinitely many negative 
eigenvalues accumulating at zero. Below we denote by N(z), z < 0, the number of 
eigenvalues of H lying on the left from the point z. For  the first time the Efimov 
effect has been discussed in [4]. An independent proof on a physical level of rigor 
has been also given in [2]. The first rigorous proof has been presented in paper 
[12]. An alternative approach for spherically symmetric potentials v, has been put 
forward in [10]. The growth of N(z) as z ~ - 0 has been studied in paper [1] for 
the symmetric case. Namely, the authors of [1] have found the exponential 
asymptotics of eigenvalues corresponding to spherically symmetric bound states. 
This result is consistent with the lower bound 

lim inflloglzll-lN(z) > 0 ,  (1.1) 
Z ~ - - 0  

established in [11] without any symmetry assumptions. 
The aim of the present paper is to study the asymptotics of N(z) as z -~ - O. We 

do not assume that the pair potentials v, are symmetric but suppose that v= < O. 
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Our main result is the asymptotics (see Theorem 3.1) 

lim inf I loglzll- 1N(z) = 9~o, (1.2) 
z-~ - 0  

where the coefficient 9.1o does not depend on the pair potentials v~ and is a positive 
function of the ratios ml/m2,  m2/m3 of the masses of three particles under consid- 
eration. The explicit formula for ~Io is given in Sect. 3. Note that (1.2) confirms the 
sharpness of the bound (1.1). 

Let us give a sketch of the main ideas of the proof of (1.2). As in 112], we reduce 
the problem to the study of the compact selfadjoint operator A(z) acting in L~3)(9~) 
(9~ is the configuration space of the three-particle system) which is a symmetrized 
analog of the operator entering the Faddeev equations (see I-6] and also [7]). We 
rely upon the relation (see Theorem 4.1) 

N(z,  H) = n(1, A(z)), (1.3) 

where n(/~, B) denotes the number of eigenvalues of the compact selfadjoint oper- 
ator B lying on the right from the point # > 0. To study the behaviour of A(z) for 
small z we establish the asymptotics of the resolvent r~(z) of the two-particle 
operator h~ as z ~ - 0 under the condition that h~ has the zero energy resonance 
(see Lemma 2.2). To that end we use a simplified version of the technique developed 
in I-9]. Lemma 2.2 enables us to single out the leading term of the operator A (z) as 
z ~ - 0. It proves to be unitarily equivalent to a compact integral operator SR, 
R = 1/211oglzll, with a Toeplitz type kernel, acting in L2((0, R), L~3)($2)). This 
allows to find the asymptotics of n(1, SR) as R ---> ~ by employing a standard 
argument known as the calculation of the canonical distribution of a Toeplitz 
operator (see I-8]). As the result we get (see Theorem 4.5): 

lim (2R)-~n(1, SR) = ~Io , 
R ~  

which in combination with (1.3) yields (1.2). The plan of the paper is as follows. In 
Sect. 2 we obtain the asymptotics as z ~ - 0 of the two-particle resolvent assum- 
ing the presence of the zero energy resonance. The precise formulation of the main 
result (Theorem 3.1) and its discussion are given in Sect. 3. In Sect. 4 we establish 
the relation (1.3), study the operator A(z) as z ~ - 0 and prove Theorem 3.1. Some 
technical material is collected in Appendix. 

Throughout the paper we adopt the following conventions. We say that an 
operator valued function is continuous if it is continuous in the norm sense. The 
scalar products in L2( ' )  and IR 3 are denoted by (", -) and ( "," ) respectively. The 
integrals with no indication of the limits imply the integration over the whole 
space. By C and c we denote various positive constants whose exact values are of 
no importance. 

2. Two-Particle Schr6dinger Operator 

In this section we study a two-particle system. Let ho = - (2m)-1 A, h = ho + v in 
.~ = L2(IR3). Here m > 0 is the reduced mass of the system, v is a real-valued 
potential, satisfying the condition 

I v ( x ) [ < C ( l + l x [ )  -b, b > 3 .  (2.1) 
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By ro(z), r(z) we denote the resolvents of h0 and h respectively. No te  the identity 

r = ro - rovr = ro - rvro . (2.2) 

Deno te  v § = vlvl -~, 

w(z) = I - I v l §  ~ . (2.3) 

Then  (2.2) immediate ly  yields 

w(z) = (I + hvl~ro(z)v~) - 1 . (2.4) 

Recall the explicit expressions for the kernel of ro(z): 

ro(x,  x'; z) - m e i ' / 2 m z l x - x ' l  

2re Ix - x'[ ' I m , , / z > 0 .  (2.5) 

In what  follows we need an asympto t ic  resolution of the opera to r  Ivl+ro(z)v § 
z -- - k 2, k > 0, near  k = 0. Denote  by Go, G1 the opera tors  with the kernels 

m Ivl+(x)v~(x ') 
Go(x, x ' )  = 

2re I x -  x'L 

m~ 
G1 (x, x ' )  = 2�89 lv[§ . (2.6) 

We have the following 

L e m m a  2.1. L e t  v sat is fy  (2.1). Then f o r  any posi t ive 6 < min{1, ( b -  3)/2} the 
relat ion holds 

Ivl§ - k 2 ) v  ~ = Go -- kG1 + k l  +~G~)(k)  , (2.7) 

where G(z~)(k) is cont inuous in k > O. 

Proof.  Set f ( t ;  s) := (4rot) -1 (e -st - 1 + st), t > 0, and introduce the opera to r  G2(k) 
with the kernel 

2ml vl~(x) f (x - x ' ;  k x / 2 - s  . 

In  view of (2.5) we have formally 

Ivlero( - kZ)v  ~ = Go - kG1 + Gz(k)  . 

Sincef ( t ;  s) < C~sl+Ot ~ for any 6 e (0, 1], the kernel of G2(k) does not  exceed 

Cok l  +~lv l~(x) lv l~(x ' ) ( Ix l  ~ + Ix'lO). 

Choosing  6 < (b - 3)/2, we see that  Gz(k)  is Hi lbe r t -Schmid t  and the opera to r  
G(2~)(k) := k - l - O G z ( k )  is cont inuous  in k > 0. [] 

F r o m  now on we suppose that  v < 0, so that  v ~ = - [vl ~. All our  a rguments  in 
this section go through for arbi t rary  v as well but  in the next sections we look at 
nonposi t ive potentials  only. 

N o w  we are going to describe the behaviour  of the opera to r  w( - k 2) as k ~ 0. 
No te  that  under  the condit ion (2.1) the opera to r  h has finite discrete spectrum, so 
that  the resolvent r( - k 2) and, consequently,  w( - k2), is well defined for small k. 
We deal with one of the two following situations. 
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(1) The point  - 1 is a simple eigenvalue of the opera tor  Go and the corres- 
ponding eigenfunction ~o satisfies the condit ion ~ [vJ�89 dx + O. To be 
definite we normalize (p so that 

(q~, Ivl �89 = 2~'n~m -~ . (2.8) 

In this situation we say that  zero is a resonance of  h or h has a zero energy 
resonance. One can prove (see I-9]) that the function 

u(x) = f Ivl~(x') q)(x')dx'  
~ l x - x ' l  

is a unique solution (up to a factor) of the Schr6dinger equat ion hu + vu = 0 
in Le-space with the weight (1 + xe) -s/2, Vs > 1/2, and u r SS. 
Note  an impor tant  proper ty  of q~. Set 

O(k) = (2n) -~ ~ e-ikx iv(x)1�89 ~o(x) dx . (2.9) 

This function obeys the estimate 

b - 3  
10(k) - ~(0)1 ~ Colkl ~, 0 < ~ < - ~  (2.10) 

Indeed, since le - z k x -  iI _-< Ikl6lxl ~, we have 

I~t(k) - O(0)[ 5 ]kl6(I ]x126[v(x)l dx) �89 (~ Iq)(x)lNdx) �89 

The r.h.s, is finite for 6 < (b - 3)/2. 
(2) The point  - 1 is not  the eigenvalue of the opera tor  Go. Then one can prove 

that 2 = 0 is neither resonance nor  eigenvalue of h. So it is natural  to say 
that  zero is a regular point of  h. 

We do not  discuss here the other  possible cases: zero is the eigenvalue of h or the 
eigenvalue and the resonance at the same time. 

Lemma 2.2. Let  v obeys (2.1) and k > 0 be small enough, so the operator w( - k 2) is 
defined. 

(1) I f  zero is a regular point o f h  then w( - k z) is continuous in k >= 0. 
(2) I f  zero is a resonance o f  h then for  any positive ~ < 1/2 min {1, b - 3} the 

representation 

w( - k 2) - ( ' '  ~0)q~ + k_l+~w(~)(k) (2.11) 
k 

is valid, where the operator w(~ is continuous in k > O. I f  in addition, h >= 0 
then w( - k 2) > 0 and 

(w( - k 2))�89 (., q~)~o k _ l @  = ak-----T--+ #(~)(k), a=l l~0 l l ,  (2.12) 

where the operator #~)(k)  is continuous in k > O. 

Proof  (1) Let zero be a regular point. Then according to (2.4) and (2.7), 

w ( - k  z ) = ( I + G o + o ( 1 ) )  - l = ( I + G o )  -1 +o(1) ,  k - - , 0 ,  

which gives the desired result. 
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(2) Let zero be a resonance. Denote by Po the one-dimensional projector onto 
the subspace associated with q~ and by P~ the projector onto its orthogonal 
complement, so that P o G P I  = I. Let us write the operator A = A ( k ) =  
I - [ v i t r o (  - k2)[v[ ~ in the matrix form: 

= ( A o o  Ao~'~ 
A \Aio  A i i ] '  

where A j k  = P j A P  k : P k ~  --~ Pj~ ,  k, j = O, 1. It is more convenient instead of A to 
consider the operator 

By (2.7) its entries are 

B =  PAP, p:= ( k - ~ P o  O )  
P1 

Boo = - PoGi Po + kaPoGt2O)(k)Po , 

Bol = - k~ Po[G1 - ka G(2~)(k) ]P1 , 

Blo = B*I , 

B l l  = PI(I  + Go)Pi - k n l [ G ,  - kOG~)(k)]P1 

with 6 < min{1, (b - 3)/2}. Therefore B -- B (~ + K, where 

B(o, = ( -  PoGIPo 0 ) 
0 PI(I  + Go)P1 

and K = O ( k O ,  7 = m i n { 1 / 2 , @  By the definition of P1 the operator 
F = (P~(I + Go)P1)- 1 exists in P1 9.  Furthermore, taking into account the equali- 
ties (2.8) and Po = a-g(  ", (o)cp, one can obtain from (2.6) that 

m ~ 
- PoG1Po = Po 2�89 ~ ((o, lyre) / a -2 = a-2po . 

Thus ( - PoG1Po) - i = aE Po = (., 9)(o. Now since B = (I + K(B(~ l )B(~ and 
K = O(k ~) as k-~ 0, we have 

B - l = ( B ( ~  + O ( k ' ) = (  (''(p)(~ ; )  0 + O(kO. 

Taking into account that w( - k:) = (A(k))-  ~ = P B -  1 p, we complete the proof of 
(2.11). 

Let us prove (2.12). Since r ( -  k 2) > 0 for h > 0 we have w ( -  k z) > I > 0. 
Further, note that 

and recall the well known inequality for arbitrary positive operators A, B (see [3]): 

lin e - A~I] <JIB - All e . 
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In combina t ion  with (2.11) it yields 

(w( -- k2)) ~ 

This gives (2.12). [] 

( "  q~)'P < C k -  2 
ak ~ = 

We point  out  that  a decomposi t ion  of the type (2.11) was proven for the first 
t ime in [13] (see also [12]). The idea of our  p roof  of L e m m a  2.2 is bor rowed  from 
the more  recent paper  [9], where an asympto t ic  expansion similar to (2.11) was 
obta ined (see L e m m a  4.3 in [9]). However  the formula  f rom [9] provides the 
asymptot ic  expansion with further terms up to the order  o(k) which calls for the 
condit ion b > 5 in (2.1). It  is sufficient for us to have much  more  rough result (2.11) 
which is valid for b > 3. 

In Sect. 4 it will be convenient  to write down the opera to r  (w( - k 2 ) )  1/2 in the 
form (2.12) not  only for small k but for all k > 0. Namely ,  let ~ s C~(IR+)  be 
a function such that  ((t) > 0 for all t > 0, ((t) = t, t < 1 and ~(t) = 1, t > 2. Then for 
all k > 0 we have 

(w( - k2)) ~ _ (. ,  tp)q~ + (~(k))_~_~ #(a)(k), a = II~[I (2.13) 
ak ~ 

where the opera to r  #(~)(k) is uniformly bounded  and cont inuous  in k > 0. 

3. The Main Result and its Discussion 

1. We consider a system of three particles with the masses ml ,  m2, m3, one of them 
may  be infinite. We always work  in the system with the removed  center of mass  
mot ion,  so the configurat ion space is a six-dimensional  subspace 9~ of IR 9. In 
contrast  to the two-part icle  case we use as a rule the m o m e n t u m  representat ion,  
that  is we use one of the three pairs of coordinates  (k,, p,) conjugate to the 
conventional  Jacoby  coordinates  (x,, y,). The subscript  e is equal either to 1 or 2 or  
3. Somet imes instead of (k,, p,) we use one of the pairs (p,,  p~). Various coordinates  
in 9~ are related as follows: 

Pl + P2 d- P3 = O, "+" k~ = mt3(m p + ms ) -  1 p~ + pp . (3.1) 

Here and below we always a s s u m e  that  e :~/3, /3 :~ 7, e 4= 7. The sign " + " (or 
" - " )  corresponds  to the case /3 < e (or e </3). For  brevity we often use the 
nota t ion  k~ = d~pp~ + e~ppp, where the coefficients d~p and e~  can be expressed 
explicitly via m,, m~, m s by means of (3.1). In certain cases it is convenient  to use the 
"mixed" coordinates  (x,,  p,). The transit ion to (k,, p~) is per formed by the "part ial"  
Fourier  t ransform: 

( ~ f ) ( k ~ ,  p~) = (270 -} ~ e-ik~ p,) d x , .  

The three-particle Schr6dinger opera to r  has the form 

(3.2) 

/-/--/-/0 + Z v, ,  
~t 
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where 
k 2 p2 

Hof(ka ,  p~) = H~ p~)f(k~, Pa), H~ P) = ~ + 2n~" 

Here la, na are the reduced masses: 

la = mpmr(mp + mr) -1, na = ma(mp + rne)M -1, M = ml + m2 + m 3  �9 (3.3) 

The interactions Va are given by the operators: 

v~ = ~ a Va ~ * ,  

where v,, ~ = 1, 2, 3, are multiplications by bounded real valued functions Va(Xa) 
(pair potentials in the spatial representation). For example, v3 describes the interac- 
tion of the first and second particles. We suppose that the functions v, satisfy (2.1). 
Note that the function H~ Pa) in fact does not depend on the particular choice 
of ~. We denote by Ha~ the function H ~ expressed in terms of Pa, Pp, i.e. 
H~ q) = H ~ (dapp + eapq, q). By means of (3.1) one can easily prove that 

p2 (p, q) q2 
H~ q) = ~ + m r + - -  (3.4) 

By virtue of (3.3) it follows from here that 
p2 q2 

H~ q) > ~m~ + 2m~ " (3.5) 

Two-particle subsystems are described by Hamiltonians ha = -(2I~)-~A~o 
+ v~ in L2(IR3). For the other two-particle objects we use the notations introduced 
in Sect. 2 but endue them with the subscript e. For example, w, means the operator 
(2.3) for the two-particle subsystem e. If the subsystem has a zero energy resonance 
we normalize the corresponding function r in agreement with (2.8): 

(2n)~a(0) = (~p,, I val ~) = 2+rc~l~ -~ , (3.6) 

and denote a, = II ~0~11. 
For z < 0 lying below the bottom of the spectrum of ha we define the following 

operator in Lz(9l): 

W,(z) = ~aWa Z -- 2hal  q~* " 

Since wa(z') is bounded in L2(IR 3) uniformly in z ' <  z, the operator Wa(z) is 
bounded in L2(9~). One can verify that similarly to (2.3) 

Wa(z) = I - I Val~Ra(z) V)  , 
(3.7) 

where R~,(z) is the resolvent of the operator Ha = Ho + Va. Furthermore, analog- 
ously to (2.4) we obtain from (3.7) that 

W~,(z) = (I + I V~,l~ Ro(z) V))  -1 (3.8) 

In what follows we deal with the operators in various spaces of vector-valued 
functions L~3)( �9 ). They will be denoted by bold letters and will be written in the 
matrix form. We denote by diag{T1, T2, T3} diagonal matrix-operators with the 
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entries T~, T2, T3 on the diagonal, where T, are the operators in L2('). For 
example the notation W(z) = diag { W1 (z), I472 (z), W3(z)} implies that 

W ( z )  = 

W!(z) 0 0 ) 
W~(z) 0 �9 

0 W3(z) 

For a selfadjoint operator B acting in a Hilbert space b denote by bB(2) : D(B), 
2 e IR, a subspace such that (B f f )  > 2llfll 2 for a n y f e  bB(2) and set 

n(2, B) = sup dim bn(2) �9 
bn(2) 

Certainly, for an operator B not having any essential spectrum on the right from 
the point 2, the value n(2, B) coincides with the number of eigenvalues of B bigger 
than 2. Note the so-called Weyl inequality (see [3]): 

n(21 + 22, Ba + B2) ~ n(21, B1) -k- n(22, B2) . (3.9) 

For the operator H we use the following notation: N(z) = n( - z, - H), z < 0. If 
inf ao~s(H) = 0 then N(z) denotes the number of eigenvalues of H on the left from z. 

The coefficient in the asymptotics of N(z) will be expressed by means of the 
selfadjoint integral operator ~(2), 2 ~ IR, in the space ~ ( 3 )  ~j = L2($2) whose 
kernel depends on the scalar product t = (~, ~/) of the arguments ~, r/~ S 2 and has 
the form 

g=(t;2) = 0,} 

sinh [2(arccos s,~t)] (3.10) 
~q=, (t; 2) = (2=)-tu,pe ''"z ~ - 7 7 2 p ~ ~ ,  

where 

fn~,np'~ ~ 1 I~, (l,,lp) �89 
u,p = x ,pk/ -~- )  , r,t~ = 2 l~ s,p = , (3.11) m~ 

x,a being the number such that x,p = 1 if both subsystems ~ and fl have 
zero energy resonances, otherwise x,p = 0. Because of (3.3) s,a < 1 so that 
arccos s,at < ~. Consequently, IIg(2)ll--, 0 as 121--, ~ .  Therefore the integral 

9.I(#) := (47r) -1 S n(#,g(2)) d2, # > 0 ,  (3.12) 
- - o o  

is finite. Denote 9.1o = 9.1(1). Now we are able to formulate the main result: 

Theorem 3.1. Let the pair potentials v~ satisfy (2.1) and v~ < O. Suppose that H~ > 0 
for all ~ and that one of the two followin9 conditions is fulfilled: 

(1) Zero is the resonance for all two-particle subsystems; 
(2) Zero is the resonance for two-particle subsystems ~, fi and is the regular point 

for the system 7; ms < oo. 
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Then the operator H has an infinite negative discrete spectrum and the function N(z) 
obeys the relation 

lim Iloglzl1-1 N(z) = 9.Io, (3.13) 
z--* - 0  

the r.h.s, of(3.13) being positive. 

Clearly, the infinitude of the negative discrete spectrum of H follows automati- 
cally from the positivity ofg~ o . Note that the asymptotics (3.13) does not depend on 
the potentials v~. Furthermore, substituting (3.3) into (3.10) one can check that the 
operator S(2) and, consequently, the coefficient ~Io, depends on the ratios m~/m~ 
and rap~mr only (for any choice of ~,/~ and ~) if m, < oc for all c~, and on the ratio 
m~/m~ if m~ = oo. 

Recall that according to our definition given in Sect. 2 the assumption that the 
value 2 = 0 is the resonance for h, suggests that 2 = 0 is not an eigenvalue of h~. As 
was pointed out to the author by H. Tamura, the latter condition is automatically 
fulfilled, if ha has no negative spectrum! In particular, under condition (1) of 
Theorem 3.1 none of the three two-particle subsystems has eigenvalue 2 = 0. Note 
also that for spherically symmetric pair potentials v~ this fact was observed in [-13]. 

The rest of this section is devoted to the detailed discussion of Theorem 3.1, 
while its proof is postponed until Sect. 4. 
2. It is convenient to calculate the coefficient 9.I o by means of decomposition of the 
operator S(2) into the orthogonal sum over its invariant subspaces. To that end we 
present ~(3) as (i]3 @ ~. Denote by I~il c (5, l > 0, the subspace of surface har- 
monics of degree l, ~1=o @ ~ l  = ~i, d im~l  = 21 + 1. Let ~ 1 : N ~ 1  be the 
orthogonal projector onto ~i. The kernel of Nz is expressed via the Legendre 
polynomials PI(" ): 

2 l +  1 
~ l ( ~ ,  ~) - e l ( ( ~ ,  ~)). 

4n 

The kernel of ~(2) depends on the scalar product (~, r/) only, so that the subspaces 
~3 | t5l are invariant for g(2) and 

~(2) = ~ (~ (~(1)(2) | ~1),  (3.14) 
1 = 0  

where S(l)(2) are the 3 x 3-matrices with the entries 

1 

(̂1) ,~a(t; 2) dt. (3.15) S,a(2) = 2n ~ Pl(t) 
- J .  

Therefore 

n(/~, S(2)) = ~ (2l + 1)n(/~, ~(1)(2)), p > 0 .  (3.16) 
l = 0  

Now, relying on this equality we establish a lower bound for ~I o . 

Lemma 3.2. I f  the condition (1) of Theorem 3.1 is fulfilled then the lower bound 

l 
n2~o > log2 + ~log ua2u23u31 (3.17') 
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holds. I f  the condition (2) of Theorem 3.1 is fulfilled then the lower bound 

~2 9,1o > log uap (3.17 ") 

holds. In particular, ~o > O. 

Proof By (3.16) it suffices to prove (3.17') and (3.17") for the integral 

~ n(1, S~~ �9 
4 - o o  

Let us first calculate the entries (3.15): 

~(o) 2 i dt (3.18) 
Ua[leir~p ~ sinh [2(arccos sa~t)] 

ap ( ) - sinh(n2) (1 _2 .2~.�89 ' -1  --  aa/~t ) 

The integral here equals 

s inh2xdx= sinh ~ -  sinh 2 . 
- -  a r e c o s  s ~  

Taking into account  the identities s inh(n2)=2sinh(~z2/2)cosh(~2/2)  and 
7~ 

- - a rccosx  = arcsinx,  x E [0, 1], we obtain from (3.18): 
2 

~(o)r ~ = uaoei~'pZsinh(2 arcsinsa~) 
~a#t  J ~2 

sa~2cosh-~- 

(3.19) 

we have 

sinh (2 arcsin sap) > 1 , 
sap 2 

Thus 

det g(~ = 2S]~ (2) $23̂ (0) (~ )~0)  (~) > 2ui2u13u23 
= / /  7 ~ 2 " ~  3 " tcosuT) 

Therefore,  the opera tor  5(~ has at least one eigenvalue not  less than 

1 ~lal  

2 ( u t 2 u 1 3 u , 2 3 ) ~ e  - 2-  . 

S n(1, S(~ > mes{2 , ~l~, = 12(u12ulau23)~e - T  > 1} . 
- o o  

This gives (3.17'). The positivity of 9/o follows from the fact that ua~ > 1, which is 
a simple consequence of (3.3) and (3.11). 

Suppose first that the condit ion (1) of Theorem 3.1 is fulfilled. In this case we use the 
following simple argument.  

Let  S be a Hermit ian 3 • 3-matrix such that det S > 0 and tr S = 0. Then S has 
an eigenvalue > (4 det S) 1/3. 

Since 
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Suppose now that the condition (2) of Theorem 3.1 is fulfilled. The matrix 
^co) 2 ~~ has only two non-trivial entries: S~)(2) and Son ( ) = S~)(2), so the only 

positive eigenvalue of g~~ equals I S~)(2)l. Therefore it has the lower bound 

u ~ p e  - ~ -  

This yields (3.17"). Note that 9,Io > 0 since u,~ > 1 under the condition m~ < ~ .  
The proof is completed. [] 

3. It should be mentioned that the cases (1) and (2) in Theorem 3.1 are qualitatively 
different. Namely, according to (3.17') in case (1) the coefficient 9/o is always 
separated away from zero for any choice of m~, m2, m3; 

log 2 
9/o > n2 

On the contrary, the r.h.s, of (3.17") is positive only for m~ < ~ .  We shall show 
that in the case when only subsystems ~ and fl have zero resonances and rn~ = ~ ,  
the coefficient 9,io equals zero (so that we can not even say that the negative discrete 
spectrum of H is infinite). Indeed, as in the proof of Lemma 3.2 all the entries of g(2) 
equal zero except for Sap (2) and S~ (2) = S~ (2). Evidently 

1 mo 
u ~ =  1, r ~ = ~ l o g - - ,  s o p = 0 .  

m a  

Thus the kernel of S~p (2) does not depend on t, so that g~t)(2) = 0, l > 1. According 
to (3.19) the only positive eigenvalue of S(2) is (cosh n2/2)-1. It is less than 1 for all 
2 ~ 0, so 9/o = 0. 
4. Now we are going to obtain an upper bound for 9/o. Since Ilg~~ ~ 0 as 
l ~ ~ or 121 ~ ~ ,  in view of (3.16) we have for any # > 0: 

L R 

92(#) = (4n) -~ ~ (2 /+  1) y n(/2, ~*)(2))d2 
1=0 - R  

for L = L(~) < ~ ,  R = R(/2) < ~ large enough. Together with the inequality 
n(#, Sa)(2)) < 3 this immediately yields: 

9.I(y) < 3 R(/2)(L(#) + 1) 2 . (3.20) 

Thus to estimate 9.1o from above it suffices to obtain upper bounds for R(1) and 
L(1).  From now on we assume # = 1 and omit/2 from the notations. 

First we estimate L. Applying the equality 

sinh 20 1 ~ 1 
e - i . ~ x  

sin0sinhn2 2~z o~ c o s h x + c o s o d X ,  0 < 0 < n ,  (3.21) J 

established in Appendix I, we see that 

S~p(t; A) = (2~z)- 2u~e ir'~z ~ e -i~x 

Recall that (see [5]) 
1 

- 1  

1 

_ ~ cosh x + s~p t 
d x .  

(z - t)- a Pl(t) dt = 2Ql(z), z r  
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where Qt(z) is the Legendre function of the second kind. Taking into account  that 
Qt( - z) = ( - 1)l+lQ~(z), z > 1, we obtain from (3.15) that  

~(~'~'~ = -- rc-~u,t~e~"~Zs~ ~ ~ e-~ZXQt(-  s~ ~ coshx)dx  
- - o 0  

= ( - 1)t2n - ~ u,ae~",,~s~ ~ S cos  2XQl(S21~ 1 cosh x) dx . 
o 

Since (see Appendix II) 

r~Ez + (z 2 - 1)~]-"+~) 
I~(z)l < ~ i ) ~ - 2 i +  1-~ , z > 1 ,  (3.22) 

we have 

~'")(;~)1 < 2 z - i u , , ~ s ~  1 ~ IQ~(s~z)l I~e  = ~ ~ - i ~ a z  

2u,p ~ [S~Iz + (S~2Z2 __ 1)~]-(l+�89 

< n~s~p( 2l + 1) ~ t (z z _ l)~(z2 _ sZ) + dz .  

Since z > 1 we find that 

s;fl z + (s2p"z" - 17 __> z [ s ~  1 + ( s ; /  - 1)~]. 

Furthermore,  using the inequality 

~ - ( ~ + , )  8 z-(l+~) i ~ ~ d z <  
_2 - --~ dz = 3 ~ ( 2 / +  1 )~ ,  (z - 1 ) ~  =2~ 

we arrive at the bound 

^o) 16u~t~l-s~-P 1 + ( s ~  z - -  1) ~] -(t+~) 
n~3"~ s~t~(2/+ 1) 3 

< 16u~p[s~l + (s~2 _ 1)~]- t  

n �89 1) ,~ 

Now, it follows from here and from the obvious inequality 

(3.23) 

IIg(~)(2)ll ~ max ~ lop  (3.24) 

that 

JJ~(*)(~)ll < 1 6 [ s - 1  + ( s - 2  - 1)~] -zu 
= n ~ 3 ~ ( 2 l + 1 )  ~ , u :=  m a x ~ u ~ p ,  # 

Thus JJ~(~)(2)ll ~ 1 if l => L where 

16u 
log n+3~ 

L = 
log[s  -1 + (s -2 _ 1)~]" 

s := max{s,p} . 

(3.25) 
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Now we estimate the number R in (3.20). To that end we obtain an upper bound 
for the norm of the operator 5(2): 

1 

IIg(~-)ll < 2re max ~ 
~ -1 

According to (3.19) 

1S~)(2)[ = u~p sinh(2 arcsin s~) < u~p - -  
re2 = 

s~t~2 cosh ~ -  

[S~a(t; 2)1 dt = max ~ IS~(~)(2)1 . (3.26) 

arcsin s~p cosh(2 arcsin s~a) 

s~a cosh n2 
2 

< rcu~p cosh(2 arcsin s,p) < nu~,aelil( . . . .  ins~B-2) 
= 2 n2 = " 

cosh - -  
2 

In view of (3.26) this yields 

115(~)11 5 rcue Izl~ . . . .  i n s ~ a - ~ )  " 

Therefore 115(2)1[ < 1 if 121 ~ R, where 

log (nu) 
R -  

7T 
- - arcsin s 
2 

(3.27) 

Putting together (3.20), (3.25) and (3.27) we obtain the upper bound 

9.Io _-< 

16u }2 

3 log(nu) log n~3~ 

2n n log Is-1 + ( S - 2  __ 1)i] + 1 , 
- arcsin s 

u := max ~ u,p, s := max{s,~}.  

5. Let us consider the important  particular case: ml = m2 = m3. Now we can 
calculate the coefficient 91o explicitly. Let 2k be the unique positive solution of the 
equation 

sinh n2 
6 

2 = 2  4 -k ' 3  -~ n~ ~' k = l ,  2 .  

cosh - -  
2 

Then we have 

Theorem 3.3. Let ml = rn2 = m 3  and one of the conditions (1) or (2) of Theorem 3.1 
be fulfilled. Then 91o = 2k/(2n), where k = 1 for the condition (1) and k = 2 for the 
condition (2). 

Proof Note first that  n(1, 5~l)(2)) = 0 for l > 1. Indeed, since 

u~p=2"3 -~K~p, s ~ = 2 - 1 ,  r~a=O, 
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using the first inequality (3.23), we see that [S~(2)1 < 1/2 for l > 1. Thus (3.24) 
yields I]g(~)(2)ll < 1, 1 > 1. Consequently,  it remains to study the matrix S(~ 

Suppose first that all two-particle subsystems have zero resonances. Then in 
view of (3.19), 

(Y t g(~ = a(2)J1,  J1 = 0 , 

1 

where 

sinh r~2 
6 

a(2) = 4" 3 -~ zc2" 
2 cosh - -  

2 

The eigenvalues of 31 are 2, - 1, - 1, so the only positive eigenvalue of S(~ is 
2a(2). Hence 

1 1 !~ d2 21 
= S n ( 1 ,  = = 

Now suppose that only the subsystems 2 and 3 have zero resonances. Then 

~(~ = a(2)J2,  J2 = 0 . 

I 

The eigenvalues of J2 are - 1, 0, 1, so the only positive eigenvalue of go~ is a(2). 
Hence 

l 22 

a(z) > 1 2re 

The theorem is proven. [] 

Note  that  the case of identical masses was considered in 1-7] as well. 
6. In conclusion we prove the continuity of 9.1(#) in It which will be necessary when 
proving Theorem 3.1. 

Lemma 3.4. The function 9.I(#) is continuous in It > O. 

Proof  We need only to prove the continuity of the integral 

n(It, ~(l)(2)) d2 

for fixed 1. The matrix ge)(2) is analytic in a ne ighbourhood of the real axis, so we 
can numerate  its eigenvalue branches Itk(2), k = 1, 2, 3, in such a way that they are 
analytic as well. In combinat ion  with the fact that 1[~(~)(2)[[ ~ 0, 141 ~ ~ ,  this 
implies that the number  of points 21, 22, ...,)~r, where at least one of the eigen- 
values Itk(2) coincides with It, is finite. Clearly, outside of 2k, k = 1, . . . ,  r, we have 
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lim,,_~, n(~', gt0(2)) = n(#, g(~)(2)). Now the desired continuity follows from the 
dominated convergence theorem. 

4. Proof of  Theorem 3.1 

1. In our analysis of the spectrum of H the crucial role is played by the compact 
integral operator 

A = A(z) = (W(z)) 1/2 K(z)(W(z)) 1/2 (4.1) 

in the space L(2 3) (9l), where K = K(z) has the entries 

= o, 
(4.2) 

K~p -- ] V~l~Ro(z) [ V~[ i .  

The following statement relates the spectra of H and A(z). 

Theorem 4.1. Let V~ <__ 0 and H, > O. Then for z < 0 the operator A(z) is compact 
and continuous in z and 

N(z) = n(1, A(z)). (4.3) 

We start the proof of Theorem 4.1 with two elementary lemmas. 

Lemma 4.2. For any bounded operator B 

n(2, BB*) = n(2, B'B) .  

Proof Let us show first that 

n(2, B* B) < n(2, BB*). (4.4) 

To that end we present B in the polar form B = UIB], where I B [  2 = B*B and U is 
the operator such that UU*= P, U*U = Q, P and Q being the orthogonal 
projectors onto R(B) and R(B*) respectively. Suppose that 

(IB[2f, f )  > 2[[fll 2 . (4.5) 

Since ] B ]  2 = Q]B]ZQ one may take f =  Qf  Therefore f =  U*Uf= U'g, g = Pg. 
Consequently (4.5) yields 

(UlBIZU*g,g) > 2LLU*gll 2 = 2llgll 2 . 

Taking into account that BB* = UIB[ 2 U* we obtain (4.4)�9 To get the opposite 
inequality it remains to switch B and B*. [] 

Let Zj, j  = 1, 2 . . . . .  v, v < oo, be a set of bounded operators acting from g to ~). .r 
Let M := ~~j=l  Z * Z ; : g  ~ g and 

f Z1Z* Z1Z~ 

I~ = I Z2Z~ Z2Z~ 

\z zt 
-r 

be the operator in ~ j =  1 (~ b. 

. . .  Z1Z* ) 

. . .  Z2Z* 

. . .  Z~Z* 
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Lemma 4.3. For any 2 > 0 

Proof 

n(2, M) = n(2, ~ I ) .  (4.6) 

Denote by I the v x v-matrix 

1 . . .  1 

1 . . .  1 

v and consider the operator M := MI  acting in ~ = a  O g. Since I has a unique 
non-trivial eigenvalue (which equals v), we have 

n(2, M) = n(v~, M ) .  

Direct calculation shows that M and 1~ have the form 
= v- 1 ZZ* respectively, where 

�9 . .  Z 1 

Z 2  Z 2  . . . Z 2 

Z ~ �9 �9 �9 

z v Z v  �9 �9 �9 v 

(4.7) 

M = Z*Z  and 

Applying Lemma 4.2 to Z*Z  and ZZ*, we get (4.6) from (4.7)�9 [] 

Proof of the Equality (4�9149 First we verify the identity 

N(z) = n(1, R~o(z)[VI R~o(Z)). (4.8) 

Suppose that u e D-n( - z), i.e. (Hu, u) < z(u, u). Then ((Ho - z)u, u) < (] VJu, u) 
and consequently, 

(Y,Y)<(IVIRo(z)y, Ro(z)Y), y = ( H o - z ) ~ u .  

Thus N(z)< n(1, R~o(z)[V]Ro(z)). Reversing the argument we get the opposite 
inequality, which proves (4�9 

Since V =  //1 + V2 + V3 the operator in the r.h.s, of (4�9 has the form 
3 Z*Z~, where Z~ = [ V~ ]3 Ro(z). Thus by Lemma 4.3 it follows from (4.8) that 

N(z) = nO, M )  , 

where ~r = Mo + K, K being defined by (4.2) and Mo = diag {Z~ Z*, Zz Z*, Zs Z~' }. 
In view of (3�9 the operator I -  Mo is invertible and ( I -  Mo) -1 = W. Direct 
calculation shows that 

n(1, l~/l) = n(1, W~KW ~) . 

The operator in the r.h.s, coincides with A(z). [] 

To check the compactness and continuity of A(z) for z < 0 we first look at 
a more general operator, whose properties will be useful in what follows. 
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Let  ( E C~( IR+)  be the same function as in (2.13). Let  F,(z )  be the multiplica- 

) t ion by \2n~ - z and let F(z)  = diag{Fl(Z), F2(z), F3(z)}. Set 

K ("' ~)(z) = (F (z))-u K(z) ( F ( z ) )  - ~  . (4.9) 

L e m m a  4.4. Le t  v, ,  ~ = 1, 2, 3, satisfy (2.1). Then the operator  K(U'~)(z) for  z < 0 is 
cont inuous in z and compact  for  all v > 0 and IX > O. I f  v <= 1/4, /~ < 1/4 and 
# + v < 1/2 then K(U'~)(z) is cont inuous up to z = O. 

Proof.  Set (b = d i a g { ~ l ,  4~2, 4~3}, where ~ ,  is the Four ier  t ransform defined in 
(3.2). I t  suffices to s tudy the opera to r  

~(z) = ~",~(z)  = ~ * K ( " ' ~ ( z ) ~ .  

The kernel o f / ( , ~  (z) equals 

1 eid,pp x Iv~(x)l'}eie,,p'xe -ia.,px' [v#(x')l x~ e_ie,,p, x, 

where x = x, ,  x '  = x~, p = p,,  p' = p~. Deno te  by ~ the mult ipl icat ion by the 
characterist ic function of the ball {iv e IR3[]IVl < R}. Then, clearly, 

where 

g , d z )  = Z~(z) + rR(z), 

Z g ( z )  = ~R g ,~(Z)~R + (1 -- ~R)g, t3(Z){R + ~R g ,~(Z) ( I  -- ~I~) , (4.10) 

yR (Z) = (I -- ~ R ) / ~  (Z) (I -- ~ " ) .  (4.11 ) 

We shall show that  the kernel of the opera to r  (4.10) is square-integrable over  its 
arguments ,  so that  ZR(z )  ~ ~2. In  combina t ion  with the continuity of the kernel in 
z < 0 this will give the continuity of ZR(z )  in z < 0. Let us consider the first 
opera to r  in (4.10). Fo r  z < 0 its inclusion in the Hi lbe r t -Schmid t  class is obvious.  
Suppose that  # + v < 1/2, # < 1/4, v < 1/4 and z < 0. In view of (3.5) we have 

o = 1 (4.12) H~p(p, p')  > cpZr(iv')2r" , tr -1- re' . 

Thus  the kernel of ZR(z )  does not  exceed 

]V~(X) 1�89 ~ R ( p ) p -  2(~+r)(p') - 2(v+r') ~R(IV')lVII(X')I~ . 

It  remains to choose tc and ~:' in such a way that  # + ~: < 3/4, v + ~:' < 3/4. Using 
the same a rgument  one can prove  that  the second and the third opera tors  in (4.10) 
belong to the HUbert  Schmidt  class and are cont inuous  in z < 0 if # < 1/4, v < 1/4 
and # + v < 1/2. Fo r  example,  the second opera to r  is Hi lbe r t -Schmid t  since its 
kernel  is bounded  by 

p,2 
Clv~(x)[ ~ [1 - ~R(p)] p - 2  \2-n~n~ - z )  ~ ~ R ( I V ' ) I v ~ ( X ' ) I &  . 

The n o r m  of the opera to r  (4.11) is bounded  by C R  -2  for all z __< 0 since 

~a(p)  EHO (iv, p , )  _ z-1 ~R(p,) > cR  2 
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by (3.5). Therefore [[ZR(z)-  /s 0 as R--+ c~. Hence the continuity and 
compactness o f / ~ ( z )  (and consequently, K ~  '~) (z)) follow from those of ZR(z). [] 

The end of the proof of Theorem 4.1. Comparing (4.1) and (4.9) we see that 
A(z) = W~K~~176 The desired compactness and continuity follow from 
Lemma 4.4. [] 

2. As we shall see later, the discrete asymptotics of the operator A(z) as z ~ - 0 is 
determined by the integral operator SR in L2((0, R), 15o)), t5 = L2($2), with the 
kernel S~(x  - x'; ( ~, q)), r/, ~ ~ S 2, where 

S~(x; t) = 0 , )  
I 

u~p } (4.13) 
S=a(x; t) (2~z)-2 cosh(x + r~13 ) + s=lJt 

) and u,p, r~a, s,p are defined in (3.11). 

Let the function 9,1(-) be defined by (3.12). First of all we establish the following 

Theorem 4.5. Let SR be the operator defined in (4.13). Then for any I ~ > O, 

lim R -1  n(/~, SR) = 2~(/~). (4.14) 
R--+ co 

The proof of Theorem 4.5 is based on a simple Toeplitz type argument. Namely, 
let us consider the selfadjoint integral operator TR in the space L ~a) 10 R), d > 1, 2 ~ , 

with the kernel T~a(x - x'), 

r,a(x ) = i 'a~(-  x), r,r ~ LI ( IR)nL~(IR)  , 

Let I"(2) = {T~a(2}) be the matrix with the entries 

T~a(2) = S T,p(x)e-i~Xdx. 

Let #k(2) be the eigenvalues of the matrix t (2)  numerated in non-increasing order 
counting multiplicity. Clearly, they are continuous in 2. Denote 99l(/0 = 9~(#; "~) 
= = 

Lemma 4.6. Let Ta be as defined above and I* > 0 be fixed. Suppose that 
mes 932(/~) = 0. Then we have 

2~r lim R - l n ( u ,  TR)=  ~ n(/t,i"(2))d2. (4.15) 
R---~ o~ - o o  

This lemma is a trivial generalization of a corresponding result for the case 
d = 1, which can be found in [8]. In the language of Toeplitz operators it provides 
the so-called canonical distribution for the kernel T~r (x). Below we denote by II K ll2 
the Hilbert-Schmidt norm of the operator K. 

Proof of Lemma 4.6. By Riemann-Lebesgue Theorem n(/~, ~(,t)) = 0 for 121 _-> M 
with M > 0 large enough, so that the equality (4.15) is equivalent to 

M 

2~ lim R - ~ n ( ~ , T R ) - -  ~ n(/~,i~(2))d2. (4.16) 
R - ~ o o  - M  
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Let us define in L~d)(0, R) the operator TA, R with the kernel 

T~r A) = r~a(x)z(x/A ), A < R/2,  

where Z means the characteristic function of the interval [ - 1, 1]. Then, obviously, 

HTR-- TA,RI[ 2 ~ R ~  ~ ]T~/~(x)[ 2 dx.  (4.17) 
ct[3 Ixl >= A 

Further, let 

~e (x ;A)  = ~ T=e(x + Rn; A) (4.18) 
n = - o 0  

be a periodic extension of the kernel T~(x; A) with period R. Denote by T~, g the 
operator in L~2 a> (0, R) with the kernel (4.18) and estimate the Hilbert-Schmidt norm 

In fact, the r.h.s, contains only summands with n = - 1, n = - 1. All the others 
equal zero for x, x' e [0, R]. Therefore 

R R 

]ITa,R-- T~,RII 2 < 2 ~  5 dx' 5 d x { l r ~ ( x -  x' + R)] 2 
aft 0 0 

+ I T ~ ( : ,  - x '  - R ) l  ~ } 

i 2R - x '  
<= 2 F~ dx' S dxl T~(x) l ~ 

o~fl R - A R - x '  

A --x '  t + ~ dx' ~ dx l T~(x) l 2 
0 - R - x '  

=< 4A ~ ]l T~/~[[ 2L2 �9 
~p 

Combining this estimate with (4.17) we obtain 

[[TR - TP,R[[ 2 < R~c(A) + CA ,  

lim ~(A)  = 0 .  
A~(z)  

Now it follows from the inequality n(s, A) =< s- 2 I I A l l2 S > 0, and the Weyl inequal- 
ity (3.9) that 

n(# ,  TR) =< n(#  --  6, T ] , R )  + n ( 6 ,  T R  - -  T ] , R )  

=< n(# - 6, T],R) + 6-2(RIc(A) + CA), 

n(#, TR) -->_ n(# + 6, T],R) -- 6-2(R~(A) + CA),  
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lim sup R - i n ( # ,  Ta) < lim supR-  ~n(p - 6, T~,R), 
R ~ o o  

liminfR-~n(/~, TR) > lira in fR-  ~ n(/~ + 3, T~,R), 
R ~ o o  

~'6 > 0 ,  (4.19) 

where limits in the r.h.s, are taken as R ~ 0% A ~ oo, A /R  ~ O. 
We shall prove that for any e > 0 and some 6 = 6(e), the relation holds: 

27r lim sup R - i n ( v ,  T~,R) < 
M 

n(p, ~'(2)) d2 + Ce, v = It - 3 .  (4.20) 
- M  

The eigenvalues of the operator T~.a can be calculated by means of the Fourier 
series: 

n(v, T~,R) = ~ n(v, T~A'7,)~), (4.21) 
m 

where ~( ')  is the matrix with entries Jt A ,  R 

A 

I T~a(x) e-n-7~xdx" (4.22) 
- A  

By condition of lemma for any e > 0 one can find an open set ~ , ( / l )  (which is 
a union of a finite number of open intervals) such that 

~ ( p )  ~ 9X~(/~), mesgX~(/~) < e .  

Let us define the number 3 = 6(e) in (4.20) by the requirement 

I#k(2) -- #[ > 23, V2 r ~0l~(p). (4.23) 

We split the sum in (4.21) into two parts: 

n (v, t~ ,~)  = ~ n(v, t(a~,)R) + ~ n(v, t(am,)R). (4.24) 

Since the first term in the r.h.s, is bounded by Rd(2~z)- 1 rues ~).)l~(#), its contr ibut ion 
to the asymptotics (4.20) does not exceed C8. Further, according to (4.22) we have 

"") - T (  m 
A,R -R-~ - ,0,  A ~  ~ .  

Since v = # -  6, in combination with (4.23) this tells us that n(v, T~Am)R)= 
n(tz, T(2m~/R)) for large A i f2m~/R r 9X,(/~). Therefore the second sum in the r.h.s. 
of (4.24) equals 

2-~ ~ ~-  n #, \ R ~ ' (4.253 
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where M is the same as in (4.16). Since the function n(#, T(2)) is continuous in 
2 ~ 9Jl~(#) the sum (4.25) considered as the integral sum, converges to the integral 

[ -  M , M ]  \?01~(~) 

To obtain the relation (4.20) it remains to recall once again that rues 9Jl~(#) < ~. 
Since e > 0 is an arbitrary number, the inequalities (4.19) and (4.20) yield: 

M 

2n lira sup R-  1 n(#, TR) ~ ~ n(/~, T(2)) d2.  
R ~ o o  - M  

In the same way one can establish a similar lower bound for lira inf R-  1 n(/~, TR). 
Together they prove (4.16). [] 

Proof of the Equality (4.14). Similarly to (3.14) we have 

s .  = | 
/ = 0  

where S~ ) are the operators in L(z 3) (0, R) with the kernels 
1 

S(~(x - x') = 2u ~ Pl ( t )S~(x  - x'; t ) d t .  (4.26) 
- 1  

Consequently, 

nO.t, SR) = ~ (2l + 1) n(/~, S~)). (4.27) 
/ = 0  

Now, comparing the definitions (3.10), (4.13) and applying the equality (3.21), we 
see that 

= 

By (3.15) and (4.26) this yields 

= 

• f  e-lZx S~(x;  t) dx . 
- o o  

e-lax S(~ (x) dx . 
-o0  

As it was mentioned in the proof of Lemma 3.4, the matrix g(l)(2) is analytic in ;( in 
a neighbourhood of the real axes, so that mesg)l(#;g (~)) - -0  for any ~t > 0. 
Applying Lemma 4.6 we find that 

2~ lim R-  1 n(/~, S~ )) = S n(#, ~q)(2)) d2 . 
R - ~ o o  - ~  

It remains to take into account (4.27) and (3.16). [] 

3. Let us proceed to the study of the operator A(z). Below we always assume z < 0. 
Our aim is to prove 

Theorem 4.7. Let the conditions of Theorem 3.1 be fulfilled. Then for any # > 0 we 
have 

lira [loglz[I- 1 n (/~, A(z)) = 9.I(/0 . (4.28) 
z ~  - 0  

When proving this theorem we rely upon the following two lemmas. 
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Lemma 4.8. Let T1, T2 be bounded operators. I f 2 4  = 0 is an eigenvalue ofT1 T 2 then 
2 is an eigenvaluefor Tz Ti as well of the same algebraic and 9eometric multiplicities. 

This l emma is well known  and its p roof  is omitted. 

L e m m a  4.9. Let T(z) = To(z) + Ta(z), where To (T1) is compact and continuous in 
z < 0 (z < 0). Assume that for somefunctionf( ' ) , f (z)  ~ O, z ~ - 0 there exists the 
limit 

lim f (z)  n(2, To(z)) = l (2 ) ,  
z ~ - - 0  

continuous in 2 > O. Then the same limit exists for T(z) and 

lim f(z)n(2, T(z)) = l (2 ) .  
z ~ - - 0  

Proof According to the Weyl inequality (3.9) for any ~ e (0, 1) we have 

n(2, T(z)) < n(2(1 - ~), To(z)) + n(2e, Tl(z)) , 

n(2, T(z)) > n(2(1 + ~), To(z)) - n(2e, - Tx(z)). 

Since T1 (z) is cont inuous up to z = 0, we have 

l(2(1 + e)) < lira inff(z)n(2, T(z)) < lira supf(z)n(2, T(z)) </(2(1 - e)).  
z ~  - 0  z ~  - 0  

N o w  the desired result follows f rom the continuity of  l ( ' ) .  [] 

Proof of Theorem 4.7. Since 9.I ( . )  is cont inuous  in g (see L e m m a  3.4), according to 
L e m m a  4.9 the per turba t ions  of the opera to r  A(z) which are compac t  and continu- 
ous up to z = 0, do not  contr ibute  to the asymptot ics  (4.28). We shall use this fact 
th roughout  the p roof  wi thout  further comments .  

First we prove the theorem under  the condit ion that  all two particle subsystems 
have zero energy resonances. 

) Let F,(z) be the mult ipl icat ion by \ 2 n ,  - z and F/ ,  be the opera to r  such that  

(1I, f ) (k,, p,) = a2 a ( q)~o,) (k,) ~ f (k[,, p,) (~,  q~,) (k;) dk', . 

I t  follows f rom (2.13) and f rom the definition of W,(z) that  

(W,(z)) ~ = (G(z))  ~11, + (G(z))  - T  , , ,  (z) 

= F l j r j z ) )  -+ + W(~'(z)(r,(z))-41-~, (4.25) 

where 

, 

is bounded  and cont inuous in z < 0. Thus 

= ( r ( z ) ) - m  + 

1 - 6  
= n ( r ( z ) ) - l ,  + qc(~) (z ) ( r ( z ) ) -  �9 
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where F(z), ~7r are diagonal matrices with the entries F~(z), 17V~)(z),/7~. It 
follows from here that A(z) = A ~ (z) + Y(z), where 

A~ = 1-lK(+.�88 

Y (z) : / 7  K ~"' ~) (z) f f  ~)(z) + ~r (~)(z) K ~'")(z)/7 + ~ (z) K ~' ~ (z) ~ ~ (z). 

Here # = 1/4, v = ( 1 -  6)/4. By Lemma 4.4 the operators K~U'~)(z), K(~'U)(z), 
K(~'~)(z) are compact and continuous in z < 0. Thus, by virtue of Lemma 4.9 Y(z) 
does not contribute to the asymptotics (4.28). 

Let us look at the operator A ~ (z). Let ~( ' )  be a characteristic function of the 
ball {p[[pl _-< 1}, and G be a multiplication by the function ~(p~). Set ~ := 
diag{~l, ~2, ~3}- Using Lemma 3.6 one can easily prove that A~ - ffA~ is 
compact and continuous in z up to z = 0. 

The following step consists in a reduction of the problem to an operator acting 
in the space L(3)(]R3). Let F = diag{F~, F2, F3} : L(23)(IR 3) ~ L~23)(9~) be the oper- 
ator with the entries 

( F , f  ) (k~, p~) = ( ~ q~,) (k,) f (p~) . 

Then obviously 

(F* f)(p~) = ~ (q~qh)(k,)f(k~,  p~) dk, . 

The nontrivial eigenvalues of ~A~ coincide with those of the operator 

S(z) := F*~K(~ '+)(z)~F.  

Indeed, by Lemma 4.8 the discrete spectrum of ~A~ coincides with that of 

F.K ~'' ~)(z)~/7 2 . 

Since/7 2 = (', ~b, q~,)4~ q~ = F,F*  it remains to apply Lemma 4.8 once again. 
One may think that the operator S(z) acts in L~z3)(B1), Br = {IPl < r}, r > 0. Its 

kernel equals 

t~,(d,ap + e,aq)~p(dp~q + ea~p) y )1 
kZG kzn~ 

where G(k)=(~lv~l~q~)(k). First we replace the functions G(k) by 
~ ( 0 )  = 2 - s / 4 ~ - 1 1 2  3/4 (see (3.6)). Then by (2.10) and (4.12) the kernel of the 
difference will be bounded by 

[Pf + l q f  
C ( P~n ~ - z)�88 (H~ q) - z) ( q~np - z )  ~- < C'[pI~-2"-~Iq ' -2 ' ' -~  

+ C'lpl-2"'-6lq[ '~-2"-~ , 

for arbitrary x, x', x + ~c'= 1. Choosing x �9 (1/2, (1 + 6)/2), we see that this 
operator is Hilbert-Schmidt up to z = 0. For  the same reason we can replace the 
functions ~(pZ/2n~ - z), ~(q2/2nt~ - z) by pZ/2n~ - z, q2/2na - z respectively. Thus 
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we arrive at the operator with the following kernel: 

2-~n-2(/ ,  ]a)-~ ~n~  (H~ q) -- . 

One can trivially verify that this operator is unitarily equivalent to that with the 
kernel 

2-~-2( l ' lB) -~ ' (  p2 )-�88 )-~" ~n~ + 1 + 1 (H~ q) + I) - I  , 

acting in L(23)(Br), r = [zl -a/2 . The equivalence is performed by the unitary 
dilation U. = diag { U .  U., U~ } : L(23) (BI) --+ L~ 3) (B,), (U J ) ( p )  = r- 3/2f(r-1 p). 
Further, we may replace (pZ/2n~ + 1) -1, (q2/2na + 1) -1 and H~ q)+  1 by 
2n.p-2(1 - ~ (p)), 2npq-Z(1 - ~(q)) and H~ q) respectively, since the error will 
be a Hilbert-Schmidt operator continuous up to z = 0. Then we get the operator in 
L(z 3) (B~\B1) with the kernel 

1 _~ {p2 ( p, q) q2 ~ -1 
(2n)-Z(n.nB)~(l~16) ~ [ p [ - ~ [ q [ - ~ \ ~ +  mr + ~ J -  

Here we used the formula (3.4) for HOp (p, q). Finally, this operator is unitarily 
equivalent to the operator SR, R = 1/2 I log[zlJ defined in (4.13). The equivalence 
is performed by the unitary operator M=diag{M,M,M}:L~a)(Br \Ba)-~  
L2((0, R), ffi(3)), where (M f )  (x, o~) = e3X/Z f(eXco), x e (0, R), co ~ S 2. Now the 
relation (4.28) follows from (4.14). 

Now suppose that condition (2) of Theorem 3.1. is fulfilled. To be definite we 
assume that zero is the regular point for the Hamiltonian h3 and the resonance for 
ha, h2. Then by Lemma 2.2 the operator W3(z) > 0 is continuous in z < 0. Thus 
setting ~03 = 0 we see that W3(z) satisfies the relation (4.25) where 

= ( r 3 ( z ) ) ~ -  W3(z).  

After this remark the proof goes as before. [] 

Now the equality (3.13) follows from Theorem 4.7 and the relation (4.3). This 
completes the proof of Theorem 3.1. 

Appendix 

I. Here we prove the identity (3.21). Denote 

1 J (2 ,  O) := e-iX~f(x, O) dx, 0 < 0 < n 
f (x ,  O) := cosh x + cos O' ~ - ~o 

Since f(x,  0) = f ( x  + 2~i, 0), we have 

1 o~ + 2~ri 

is(2, 0):= ~ S e-iaXf(x, O) dx = e 2=~ J(2 ,  0).  
- -  ~ + 2 7 z i  

(A1) 
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Further ,  the function f ( x ,  O) has two poles in the strip I m  x ~ (0, 2~z), namely 
xl  = i(rc - 0) and x2 = i(lr + 0). Thus,  

1 
J ( 2 ,  0) = i s (2 ,  0) + ~ Z ~ e - ' a x f (  x, O) d x ,  (A2) 

k = l , 2  lk 

where lk, k --- 1, 2, means a circle of a small radius centered at the point  Xk, the 
integral over  I k being taken in the counter-clockwise direction. Combin ing  (A 1) and 
(A2), we see that  

1 1 
J ( 2 ,  0) - 1 - e 2~'~ 2 ~ I e - i a x f (  x, O) d x .  (A3) 

k = 1 , 2  Ik 

Taking  into account  the following expansion at the point  Xk, 

c o s h x =  -- COS 0 + (X -- XR) S i n h X k + ' ' ' ,  k = 1 , 2 ,  

we obtain  by the Cauchy  theorem: 

~--~ ~ e - i~x f (x, O) dx  - 
e-i~xk 

tk - i sinh x k " 

Thus, using the equalities - i sinh iz = sinz and sin(~ _+ 0) = T sin 0, we derive 
f rom (A3) that  

J ( 2 ,  0) = (1 - e2~X) -1 e~(~-~ - eX(~+~ 
sin 0 

N o w  it is easy to show that  the r.h.s, of this equali ty equals the 1.h.s. of (3.21). 

II.  Let us prove now the bound  (3.22). To  that  end we use the following representa- 
t ion (see [-5]) of the function Ql: 

Ql(coshy) = 2-- :  S (cosh t - coshy)  -~ e-( l+~) ,  dt, y > 0 .  
Y 

Since 

cosh t - cosh y > i sinh t' dt' > (t - y) sinh y ,  
Y 

it follows f rom here that  

C~ e - ( l+�89  
Qz(coshy) < (2s inhy)  -~ (t - y)~ dt 

Y 

~e 
- t  

= ( s i n h y ) - ~ ( 2 / +  1) - ~ e  -<z+~)y - T d t .  
0 tzr 

Using the identity 

m e - t  
T d t  = 2 e -t2 dt = n ~ , 

0 

we obtain  the inequality 

Qt(coshy) < n ~ ( s i n h y ) - ~ ( 2 / +  1 ) -~e  -(l+~)y . 

To  get (3.22) it remains to substitute z = coshy  and take into account  that  
a rccoshz  = log[z  + ( z  2 - 1)1/2]. 
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