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Abstract. We define and study two-dimensional ,  chiral conformal  field theory by the 
methods  o f  algebraic field theory. We start by character izing the vacuum sectors of  
such theories and show that, under very  general  hypotheses ,  their algebras of  local 
observables  are i somorphic  to the unique hyperfinite type III 1 factor. The  conformal  
net  determined by the algebras o f  local  observables  is p roven  to satisfy Haag duality. 
The  representation o f  the Moebius  group (and presumably  o f  the entire Virasoro 
algebra) on the vacuum sector o f  a conformal  field theory is uniquely  determined 
by the Tomita-Takesaki  modula r  operators associated with its vacuum state and its 
conformal  net. We then deve lop  the theory of  Moebius  covar iant  representations o f  a 
conformal  net, us ing methods  o f  Dopl icher ,  Haag and Roberts .  We apply our results 
to the representat ion theory  of  loop groups.  Our  analysis is mot iva ted  by the desire 
to find a "background- independen t"  formulat ion o f  conformal  field theories.  
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I. I n t r o d u c t i o n  

Eight years ago, the seminal paper of Belavin, Polyakov and Zamolodchikov [1] 
triggered renewed interest among theoretical physicists in two-dimensional conformal 
field theories and their infinite-dimensional symmetry algebras (the Virasoro algebra, 
Kac-Moody algebras and W-algebras). An impressive body of  knowledge concerning 
conformal field theories has since been accumulated. Two-dimensional conformal field 
theories have been found to be important tools in the theoretical analysis of many 
physical systems. Among such systems are two-dimensional statistical systems at a 
critical point (theory of critical phenomena) [2], systems of  condensed matter physics, 
such as quantum Hall fluids [3], polymers [4], Kondo systems [5]. Quite generally, 
physical systems exhibiting critical phenomena involving infinitely many degrees of 
freedom which - possibly after dimensional reduction - form a subsystem in a two- 
dimensional space-time can be studied with the help of techniques from conformal 
field theory. 

Perhaps the deepest applications of these theories have been made in the context 
of  string theory [6]. Conformal field theory is to string theory what the theory of 
irreducible, unitary representations of  the Poincar6 group is to relativistic quantum 
field theory. A classification of  conformal field theories would therefore appear to 
represent an important issue. Much work has, in fact, been devoted to this problem. 

One of the fascinating aspects of conformal field theories is that their analysis 
involves a wide range of fairly sophisticated mathematical tools: the theory of infinite- 
dimensional Lie algebras and loop groups [7], algebraic geometry [8], the theory of 
tensor Categories [9], operator algebra theory, in particular Jones' theory of  inclusion 
of subfactors [10], BRST cohomology and quantum group theory [11], etc . . .  

Algebraic quantum field theory, founded by R. Haag in 1955, is a precise 
mathematical formulation of  quantum systems with infinitely many degrees of  freedom 
in the language of  the theory of C*-  and von Neumann algebras. For a survey of  results 
and methods and an account of the history see [12] (and refs. given there). Algebraic 
quantum field theory enables one to study structural features of the quantum theory 
of  systems with infinitely many degrees of  freedom in a general and mathematically 
clean way independent of special models. Among general properties of  such systems 
studied with the methods of  algebraic quantum field theory are: the classification 
of  parastatistics [13, 14], the localization properties of charged fields in quantum 
field theories with a non-vanishing mass gap [15], quantum electrodynamics and 
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scattering theory of infraparticles [16], the quantum-mechanical Noether theorem 
[17], a general formulation of the Goldstone theorem [18], etc . . .  Most important, 
the algebraic formulation of quantum field theory provides a precise mathematical 
description of superselection rules and the conserved charges associated with them 
(e.g., the electric charge, the baryon number, isospin . . . .  ) [19], although it does 
not directly elucidate their physical origin. Superselection sectors are interpreted as 
Hilbert spaces of states carrying inequivalent representations of a net of algebras of 
local "observables". Superselection sectors can be composed in a way analogous to 
taking the tensor product of two representations (or the corresponding representation 
spaces) of a compact group. Mathematically, they can be viewed as the objects of a 
tensor category [20, 10]. Recently, Doplicher and Roberts have brought the general 
theory of superselection rules and quantum statistics to a high degree of perfection 
by showing that the tensor categories of superselection sectors in four- or higher 
dimensional quantum field theories are isomorphic to categories of representations of 
compact groups. These groups play the role of symmetry- or global gauge groups 
of the underlying quantum field theory. When they are Lie groups their Lie algebras 
have the physical interpretation of algebras of conserved charges associated with 
the superselection rules. Doplicher and Roberts also show how one can reconstruct 
algebras of charged felds with Bose-Einstein- or Fermi-Dirac statistics from the net 
of algebras of local observables and the superselection rules. 

Unfortunately, most of their results do not hold, in general, for quantum field 
theories in space-times of dimension two and three. This can be understood by 
recalling that particles in space-times of dimension three may obey some quantum 
statistics other than Bose Einstein- or Fermi-Dirac statistics, so-called braid statistics 
[21]. It had already been noticed in the early seventies that charged fields of certain 
quantum field theories in two space-time dimensions describing topological solitons 
can form algebras not described by local commutation- or anticommutation relations; 
(one then speaks of "exchange algebras" and "fields with braid (group) statistics"). The 
same phenomena are encountered in three-dimensional Chern-Simons gauge theories. 
The structure of superselection sectors in such theories cannot be reconstructed from 
the representation theory of a compact symmetry group, and one must search for 
an adequate notion of "quantized symmetries", such as quantum groups, whose 
representation theory reproduces that structure (see, e.g., [10]). It has turned out that 
the algebraic formulation of quantum field theory provides the right tools leading to a 
general understanding of braid statistics in two [22] and three [23, 24, 25] space-time 
dimensions. In these studies, conformal- or gauge invariance were not used. As a 
consequence, certain structural properties that one can derive e.g., from conformal 
invariance (structure of local algebras of observables, Haag duality . . . .  ) simply had 
to be assumed from the outset. The purpose of this paper is to present a general 
definition of two-dimensional conformal field theories in the context of algebraic 
quantum field theory and to study their properties by algebraic methods. There are 
several reasons which motivate this investigation. Before presenting them, we wish to 
sketch how local algebras arise in conformal field theories on the example of a theory 
whose chiral algebra is generated by its energy-momentum tensor (i.e., the Virasoro 
algebra). Some other examples arising from different chiral algebras (current algebras) 
will be examined in detail in Chap. III. 

We assume the central charge c of the theory to be fixed. Because of conformal 
invariance, the stress-energy tensor splits into a left-moving and a fight-moving part, 
each one defined over a compactified light ray, S 1 = {z E C [ [z[ = 1}, [26]. The 
left-moving part of the energy-momentum tensor, T(z), for example, can be used to 
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define von Neumann algebras of  operators acting on the vacuum sector of the theory 
(i.e., in the representation corresponding to the lowest weight h = 0) by setting 

• ( I )  := {exp iT( f )  ] f a real C ~ function with s u p p f  C I } " .  (1.1) 

We recall that ./~t denotes the algebra of  bounded operators commuting with 
.A-~, and ..~,t := (.~,)t.  In this way we obtain a collection, {A( l ) } scs l ,  of von 
Neumann algebras indexed by open, non-dense intervals on S 1 satisfying the following 
properties (see Definition 2.3). 

(i) Isotony: [ C J ~ ./4{.;(I) C .~.~(J). 
(ii) Locality: I N J = ~ ~ ~ ( l )  C_ ./~(J)'. 

(iii) Moebius covariance: There exists a unitary representation :r 0 of the Moebius 
group PSU(1 ; 1) on the vacuum sector such that 

7ro(A).~(I)%(A)* = ./g~.~(A. I), VA c PSU(1 ; 1), VI C S 1 , 

(see Appendix I for the notation). 
It turns out that, quite independently of  the choice of an algebra of local, chiral fields, 
i.e., of the so-called chiral algebra (e.g. a current algebra), the local algebras (defined 
similarly as in Eq. (1.1)) are always isomorphic to the unique hyperfinite type III 1 
factor and satisfy properties (i)-(iii). Of course, the superselection structure of  the 
theory under consideration depends on the choice of the underlying chiral algebra. 
After passing from chiral algebras of  unbounded fields to local von Neumann algebras 
of bounded operators which, as just mentioned, are universal, the properties of  the 
theory are coded into the assignment of an algebra . t ( I )  to every interval I C S ~, 
in such a way that properties (i)-(iii) hold. A more concise way of specifying a 
conformal field theory is to choose a unitary representation 7r 0 of the Moebius group 
PSU(1 ; 1) on a separable Hilbert space .~76~ which "acts properly" on a subalgebra . ~  
contained in the algebra of all bounded operators on . ~  isomorphic to the hyperfinite 
type III 1 factor. What we mean by a "proper action" of PSU(1 ; 1) on ./~ will be 
explained in Definition 2.2. 

Next, we explain why we wish to analyse conformal field theories in such 
generality. One reason originates in an aspect of string theories which we regard as 
unsatisfactory: their very formulation is usually based on choosing a specific model 
of classical space-time. This is rather unsatisfactory, because one would hope that a 
quantum theory of gravity can be formulated without reference to a classical space- 
time concept and that it will in fact predict possible models of classical space-time, 
rather than involve them in its formulation. Following this line of thought, one would 
like to define the concept of a string vacuum independently of a classical model of 
space-time and then derive constraints on the structure of space-time from properties 
of  string vacua. It is expected that string vacua can be constructed from N =- 2 
superconformal field theories of adequate central charge, and there is growing evidence 
that one can associate classical space-times (e.g. Calabi-Yau manifolds) to them [27, 
28]. We thus consider the model-independent formulation of conformal field theory 
developed in this work as part of  a program aiming at defining what is meant by 
a string vacuum independently of  any a priori ideas about classical space-time and 
then reconstructing as much as possible of the structure of space-time from algebraic 
invariants associated with a given string vacuum. In this regard, we expect that a 
formulation of world-sheet supersymmetry in the framework of algebraic quantum 
field theory will be of  importance for further developments; see the remarks at the 
end of Chap. II. 
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Another one of our motivations comes from the theory of loop groups. Our 
results show that methods of algebraic quantum field theory are useful to study 
positive-energy representations of loop groups. In particular, we show how one can 
introduce a notion of generalized tensor product of representations corresponding to 
the composition of sectors in algebraic quantum field theory. Similar considerations 
are also contained in interesting recent work of Wassermann [29]. 

Finally, as already advocated by Buchholz, Mack and Todorov, algebraic quantum 
field theory might provide a useful framework for the classification of rational 
conformal field theories [30]. In particular, we expect that their results concerning 
the U(1)-current algebra can be extended to models based on general loop groups 
(see Chap. III). 

Besides the work of Wassermann and of Buchholz, Mack and Todorov mentioned 
above, we attract the reader's attention to the work of Buchholz and Schulz-Mirbach 
[31], of Fredenhagen [32] and to a recent preprint by Guido and Longo which, among 
other things, contains some very useful results on charge conjugation and Moebius 
covariance [33]; (similar issues will be discussed in detail in Chap. IV 1). However, as 
far as we know, there hasn't been, yet, a serious effort aimed at a general definition 
of conformal and superconformal field theories in the algebraic framework and at 
investigating detailed structural properties of such theories. 

Next, we briefly summarize the contents of this paper. Chapter II is devoted to 
the definition of conformal field theories in the algebraic context and to the study of 
properties of the vacuum sector. We emphasize the point of view that a conformal 
field theory can be defined by specifying a single yon Neumann algebra and a unitary 
representation of the Moebius group acting "properly" on this algebra (Definition 
2.2). A complementary point of view is to specify a net of local algebras on a Hilbert 
space and a vector cyclic and separating for each algebra. It is likely that these two 
approaches are equivalent. The relation between them is explained in Conjecture 2.27. 
In Chap. II we also investigate properties of the vacuum sector: the local algebras are 
shown to be hyperfinite type 1111 factors (Theorem 2.13) if the infinitesimal generator 
of rotations has certain trace-class properties (Lemma 2.12), and Haag duality is 
proven to be generally valid (Theorem 2.19). A converse of a recent result of Borchers 
concerning a relation between the representation of the Moebius group and Tomita- 
Takesaki theory is then proven (Theorem 2.20). We complete our description of the 
vacuum sector by identifying its local internal symmetries (Lemma 2.22) and by 
explicitly constructing the antiunitary operators implementing the inversions in the 
representation of the Moebius group (Theorem 2.26). Some of the technical proofs 
are given in Appendix II, whereas Appendix I summarizes basic geometrical facts 
about Moebius transformations and sets up the notation. 

In Chap. III, we apply th e general results of Chap. II to loop groups of the 
A-D-E series. Some basic facts about the representation theory of loop groups and of 
corresponding Kac-Moody algebras are summarized in Sect. III. 1-111.7. In Sect. 111.8, 
the vacuum sectors are identified, and, in Sect. 111.9, we prove that the local algebras 
satisfy all the properties of Chap. II in a vacuum representation (Theorem 3.2) and 
are hyperfinite type 1111 factors in charged sectors (Theorem 3.3). The corresponding 
result for vacuum representations of the Virasoro algebra is stated in Theorem 3.4. 

Chapter IV contains an analysis of the superselection structure of conformal 
field theories. After some definitions and basic properties (Sect. IV.I), we define 

1 As this work was already written, we received a preprint of Fredenhagen, Rehren and Schroer as 
well as one by Wiesbrock on related matters; see ref. [77] 
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a composition of representations in Sect. IV.2. We then analyse subnets associated 
to the punctured circle and prove that they satisfy essential duality. In Sect. IV.4 we 
recall the definition of braid statistics operators by now familiar in algebraic field 
theory [22-25], and in Sect. IV.5, we extend classical results of Doplicher Haag and 
Roberts [13, 14] to the present setting. When analysing representations which are not 
locally irreducible (see Def. 4.22) we use a technical assumption which is given in 
Eq. (4.19). This section closes with a conjecture concerning the statistical dimension 
of a charged sector, Eq. (4.27), which has far reaching consequences. In Sect. IV.6, 
we sketch some applications to the representation theory of loop groups. 

It is worth mentioning that many interesting problems are left unsolved in this 
work. Besides our conjecture on the statistical dimension of a sector and a careful 
elaboration of results which are only sketched in Sect. IV.6, we expect that one can 
construct charged fields ("vertex operators") for chiral WZW-models  along the lines 
presented in [30]. 

II. Structure of the Vacuum Representation of a Conformal Field Theory 

ILl. Conformal Nets of Operator Algebras 

Let . ~  be a separable Hilbert space, . ~ ( . ~ )  the set of bounded operators on ~ ,  
TZ(.~) its unitary group and 7r: PSU(1;1) ~ ~g4(.~) a strongly continuous, 
projective representation of the Moebius group. 2 

Remark 2,1. A projective (unitary) representation 7r of PSU(1 ; 1) always defines a 
projective (unitary) representation of SU(1 ; 1) such that +1 and - 1  are mapped onto 
the same element in TZ(.~).  We find it convenient to denote this representation by 
the same symbol 7r. 

Definition 2.2. A representation 7r of  the Moebius group on . ~  acts properly on a 
von Neumann algebra .//~ (or equivalently, the von Neumann algebra ~ transforms 
properly under the representation 70 , if 

(i) the one-parameter subgroup of dilatations D(t) is an automorphism group of S :  

7r(D(t)).~Tr(D(t))* =.• Vt E R,  

(ii) the rotation through an angle 7r on S 1, 

maps t/~ into its commutant: 

7r(R0)JgTv(R0)* C_ j g ' ,  

(iii) the one-parameter subgroups of translations, T(p) and of special conformal trans- 
formations S(n) act as one-sided compressions of ~ :  

7r(T(p))J/~Tr(T(p))* C_ j g  Vp > 0 ,  

7v(S(n))./~Tv(S(n))* C ~ Vn > O, 

2 All group representations considered in this paper are tacitly assumed to be strongly continuous 
and have values in YA(.~U), from now on 
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(cf. Appendix I for the notation). 

Our first goal is to show that a yon Neumann algebra ~ which transforms properly 
under the Moebius group determines a local, isotone net of von Neumann algebras 
which transforms covariantly under the Moebius group. 

Definition 2.3. Let {t~(I)}lcS1 be a collection of  von Neumann algebras acting 
on the Hilbert space , ~ ,  indexed by open, non-dense intervals of  the circle.3 The 
collection {~/~(I)}zcsl is called a local, isotone, Moebius covariant net of yon 
Neumann algebras (shortly, a conformal net) if it satisfies the following properties: 

(i) 11 C_ 12 ~ .~(I1)  C_ t~(I2) (isotony); 
(ii) 11 C_ 11 ~ '//~(11) C .~(I2) '  (locality); here I t :---- S I \ I ;  

(iii) there exists a projective representation 7r of the Moebius group on , ~  such that 

7r(A),/g(I)Tr(A)* = ~{(A . I ) ,  VA c PSU(1 ; 1), I C S ~ , 

where A �9 I denotes the image of  the open non-dense interval I under the action 
of  A. 

L e m m a  2.4. (i) If  . ~  is a von Neumann algebra transforming properly under a 
projective representation 7r of the Moebius group on .~Z#, then there exists a conformal 
net { ~ ( / ) } I c s '  such that ~ = ,/~(S+), where S+ :-- {z C S 1 ] Im z > 0}. 
(ii) / f  { ~ ( I ) } 1 c  s, is a conformal net of yon Neumann algebras acting on a Hilbert 
space . ~ ,  then .//~ :=  .~ (S+)  transforms properly under the Moebius group. 

Proof. For the proof it will be convenient to use the non-compact picture of S 1 
obtained by performing a stereographic projection which maps - 1  E S I onto ec (see 
Appendix I for details). Under this map, SU(1 ; 1) is mapped onto SL(2; R) and the 
action of SU(1 ; 1) on S 1 corresponds to the action of  SL(2; IR) as fractional linear 
transformations on IlL 

Ad (i). If  , ~  transforms properly under SU(1 ; 1), we define 

s ( s + )  := ~ ,  (2.1) 

S ( I )  :=  7r(A)~Tr(A)*, (2.2) 

where A E SU(1 ; 1) is a group element which maps S+ onto I : A �9 S+ = I.  We 
first have to show that S ( I )  is well defined. Let A1, A 2 be two elements of  SU(1 ; 1) 
which satisfy A i �9 5;+ = I ,  i = 1, 2. Then A 3 :=  A~ -1 A 2 maps S+ onto S+ and the 
endpoint set {+  1; - 1 } of  5;+ onto itself. There are two possibilities: 
(a) A3(+ l )  = +1 and A3( -1 )  = - 1 .  It is then easy to check that A 3 = +D(t), for 
some t. 

(b) A3(+ l  ) = - 1  and A 3 ( 1 )  -- +1.  It follows that A 3 = ~  0 i 
some t, so that A 3 maps S+ onto S_.  

Therefore only case (a) can occur. By assumption, 7r(iD(t)) is an automorphism of 
.~ (S+)  so that the right-hand side of  Eq. (2.2) is independent of  the choice of  A. 

To prove locality, it is sufficient to check that ,//~(S_) c_ ~(S+) ' .  But 

S ( S _ )  = ~r(R0)~(X+)~(R0)* c , ~ '  = S ( S + ) '  

by assumption. 

3 Throughout this work, the intervals I C S 1 considered are always non-dense and open 
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To prove isotony, it is sufficient to check that .S;(I) C_ ,~(S+) for I C S+. This is 
clearly the case if I = T(a) �9 S+ or 1 = S(a) .  S+, for a positive a. Let 1 correspond 
to the interval (Co; cl) C_ •+, Co, c 1 c R+ in the real picture. Then 

\ C I ]  \C1 - -C0 /  

S ( I l T ( ~ I . S + , O  < Co < cl < co and by assumption, Hence, l =  
\ ~ /  \ 1  ' J /  

.~( I )  C_ .A~(S+). Covariance of the net is obvious. 

Ad (ii). In the real picture, I~+ is the image of S+. Since 

D ( t ) . R + = R + ,  V t ~ ,  

7~(a).]R+=(a;cx~)C_I~+, a > 0 ,  

S ( a ) . ~ + =  (0;- la)  C ~ + ,  a > 0 ,  

(i) and (iii) of Definition 2.2 follow by covariance of the net and isotony. 
Finally, by covariance and locality, 

~r(Ro).~(S+)Tr(Ro)* = . ~ ( R o  " S+) = ~ ( S _ )  c_ A(S+)', 
so that (ii) of Definition 2.2. holds. This completes the proof of the lemma. 

We now restrict our attention to an algebra J~ and a representation 7r 0 of the 
Moebius group associated with "the vacuum sector" of a conformal field theory. That 
is, we assume the existence of a unique "vacuum vector" invariant under the action 
of PSU(1 ; 1). 

Definition 2.5. Let . ~  be a separable Hilbert space, 7r 0 a unitary representation of 
the Moebius group on ~ which acts properly on a v o n  Neumann algebra ,A~. We 
denote by {~( I )}zcs1  the conformal net constructed in Lemma 2.3. Let us assume 
that 

(i) the spectrum of the generator of rotations of PSU(1 ; 1) is positive (positive- 
energy representation). 
(ii) There exists a unique vector ~2 C . ~  invariant under PSU(1; 1), (vacuum 

vector). 
[ . ~ l  

(iii) g2 is cyclic for the von Neumann algebra 91 := U ~/~( )~ generated by 
the net { , ~ ( I ) } i c s 1 .  I c S  1 J 

If properties (i)-(iii) are satisfied, we say that {3d; 7to; J~; f2} determines the 
vacuum sector of a conformal field theory, or, equivalently, the vacuum representation 
of the conformal net {~(I)}ics1. 

In a positive-energy representation, the generators of translations and of special 
conformal transformations have the following spectral properties. 

Lemma 2.6. The spectrum of the generator of translations is always positive in a 
positive-energy representation 7r o of PSU(1 ; 1). The spectrum of the generator of 
special conformal transformations is negative. 

Proof. A unitary representation 7r 0 of PSU(1 ;  1) lifts to a unitary representation 
7r 0 of SU(1; 1) such that 7r0(-l) = 7r0(~). The positive-energy condition means 
that the spectrum of the generator of rotations R(~) is positive (cf. Appendix I for 
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the notation). The only irreducible unitary representations of SL(2; R) ~ SU(1 ; 1) 
which fulfill these two conditions are members of the holomorphic discrete series 
[40]: + 7rn, n C 2 �9 Z+. Hence 7r 0 is a direct sum of irreducible representations 
of the holomorphic discrete series. One checks easily, in the realization of these 
representations by operators acting on holomorphic functions on the upper half plane 
[41], that the spectrum of the generator of translations is positive. Similar arguments 
may be found in [42]. 

Since the one-parameter subgroups of translations and of special conformal 
transformations are conjugate in SL(2; ~), RoT(P)Ro 1 = S ( -p ) ,  it follows that 
the spectrum of the generator of special conformal transformations is negative. This 
completes the proof of the lemma. 

We now derive some standard properties of the local algebras in the vacuum 
sector. Most of our arguments are adaptations of well-known results to the present 
setting. The proof of Haag duality given in Sect. II.2 is an application of a recent 
theorem of Borchers [34]. The following theorem is obtained by applying twice the 
Reeh-Schlieder theorem. 

Theorem 2.7. Let { .~ ;  7r0; ~ ;  ~2} be the vacuum sector of a conformal field theory. 
Then 

9M2 = ~ 2  , 

where the symbol means closure in the Hilbert space norm, and ~ has been defined 
in Definition 2.5, (iii). 

Corollary 2.8. (Reeh-Schlieder) The vacuum vector ~2 is cyclic and separating for 
each local algebra ,/~(I), I C S 1 . 

Proof of Corollary 2.8. Since the net { ~ ( I ) } i c s l  is Moebius-covariant and f2 is 
invariant under Moebius transformations, it follows at once from Theorem 2.7 that 
is cyclic for any local algebra ,~(I ) .  The separating property is now a consequence 
of locality. This completes the proof of the corollary. 

Proof of Theorem 2.7. Given an interval I C S 1 define 

tcR/2~, 

If l(I) is the length of the interval I ,  normalized in such a way that / (S  1) = 27r, then 
the von Neumann algebras .2(1) have the following properties: 

(i) l(D = l( J) implies .~ ( I )  = ~ ( J ) .  
(ii) l(I) < l( J) implies _r c j~(J) .  

(iii) If {In}n=1,2 .... is an increasing sequence of intervals such that l(I~) --~ 27r 
(n ---+ oo) then 

(iv) The one-parameter group of rotations 7r0(/~(t)) induces automorphisms of ~ ( I )  
satisfying the spectrum condition. By applying the Reeh-Schlieder theorem, as given 
in [35], we obtain that 

2 ( I ) f ~  _c S ( J ) f 2 ,  

where J is any interval on S 1 such that l(J) > l(I). 
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Next, we consider intervals on the circle of  the type I = (c~; - 1 ) ,  c~ C $ 1 \ { - 1 }  
(see Appendix I for the notation, or the next figure), 

I 

- ] . 0  a 
and define 

{ } :=  U ~ ( I )  . 
I=(c~; -1) 

c~esl\{--1} 

The von Neumann algebra ~ has the following properties: 
(v) The translations define a one-parameter automorphism group of ~ satisfying 

the spectrum condition. 
(vi) If  {Jn = (c~n; -1) ,  o~ n 6 S l \ { - 1 } } n = l , 2  .... is an increasing sequence of 

intervals such that l(J~) --+ 2rr (n -+ oc) then .~-(J~) C Jg(Jn+l )  and 

(vii) Applying once again the Reeh-Schlieder theorem [35] we see that 

~ D  c ,~(S+)g2,  with ,~ (S+)  = .//~. 

Let {I.,~},~=1,2 .... be an increasing sequence of  intervals as in (iii). Then 

9as? = 2 ( I n )  x?, 

where - s  means strong closure. But 

= U(.#(L,pg) 

n n 

Here we applied the Reeh-Schlieder theorem as formulated in (iv) and we chose ~ 
such that Jn = (c~n; - 1 ) ,  l(Jn) > l(I,~), i.e., the sequence of intervals {J,~}n=l,2 .... 
satisfies the properties of  (vi). Hence, 



Operator Algebras and Conformal Field Theory 579 

where we applied again the Reeh-Schlieder theorem, as given in (vii). We have shown 
that 

9.IS? C_ . /~(S+)f2.  

Since the converse inclusion is obvious, this concludes the proof of the theorem. 

The Reeh-Schlieder property means that each local algebra t~(I ) ,  I C S 1 is in 
standard form [36]. We can then define the Tomita operators [36] Si,  VI c S 1, as 
the closure of 

SIAl2 := A 'g2 ,  A � 9  

A1/2 The modular conjugation J I  and the modular operator ~1 are obtained by polar 
decomposition of S], 

A1/2 S_r = J i " - - ]  �9 

They have the property [36] that 

Ji~/~(I) Ji  = , ~ ( I ) ' ,  (2.3) 

Aiit./~(I)Afit ----.~(I), VI C S 1 , t E R.  (2.4) 

We will show, later on, that these operators always implement geometric transforma- 
tions [37] in the present situation. 

We may now use well-known arguments of Driessler [43] to show that the local 
algebras of the vacuum sector of a conformal field theory are factors of type III 1 [44]. 

Lemma 2.9. In the vacuum sector of a conformal field theory, the local algebras 
J/;;(I), I C S 1, are factors of type 1111 . 

Proof. It is sufficient to show that , ~  = ,~(S+) is a factor of type III I. In the 
real picture, S+ is mapped onto N+. Since 7~(a)R+ C_ R+, Va > 0, it follows that 
~+ is monotone in the sense of [43]. Let Pn be the orthogonal projection onto the 
vacuum vector ~2. It follows from the spectral properties of the translation operator in 
a positive-energy representation % of PSU(1 ; 1) that 7r0(T(a)) converges weakly to 
Pn as a -+ oo [45]. The proof of the lemma is now completed by applying Theorem 
2.2. of [43]. 

Definition 2.10. Let I l, I2 be two intervals on the circle; we write 11 ~ I 2 if the 
closure of 11 is contained in the open interval I 2. 

Definition 2.11. The split property is said to hold for a conformal net if, given two 
intervals 11, I 2 such that/1 �9  there exists a type I ~  factor . f / s u c h  that 

The split property for a vacuum conformal net follows from a result of Buchholz, 
D'Antoni and Fredenhagen [46]. We formulate this result under assumptions which 
are typical of conformal field theories constructed from the representation theory of 
loop groups (see [47], Remark 13.13). 

Lemma 2.12. Let { ~ ;  %; J~; ~}  be the vacuum sector of a conformal field theory 
and K the generator of the one-parameter group of rotations on S 1. I f  for/3 > 0 the 
operator e - ~  is trace-class and there exist positive constants/30, n such that 

I le -~Kl t l  <- e (~~ , 3 > o , ;~  ~ 0 (2.5) 

holds then the split property holds for the net {.74~(I) } i c s1 of Definition 2.5. 
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Proof. The results of  [46] are formulated in terms of a local net on Minkowski 
space-time. However,  the proof given there does not use any properties specific 
to this particular situation. We reformulate the theorem of Buchholz, D'Antoni  and 

4 Fredenhagen under prerequisites which are sufficiently general for our purposes: 
(i) Let ~J~l ~ '~2 ~ ~3 C ~/~4 be a sequence of inclusions of  von Neumann 

algebras. 
(ii) Let U(t) be a one-parameter group of unitaries such that for Itl < 6, 

U ( t ) ~ i U ( t ) *  C J~i+l , i = 1, 2, 3.  

(iii) Assume that the generator K of U(t) = e iKt has positive spectrum including 
the eigenvalue zero with multiplicity one, and let J2 be the unique (up to a phase) 
corresponding unit eigenvector; f2 is supposed to be cyclic and separating for ~/~i, 
i = 1, 2, 3, 4. 
(iv) Assume that the maps 0;~ : ~ i  --+ ~ ,  i = 1, 2, 3, 4, /3 > 0 defined by 

O~(A) := e - ~ f f  Ag? , A r ~ i  , i =  1 , 2 , 3 , 4  

are nuclear and that the estimate (2.5) holds, as ,2 tends to zero, for the trace norm 
of 0~ (see [46]). Then there exists a type I ~  factor J ~  such that '~1 ~ ' y~ ~ t/~4" 

The proof follows word for word the one given in [46] with the identification 

Under the assumptions of the lemma, e -;~K is trace class so that the maps 0;~ 

are nuclear for any local algebra , ~ ( I ) ,  I c S 1. Given 11 ~ I 4, there exist I 2, /3, 
such that 11 @ I 2 G 13 ~ I 4. Setting . ~  := ,/~(Ii), i = 1, 2, 3, 4, and applying the 
previous argument completes the proof of the lemma. 

An immediate consequence [50] of Lemma 2.12 is that the local algebras in the 
vacuum sector of a conformal field theory are hyperfinite (i.e. are the weak limit of 
matrix algebras), since . ~ ( I ) ,  I C S 1, can be continuously approximated from the 
inside (or the outside) by local algebras [31]. We summarize the previous discussion 
in the following theorem. 

Theo rem 2.13. Under the assumptions introduced in Definition 2.5 and in Lemma 
2.12, each local algebra ,~ ( I ) ,  I C S 1 in the vacuum sector of  a conformal field 
theory is isomorphic to the unique hyperfinite factor of  type 1111. 

Remark 2.14. It follows from Theorem 2.13 that the whole information about a 
conformal quantum field theory is encoded in the map 

I --~ ~//~([) (2.6) 

assigning to each interval a hyperfinite type I l i  1 factor in .~(. As observed in Lemma 
2.4, the map (2.6) is fully determined by the representation % of the Moebius group on 
the vacuum sector and the algebra . ~  = ./~(S+). We shall also prove, in Theorem 2.19, 
that the net [ ~-~ ,_/~([) and the vacuum state g? already determine the representation 
7r 0 of the Moebius group (provided 7r 0 exists). 

4 The following conditions are certainly not optimal. For recent developments, see [48, 49] 
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H.2 Moebius Covariance and Tomita-Takesaki Modular Operators; Haag Duality 

We start this section with a definition of Haag duality. 

Definition 2.15. In the vacuum sector of a conformal field theory, the net {,~(I)}ics1 
is said to satisfy Haag duality (to be dual), if for any open, non-dense interval I C S 1, 

~ ( I ) '  = ~ ( I ' )  

holds, where I '  := (S 1 \ I )  ~ is the interior of the complement of I in S 1 . 

Haag duality was checked by different methods in several models [51-53]. It is a 
crucial property for the applicability of the algebraic framework to the analysis of the 
superselection structure of quantum field theories [ 13]. It is then natural to investigate 
under which general assumptions models give rise to local algebras satisfying Haag 
duality. J. Bisognano and E. Wichmann showed [37] that Wightman quantum field 
theories lead to (essentially) dual nets, provided that the underlying quantum fields 
satisfy some regularity conditions (see also [54] for a general formulation of the 
Bisognano-Wichmann theorem). Recently, D. Buchholz and H. Schulz-Mirbach [31] 
adapted the arguments of J. Bisognano and E. Wichmann to prove Haag duality for 
conformal field theories. We shall give a proof of duality for the net {~/~(I)}Icsl 
in the vacuum sector of a conformal field theory which does not make reference to 
the underlying (Wightman) quantum fields. This result will then be applied to the 
construction of models, starting from the representation theory of loop groups. 

Let SU(1 ; 1)• be the extension of SU(1 ; 1) by matrices having determinant - 1  
and PSU(1 ; 1)• the corresponding group of geometric transformations of the circle 
(see Appendix I). We denote by ~?Z(.~[(~)_ the set of ant• unitary operators in 
and by ~ ( ( ~ ) •  the group of unitary and ant• operators on .~ .  Following the 
terminology introduced by Wigner [55], we define a corepresentation as follows. 

Definition 2.16. Let G be a group. A homomorphism 

~- : G ~ ~ ( : ~ ) •  

into the group of (anti-) unitary operators of a Hilbert space ~ is, called a 
corepresentation of G. 

Remark 2.17. (i) Clearly, a group G admits non-trivial corepresentations ~- only if it 
has a normal subgroup G o of order two such that ~(G0) c_ ~;(Jv~). We will denote 
by 7r the restriction of # to G 0. 
(ii) We are interested in strongly continuous corepresentations of SU(1 ; 1)• which 

map matrices of determinant + l ,  - 1  into ~4(~)+ ,  ~ ( . ~ ) _ ,  respectively. 
(iii) Let # be a corepresentation of SU(1; 1)• Then 7r := r is a unitary 

representation of SU(1 ; 1), and J-s+ := Or(Is+) is a conjugation (J~+ = ~ ) satisfying 

Js+Tr(A)Js+ = 7r(A), VA E SU(1; 1). (2.7) 

Conversely, since SU(1; 1)+ is the semi-direct product of SU(1 ; l) and {1; Is+ } 

by the outer automorphism r of SU(1 ; l) which maps A E SU(1 ; 1) onto A (see 
Appendix I), given a representation 7r of SU(1 ; l) and an ant• conjugation 
Js+ such that Eq. (2.7) holds, we can construct a corepresentation ~- of SU(1 ; 1)~= 

such that ~-]su(1; 1) : 71" and ~-(Is+) = ffS+" 
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Definition 2.18. Let ~ be a corepresentation of PSU(1 ; 1)• on the Hilbert space ~ .  
A local net { ~ ( I ) } t c s l  is said to transform covariantly, under improper Moebius 
transformations if 

r = ,•(A.  I ) ,  VA E PSU(1 ; 1)+,  I C S a , 

where A .  I denotes the image of I under the action of A. 

T h e o r e m  2.19. Let {~Y; 7r0; ,/~; ~'2} be the vacuum sector of a conformal field theory. 
(i) The modular conjugation Js+ of ,A~ = .Mid(S+) with respect to ~2 satisfies the 

following commutation relations with SU (1 ; 1): 

ds+Tro(A)ds+ = 7Vo(A), VA e SU(1 ; 1) ; 

consequently, ~o extends to a corepresentation r o of SU(1 ; 1 ) i  on . ~ .  
(ii) The net {,/~dI) } ia s, is dual and transforms covariantly under the corepmsenta- 

tion ~c o of the improper Moebius transformations. 
(iii) The representation 7v o of the Moebius group is uniquely determined by the net 

I ~ ~ ( I )  

and the vacuum vector Y2. It is the unique representation of SU(1 ; 1) on , ~  for which 
the generator of translations has positive spectrum, which has f2 as an invariant vector 
and under which the net transforms covariantly. 
(iv) The one-parameter group of dilatations of SU(1 ; 1) coincides with the modular 
group of the algebra ,/~(S+): 

7ro(D(t) ) = A it 
S + "  

Proof. Ad (i). Since any element of SU(1 ;  l)  can be written as a product of 
dilatations, translations and special conformal transformations (see Appendix I), it 
is sufficient to check that Js+ has the right commutation relations with these three 
one-parameter subgroups. That is, the equations 

Js+ ~o(T(P))Js+ = ~o(T(-P)) , 

Js+Tvo(S(n))Js+ = % ( T ( - n ) ) ,  

Js+Tro(D(t))Js+ = 7ro(D(t)) , 

hold. By Lemma 2.6 the generator of  the one-parameter group V(p) := %(T(p))  has 
positive spectrum and the generator of W(n) :=  %(S(n)) has negative spectrum. By 
assumption, V(p), p > 0, and W(n),  n > 0, act as one-sided compressions of the 
algebra . ~  -- ~ ( S + )  (see DeL 2.2). Hence, we may apply Theorem II.9 of Botchers 
[34] to obtain 

and 

Js+%(T(p))Js+ = 7r0(T(-p)) ,  
i t  - - i t  AS+Tc0(T(P))AS+ = 7vo(T(e-2~tp)) 

= ~o(D(t)T(p)D(t )-  1), (2.8) 

Js+Tro(S(n))Jz+ = 7 v 0 ( T ( - n ) )  , 

~+7[0(S(Tt ) )As+  t : W0(S(e+27rt~)) 

= wo(D(t)S(n)D(t)-I).  (2.9) 
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Since 7r0(D(s)) is a one-parameter group of automorphisms of ./~ leaving the vacuum 
vector S'2 invariant, it follows from a well-known result of  Takesaki [36] that 7ro(D(s)) 
commutes with Js+ and A~+: 

Js+Tro(D(s))Js+ = 7vo(D(s)) , 

A~+ Tro(D(s))A~t = 7ro(D(s)). (2.10) 

This completes the proof of (i). 

Ad (ii). We first prove duality. It is sufficient to prove the ~/~(S_) = . ~ ( S + ) '  
since by SU(1 ; l)-covariance of the net, this implies .A( I )  t = . A ( I  ~) for an arbitrary 
interval I C S 1. From locality, we know that 

S(S_)  _c ~(S+) '  

so that it is sufficient to check the converse inclusion. The rotation R 0 = R(1/2)  = (; o) 
- i  E SU(1 ; 1) maps S+ onto S_ and satisfies/~0 -- R o  1. Hence, 

~ ( S _ )  = 7v0(Ro).~(S+)Tv0(Ro)* 

= 7ro(Ro)t.~(S+)%(Ro 1), 

by covariance of the net under SU(1 ; 1). Thus, 

Js+,~dS_)Js+ = Js+Tro(Ro)/~(S+)Tro(Rol)Js+ 

= ~0(/~0)Js+~(S+)Js+ ~0(R0) 

= %(R0-1)~(S+)'~0(R0) 

= (Tro(Rol).~(S+)Tro(Ro)) ' 
= ~ ( S _ ) ' ,  

where we used successively the commutation relations shown in (i), property (2.3) of  
the modular conjugation and the covariance of the net under SU(1 ; l). Conjugating 
on both sides by Js+ we obtain 

~/~(S_) = Js+J~(S )' Js+ . (2.11) 

By locality, ~ ( S + )  C . /~(S_) '  so that 

~ ( S + ) '  = Js+J~(S+)Js+ c_ Js+..d(S )'Js+ = ~ ( S _ ) .  

The first equality follows again by Tomita-Takesaki theory and the second from Eq. 
(2.11). This proves duality. 

To prove SU(1 ; 1)+ covariance of the net, it is sufficient to check that the net 
transforms covariantly under Js+, since SU(1 ;  1)• is the semi-direct product of  

SU(1 ; 1) and {1; Is+ }. Let I C S 1 be an interval and A c SU(1 ; l) be such that 
A �9 S+ = I .  Then by SU(1 ; 1)-covariance of the net, (i) and duality, 

Js+~(I)Js+ = Js+ 7ro(A)~(S+)Tro(A-1)Js+ 

= 7ro(ft)Js+./~(S+)Js+Tro(A -1) 

= 7"1"0 (fi) ,~(S)7"i '0 (A -1 ) 

=/~(fi. S_). 
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But A.  S_ = -4. Is+ �9 S+ = A.  Is+ - A -1 �9 I,  and one checks by direct computation 

that A .  Is+ �9 A -1 = Is+, ~/A E SU(1 ; 1). Hence, 

J s + ~ ( I ) J s +  = J~(Is+ . I ) .  

This completes the proof of (ii). 

Ad (iii). Let (a;/3)1 (7; 6) C S 1 and A c SU(1 ; 1) he such that A. (a ; /3)  = (7; 5) 
A 1/2 t (see Appendix I for the notation). If {J(a,3); (~;3)J is the modular data associated 

to {/((c~; /3)) ;  Q} (see Eqs. (2.3), (2.4)), then it follows easily from SU(1 ;  1)- 
covariance of the net and SU(1 ; 1)-invariance of the vacuum vector that 

7ro(A)J(~; ~flro(A)* = J(-~; 6), 

1/2 * A 1/2 (2.12) 7ro(A)A(~;~flro(A) = ~(~;6)" 

In particular, 

= J(a;  ~3) �9 

Notice also that, by duality, 

A1/2 : A - l ~  2 J(~; ~) = J~;~; ~), (~; ~) ~(~; ~), 

so that by functional calculus, 

A it = A - i t  (~; Z) (Z; ~)" (2.13) 

Since SU(1;  1) is generated by products of reflections and ~'0(I(a;Z)) = J(a;Z), it 
follows that the representation u0 of SU(1 ; l) is entirely determined by the modular 
structure of the net, that is, by the vacuum state and the net. Uniqueness follows from 
the uniqueness of the modular conjugations with respect to ~2. This completes the 
proof of (iii). 

Ad (iv). It follows from (2.8), (2.9) and (2.10) that 

i t  - i t  As+Tvo(A)As+ = % ( D ( t ) A  D ( t ) - I ) ,  VA  E SU(1 ; 1). 

Since the equation 

may be written as 

A it J A - i t  
S+ S+ S+ = J s +  

A it # eI ~A - i t  s+ 0~ s+) s+ =~-0(Is+ ),  

it follows that 

Air r tAaA - i t  = r  -1) VA  E S U ( I "  1):~. S+ 0 ~, J S+ ~ ' 

In particular, 

holds. 

A "  A - "  = t 
S+ ( - i ; i )  S+ 

= r i)D(t) -1) 

= r D(t)i)) (2.14) 
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We temporarily assume that we have proven the following relation: 

j Air - i t  
( - i ; i )  S+ = AS+ J(-i;i)" (2.15) 

Equation (2.15) implies that 

it A- i t  = Azit d As+J(-i;i)  s+ S+ ( - i ; i )  

and, plugging this in Eq. (2.14), we obtain 

A2it s+ = J(D(t)(-i); D(t)(i))J(-i; i) = %(D(2t)), 

where the last equality follows from the representation of dilatations as products of 
reflections (see Appendix I, Eq. (AI.6)). This completes the proof of (iv) provided 
Eq. (2.15) can be verified. 

It follows from Eq. (2.12) and functional calculus that if A E SU(1; 1) and 
I = A . S + c S  1 then 

7ro(A)A~+Tro(A)* = A~ t, Vt E R.  (2.16) 

Now, l e t A : =  R ( _ l / 4 ) =  ( e - o / 4  0 ) CiTr/4 . One checks by direct computation 

that A .  S+ = ( - i ;  i) and that 

(2.17) I(_i;i) �9 A -1 = A .  [(--i;i)" 

From Eq. (2.16) it follows that 

%(A)A~+Tro(A)* = A~ it �9 S +  ---- A ( _ i ; i )  

and hence 

J(-i; Air = J(-i;0%(A• i) S+ 

= ~-0(I(-i; i)" A-l)A~t-i; i)%(A) 

= ~o(A I(_i; i))A~t-i; 0%(A) 

= #o(A)J(_i; i) A~t_i; 0%(A) 

---- 7 to(A)A~ti ;  i)J(_i; i)TCo(A) 

= 7r0(A) A~i; i)Tro(A-l)J(-i; i), 

where we used Eqs. (2.17) and (2.18) twice. 
But 

7r0(A)A~t_i; 07ro(A -1) = A~. (-i; i) 

= A~t-l; l) 

(2.18) 

(2.19) 

where we used Eq. (2.13) to obtain the last equality. Inserting the last equation in 
(2.19) we obtain 

J A it = A - i t j  
(--i;i) S+ S+ (--i;i) 

and this completes the proof of the theorem. 

The result obtained in the previous theorem can be summarized by saying that if 
the spectrum of the generator of translations of the representation % is positive then 
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the one-parameter group of dilatations 7r0(D(t)) coincides with the modular group of 
the algebra . ~  = ~ ( S + )  with respect to Y2. Another simple application of the results 
of Borchers [34] shows that the converse is also true: 

Theorem 2.20. Let { ~ ;  7r0; LA~; Y2} satisfy all properties of Definition 2,5, except 
for the spectrum condition and l e t  {,/~(I) } IcSI be the corresponding conformal net. 
If  the one-parameter subgroup of dilatations coincides with the modular group of the 
algebra J~(S+) with respect to the vacuum state then the generator of translations has 
positive spectrum. 

Proof. Let V(p) := 7ro(T(p)) denote the one-parameter group of translations on ,Z{. 
Since by assumption A~+ = rco(D(t)) , the following commutation relation holds 

between A~+ and V(p): 

i t  - i t  As+V(P)As+ = %(D(t))Tro(T(p))Tro(D(t)- 1) 

= 7ro(T(e-2~tp)), Vt, p E ]R. (2.20) 

Let now p be positive and fixed. Since ad V(p) maps .//~(S+) into ~g(S+), Lemma 
II.3 of ref. [34] implies that the function 

i t  - i t  t ~ As+V(p)As+ 

has an analytic extension to the strip S ( - 1 / 2 ;  0) = {z E C [ - 1 / 2  < I m z  < 0} as 
an operator-valued function and that furthermore, on S ( - 1 / 2 ,  0), the bound 

i z  - - i z  IIAs+V(p)As+ II <- 1 

holds uniformly in z. From Eq. (2.20) we conclude that the function 

~ V(e-2Trtp) 

has an analytic extension to complex t ' s  contained in the strip S ( - 1 / 2 ;  0) and the 
bound 

I[r(e-2'~Zp)l] _< 1 

holds for all z E S ( - 1 / 2 ;  0). Going over to the variable y : =  e - 2 7 r t  �9 p we see that 
the domain S ( - 1 / 2 ;  0) is transformed into 

C + = {w E C ] I m w  > 0} 

so that, as a function of y, 

y ~ V(y) 

has an analytic extension into the upper half-plane C +, and on C + it satisfies the 
bound [IV(w)ll <_ 1. 

Let 
+ ~  

V(y) = / e i p y  dE(p) 

- -  0 0  
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be the spectral decomposition of  V(y). Assume that E(P0) ~ 0 for some P0 < 0. Then 
there exists a vector ~p E ~ such that E(P0)~) = ~p and ][~b[I = 1. If  w = y + ix, 
x _> 0 we can estimate the norm of V(w)~  as follows: 

P0 

I/v(w)~ll2 = f ~-2~dlIE(P)r 
- - 0 0  

PO 

e - 2 x p O  f dllE(P)~[12 > e - 2 x p O  " 

- o o  

If  z ~ oc the right-hand side of  this inequality can be made arbitrarily large, 
contradicting the bound HV(w)][ _< 1. Hence E(p) = O, Vp < O, that is, the spectrum 
of the generator of  translations is contained in {0} U IR +. This completes the proof of  
the theorem. 

H.3. Local Internal Symmetries of Vacuum Sectors 

In this section, we complete our description of  the relation between the modular 
structure of  the local algebras in the vacuum sector of  a conformal field theory and 
the representation % of the Moebius group by constructing the modular conjugation 
Js+ from the representation % of SU(1 ; 1) and by identifying the group of local 
internal symmetries of  the net. The proofs of  the following results, which are of a 
technical nature, are relegated to Appendix II. 

Definition 2.21. Let { ~ ;  %; ./~; Y2} be the vacuum sector of  a conformal field 
theory. 
(i) The group .~ C T g ( ~ )  of  unitaries such that 

U.~(I)U* = J/~(I), VI C S 1 , Us = Y2, 

is called the group of  local internal symmetries of the vacuum sector. 5 
(ii) Let ~0 be the corepresentation of  SU(1 ; 1)+ constructed in Theorem 2.19. We 
set 

:=  {U c 3(.YZ~)lUr = r VA E SU(1 ; 1)+; and UY2 = Y2}. (2.21) 

L e m m a  2.22. Let { .~ ;  %; ~/~; Y2} be the vacuum sector of a conformal field theory. 
Then ~ C_ ~ .  

Proof, See Appendix II. 

Definition 2.23. Let { ~ ;  %; ./~; Y2}, be the vacuum sector of  a conformal field 

theory. For U c ,~  we define 

. JUG)  :=  {A E J~(I)[UAU* E .A ( I ) } ,  VI c S 1 . 

The net { ~ u ( I ) } x c s ,  is a local conforrnal net contained in {Jc~(I)}zcsl.  

The following criteria identifies elements of  ~ in ~ .  

5 This group was introduced in ref. [56], see also [37] 



588 F. Oabbiani and J. FrOhlich 

Lemm a  2.24. Let {2~'; re0; S ;  O} be the vacuum sector o f  a conformal field theory. 

Then U E ~ if and only if  U E c~ and the vacuum vector O is cyclic for  the von 
Neumann algebra . ~  := { Ui c s i  J g u  ( I ) } " generated by the net { , /gu ( I )  } i c sl . 

Proof. See Appendix II. 

Definition 2.25. Let { ~ i ;  7@ . ~ ;  Oi} , i = a, b, be two vacuum sectors of con- 
formal field theories. These two sectors are said to be equivalent if there exists an 
invertible isometry V : ~ ~ ~7~( b such that 

= 

VO~ = Oh, 

V . ~  ~ V * = ,~b " 

Definition 2.26. Let .~1, ~ 2  be two Hilbert spaces, e = {el,  . . .  %,  n = dim.~(1} 
an orthonormal basis in .~1 and A an antilinear operator in .~z.  Each vector 

E ,~1 | .~'f~2 can be written uniquely as 

dim ,~ l  

i = l  

(i) The conjugation J(e)  associated to the basis e on "~1 is the unique antilinear 
extension of 

J(e)e i - - e  i i--- 1 , . . . d i r n d l .  

(ii) A linear operator B E .-~(ff{;1) is said to be real with respect to the basis e of  
if 

J ( e ) B J ( e )  = 13. 

(iii) The antilinear extension of  A with respect to e on '~1 |  is the unique antilinear 
map et(e) defined by 

dim ,~ i  dim ,~1 

 e OA i, Ze | 
i=1 i=1 

L e m m a  2.27. Let (Tr; , ~ )  be an irreducible representation of  SU(1 ; 1) belonging 
to the holomorphic discrete series. Then ~r extends uniquely to an irreducible corepre- 
sentation of  SU(1 ; 1)4-. That is, there exists on ~ r  a (up to a phase factor) unique 
conjugation Jr  such that 

J~ = ~ , J~Tr(A)J~ = 7r(A), VA c SU(1;  1) (2.22) 

holds. 

Proof. See Appendix II. 

Theorem 2.28. (Structure of  the vacuum sector of  a conformal field theory.) Let 
{ ~ ;  %; ./g; O} be the vacuum sector of  a conformal field theory. Then { ~ ;  %; .•; 

I .  I .  I O} is equivalent to a vacuum sector { J ~ ,  rr 0,.~; ; O'} having the following proper- 
ties: 

o o  

(i) . ~ '  = ~ga,  | ~ ( . ~ i  | fftg~), where ~ga, := {CO'},  d i m ~ =  i. 
i=1 
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(ii) 7r~ = 11 @ 7r 1 @ 112 | 7r2| . . -  @ 1oo | 7r ~176 where the 7ri's are disjoint, multiplicity- 
free direct sums of holomorphic discrete series representations 6 of S U(I; 1) o n  ~t~Tri : 

7r i = ~) 7r i' ~, and each 7r i, ~ is irreducible. 

(iii) The modular conjugation J~s+ ~  ,~l  (S +) = ./~/ is given by 

J)+ = r = JTrl(e 1) �9 JTrz(e 2) @ " "  �9 JTroo (e~176 (2.23) 

where e i = {el; e~; . . .e~} are orthonormal bases of ~ ,  i = 1, 2 , . . . o c ,  and 
J~i = (~ J~, ~. The conjugations J~, ~ are those constructed in Lemma 2.27. 

OL 

(iv) If  an operator U c F~gZ~(~) is a local internal symmetry of the vacuum sector 
{b~' ;  7r~; A';  ~2'}, then 

OO 

i = 1  

with each U i unitary in ~ and real with respect to the orthonormal basis e i of ~ i ,  
i =  1, . . :oc.  

Proof. See Appendix II. 

In view of  the previous results, we are led to believe that under appropriate 
assumptions, some version of the following conjecture is true. 

Conjecture 2.29. 
(i) Given a local, isotone and dual net I ~ ./~(I) of hyperfinite type III~ factors in 

.~ ( ,~0  indexed by intervals of  the circle and a vector f2 cyclic and separating for each 
~g(I) ,  I c S 1, one can construct, for each interval I ,  the modular group A~ ~ and the 
modular conjugation J1 of the algebra ,~//~(I). These correspond to the one-parameter 
groups of  Moebius transformations leaving the end points of  the interval I fixed and 
to the inversion about the end points of  I (see Theorem 2.19). It should be possible 
to verify that these one-parameter groups and inversions form a representation of 
SU(1 ;  1)_: under which the net transforms covariantly. To simplify the task, one 
could assume the existence of  the one-parameter group of  rotations satisfying the 
spectrum condition. 
(ii) Given the vacuum sector of a conformal field theory { .~ ;  7r0; J~; f2}, one 

expects an algebraic version of the Ltischer-Mack theorem [1] to be true. Formally, 
it is possible to define an energy-momentum tensor T(z) as an h = 2 coefficient of  
the expansion 

c~t(A) = (~2; A~2)1 + Z t - h r  )(z) (t ~ ec), 
h E Z +  

r ~ ~(~), 

where A is a suitable local observable and c~t(A ) :=  adTco(K(t))(A ) for the one- 
parameter group i f ( t )  of  PSU(1 ; 1) which contracts intervals to the point z E S 1 
(for example , / ( ( t )  = D(t) for z = 1). The Fourier coefficients of T(z) should then 
satisfy the commutation relations of  the Virasoro algebra. 
(iii) Another possible way of deriving the Ltischer-Mack theorem is to assume the 
theory to be supersymmetric in the following sense. Let ~ be a separable Hilbert 
space, 7v 0 a unitary representation of  the Moebius group on ~ (  leaving a vector /2 

6 possibly trivial 
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invariant, and ~ a v o n  Neumann algebra transforming properly under 7r o. We use the 
standard notation, L l, L o =- t ( ,  L+I,  for the infinitesimal generators of the Moebius 
group. We now assume the existence of an operator G o on ~ such that 

c , 
G 2 = L o -  ~ ' ~ ,  Go = G O , 

and of a unitary involution F such that 

F A = A F ,  V A c ~ ,  F ~ = Y 2 ,  

F G  o = - G o F  , F L  i = L i F  , i = 0 , - 1 ,  1. 

This implies that . ~  is the direct sum of the eigenspaces of F,  

and that 

By defining inductively 

G 1 := 2[L1, Go],  

1 
L 2 := ~ [ G  1, G1]+ 

1 L  G n := 7[  ,~, Go] 

1 
L,~+I := ~[G~, GI] + , 

.~s~ c .~+ .  

G_ 1 := 2[L_~, Go] , 

1 
L 2 := ~[G_1,  G _ l ] + , . . .  , 

G_  n := 2[L_~,  Go],  

L_(n+l ) := [G_n ,  G_~]+,  n E Z + ,  

where [., .]+ denotes the anticommutator, we expect to obtain from L_  1, L o, L 1 and 
G o a Ramond algebra specified by the commutation relations 

c 2 
[Lm, Ln] = (rn - n)L,~+n + ] ~ m ( m  - 116,~+n,o, 

(1 ) [ L ~ , G ~ ] =  ~ m - n  Gm+~, 

C 2 1/4)6m+~ , IGor, Gn] + = 2L,~+~ + ~ ( m  - ,o 

having the correct grading 

F L  i = L i F  , i E Z ,  FG~ --- - G ~ F ,  i E Z .  
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III. The Conformal Nets Associated to Positive-Energy Representations 
of Loop Groups 

As an application of the results presented in Chap. II, we construct conformal nets 
in positive-energy representations of  certain loop groups. Some of these nets will be 
shown to be nets in the vacuum sector of a conformal field theory in the sense of 
Chap. II. The analysis of  their superselection structure will be sketched in the next 
chapter. Algebraic quantum field theories of  this kind were already considered by 
Buchholz, Mack and Todorov [30] for the loop group LT  of the one-dimensional 
toms T, in order to classify quantum field theories having the U(1)-current algebra 
as a common germ. Indeed, some of the main ingredients of  our construction were 
already mentioned in [30]. Results similar to those presented here have also been 
announced by Wassermann [29]. 

In the following sections, we gather all the necessary ingredients scattered through 
the literature. 

III.1. Simple, Simply Laced Lie Algebras and Groups 

Let G o be a simple, simply connected and simply laced compact Lie group. The Lie 
algebra, ,~0, of  G o belongs to the A, D or E series. Let ~'~ be the complexification of 
~0. Fix a Caftan subalgebra ~ C_ ~ and let A denote the roots of ~ on ~ .  We then 
have the direct sum decomposition 

c~GA 

where ~ denote the one-dimensional root spaces. Choose a set of positive roots, 
A+, in A, let 7r = {c~1,... c~z, 1 ----- d im0} be the set of simple roots and let 0 be 
the highest root in A+. Choose a non-degenerate, invariant symmetric bilinear form 
(" l') on ~ ,  normalized as follows: the restriction of (. [.) to D is non-degenerate, hence 
induces an isomorphism u : 19 ---+ ~* and a non-degenerate bilinear form (.[.) on 19". 
We require that 

(010) = 2. 

Then (c~]c0 = 2, for any root c~ in ZI, since all roots of  a simply laced Lie algebra 
are long. Given a root c~, let h a := u - l (cO C 0 be the corresponding coroot. We have 
that 

l l 

0 = Z ai" OLi' ho = Z ai" ho~i' 
i=1 i=l 

where the integers a i are positive and are given in Table I below. The number 
1 

g := 1 + ~ a~ is the dual Coxeter number of ~r 
i=1 

Let A i E ~*, i = 1, . . .  l, be the fundamental weights of ~ defined by Ai(h~j) = 
l 

~ij, J = l , . . .  I. Define 0 := ~ Ai. 
i=1 
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Table I. 
a i g 

1 1 1 1 
A~." o---o- --- -o---o e + l  

1 
t - }  

D e : o- - .o- - -  - - - - ~  2 t ~ - 2  
1 2 2 1 

E 12 
- 6 :  1 2 3 2 1 

E 7 : ~ 18 
2 3 4 3 2 1  

ES: 3 0  
2 3 4 5 6 4 2  

If we pick a Chevalley basis {e~},~zx U {h~i , i = 1 , . . .  l} of ~r then the real span 
of 

{ih~; ec~ - e_c~ ; i(ec~ + e_~)}~cz a 

is a compact real form ~ of ,~ which is isomorphic to ~ .  We will identify .~0 with 
,~  in the following. Let ~- be the conjugation of ,~ defined by the compact real form 
,~  and set x* := -T(x )  for x E ,ft. Then 

= {x c :r = - x } .  

Furthermore, (xly*) is a positive Hermitian form on S~. Later on, we will need a pair 
of dual bases of ~ ,  i.e., two bases {u~} and {uJ} of :~ such that (uiluJ) = ~ij. 

111.2. The Affine Lie Algebra ~ Associated with 

Let C[t; t -1] be the algebra of Laurent polynomials in t. The residue of a Laurent 
polynomial f = ~ ekt k (where all but a finite number of e k are zero) is defined by 

kEZ 

Res f = e_ 1. Res is a linear functional on C[t; t - I ]  characterized by the properties 

If we define 

df 
Rest  - 1 =  1, R e s ~  = 0 .  

, ~ : =  ~ |  C[t; t - t ] ,  

then J is a Lie algebra under the obvious bracket operation. J can be viewed as a 
subalgebra of the rational maps from C • to ,~'~. The evaluation o f x  E ~ on S 1 is 
then obtained by replacing t by e i~ We will often use the convenient notation x(n)  
for x | t ~, x C ~ and identify ~ with ~ | 1 in ~ .  

Let $2 be the bilinear form on ~ defined by 
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where (.1.) is the invariant symmetric bilinear form of Sect. III.1. Thus, Y2(x(n); 
y(m)) = ngn, _m(X ]y) for x, y C ,9. One easily checks that $2 is a two-cocycle on 

~ ,  and we denote by ~ the corresponding central extension of ~7: 

J- o. 

As a vector space, we take ~ = J | C �9 c with the commutation relations 

[f, 9] = [f, g]0 + ~2(f; g) .  c, 

for f ,  g E J .  Here [, ]0 denotes the bracket in ~ ,  and e is central. For x, y E ~ ,  
we have 

[x(m), y(n)] = [x; y](m + n) + m6m, _n(x I Y) c. 

is the affine Lie algebra associated to ~ .  
The map x H x*, x c ~ ,  extends to a conjugate linear anti-automorphism of ,~ 

by defining c* = c and x(n)* = x * ( - n ) ,  x C ~ ,  n E Z. 

Let ~ := {x e ~ l  x* = - x } ,  ,~  is a real form of ,~, the so-called "compact 
fo rn ] , "  

A 

111.3. The Loop Group LG o and its Central Extension LG o 

We denote by LG o the group of smooth maps f : S t -* G O under pointwise 
multiplication. LG o can be given the structure of a Fr6chet Lie group [57]. The 
Lie algebra of LG o consists of smooth maps f : S 1 --+ :~, with the bracket operation 

induced by ~0. We denote by L~6 p~ the subalgebra of L ~  0 consisting of loops having 
finite Fourier series. 

We define a skew-symmetric, bilinear form co on L ,~  0 by 

27r , /  co(f; g) = ~ (f(0)lg '(0))d0, 

0 

where (-]-) is the invariant symmetric bilinear form of Sect. III.1. One checks that 
o l  

w is a two-cocycle on L , ~  and that the central extension L ~ 0  := L , ~  p~ @ ~ .  ic 

defined by this cocycle coincides with ~k when evaluated on S 1. Hence ~ is the 
ol 

complexified Lie algebra of L ~  0 . 

The corresponding central extension L ~  0 of L ~  0 given by the cocycle co lifts [58] 
to a central extension of the loop group LGo: 

1 ~ T ---* L-'-G o p L G  o ~ 1 .  

However, since LG o is a non-trivial U(1)-bundle over LGo, this extension cannot be 

globally defined by a continuous Lie group cocycle. A convenient description of LG o 

has been given by Mickelsson [59, 60] by considering LG o as a quotient of a larger, 
trivial U(1)-bundle. 

Let D = {z E C [ [z] < 1} be the unit disc in C and D G  o the group of smooth 
maps from D into G O with radial derivative vanishing to all orders at the boundary. 
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Denote by ~,~ the normal subgroup of  D G  o consisting of  maps f : D ---, G O such 
that f l s l  = e, where e C G o denotes the unit element. 

We define a real-valued two-cocycle 3' : DGo • DGo --~ IR by 

"~(f; 9) - (010) I ( f - l d f l d g g - J )  
167r 2 , J  

D 

- 87r2 ( f - l d f  [d99 -1 ) ,  

D 

where (. I') is the invariant symmetric bilinear form of Sect. III. 1 and a group extension 
of  D G  o by U(1) using the multiplication rule 

(f ;  A)- (g; #) = ( f  ' 9 ;  A# exp 27ri'),(f; 9)). 

'~n is embedded in D G  o • U(1) as follows. Let 9 E ,~; since 9]sl =_ e we can think 
of  g as a map from S 2 to G o by identifying the boundary S 1 of  D with the north 
pole of  S z. Let ~0 denote an extension of  g to B, the unit ball in IR 3 (which exists 
since 7r2(Go) = 0) and define 

4871_2 
B 

One checks that C@) depends on the chosen extension ~0 only modulo Z. Hence the 
map 

r : , ~  ~ D G  o • U(1) 

9 --+ (9; exp 27riC(~)) 

is well-defined and can be shown to be a homomorphism [59, 601. The image ~ ( ~ )  in 

D G  o • U(1) is readily seen to be a normal subgroup, and L G  o :=  ( D G  o • U(1))/~b(Sr 
is a circle bundle over the base space L G  o. The projection is given by 

p : L G  o --+ L G  o 

[(f;  A)] --+ f Is'  �9 

The center of  L G  o is represented by the pairs (1, A) c D G  o • U(1). It acts transitively 

on each fiber, and so L G  o is a central extension of  L G  o by U(1). 
The cocycle 7( "; ") induces a Lie algebra cocycle c( .; �9 ) for the Lie algebra D~00 

of  D G  o which is easily computed. Let f ,  g E D ~  o, then 

1 c 2 dd@ds 8 t ~ 1 / (f ;  g) = = = 7(et f;  e 8g) = ~ (df [ dg) 

D , /  
- 4 7 d  ( f  l d9) 

S 1 

so that c( .; �9 ) coincides with aJ( -; �9 ). 
Finally, let us note that the (Fr6chet) Lie group of orientation preserving diffeo- 

morphisms of  the circle Diff+(S 1) acts in an obvious way on L G  o and that this action 

lifts to a covering action of  L G  o [42]. A representation (lr; . ~ )  of  L G  o is called 



Operator Algebras and Conformal Field Theory 595 

a positive-energy representation if the one-parameter group of rotations acts contin- 
uously on . ~  by unitary operators which implement the rotation automorphisms of 

L G  o and if the generator L 0 of rotations has positive spectrum. 

A 

111.4. The Local Structure of  L G  o and L G  o 

A 

The description of L G  o given in Sect. III.3 allows us to construct local normal 

subgroups of L G  o and of L G  o. 
Let f : S 1 --~ G O be an element of L G  o. Denote by supp f the smallest closed 

subset of S 1 such that f Is~\suppf--  e. Define for each open interval I in S 1 

, /J(I)  := {f  C L G  o [supp f C I}  

and 

~ ( i )  := p - ~ ( J ( I ) )  c L ~  o . 

Clearly, ~<<~(I1) C_ -~(I2) if 11 C/2 .  The following lemma is elementary. 

Lemma 3.1. Let f C . Z ( I , )  and 0 E ~ ( I 2 ) .  l f  I1 A 12 = 0 then f . ~7 = 9" f in L'Go. 

Proof. Let f := p ( f )  and 9 := P(9), so that supp f C I l and supp9 C I 2. The 

construction of L-G 0 given above implies that a representative of f in D G  o x U(1) 
is of the form (f;  A), where f may be constructed from f as follows. Denote by Cil 
the open cake slice of D having 11 and 0 E D on its boundary, 

and let C ~II be the complement of C h in D. Extend f to a map f on D such that 

f tc~1- e. Such an extension exists, since supp f C 11 and 7rl(G 0) = 0. Proceed in 

the same way for 9. Clearly, Czl N Cz2 = 0 since 11 A 12 = 0. This implies that 

and 

which in turn means that 

i-o=.o.i 

"~(f; .0) = o 

(f;  A)(O; #) = (~; ~)(f ;  A) 

holds in D G  o • U(1), so that f - j  = ~.  f in L--G 0. This completes the proof of the 
lemma. 
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111.5. The Extension of  ~ by the Virasoro Algebra 

I d Let 0 = C[t; t -  ] ~  be a subalgebra of the Lie algebra of rational vector fields on C. 

There is a natural action of 0 as derivations of ,~ which lifts to ~ by acting trivially 

on the central element c. In terms of the basis d n = - t  n+l ~ t '  n E Z for O, one has 

d n x ( m  ) = - m x ( m  + n), dn c = 0 

for n, m E Z, ~ ~ .  The commutation relations of 0 are 

[dn, d j = ( n - m )  dn+,~, n, m E Z .  

The algebra 0 admits an (essentially unique) non-trivial two-cocycle w defined by 

w(d~; d~)  = ~ ( n  3 - n)~n._,~ , n, m E Z .  

The corresponding central extension O, 

0 ~ C ~ 0 ~ 0 - - + 0 ,  

is called the Virasoro algebra. As a vector space, ~ --- 0 �9 C - n with n central. The 
Lie bracket is determined by 

[dn, din] -~ ( n -  ?n)dm+ n + -~(n 3 - n ) ~ ,  _m n . 

The action of 0 on ,~ may be extended to an action of 0 by letting n act trivially. 
With this action, we form the semi-direct product 

The Hermitian conjugation x ~ x* ,  x E ,~ is extended to 0 by setting 

d * = d _ n ;  n C Z ,  

and this extension is compatible with the action of 0 on ~ .  Furthermore, the real 
subalgebra 

= {d e 01 d* = - d }  

coincides with real vector fields on S 1, by evaluating on S ~. Hence it is a subalgebra 
of the Lie algebra of Diff+(S1). 

Finally, the extension 

of ,~ by the degree derivation d := - d  0, 

dx(n)  = nx(n)  

will be convenient to describe the representation theory of ~ .  
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111.6. The Root Space Decomposition of ~e; Dominant Integral Weights 

The root space decomposition of ~ relative to the abelian subalgebra 6~ = 
b | C �9 c | C �9 d can be described as follows. If A C b*, extend A to 6~ by setting 
A(c) = A(d) = 0. Define (5 E ( ~ ) *  by 

6(~)=o, 5(e)=0, 6(d)=l. 

Since [h + d; x~(n)] = (a(h)  + n)x~(n) for a c A, x~ E ,~r and h E [}, it is c lear  

that the roots of ,~r with respect to ~r are 

A = { k 6 + ~ l k e z ,  ~e z~}u{k6 I ke z - { o } }  

and the root spaces are 

( , ~ ) ~ + ~  = C .  % ( n ) ,  ( ' ~ ) n ~  = {h(n) i h E b}. 

Set 
A + = { ~ + n 6 1 c ~ � 9  A , n > 0 } U { n S I n > 0 } U A + ,  

so that z~ = z~+ U (-z~+) .  The set of  simple roots is ~- = {C~o, c~1,.., cq}, where 
c h , . . ,  c~z are the simple roots of ,~ and c~ 0 = 5 - 0. The corresponding coroots are 

h~o = c - h e , 

h~i = h~  ' i = l , . . . l .  

Define the fundamental weights Ylo,-.-~z �9 (6e)* by 

Ai(s  ) = S i j  , i , j = 0 , . . . l ,  

J~(d) = 0.  

Note that the restriction of ~ l ,  .. �9 At to O are the fundamental weights for ~ and we 
have 

~ i = A i + a i ~ o  i =  1 , . . . 1 .  

l 

Put ~ := ~ Ai; then ~ = ~ + g~0. 
i=0 

l 1 
Let P := ~ Z .  Ai be the weight lattice of ~ and P+ := ~ Z+ �9 -~i be the set 

i=0  i=0  

of dominant integral weights. Given ~ �9 P+, the positive number ~(c) is called the 
level of ~. Note that 

~i (c )=%,  i = l , . . . l .  

Given m �9 Z+, denote by p(+m) the set of ~ �9 P+ of  level m. This is a finite set for 

each m �9 Z+ and p(+0) = 0. 

We extend the bilinear form (- I ") on b* to a symmetric bilinear form on ( ~ ) *  by 

(~*lcs+Cfio)=O, (515)=(zi olAo)=o, (51Ao)=1. 
Notice that ~(c) = (~ ] 5). 
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We will also need the following triangular decomposition of ~e :  

where 
fi+ := ( ~  eJ~ | l )  @,~ | 

h := ( Z  |174 @ ~ |  
-aEA+ 

^ 

111.7. Properties of Irreducible Integrable Highest Weight Modules of ~e 

Let A E P+ be a dominant integral weight of . ~ .  A &'%-module (V; 7r) is called a 
highest weight module with highest weight A, if there exists a vector v A E V such 
that 

~(~+).v A=O, ~(h).v A=A(h).v~ for h ~ ,  

and 
7r(UCC~e)) . VA = V,  

where U(d @~) denotes the enveloping algebra of ,~%. There exists, up to isomorphism, 
a unique irreducible highest weight module (L(~), 7rA) with highest weight A 6 P+. 

The module L(A) has the following properties [47, 61]. 
(i) There exists on L(I[) a positive definite Hermitian form (. ] "} such that 

(TrA(x)u l v } = (u l TrA(x*)v) , Vu, v E L ( A ) ,  x E . ~ .  

Such a Hermitian form is said to be contravariant with respect to the *-conjugation 
of ~e .  In particular, it follows from contravariance that the elements of .~ are 
represented by skew-Hermitian operators on L(A). 
(ii) The action of ~ on L(A) can be extended to the semidirect product of ,9 and 

c~ by the Sugawara construction: 

1 
7CA(dn):=Ln'-- 2 ( m + g ~ Z ~ .  : u i ( - J ) u ' ( J  +n) :, 

jcz " 

where {u~} and {u j } are dual bases of ~ ,  m is the level of ~, g is the dual Coxeter 
number of ~ and the normal ordering symbol: u(s)v(r) : stands for u(s)v(r) if s < r 
and for v(r)u(s) if s > r. The Hermitian form (. ] .) is contravariant for the extended 
representation and the central element t~ of (9 is represented by 

m dim 
7vA(~) = ~ . I ,  ~ r -  

(m + g) 

The constant (r is called the conformal anomaly. Furthermore, 

( i  + 2h I A) 
L 0 = h  A. I -TrA(d)  , hA'--  2 ( m + 9 )  ' 

so that the eigenvalues of L 0 on L(~) are given by h A + Z+. The constant h A is 
called the trace anomaly. 
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(iii) Denote by ~ A  := L(A) the Hilbert space completion of  L(A) with respect to 
^ 

the hermitian form (. I .). The representation 7r A restricted to , ~  integrates to a 
A 

strongly continuous, irreducible, unitary representation of L G  o on , ~ A .  Furthermore 
the representation 7r A restricted to 0 k integrates to a strongly continuous, projective 

A 

representation of Diff+(S 1) on ~ which implements the action of Diff+(S 1) on L G  o. 

(iv) The operator L 0 is the generator of  rotations of the circle on 'Y#A, e-~L~ is trace 
class for /3 > 0 and satisfies the following asymptotic estimate [47, 62] as /3 -~ 0, 
f i > 0 :  

tr.zea e - ~ r ~  ~ a( fl)  exp(-/3cr/24) exp(Tfl~r/6/3), 

where a(A) is a constant depending only on _~ E P+. 

A 

111.8. Vacuum Representat ions o f  LGo;  the Bas ic  Representat ion 

Let ~ E P+, A be the restriction of  A to D and (TrA; ' ~A)  the corresponding 
A 

representation of L G  o obtained in Sect. III.7. These representations form a complete 
A 

list of  irreducible positive-energy representations of  L G  o. 
A 

An  irreducible vacuum representation of L G  o is an irreducible, positive-energy 
representation having a unique lowest eigenvalue vector for L 0 invariant under the 
whole Moebius subgroup of Diff+(S1). Such representations are easily determined: 
notice that G O can be identified with the subgroup of constant loops in L G  o. Constant 
loops are invariant under rigid rotations of the circle S 1 and consequently the unitary 
representation 7r A of G O on .~d'~ A is reduced by the eigenspaces of L 0 [58]. In particular, 
the lowest eigenspace of L 0 (i.e., the eigenspace to the eigenvalue hA) carries the 
irreducible representation of G O corresponding to the dominant weight A on 0. This 
implies that L 0 has a unique lowest eigenvalue vector if and only if A = 0 on ~, 

that is, if and only if ~ = mfl~ 0, h A = 0. One checks easily that v A is annihilated by 
L• in this case, that is v A is invariant under the Moebius subgroup of Diff+(S1). 

A 

Hence, for each level, there is a unique irreducible vacuum representation of L G  o, 

determined by the dominant integral weight m~0,  m C Z+. 
A 

The level one vacuum representation is called the basic representation of L G  o. 
If  G o is simply connected and simply laced, every irreducible positive-energy 

A 

representation of L G  o can be obtained from the basic representation as follows (see 
[42], Theorem 9.3.9). 

Let Z be the center of G O and g c Z. Pick any smooth path c~ : R --+ G O 
such that c~(0) = e, c~(2~r) = 9, c~(0 + 27r) = 9 " c~(0). If, ~? c L G  o, we denote by 
r/c~g the loop obtained by conjugating with c~9; the map r/ --~ r/~ 9 defines an outer 

automorphism of L G  o. The set of representations c~*Tr o obtained by composing 7r 0 
with such automorphisms are precisely the irreducible, level-one representations of  
A 

L G  o. 
Furthermore, any representation of level m is a direct summand of ~mTrl,'* where 

A 

7r 1 is a level one representation of L G  o, i m : S 1 --+ S 1 is any map of degree m and 
i*Trl denotes the representation obtained by composing :r~ with ira. 
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A 

111.9. Local Algebras in Irreducible Representation of  L G  o 

Let _/] ~ P+ and (TVA; .3%r be the corresponding irreducible representation of  L--G0. 
Define a local net { .~A( I )} ic s l  on , H  A by 

~ ( z )  := {~A(J(I))}". 

The following result is an easy consequence of the preceding discussion. 

Theorem 3.2. (i) For ever ~ C P+, the collection {._:~A(I)}icsx is a conformal net 
on ~A"  

(ii) Let ~ = m ~  O, m E Z+. The net { ,~A(I)  } lcS~ is the net of the vacuum sector of a 
conformal field theory in the sense of Chap. 11. In particular, this net satisfies duality, 
and the local algebras t~A(I  ) are hyperfinite type I I I  1 factors. 

Proof. Ad (i). ~ A ( I )  is the weak closure of 7rA(,~(I)), so that isotony and locality 

follow from the corresponding properties of the groups t~ ( I )  derived in Sect. III.4 
(see Lemma 3.1). 

From Sect. III.7 (iii), we know that . H  A carries as strongly continuous, projective 

representation of the Moebius group under which 7rA(.~(I)) transforms covariantly 
for every I,  so that covariance of the net follows. 

Ad (ii). We know from Sect. III.8 that ~ A ,  with A = mA 0, has a unique 
vector invariant under the Moebius group and that the spectrum of L 0 is positive 
on . H  A. The vacuum vector v A of . H  A is by definition cyclic for the von Neumann 

algebra 9,1 = . Hence all properties of Definition 2.5 are fulfilled. 
I 

Furthermore, the asymptotic behaviour of t r ~  A e -;~L0 given in Sect. III.7 (iv) implies 

that Theorem 2.13 is applicable. Haag duality follows from Theorem 2.19. This 
completes the proof of the theorem. 

As a matter of fact, the theorem of Pressley and Segal presented in Sect. III.8 (see 
ref. [42], Theorem 9.3.9) implies that local algebras are hyperfinite type I I I  1 factors 

A 

in any irreducible positive-energy representation of L G  o. 

Theorem 3.3. For every ~ E P+ and I C H 1, . ~ A ( I )  is isomorphic to the hyperfinite 
type I I I  1 factor. 

Proof. If A is a level one dominant integral weight, then 7r A -~ aaTr o , *  where a a is a 

smooth path from e to 9 C Z along S ~. Choose a a in such a way that ag [i -- e. It 

then follows that 7rA0 and a~TrA0 coincide on ~ ( I ) .  Hence . h A ( I  ) = S A o ( I ) ,  and, 
since all local algebras are unitarily equivalent, by Moebius covariance, this completes 
the proof in the level one case. 

Next, let 7r A be a level m representation. We know that 7r A is a direct summand 
of %~7r 1 , ' *  where 7fL_l is a level one representation and i,~ : S 1 ~ S 1 has degree m. 

Let E ~ i*Trl(Lao)' be the projection on 7r A. Then . .~A(I) = {i*Trl( .~(I))}~ 
(see [63], Chapt. I, w Prop. 1). Choose i m such that ir~ II = id [I SO that 

{ i * T r l ( ~ ( I ) ) } "  = {7r1(~.~(I))}" is the hyperfinite type I I I  1 factor, since 71-1 is of 
level one. The projection E belongs to {i*Tr 1 (~( I ) )} ' ,  that is to {Tr 1 ( ~ ( I ) ) } ' .  Since 

^ t l  I r1(~(I ) ) '  is a factor, the central support of E is 1 and the induction of {Trl(J~(I)) } 
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on {Trl(.~(I))}~ is an isomorphism (see [63], Chapt. I, w 2, Prop. 2) and the theorem 
is proved. 

This completes our discussion of the properties of conformal nets associated to 
positive-energy representations of loop groups. The corresponding algebraic quantum 
field theories and their superselection structure will be discussed in next chapter. 

For the sake of completeness, we state without further details the analogue of 
Theorem 3.2 for representations of the Virasoro algebra. 

T h e o r e m  3.4. Let L((h; c)) be an irreducible unitary positive-energy vacuum repre- 
sentation of  the Virasoro algebra, that is, 

6 
(i) c = l m = 3 , 4 , . . . ,  h = O, or 

m ( m  + 1)' 
(ii) e >  1, h = 0 .  

Then the local algebras constructed from the corresponding projective representa- 
tion of Diff+(S 1) are hyperfinite type I I I  1 factors, and the net determined by these 
local algebras is dual. 

The proof of this theorem (which is very similar to the one of Theorem 3.2 given 
in this chapter) relies on results of Goodman and Wallach [78] on the integrability 
of positive-energy unitary representations of the Virasoro algebra and from explicit 
formulas for the characters of these representations [79]. 

IV.  R e p r e s e n t a t i o n  T h e o r y  of  C o n f o r m a l  Nets  

IV.1 Definitions, Basic Properties 

Let {J%S; 7r0; .~; g?} be the vacuum sector of a conformal field theory fulfilling all 
the properties specified in Chap. II. 

In this chapter we use the following conventions: 
- PSU(1;  1) denotes the universal covering group of the Moebius group PSU(1;  1). 

- Elements of PSU(1 ;  1) are written as small latin letters with tildes: g, /z, 91, 

e tc . . .  If p : PSU(1;  1) --4 PSU(1 ;  1) is the canonical projection then the image 
P(9) E PSU(1 ;  1) of 9 E PSU(1;  1) is denoted by the same letter, without tilde: 
p ( 9 )  = g.  

- We denote by 7v0 ~ (instead of 7to) the unitary representation of the Moebius group 
on the vacuum sector. By 7v M we denote other projective, unitary representations of 

the Moebius group (i.e., unitary representations of PSU(1;  1)). 
- We define, for 9 c PSU(1;  1), 

O~g(A) := adTro~(g)(A) 

= 7rM(g)ATr~(g) * VA C . ~ ( ,~ )  

The conformal net '~0 := { A ( I ) } I c s l  constructed in Chap. II is a representation 
independent object characterized by 

(i) the fact that each local algebra .~ ( I )  is isomorphic to the unique hyperfinite type 
I I [  1 factor; 
(ii) the inclusions ~ ( I )  C_ .~ ( J )  whenever I C_ J, for open, non-dense intervals of 

S~; .~( I )  c ~ ( J ) '  if I c J ' ;  
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(iii) Moebius covariance: for 9 E PSU(1;  1), c~g defines an automorphism of the net 

.A 0, i.e., 
% ( ~ ( 1 ) )  = ~4(g .  I )  

holds for all intervals I C S 1 and all g E PSU(1; 1). 

This chapter is devoted to the study of the representation theory of conformal nets. 

Definition 4.1. A representation 7c of the conformal net "/~o on the separable Hilbert 
space .~(~ is a consistent family 7c --- {Tv/}xcsl of  representations of  the local algebras 
{J~( I )} ics~  which is Moebius covariant and satisfies the spectrum condition, that 
is, 

(i) if I C J then ~vj I..z(i)= 7r r (consistence). 

(ii) There exists a unitary representation 7c M of PSU(1;  l) on ~ (i.e., a projective 
representation of PSU(1;  1)) such that 

7r M (9)~vz (A)~- M (9)* = ~-g. I (c~g (A)) 

holds, for all A E ~ ( I ) ,  9 E PSU(1;  l) (Moebius covariance). 
(iii) The spectrum of the infinitesimal generator of  rotations on , ~  is positive 
(spectrum condition). 

Such representations always respect the local structure of  ,~0. 

L e m m a  4.2. Let 7v be a representation of ,~o. I f  I C J' ,  then 

~vt(.~(I)) C 7rj(./~(J))'. 

Proof. Let I ~ j r .  Then there exists an in t e rva l / (  ~ I U J such that, by consistence, 
we have, for A ~ ~ ( I )  and B E .,t~(J), 

7TI(A)TT j ( B  ) --- ~:(A)Tr~(B)  

= ~r~:(AB) = 7vK(BA ) 

= 7r~:(B)TrK(A ) = 7rj(B)Tri(A ) . 

Hence 7rx(,/~(I)) C 7vj( ,~(J))  l, for all I �9 J~. But because of Moebius cova- 
riance [31], 

~J'(~(J')) = V ~(~A(I)) c_ ~ra(.~(j))' 
I �9  t 

and this completes the proof of the lemma. 

Definition 4.3. (i) A representation 7c of ~/~0 is irreducible if the von Neumann algebra 

7v(~0)' :=  {~vs(~( I ) ) ,  I C S1} ' 

is equal to C �9 1 7~ ;  otherwise 7c is reducible. 
(ii) Two representations 7v and ~- are unitarily equivalent if there exists a unitary 

operator U : ~ ~ . ~  such that 

~ r ( ' ) U = U ~ I ( ' )  V I c S  1. 

(iii) An equivalence class of representations of  the conformal net ,/~0 is called a 
sector. I f  ~- is a representation of '~0 ,  we denote the corresponding sector by [~r]. 

The following observation was first made by Buchholz, Mack and Todorov [30]. 
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L e m m a  4.4. Any representation 7r of  , ~  o is locally unitarily equivalent to the identity 
representation, that is, for each interval [ C S t, 

7r I I j ( i ) ~  id I,/~(I), 

where the symbol " ~ "  means unitary equivalence. 

In our case, this lemma follows from the fact that the local algebras are hyperfinite 
type I I I  1 factors. This motivates the following definition. 

Definition 4.5. A representation p = {P I} Ic s l  of  the conformal net .~o on the 
vacuum Hilbert space ~ is said to be localized in the interval 10 if on the complement, 
I;, of 10 

QI; = idi; 

holds. 

As an immediate consequence of  Lemma 4.4 we obtain the following result. 

L e m m a  4.6. I f  [Trl is a sector of representations of  .//~ o, then,for each interval I o C S 1 , 
there exists a representation p E [Tr] localized in I o. 

Proof Since, by Lemma 4.4, 7ri; ~ id/;, we can choose a bijective isometry 

U :. '~f -+ . ~  such that 

7rI;(A)U = U A  VA E ./~(I~), 

and define PI ( ' )  :=  U*Tv~(.)U, g I  C S 1 . Clearly, p is a representation in [Tr] localized 
in I 0, by construction. 

Let Pt, P2 E [~-] be localized in 11, I 2 respectively. If I is an interval containing 
11 and I 2, then duality and the localization properties of Pt, P2 imply that any unitary 
operator J~PlP2 intertwining Pl and P2, 

Pl, J(A)Fplp2 : -Fplp2/)2 ,  j ( A ) ,  V J  C S 1 , A c .//~(J) 

belongs to ./d([). Explicit examples of  such operators are the cocycles of  the Moebius 
group constructed below. For notational convenience, we will also write the preceding 
equation in compact form, 

pl(A)Fplp2 = Fplpzp2(A), VA E , ~ o .  

That is, if an equation holds for all intervals J C S 1 , we suppress the interval indexing 
a collection of  representations p = {Pl}IcS1.  

If  p is a representation of  ,/~0 localized in I 0, we may define shifted representations 
pg localized in 9 �9 I0 by 

Pg, z(A) :=  c~g o pg_~. z o ~g_~ (A),  VA E ~ ( I ) .  

It follows from Moebius covariance that p and pg are unitarily equivalent for all 
9 E PSU(1;  1): 

M M ~ - 1  M - - I  * M :r pg(A) = 7r o (9)Trp (9 )p(A)Trp (9 ) 7to (9) , VA E . A o ,  
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where rr~ is the representation of the Moebius group implementing covariance of 

the representation p (Definition 4,1 (ii)). Setting Fp@) := rc~(g)rc~(0-1), we may 
rewrite the last equation as 

pg(A)Fp@) = Fp@)p(A),  VA E ~ o ,  0 E PSU(1;  1) (4.1) 

and the intertwiners Fp(0), 0 C PSU(1;  1) satisfy the cocycle identity, 

Fp(01 " 02) = ~ gO1, 02 C PSU(1;  1). 

Conversly, given a cocycle Fp(O), 0 c PSU(1;  1) of the Moebius group which 

satisfies Eq. (4.1), one can reconstruct a unitary representation of PSU(1;  1) which 
implements the automorphisms c~ e of Jgo in the representation p (see [14]). 

Note that by our definition, 

( p g l ) g  2 = OL g 2 0 Pg l  0 0 L g 2 1  = O~ g2g I 0 p 0 0 ~ ( g 2 g l ) _  1 = Pg2gl  " 

I If/~p(0) is the cocycle for p, then applying c~g on both sides of Eq. (4.1) we obtain 

(pg)g,(A)oeg,(FpO)) = o~g,(T'p(O))pg,(A), VA E ./go. 

Hence the cocycle identity is consistent with 

P9192(A)Fp(OI " 0 2 )  = F p ( g l  ' g2)p(A), VA E ,/Z 0 . 

Namely, Pg192(A) = (pv2)91 (A) and Fp(01 �9 g2) = c~g, (Fp(02))Fp(0~) so that 

Pgl" .qz(A)FR (0~ " g2) = (Pgz)g, (A)c~gl (Fp(0Z))Fp(Ol) 

= O~g I (I"p(g2))p9, (A)Fp(01) 

= eevl (FpO:))FpO1)P(A) 

= Fp(O 1 �9 02)p(A). 

Finally, we remark that if p is localized in I o, then for any interval J _D I 0 one has, 
by duality and locality, that 

p j ( , J (  J)  ) C_ ./~j( J) 

so that pa defines an endomorphism of .~/g(J). In particular, the pair {pj (J~(J)) ;  
. J ( J ) }  defines an inclusion of hyperfinite type 11I  1 factors. 

IV.2. Composition of  Sectors 

Given two sectors [71-1] and [71"2] of '/g0, we define a composed sector [711o71-2] by 
picking two representations Pl E [%], P2 C [%] localized in some common interval 
I 0 and defining a composed representation Pl ~ of J~0" There are several possible 
ways of defining composition in the present situation [15, 20, 25, 32]. We choose the 
alternative which is closest in spirit to reference [20]. 

We define the representation plop2 of ~ 0  by specifying (&Sp2) I for each interval 
I C S I. Let I be such that there exists J c S 1 with I tO I 0 _c J. Then &,a,  P2, J 
define endomorphisms of ~ ( J )  D Jg(I)  so that they can be composed. We set 

(Pl 8P2)I := Pl, J o P2, S [.~(I) - 
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If I is such that ( I  U Io) -  covers S 1, we choose fo C_ I o such that [o U I c_C_ J for 
some interval J C S 1. There exist two representations/31,/32 localized in i 0 unitarily 
equivalent to &, P2 and intertwiners/"m/51' /"P2/52 E ~ ( / 0 )  such that 

/"* &(" ) =  Fpi/si/3i(" ) p~/si ' i = 1 , 2 .  

We define 

. . . . .  /" "*/"* . 
(p16P2) z (  . ) : =  /"pl/51Pl,Zo(/"p2tY2)Pl,d 0/32,3(" )P l , Io t  02/52 ) Pl/31 

L e m m a  4.7. The composed representation Pl 6P2 is well-defined, i.e., one has that 
(i) the definition of 016P2)z is independent of the particular choices made, VI  C $1; 

and 
(ii) if I C_ J then (pl6P2)d],,~(1) = (plgP2)1 . 

Proof. Ad (i). First, let Pl and P2 be localized in [o and let I be such that ([o O I ) -  
does not cover Sl:  If [ N I o = ~, then for any interval J _D I U I o we have 

Pi,Jl~(I) = P~,z[,,~(z) = id [.z(t), i = 1,2 

so that Pl,J o p2,d(A) = A, VA E ~ ( [ ) .  So let us assume that I U I 0 is an interval. If 

J, J are intervals containing [ U I 0 then the interval J N J also contains I U I 0 so that 

P l , J  o P2,JI,~(1) "= P l , J n Y  o P2,JNJI,J,(1) 

= p l , j  o PZ,JL~(I)  

and the definition of (p16P2)z is independent of the particular choice of J _D I U I o. 
Next, let I be such that ( I  0 tO I ) -  covers S I. In the definition of (&6p2) we chose 

g C_/0 small enough such that ( g  tO I ) -  does not cover S l and J D g U I. Clearly, 
by the first part of the proof,/31,J o/32,JI.A(I) is independent of the particular choice 

of J D /~0 U I. It remains to check that choosing another interval *fo C_ I 0 such that 
(/*0 U I ) -  does not cover S 1 and representations/31,/32 localized in ~?0 together with 
intertwiners/"p1/31' ~2/32 will leave (p t6P2) i  unchanged. 

We start by showing that choosing I0 C_ I0 and /31,/32 localized in I0 does not 
change (p16P2)I . The two possible definitions of O16P2)I are 

a) (p15P2)1( ) . . . .  * * �9 = /Wpl/51Pl, I0(/"pz/32)&, J o P2,J("  )Pl,/0(/"p2/52 ) /";1, /51' 

~,10(5P2/5 1/51Pl,J O P2, J ! ' ) 5 ; 1 / 3  1,10 - )  �9 
b) ( P l ~  ) pl/31Pl,Io p2/32)Pl,J P2,J(  " )P1,10 p2/32 ) Pl/31 5 ^ ^ * * 

Pl,io ( /" p2/32) /" pl/31Pl, J o p2,j( . ) /" pl/31Pl,1o ( /" p2t32) . 

They coincide if and only if 

/31,J o/32,J(" ) = ad(/"p~/5~Pl,zo(F;2/sz)Pl,zo(/"pz/32)/"m/3,)/31,J o/32,J(" )- (4.2) 

B u t ,  

and F * -  /" P2P2 P2P2 
Furthermore, 

=: /"/52/32 intertwines /32 and /32; it is therefore localized in Io" 

=/3,,,o(/"/52/32)/"7'1/51/"p,/31 
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and F'15 /~p r~ = :  F151/~1 ~ ~(~0)" Since [o C I o and Io C J it follows from the 
I 1 1 1 - -  - -  

definition of/51 that 

/51,io(F152~2) = &,j(v152~ 2) 
so that the right-hand side of Eq. (4.2) is given by 

ad(/51,j(F&p2)F~&)r J o f32,j(. ) = a d / 5 l , j ( / ' p 2 p 2 ) ( / ~ l ,  J o / 9 2 , J ) (  ' 

=/51,g(ad(Fh,z )pZ, j ( .  )) 

= &,jO2, j ("  )) =/51,J o/52,J( ) 

and this proves our assertion. 
We can now choose the localization region [0 of/51, /52 SO small that it does not 

intersect I.  It then follows that 

fil ,J o/52,JL//~(I) = /51,I 0/~2,1 = id [.//~(i) 

and, consequently, 

(Pl~ " ) = ad(Fpl15 ,/51,I0(-~p2152))( " )l./~(I)" 
It remains to show that the map ad(Fm15~/51,io(Fp2152)) is independent of the choice of 

[0,/51 and/52 which fulfill the condition i o A I  = 13. Choose i 0 such that ]oAI  = 13 and 
/~1, /32 localized in ~?o" There exists then an interval J0 C S 1 such that [o O -f0 - J0, 
J 0 0  I = 0. The map 

ad(Fp115,Pl,Io (Fp2152))].//~(I) = ad(pl,Io (Fpz152)ff p,15,)k/~(I) 

is independent of the particular choice of [0 if and only if 

ad(F~1Pl,lo(F;2~2)P1,to(Fp2,~2)Fp1151)l~(1) = id L//;(~) �9 

But 
�9 * 1 ~ F = F * ^  p1,zo'(F*zp2Fp2152)Fp1151 ff;,PlP1,Io(f';ZP2)Pl,Io( P2152 ) 01151 PlPl 

~ 1 ~ *  ^ 

where F&& := F*zp2Fp2152 intertwines /32 and P2 and hence belongs to ~/~(J0). 
Furthermore, 

r;l~1Pl,io(/rl/}2152)/r~p1151 -~- Pl,io(r/~2152)/~/31/np1151 

= /51 ,  jo (/~/32152 )/~t3 1151 , 

where F0~15 ' := F~&Fm15~ C '/~(do), just as before. Hence, 

and since by locality ~ ( J 0 )  -- ./~(I) ~ this concludes the proof of the assertion and 
of (i). 

Proof  o f  (ii). There are three cases to be considered. 
(a) I f l C J a n d J U I  o c o  7 then 

(Pl~ = Pl,J o P2,J , 

(Pl~ = Pl,Y o P2,J 

and the assertion is obvious. 
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(b) If  I c_ d and ( I  U Io ) -  covers S 1 so that ( J  U I0 ) -  also covers S 1, then choosing 
[o C I 0 such that there exists 07 D J U/~0 and hi, t52 localized in Io we have 

. . . . .  F*  ~F* (p lSpz) j (  �9 ) -= ]'plfilPl,io(I'pz/sz)pl,j o/52,j( �9 )Pl,io ~ p2/52) pl/51 ' 

. . . .  F*  "F* (p16P2)i(. ) = Fpl/51~l,io(Fpz~z)pl, J o/52,j(.  )Pl,Io( p2/52) pl/51 ' 

the assertion is again immediate. 
(c) If  I c_ J ,  l U I 0 C_ 071 and ( J  U_To)- covers S 1 then choose /~0 C l 0 such that 
there exists an interval 072 _D/~0 tJ J and Io n J = 0. By definition of (p,6p2) d, 

(fll S fl2 ) d = ad( F pl /51fil,io ( F p2/52) )[.~**( j) 

= ad(p1,lo(Fp2/52) Fp,/5,)l,~(j) 

for Pl, P2 localized in [o and intertwiners Fro& between Pi and/5~, i = 1, 2. But 

(p15p2)i = p l , j  1 o P2,J, [.JZ(I) 

- -  p ,s, 

= Pl ,ffl ,J1 0/~2,ffi (')_Fffl/51Pl ,ffl (F;~/52)1.~(I) 

=- ad(P1,io(Foz/52)Fpl/51) o Pl,Yl o t32,dl ( . )L~(I)  

and this completes the proof of  (ii) and of the lemma. 

L e m m a  4.8. Let Pl and P2 be two representations of  ,~o localized in I o. 
(i) The representation pl6p: of  . ~  o is localized in any interval I l D I o, 

(ii) Let ~ ,  P2 be representations of  , ~  o unitarily equivalent to Pl, P2 respectively and 
localized in a common interval I 1 . Then 

p16p2 ~/516/52 

(iii) If, moreover, there exists an interval J D I 0 U 11 and l~p~ ~a, Fp2/52 are intertwiners 
between Pl and Pl, resp., P2 and P2, then 

rp,6p2,/5,6/52 := rpl/5,~,j(Fp2~2) c ~ ( d )  

intertwines p16p2 and/516t52. 
(iv) I f  Pl is localized in I x c_ Io, P2 in I 2 C I o and I 1 N I 2 = ~ then 

p16P2 = p26P1 �9 

(v) The representation p16p2 is Moebius covariant. 

Proof. Ad (i). Let 11 be any interval strictly containing I o, 11 D D I 0. It then follows 
that (I~ U I0) -  does not cover S 1 so that 

(PI6P2)I~(  " ) = P l , J  o P2,J(  " )[,~(I~) 

for some d _D I~ U I 0. However,  since Pl and P2 are localized in -To, it follows that 

P l , J  0 P2 ,J ("  )[~/g(I~) : id L~(I~) �9 

Ad (iii), It is sufficient to consider the case of  I 1 C I 0 and J = I o. We show that 
_Nplsp2,~6/52 ~ ~ ( I o ) ,  as defined in (iii), intertwines (plgP2)~ and (/5~6/52) I, for each 

interval I C S 1. There are three possible situations. 
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(a) If I U I 0 _C j for some interval J ,  then I U I 0 U I 1 C J ,  and hence 

(PlSP2)i(" )I'p16p2,~16~ 2 = Pl,J o pz,.](. )I~pl~lfil,[o(.Fp2~2 ) 

= Fp~/51,  J 0 p2,j(.)/51,J(Fpz~z) 

= Fpl~l/51,.](Fp2~2)/51,j o/52,J(" ) 

= Vp16,,2,~, 6~2 (/518/52)z( �9 ) .  

(b) If ( I  U Io)-  covers S 1 but I U I l C o 7 for some interval J ,  then by definition of 
(& 6p2)i and of (/518/52)i, 

(Pl Op2)I = ad(Fp, ~,/51,r (/~P2,62))/51 ,J  O/52, j (  " ) 

(/518/52) = /51,J o /52 ,J (  " ) 

and the claim is immediate. 
(c) If (I  U Io)-  and (I  U 11)- cover S 1, pick ~71 C 11 such that I U ~?1 _C j for 
some interval J .  Let/31, /52 be unitarily equivalent to/51,/52 and Fa a , F~ a be the 

l .I 2 2 
corresponding intertwiners. It then follows that Fp~a~ � 9  intertwmes Pi and /3i, 
i = 1,2. 

By definition, 

(Pl ~ = ad(/'o, ~t/'0, &/31,Io (/'pz02/~02~z)) o/31,J O /32,.i I./g(I) 

= ad(Fo,r /51, /0 (/r~p2/S2/'/52/32)/'pl/31 ) O /51,o70 /32,fl.~4(I) 

= ad(Fpl#i/51,io(I'pefi2)/51,io(Ffi2a2)l'filal) o/31,./o/32,fl. J/.(I) 

= ad(Vp~,/51,io(Fpz~z)) o ad(/51jo(VhOz)VO,O, ) o/31,J 0/52,J].~e(I) 

= ad(Fp~6p2,~6~2) o ad(Fp,~/3h6 (Fp2~2)) o/51,3 o/52,J[~(I) 

= ad(Fpl 6p>& a&)(/518/52)i. 

This completes the proof of assertion (iii). 

Ad (ii). If I 0 U 11 is contained in some interval, we are done by (iii). If not, choose 
/~ such that I 0 U _? and 2~ U 11 are contained in some intervals, /31, /52 localized in f 
unitafily equivalent to Pl, P2. We can then apply assertion (iii) twice to conclude the 
proof of (ii). 

Ad (iv). We check that (plSp2)g = (p28Pl)i for each interval I C S 1. If I U I 0 is 
contained in some interval J c S ~, then the proof follows as in Lemma 2.2 of ref. 
[64]. If (I  U I0)- covers S 1, choose *rl, *r2 c I 0 and/31,/52 localized in *71, i2 ,  unitarily 
equivalent to Pl, P2 respectively, satisfying the following properties: 

(a) 1~ N/~2 = {a, 
(b) there exists _f~ D [~ U ~?1, [2 D I 2 U/~2 such that [~ N [2 = 0. 
(c) There exists ~?0 _D/'~ U ~?2 and o 7 D [ U/~0. 
If Ypl~, Fp~2 are intertwiners between &,/5~ and P2,/52, then 

/51,/0(/-~P2a2 ) : /51,y2(/'p2132) = /'p2/~2 , 

/32,I0(/"pl/~ 1) = /32,i1(/'p,/31 ) = /'pl/~, , 
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so that 

(&Sp2); = ad(Fp,~,fil,io(Fp2~2))fil,y o fi2,Jl.~(I) 

= ad(l"plt~lFp2t~2)(/~ 1 0 /92)I 

= ad(/'p2t~2~pl~l)(/~2 0/~1)I 

= ad( l"p2fJ2~2, io( I 'p ,~ ,  ))/32, J 0/:31,JLA4I) 

= (p28Pl ) i ,  

and this completes the proof of assertion (iv). 

Ad (v). Let &,  P2 be localized in 10 and let 11 =~ 10 so that &6p2 is localized in 

I1. Denote by ~ "  a neighborhood of the identity in P S U ( 1 ,  1) such that if 0 C 9Y 
then I 1 U 0 �9 I1 is contained in some interval J .  It follows from locality and duality 
that 

~ ' p 1 8 p 2 ( O )  : ~-- Pl . , j (Fp2(o) )rp ,  (0) 

= re ,  (0)p~,2(Fp2(0)) 

is well defined for all 0 c ~ .  If  gl'  g2 and g! �9 02 E ~ then it follows from the 
definition of Fp~6p2(01 ), Fpx6p2(02) and Fp16p2(01 �9 02) that they satisfy the cocycle 
identity 

J~p16P2(Ol'O2)=~gl(~p16P2(O2))~p16P2(01)" 

Hence Fp16p.(0) extends to a cocycle on P S U ( 1 ;  1) by the original argument given 
in ref. [23], ~ect. 8. 

Define the shifted representations (plSp2)g by (plSP2)g := O~g O (p18p2) O O~9 1, 
that is, 

(p18P2), , i(  . ) = c~ 9 o (plSP2)g_1. iOLg_l(  �9 ) ,  V I  C_ S 1 . 

To prove Moebius covariance of (plSp2) it is sufficient to prove that the cocycle 

/~01602(0) intertwines p16P2 and (&SP2)9 for 0 E P S U ( 1 ;  1), 

(plSP2)g(A)Fpl6p2(O) = Fp16pz(O)(plSp2)(A ) V A  E ~/~o. (4.3) 

It is sufficient to prove the intertwining property (4.3) for arbitrary intervals I only in 
the special case of 0 C ~/~" and 9 �9 I1 C_ 11 or 11 C_ 9 " I l .  Namely, if 0 is arbitrary, we 
write 0 as a product 91 " 92 �9 .. 0n of elements in ~ "  such that if I k :=  91 �9 �9 �9 9k-1 ' I1 
then either 9k " Ik C_ Ik+ 1 or 9k ' Ik 2 Ik+l- By the cocycle property, we have the 
decomposition 

v  16p2 (0)  = % g . _ 1  (F 16 2 (0n))% (Fo,6o  gl (F ,602 (02))r 1 0  (01), 

and we derive the intertwining property for general 9, by applying, step by step, the 
special case. Since the special case was in fact proven in (iii), the proof  is complete. 
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IV.3. Haag-Kastler Subnets on Light-Rays 

Let ~ 0  = { ~ ( I ) } i c s l  be a conformal net. We now construct subnets of  ~ 0  
associated to light rays in Minkowski space and investigate their properties. The 
results of  this section will be used in Sect. IV.5 to adapt classical results of Doplicher, 
Haag and Roberts (see refs. [13, 14]) to the present setting. 

Pick a point a E S a and project stereographically S I \ {a} onto R, a representing 
the point at infinity. Let pa  : S 1 \ {a} ~ N denote this stereographic projection. 
Bounded intervals I on R are in one-to-one correspondence with intervals J = pal ( I )  
on S 1 such that the closure of  J does not contain a .  If  we define 

. ~ ( I )  :=  .~ (p21 ( I ) ) ,  

where [ C ]~ is a bounded interval and 

~ := {./Z.~,(I) I I C I~ is bounded} C ./go, 

then , J ~  is a local, isotone net on ]~ and the C*-inductive limit, uS~, of  .A~-~ is an 
al_gebra of  quasi-local observables in the sense of  Haag and Kastler [19]. Furthermore, 
J/J~ is covariant under the Poincar6 subgroup of the Moebius group which leaves the 
point a fixed (see Appendix I for details). Notice also that the unitary operators 
implementing the rotations of the circle on ,Td provide isomorphisms between the 
different C*-algebras ./Z~ a E S 1. 

Let a E S 1 be fixed. For convenience, we adopt the following notation: if I c 
is an interval (or any other set) we write Is~ for the inverse image of [ by Pa, i.e., 

i s  ~ := p ~ l ( i )  ; 

conversely, if I C S 1, I~ will denote its image in R under p~, I~ := p,~(I). 
On R, the complement of  a bounded interval l := (a, b) is defined by I ~ := 

I<  U I> ,  I< := (-r  a), I>  := (b, r and the algebra, ./i~a(I I~) for the unbounded 
region I<  U I>  is defined as the C*-algebra generated by all . / ~ ( J ) ,  such that J is 
a bounded interval contained in [> or I< .  Note that the weak closure .//S~(I~) -w of 
./~(I<>) is given by 

J ~  ( I ~ ) -  w = J{~(PS ~ (I<>)) = .~(I<> s a ).  (4.4) 

Given an isotone, local net of  von Neumann algebras on IR, ,/~ = {,/~(/) I [ C 
is a bounded interval} we define its dual net by 

.f~d(I) := .~(I '~)  ' , 

,Ad := { ~ d ( i )  [ I C ~ is a bounded interval}. 

Clearly, a net .A  is local if and only if ~/~, _c . /~d 

Definition 4.9. (i) A local isotone net .A  on R is said to satisfy duality if .~d  = 
holds. 
(ii) A local isotone net . ~  

holds. 

on ]R is said to satisfy essential duality if 

.Add = ~/~d 

The following lemma is due to J. Roberts. 
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Lemma 4.10. A local net ~/~ = {'/~(I)}Ic~ on ]R satisfies essential duality if  and 
only if .~d is local. 

Proof Since by the remark preceding Definition 4.9, 

u~ d is local r ~ d  C ._~dd 

we have to show that the converse inclusion ~ d  D_ ./~ad follows automatically if 
is local. Now, by definition, 

~(I;~){ U "'~(/0)} -'r'c- { U '~(/O~)t} -'n', 
IoCItR IoC_.I'R 

where the symbol -n  indicates norm closure and the inclusion follows by locality of 
the net ./{{. Taking commutants on both sides, we obtain 

n "~(Io ~)'' C ./Z~(I'm) ' = ~/~d(I). 
IoCI fy: 

But, {u }' ,/gdd(I) : = ~ d ( I ' ~ ) '  = ~/~d(Io) 

IoCI tR 

{ }' U N = = ~ ( z  o ) 
IoC_/~ IoCI ~R 

and this completes the proof. 

Theorem 4.11. Let /~0 = { ~ ( / ) } x c s  I be a conformal net. Then ~/~ satisfies 
essential duality, for any c~ E S 1. 

Proof. By Lemma 4.10 it is sufficient to show that S d is local. Since . / ~ ( I  '~) is the 
C*-algebra generated by all .As(J)  C_ . /g,(I<)  or ~ ( J )  C_ ~ ( I > )  for J bounded, 
it follows that 

,~d( / )  _-- ~4~(i'm), 

= (~.~(I>) U J ~ ( / < ) ) '  

= Jd( l>sl ) '  N ~ ( I < s l  )' 

= ~ ( ( / > s l ) ' )  n ~ ( ( l < s ' ) ' )  

by conformal duality. But as the following picture shows, 

a 

I<stOI  
�9 ,. $1 

> $1 

i < I i  X z> 
Pa 

~/~((I>s~)') N ~ ( ( I < s l )  ') ---- Jf~((I< U I)s~) n ~/~((I> U I)s~) 

= ~ / ~ ( I <  U I )  - ~  N ~ ( I >  U I )  -w  , 
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by Eq. (4.4). Hence 

.~d(I) = ~(I< U I) -~ n S~(I> U I) -~ . (4.5) 

Now the proof of locality for the net ~ d  is obvious. If 11 n I 2 = (~, we may assume 
that 11 lies on the left of /2:  

so that 

But 

and 

( )  ( )  
I1 /2 ' 

/ l U l l >  2 I2 U I2> , 

11 U I I <  C_ I 2 UI2< . 

Jgd(I1) = Jg((I1 U/ l<)Sl)  N "~((11 U 11>)s, ) 

C_ ~ ( ( I  1 U 11<)$1) 

d 
'~(/2) = '~((12 U /2<)sl ) n '~((/2 U 12>)S 1 ) 

C '~((12 U 12>)Sl) C .~((I I U [l<)Sl) , 

by locality of the conformal net J/~'0. This shows that the net ~ is local and completes 
the proof of the theorem. 

Remarks 4.12. (i) Essential duality was introduced by Roberts [65] in his study of 
spontaneously broken internal gauge symmetries in algebraic quantum field theory. 
(ii) If . / ~  = ./d.a~ then the net . ~  is dual. This situation arises for a massless 

scalar field [53,31] or for the local algebras generated by a U(1)-current [30,31], for 
example. However, in general this equality does not hold; counter examples are the 
local algebras obtained from a Virasoro algebra of central charge c > 1 [31]. 
(iii) It follows from Eqs. (4.4) and (4.5) that .A~ C_ ./~0. 

Theorem 4.13. Let p be a covariant representation of ~/~o localized in an interval 
I o C S 1 and c~ E $1 \ Io  . 

(i) The restriction of p to . / ~  extends to an endomorphism p~ of ~/J~ localized in 
lom 
(ii) The restriction of p to J/I~ extends to an endomorphism pd ~ of .Ji~'7~ localized in 

Io~ such that a P~ 1~s = p~. 
(iii) p~ and pa are covariant under the Poincar~ subgroup of the Moebius group 
leaving the point c~ fixed. 

Proof. (i) Since for every bounded interval ! C ]I{ and every 

A c ,~4~(1) = J ( I s l ) ,  p~(A) :: [?Is I (A) 

is well defined and norm-continuous, p~ extends to .//~. Let J be a bounded interval 
in 1R containing I0R and I. By locality and conformal duality, 

p , (A)  E .~ (Js l )  = ~ ( J )  

since p is localized in I 0. Hence p~ is an endomorphism of ~/J~. 
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(ii) If  I C R is bounded and A E . A d ( I )  then A E S ( ( I  U I<)s  1) N , ~ ( ( I  U I>)$1). 
Hence 

pd(A) : =  [ ( i U l < ) s  I (A) = p(lui>)s I (A) 

is well-defined and extends by norm continuity to ~/~d. 
To prove the second equality, we can use the following arguments. Let 1 and J be 

intervals on S 1 such that I :=  (c~; /3), J :=  (7; c0 and ! n J 7~ ~. It is then sufficient 
to prove that if  A E .A~(I) N ~/~(J) then pi(A) = pj(A). Without loss of generality 
we may also assume that IIAII _< 1. 
(a) Let c~ n ~ a ,  for n ---+ ec, be such that {In}~cr~, 1 n :=  (c~;  /3), is an increasing 
sequence of intervals contained in I .  We first prove that 

{u }-" (.A(z n) n . ~ ( J ) )  = ./{{(I) n . ~ ( J ) .  
hEN 

By taking commutants on both sides and using duality, this equality is equivalent to 

{u }' (.A(Zn) n ~(J) )  = .~(I') V ~ ( J ' ) .  
n E N  

But 

= N 
hEN 

= J ~ ( I ' )  v ~ ( g ' ) ,  

where the last equality follows by conformal invariance of the net [31]. 
(b) It now follows from (a) and Kaplanski ' s  density theorem that there exists a 
sequence (An)hE N with A n E .~(In) n . /~(J) ,  IIAll < 1 such that o) - nlirnooAn = A. 
Then by weak continuity of P1 on ~ ( I ) ,  

pi(A) = w - l im pi(An).  
n - - +  o o  

Since I n C I and A n E ~ ( I n ) ,  

pi(An) = Pin(An), 

and since I n U J is an interval with non-empty complement,  

pi,~ (An) = P l n u j ( A n )  = pxn (An) , 

where the last equality follows from A n E S ( I n )  n ~ ( J ) .  Hence, 

Pi(A) = ~ - lim pj(An)  = p j (A) ,  
n-'-r o o  

by weak continuity of  pj  on . ~ ( J ) .  This completes the proof. 
Let now J C ]~ be an interval containing I0~ and I .  Then 

J U J> 21oR U l U l> , 

J U J <  ~_ IoR U I U  I< , 
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so that by locality and duality, 

P( iu i< )S  1 (A) = p ( j u j < ) s  1 (A) E J g ( ( J  U J < ) s ' ) ,  

P ( l u l > ) s  I (A) = p ( j u j > ) s  I (A) E . ~ ( ( J  U J > ) s l ) ,  

which means that 

p~(A) E . ~ ( ( J  U J > ) s I )  N . • ( ( J  U J<)sl)  = - ~ ( J ) ,  

and this shows that pd ~ is an endomorphism of . / /~.  
We now check that 

p~ I.A~((io~),s) = id k,~((ro~),s)- 

Since .~Jg((Io~) 'R) is the C*-algebra generated by the . ~ a ( j )  with d C (Io~) '~ 
and p~ is norm-continuous, it is sufficient to check that pd].~(Z) = id I ~ ( J ) ,  for 

J C (IoR) '~. We may assume that J lies on the left of  IoR so that (or< U J )  N IoR = 0. 
d j  Hence for A E.  - S ~ ( ) ,  

pd (A) = p(juj<)s I (A) = A ,  

since p is localized in I o and ( J  U J<)sl n I o = (~. This completes the proof 
of  (ii). 
(iii) The covariance of p ,  and pa is an immediate consequence of the Moebius 
covariance of p and the fact that we restrict our attention to Moebius transformations 
leaving c~ fixed and which, consequently, leave , / ~  and , /~a  invariant. 

Remarks 4.14. (i) From now on, when we consider representations of ,//~0 localized 
in a given interval I 0 we will call a E $1\1o a point at infinity. 
(ii) Let Pl and P2 be representations of  J//~0 localized in I 0' and c~ a point at infinity. 

d Since pi~(resp. Pi~) are endomorphisms of ,~ ( r e sp . J{7~  a) for i = 1, 2, they can be 
composed. It is immediate that the composition of Pt and of P2 as representations 
of ,A 0 coincides with Pt~ o P2~ on , / ~  (resp. with pla~ o p ~  on ,/~a) that is, 

(P l6P2)a  = Plc~ o P2c~ (resp. (p lSP2)  d _~ pdlc o P2da). 
(iii) In view of the preceding remarks, we shall usually not distinguish p from p~ 
and p~ and write p for p~ or p~ in the following. 

IV.4. Braid Statistics Operators 

We now proceed to define the notion of statistics of  superselection sectors for field 
theories on the circle. 7 Statistics operators were first defined by Doplicher, Haag 
and Roberts (see, e.g., [13, 14]) for local charges of  theories in four dimensional 
space-time; their results were later generalized by Buchholz and Fredenhagen [15] 
to "topological" charges. It was recently observed that for two-dimensional local 
theories [22] and for three-dimensional theories with "topological" charges [23-25] 
the statistics of  superselection sectors is more general, involving braid statistics. The 
situation considered here is analogous to the one of refs. [23-25] (see also ref. [30] 
for a treatment of  abelian braid statistics in the example of  U(1)-current algebra). 

7 In this section we present a short summary of basic facts concerning braid statistics. For more 
details, see [22, 25, 30] 
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Definition 4.15. Let c~ E S 1 and p~ be the stereographic projection mapping Sl\{c~} 
onto R, as in the last section. If  11, 12 are two intervals on S 1 such that 11 N I 2 = ~3 
and which are mapped by p~ onto bounded intervals on R, we write 11 < ,  I 2 (resp. 
I 1 ,  > / 2 )  if I1R = P~(I1) lies on the left of  12~ = P~(I2) (resp. 11a lies on the right 
of  I2~). 

Definition 4.16. Let Pl and P2 be two representations of  ~/d 0 localized in an interval 10 
and c~ E S 1 a point at infinity. Pick a representation/51 (resp. r unitarily equivalent 
to Pl and localized in an interval/~1 (resp./~1) such that I o N [  1 = ~, o! ~ i ~ ,  [1 ,~ > Io 
(resp. I 0 N I1 = (3, c~ r  /~1 <~  Io) and let J (resp. J )  be an interval containing 

I 0 tO [1 (resp. I 0 tO/~1). If/~plpx (resp. /7p1/~1) intertwines p~ and r (resp. p~ and t51), 
define 

+ : =  [;1,51/92, * Spj 602 j(Fpl  ~, ) C . J ( J ) ,  

ep,6p 2 :=  -F'pl~lP2 ' aV(Fplt~ 1) ~ .~ (Y) .  

Remark 4.17. Clearly, epl6p 2 +  and ffplgp 2 -  do not depend on the particular choice of  
the point c~ at infinity made in Definition 4.16 as long as the conditions specified in 
Definition 4.16 hold. (The next figure shows two equivalent choices, c~, cd, of  points 
at infinity, for I 0, [ l ,  I i ,  fixed.) 

t~  

ilf . 
Io 

L e m m a  4.18. (i) The definition of e+ 18p2 (resp. ep16p2) is independent of the particular 

choice of i 1 ~ > I o and Pl (resp. of I1 <~ Io and ill) as long as they satisfy the 
conditions specified in Definition 4.16. 
(ii) The unitary operators C pl + 6p2 intertwine the representations p16P2 and p26p1, 

plSpz(A)sip16p2 = ~iplspzpzSpl(A ) VA E "Jo (4.6) 

and satisfy 
+ - = ~ .  (4.7) ~Pl ~ ' ePl 6P2 

Proof. See, for example, refs. [13, 22-25 or 30] for the proof  of (i) and of Eq. (4.7). 
Equation (4.6) is an immediate consequence of Lemma 4.8. 

If  p is a representation of ~ 0  localized in some interval, we write p6~ for the 
composed representation p 6 . . .  6p (/-times). 

Definition 4.19. Let B n denote the braid group on n strands with generators 
(71,... crn_ 1 and relations 

~a i+l~  i = (Ti+la~ai+ l , i = 1 , . . .  n - 2,  (4.8) 

O'i(Yj.~-(Yjff i if I i - - j l > l ,  i , j = l , . . . n - - 1 .  (4.9) 
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If p is a representation of  ~/~0 localized in I 0 we define 

6i-1, + ~ i 1 , . . . n  1 (4.10) ~ ( ~ i )  :=  P ~ep6p~, = - �9 

Theorem 4.20. (i) The map 7vP n : B~ --~ p6~(./~o)~ extends to a unitary representation 
of the braid group on n strands B n. 
(ii) This representation depends, up to unitary equivalence, only on the sector [p] 
ofp. 

Proof. To prove (i), it is sufficient to check the relations (4.8) and (4.9) for the 
operators defined by Eq. (4.10), see refs. [23-25 or 22]. Part (ii) follows from Remark 
4.17 and arguments analogous to the one used in ref. [13], Theorem 4.3. 

IV.5. Superselection Sectors with Finite Statistical Dimension 

We now show that several classical results on the superselection structure of sectors 
having finite statistical dimension in theories defined on Minkowski space-time also 
hold for conformal field theories on the circle. Our strategy is the following. We 
choose a point at infinity c~ E S 1 and apply well-known theorems of Doplicher, 
Haag and Roberts (as adapted in ref. [22] for low-dimensional theories) to the nets 
defined in Sect. IV.3. We subsequently show that all the results obtained in this way 
are independent of  the particular choice of  the point at infinity. Clearly, this way of  
proceeding is not very natural in the present context. It has however the advantage 
of  considerably reducing further technical work. 

We start with the following lemma. 

L e m m a  4.21. Let p be a covariant representation of ,/~o localized in the intervals I 
and J C_ $1; let p be unitarily equivalent to p and localized in I. Then 

p (~( I ) ) '  N J~(I) ~= p(.~(J)) '  N . ~ ( J ) ,  (i) 

p(A(I)) t n .•(I) ~- p( .~( I ) ) '  N . .~(I). (ii) 

Proof. Ad (ii). Let U be a unitary operator intertwining p and p, 

p(A)U- -  Up(A),  VA E ~ 0 .  

By locality and duality, U E . ~ ( I )  so that 

p(J/d(I))' n S ( I )  ~ U{p( .A(I) ) '  n t .d(I)}U* 

= Up(./~(I))'U* n U.~(I)U* 

= ( U p ( ~ ( I ) ) U * ) '  n J~( I )  

= pC~/~CZ))' n S C I ) .  

Ad (i). Choose g C PSU(1; 1) such that 9" I = J .  Then 

p( ~ (  J) )' n ./~( J) -~ 7r~ (g)(p(.J~( J) )' N ~(J))Tr0M(g) * , 

= {~rm(g)p(S(J))'Tvm(g)* } N ~r~(g)~/~(J)Tcm(g) * , 

= pg(Olg(,/~(J)))' N J~(I) 

= p g ( ~ ( I ) ) '  n ~ ( I ) .  

But pg is unitarily equivalent to p and localized in I ,  so that the conclusion follows 
from (ii). 
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Definition 4.22. Let [Tr] be a sector of  ~ o .  Pick p �9 [Tr] localized in I C S 1. The 
sector [Tr] is said to be locally irreducible if 

p(~ ( I ) ) '  n . :g(I)  = C .  ~ ~ .  (4.11) 

Remark 4.23. (i) It follows from Lemma 4.21 that Eq. (4.11) is independent of  the 
particular choices of p �9 [:r] and of I C S 1. 
(ii) Let p �9 [:r] be localized in I and a �9 S 1 a point at infinity. Since 

P('~'~o)' C_ p(~da)' C_ p(J~(I))' n J~(I) , 

Eq. (4.11) implies that the sector [Tr] is irreducible. 
Given a C*-algebra ./~ acting on a Hilbert space . ~ ,  let .//dJ~ denote the set of  

bounded linear mappings from ./~ into J d ( . ~ )  equipped with the point weak open 
topology (see ref. [13]). If  r �9 J//~'z, we define the norm of r as usual, 

IIr :-- sup [lr 
IIAll 

and the unit ball 

is a compact subset of ~ in the point weak open topology. 
Let p be a representation of ./g0 localized in the interval I ;  choose a point at 

infinity a �9 S ~, and let I R = p~(I), where p~ : S l \ { a }  ---* I~ is the stereographic 
projection already considered in Sect. IV.3. In the following we do not distinguish 
between p and pd ~" Note that pd is localized in I~t. 

Definition 4.24. A positive linear mapping r �9 .f/{.d~ is called a left inverse for p 
on ~ d  if 

r = r  VA, B �9 . ~ d  (4.12) 

r  = ~ .~ .  (4.13) 

Remark 4.25. (i) Since a positive mapping is automatically self-adjoint, we also have 
that 

r = Ar  VA, B �9 ~ d .  

(ii) If  p is localized in I then 

(iii) Since the net ~/Z~ is dual on •, for any interval J _D I~,  

r  C_ j /~d( j )  

so that r maps ~/~d into .~d .  

We now pick a sequence of bounded intervals {Ik}ke•, Ik C_ ~ ,  "converging" 
toward infinity in the following sense. For any bounded interval I C ~ ,  there exists 
ko(I) E N such that 

I n I~: = ~ Vk >_ ko(I). 
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If Pk is a representation ofJd~ 0 localized in Iksl and U k a unitary operator intertwining 
p and Pk, 

pk(A)Uk = Ukp(A) VA E - ~ 0 ,  (4.14) 

then 
p(A) = l im U~ AU k VA E ,ff~ , 

k --+ o o  

where convergence is understood in the norm topology. 

Lemma 4.26. Let U~, k c N, be defined as above. Then the sequence of maps 

{adUk}ke ~ c_ ~ i  g~ has at least one limit point and every such limit point is a 

left inverse for p on ~ .  

Proof. See ref. [13], Chap. III 

Lemma 4.27. The set of all left inverses of a given endomotphism p on , ~  is a 

non-void, compact convex subset of the unit ball .f/{~'l g~ . 

Proof. See ref. [13], Chap. III. 

Lemma 4.28. Let p be locally irreducible, C p8 p + be as in Definition 4.16 and r a left 

inverse for p on ~ .  Then 
(i) O(e+~p) = A . l ~ ,  for some A C C. 

(ii) r p) = ,~, 1.~, ()~ defined by (i)). 
(iii) I f  r is a left inverse for p obtained by the limiting procedure of Lemma 4.26, 
then 

I]r Z [~[2 ][A*AI[, 

r _> I;~I2r 
where )~ is defined by (i). 

Proof. Ad (i). Pick A E ~ ___ ~ d ,  then 

r = r 

= r 

= r = p(A)O(~+6p) 

so that r E P(,~a)' c p(~/~(l))' n J~(l)  = C �9 1 ~ ,  by the local irreducibility 
of p. This completes the woof of (i). Part (ii) follows ~ from Remark 4.25 (i) and 
Eq. (4.7). For the proof of (iii), see ref. [13], Chap. III. 

Definition 4.29. Let p be a locally irreducible representation of ./d o localized in I 
and a a point ai infinity. We say that p has finite statistical dimension if there exists 
a left inverse r for p on ~7~ such that r = A. 1,~ with A r 0. The statistical 
dimension of p is then defined by 

d(p) := I~1-1 . 

Theorem 4.30. (i) I f  p is locally irreducible with finite statistical dimension then p 
d has, a unique left inverse r on ,/~c~. 

(ii) The sequence of charge transport operators {ad Uk}kE N defined in Eq. (4.14) 

converges to r in . ~ ,  
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(iii) I f  ~ E [p] is a representation of JiS o localized in an interval J such that a is a 
point at infinity for ~, then ~, too, has a unique left inverse 0 on ~ d  and 

= 

Proof. See ref. [13], Chap. III and ref. [22]. 

We now establish that the statistical dimension is characteristic of the locally 
irre5ucible sector [p] by showing that its definition is independent of the particular 
point at infinity, 

Theorem 4.31. Let p be a locally irreducible representation of ./~ o localized in I C S ~ 
and a,/3 be two possible points at infinity. I f  p has finite statistical dimension and r 
(resp. r is the left inverse of p on ~/~d (resp. on . ~ )  then 

for any interval J =D I such that a,/3 ~ J - .  In particular 
+ + 

so that d(p) is an invariant of the sector [p]. 

For the proof of Theorem 4.31 we use the following concepts. 

Definition 4,32. (i) Given an interval I C S l, let ~/~i be the C*-inductive limit of 
the algebras ~ ( J ) ,  J ~ I. Clearly, -/~I C_ .~( I )  and ~ t  = ~ ( I ) .  
(ii) Let p be a locally irreducible representation of ~ 0  localized in I, and J an 
interval such that J =D I. A local left inverse for p on .//~j is a positive linear mapping 
Cj E ~ ' ~ J  satisfying Eqs. (4.12), (4.13), for A, B C ~ a ,  and such that 

r  ~ c C .  (4.15) 

Proof of Theorem 4.31. Since p has finite statistical dimension, the unique left inverse 
7d  + r for p on J ~  satisfies r p) = ~ 1 ~ 0. Let J be an interval such that 

J D I, a r J - .  The restriction of r to . ~ j  is a local left inverse for p on ~4j.  
If J = (% ~), we pick a sequence of intervals {Jk}kcr~ on S 1 such that Jk C_ J and 
which "converges towards ~5" in the following sense. If J is any interval on S 1 for 
which ~5 r ] -  then there exists k0(J) such that 

Y n J k = 0  w>_k0(J). 
For k C N, pick a representation Pk localized in Jk unitarily equivalent to p and V k 
intertwining p and Pk, 

pk(A)V k = Vkp(A ) VA E .~o. (4.16) 

Just as in Lemma 4.26, any weak limit point r of {adVk}kE N in ~J/J~i 2d is a left 

inverse of p on s/~ d and, as in Lemma 4.28 (i), it has the property that + r162 = ~'~, 
# E C, since p is locally irreducible. Hence the restriction of r to ~/2~d is a local left 
inverse for p on ~ d .  Furthermore, the proof of Lemma 4.28 (iii), as given in ref. 
[13], can be repeated, word by word, to show that if r is any local left inverse for p 
on ~ j  and r = ~]. 1, ~/C C, then 

r > [~IeCe(A*A) VA E ~ j .  (4.17) 
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We now proceed as in ref. [13]: the set of  local left inverses for p on J g j  is a compact 

convex subset of  . / ~ a ,  since Eq. (4.15) is also preserved by convex combinations 
and taking limits. Hence, by the Krein-Milman theorem, there exists an extremal local 
left inverse text such that + + 05ext(CpSp) = ?]" ~ • 0, because r = A. 11 r 0. But 

05ext = (1 -- ~2)051 -}- ~2056 , { ~ R ,  0 < {2 < i 12 ' (4.18) 

where 051 . -  05ext - ~2056 1 - {2 is still a local left inverse for an ~ga since by Eq. (4.17) 

it is still a positive map. Equation (4.18) contradicts the extremality of 05ext unless 
+ 

05ext ~ 056. In particular, 06(epSp) = p - 1 ~ 0, and 05e• is the unique extremal local 
left inverse on .egg with finite statistical dimension. Repeating the same construction 
for the second endpoint "y of  J we see that 05v I,Aj = 05ext = 056 L//,j" In particular 

05-rLA(2) = 056[~(]) for any interval J ~ J .  Letting the endpoints "7 and (5 of J vary 
we obtain the statement of the theorem. 

Corol lary  4.33. Let p be a locally irreducible representation of ~go localized in the 
interval I C S 1, and having finite statistical dimension. Let c~ C S 1 be a point at 
infinity and J =~ I an interval such that ~ ~ J - .  The left inverse 05~ of p on ,/~d has 
the property that 

05(.eg(J)) c_ .eg(J). 

Proof Let J0 = (% ~) be any interval such that J0 =~ J.  Choose a sequence of 
interval {Jk}keN, Jk C_ Jo, "converging towards ~" as in the proof  of  Theorem 4.31, 
representations Pk localized in Jk and interwiners V k satisfying Eq. (4.16). Clearly 
V k c ,eg(Jo), so that if A E J ~ ( J )  then 05~(A) E S ( J 0 ) ,  since it is a weak limit point 
of  VkAV ~. This means that 

05(~(J ) )  c_ N ~g(J0) .  
Jo =D J 

Because of the conformal invariance of the net [31], 

s ( J )  = N z ( 4 )  
Jo>J 

This completes the proof of  the corollary. 

The following theorem, due to Longo [67], is also valid in the present situation; 
(see also ref. [22], Eq. (4.40), and reE [25], Eq. (6.38), for related results). 

T heo rem 4.34. Let p be a locally irreducible representation of,eg o with finite statistics 
localized in I and c~ a point at infinity. Then 

Ind[p(,eg(I)) : ,eg(I)] = d(p) 2 , 

where Ind[. : .] denotes the minimal index of the inclusion p(.eg(I)) C_ ~a(I). 

Proof It follows from Corollary 4.33 that e := p o 05 is a conditional expectation 
of J~ ( I )  onto p@g(I)). Since p is a localized endomorphism of ~ d ,  we construct a 
localized endomorphism of j d  conjugate to p just as in ref. [22], Appendix B. The 
proof of Theorem 8.5 in ref. [67] now shows that 

d(p) 2 Inde [ p ( ~ ( I ) )  : S ( I ) ] ,  
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where Ind,[. : .] is the index associated to the conditional expectation e. Since p is 
locally irreducible, Inde [. : .] coincides with the minimal index [67] and the proof is 
complete. 

Since the set of (locally) irreducible representations of  J~0 is not closed under 
composition, we must generalize the previous considerations. At this point we need 
to assume that the superselection structure of a conformal net ~ 0  can be determined 
by a single local algebra. 

Assumption 4.35. Let p, p'  be representations of  ,A~ 0 localized in I .  Suppose that 
S E . • ( I )  and that 

S p I ( A )  = p'~(A)S, VA E . ~ ( I ) .  

Then S intertwines p and p' ,  i.e., 

Sp(A)  = p ' ( A ) S ,  VA  E . A  o. (4.19) 

Remark 4.36. (i) J. Roberts has shown that this assumption holds for dilatation- 
invariant theories on Minkowski space-times of dimension greater or equal to three 
(see ref. [66], Theorem 4.3). However, the proof given in [66] does not apply directly 
to the present situation. 
(ii) Equation (4.19) implies that, for p localized in I ,  

p(.A~(I))t N , • ( I )  = p(.7//~o)' , 

so that, in particular, irreducibility (Definition 4.3 (i)) and local irreducibility (Defini- 
tion 4.22) coincide. 

Definition 4.37. Let p be a representation of Jg0 localized in I and a E S 1 a point 
at infinity. 

(i) A left inverse 05 for p on ~g~ is said to be standard if 

+ + * + * + 05(epSp)05(ep6p) 
(ii) The representation p is said to have finite statistical dimension if there exists 

a standard left inverse of p on ,/?~~ such that + * + 05(ep6p) 05(epSp) = ~ .  ~.~ r 0. The 
statistical dimension of p is then defined by 

d ( p )  • [ ~ [ - 1 / 2  . 

The following results are adapted from the usual setting to the present situation 
without essential modifications. 

T h e o r e m  4.38. (i) Let p be a representation of  ~/~ o having finite statistical dimension. 
Then p is a finite direct sum of  irreducible representations o f  Jg  o having finite statistical 
dimension, 

p ~-- ~ p~ , d ( p i ) < o o  gi  = l, . . . m,  
i = l  

TIZ 

and d(p) = ~ d(pi). 
i=1  
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(ii) I f  Pl and P2 are representations o f  ~ o  having finite statistical dimension then 
Pl 8P2 has finite statistical dimension and 

d(Pl op2) = d(pl) �9 d(p2). 

Proof. (i) Since P(.~o)' C p(~d)~ ,  the proof that p is a finite direct sum of 
irreducible representations of -~0 is just as in ref. [13], Lemma 6.1. Covariance of 
the subrepresentations then follows by the proof given in ref. [14], Lemma 2.2. The 
additivity of the statistical dimension follows as in ref. [22], Eq. (3.45), for example 
(ii) See ref. [22], Lemma 3.5 and Eq. (3.34). 

We now proceed to define conjugate representations. 

Definition 4.39. Let p be a locally irreducible representation of ~/~0 localized in I. 
A locally irreducible representation/5 of .~0 localized in I is said to be conjugate to 
p if p8/5 ------/58p contains the vacuum (identity) representation with multiplicity one. 
That is, there exists an isometry/~ in/58p(.~0)t such that 

/58p(A)R = R A  

+ It then follows that R : =  Cp6pR satisfies 

pS/5(A)/~ = / ~ A  

V A � 9  0 . 

VA �9 ./~o. 

L e m m a  4.40. Let p be localized in I , /5  a representation conjugate to p and ~ C S 1 
a point at infinity. 
(i) I f  ~ (resp. q~) is a left inverse for  p (resp./5) on ~ a ,  then 

r = ~(e+8~), (4.20) 

in particular, the statistical dimensions of  p and/5 coincide, d(p) = d(/5). 
(ii) The representation/5 conjugate to p is unique up to unitary equivalence. 

Proof. Ad (i). The proof of Eq. (4.20) is identical to the one given in ref. [14] chapter 
III, as already noticed in ref. [22]. 

Ad (ii). The assertion follows just as in ref. [14], Theorem 3.3. 

Guido and Longo [33] have given an explicit construction of the conjugate 
representation which we now adapt to our setting. 

Definition 4.41. Let h c PSU(1; 1) and K C S 1 be an interval. Denote by I K the 
reflection about the endpoints of the interval K (see Appendix I) and let 

j K ( A )  :---- ad J K ( A )  = J K A J K  VA �9 .~/3(.~), 

where JK is the modular conjugation of ~/~(K). If p is a representation of ~ 0  localized 
in I, define 

/ 5 1 f ' h ( A ) : = ~ h O J K O P z K . h - l . a O j K O ~ h - l ( A )  VA �9 ~/~(J). (4.21) 

Theorem 4.42. (See ref. [33], Theorem 8.3). Let p be a locally irreducible represen- 
tation of  ~ o localized in I. 

(i) The family /sK,h -K,h : { p j  } J c S  1 defines a locally irreducible representation of  
�9 ~ o  localized in h .  I K �9 I. 

(ii) fiK, h ~ /sK',h' , for all intervals K ,  K t C S 1 and for  all h, h ~ �9 PSU(1;  1). 
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(iii) The representation fiK,h transforms covariantly under the unitary representation 
of PSU(1; 1) given by 

7rMK,~O ) := a K ojK(~M(adsK h !0) ) ) ,  9 E PS~U(1; 1). 

That is, 

M ~ - K , h  M ~ * I r p K , h ( g ) p g _ l .  j (A)TrpK,  h(g)  = fitf'h(ag(A)) kfA C ,/Z(g-I j ) ,  (4.22) 

VO E PSU(1; 1), where 9 denotes as usual the image of O by the canonical projection 
in PSU(1; 1). 
(iv) Let J ~ I be an interval and u a unitary operator implementing p~ on JZ(J). If 
h c P S U ( ~  t) is such that h. I j "  I = I then the unitary operator j j ( u  ) implements 
-J ,h  
fl j on  ~ (  J ) .  

For the convenience of the reader, a proof of this theorem is reproduced in appen- 
dix III. 

Corollary 4.43. Let p be a locally irreducible representation of .~o localized in l 
and having finite statistical dimension. If J ~_ I and h c PSU(1; 1) is such that 
h �9 I j  �9 [ = ! then fiJ,h is a representation conjugate to p. 

Proof. By Theorem 4.43 (iv), we know that if flj is unitarily implemented by u on 
-J,h .A(J).  Then flj is unitarily implemented by j j ( u * )  o n  , ~ ( J ) .  Hence it follows from 

-J,h Lemma 2.1 of ref. [33] that Pa is a conjugate endomorphism of p j  on .~(J) .  Since 
p has finite statistical dimension it follows from Theorem 4.34 (or directly from the 
generalized Pimsner-Popa inequality, see ref. [67], Th. 4.1) that the minimal index of 
the inclusion p(.//~(J)) C .~z/j(j) is finite. Since p is locally irreducible, we may apply 
Theorem 4.1 of ref. [68] and we obtain that 

p o f i (~ (J ) ) '  N .•(J) 

contains an isometry such that 

p o ~ ( A ) R = R A ,  V A E ~ ( J ) .  

Furthermore, the endomorphism fi o p of S ( J )  contains the identity representation 
with multiplicity one. By using explicitly Eq. (4.19), we see that 

pS~(A)R = RA  VA E JZ o , 

and that the representation pSfi of '~0 contains the identity representation with 
multiplicity one. This completes the proof of the theorem. 

Remark 4.44. Given a sector [p] of J~0 having finite statistical dimension, the map 
[p] ---+ [p] := [fi] defines a conjugation on the set of sectors of ,'{0 having finite 
statistical dimension. 

We conclude this section by summarizing well-known results on the fusion rule 
algebra associated to a list of representations of '~o and by presenting some natural 
conjectures concerning it. 

Definilion 4.45. Let i, j and k denote irreducible sectors of the conformal net '~0 
having finite statistical dimension. If Pi (resp. pj) is a representation of -~0 belonging 

to the sector i (resp. j),  we denote by Ni~ the multiplicity of the sector k in the 
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decomposition of p~6pj (i.e., the number of  irreducible representations belonging to 
the equivalence class k in the direct sum decomposition of pi&Pj). 

Let L denote a list of irreducible sectors of  the conformal net S 0 having finite 
statistical dimension, closed under the decomposition of  product representations and 
conjugation. The multiplicities N ~  for i, j ,  k E L have the following well-known 
properties. 

L e m m a  4.46. (i) N ~  = N~i = N 3- = N~,  for i, j ,  k E L 
k i  

(ii) N ~  = 6j3, where 1 c L denotes the sector of the vacuum (identity representation). 
(iii) ~ ~ l t t N~jN~k ~ j, k, l E = N~tN~k,for i, L. 

scL i c L  

(iv) ~ Nlpkd(1) = d(p)d(k), where d(1) denotes the statistical dimension of the sector 
l E L  

1EL .  

Proof See ref. [25] for example. 
On the positive lattice N L, we define a distributive, associative and commutative 

product by setting 

i •  
k 

and an involutive and additive conjugation by 

j ~ j ,  

as in Remark 4.41. This defines a fusion rule algebra (I) in the sense of ref. [69]. The 
map 

i ~-~ N i =- (Nikj)j,k~L 

defines a faithful representation of the fusion rule algebra (I) on the lattice N L by non- 
negative integer ILl x ILl matrices. These matrices are called fusion rule matrices. An 
extensive study of properties of fusion rule algebras derived from low-dimensional 
algebraic quantum field theories as well as a complete classification of those algebras 
generated by a single element having statistical dimension not exceeding two can be 
found in ref. [69]; (see in particular Th. 7.3.11). 

We now restrict our attention to theories having only finitely many sectors, 
ILl < c~, so called rational theories. 

Definition 4.47. Given a sector i C L, let p~ be a representation belonging to the 

sector i and 7r~ be the unitary representation of P ~ U ( 1 ;  1) implementing the Moebius 
automorphisms of the net ~/~0. 

(i) The generator of rotations for the representation 7r m of PSU(1; 1) will be denoted m 
by/ (p~ and the generator of  rotations in the vacuum representation by K .  
(ii) The (conformal) spin s i of  the sector i is defined by 

e 27risi " 1 . ~  = 7rM(R(27r)) = e 27riKpi  , 

where R(27r) denotes the rotation of 27r in PSU(1; 1). The real number s i is defined 
modulo 1 and is an invariant for the sector i. Of  course 81 : 0(mod 1) holds for the 
sector of  the vacuum representation. 
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As noticed in refs. [25] and [70], if a theory is rational one can define two matrices, 
S and T, as follows: 

S := (Sij)i,j~L , where Sij :=  ( ~  d(1)2~-l/2r 
\ p E L  / 

and 
~ i j  : ~  Z k 2~ri(si+s" N~je 3 -Sk)d(k), 

kEL 

T :-~ ( T i j ) i , j e L  ~ w h e r e  Tij := C27ri(sj--~ . 

The constant a, defined modulo 8, is given by 

i@L 

If  S is invertible, it diagonalizes the fusion rule matrices N i, i E L, 

Slj jEL" 

Furthermore, S and T are then unitary and satisfy the relations 

S 2=(TS)  3 = C ,  T C = C T = T ,  (4.24) 

where C = (~i3)i,jEL is the charge conjugation matrix. That is, S and T generate a 
projective unitary representation of  PSL(2; Z). As proven in ref. [70], S is invertible, 
provided all sectors i E L satisfy braid statistics (i.e., provided ep~sp~ + ~ em6m'- for 
p ~ E i ,  V i E L ) .  

We are now ready to formulate some important conjectures, in analogy with ideas 
in rational conformal field theory. 

Conjecture 4.48. Let �9 = ~ L  be the fusion rule algebra of a rational conformal net 
.~0, ILl < oc. For i E L and pi E i, we expect the operator e2~i~KP~ to be trace 
class for Im ~- > 0. 

Defining the specialized characters 

Xi0-) :=  t r  e2rci'r(KPi-~ , i E L ,  (4.25) 

where cr is determined by Eq. (4.23), we conjecture that the modular transformations 
1 

T --~ - -  and ~- -~ 7 + 1 are implemented by unitary matrices S x = (Sij)i,jELX and 
7" 

T x T x : ( i j ) i , jEL '  

jEL  

Xi(T+ I)=- ZT~jX j (T) ,  iE  L, 
jGL 

satisfying Eq. (4.24). As an immediate consequence of Eq. (4.25) and of the definition 
of T one sees that T = T x. Our main conjecture is that 

S x = S (4.26) 

also holds. 
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It then follows from Eq. (4.26) that for i E L, 

d ( i ) -  Si l  --  SiX1 --  lim ken - -  lim Xi(~-) (4.27) 
S l l  S~I "r--+ioc ~ S l l X l ( T  ) "r---~0 X l ( T )  " 

IEL 

This last equation characterizes d(i) as the relative "size" of the sector i E L compared 
to the size of the vacuum sector [71]. (It is conceivable that a direct proof of (4.27) 
is easier than to proceed via a proof of (4.26).) 

IV.6. Superselection Structure of Conformal Nets Constructed 
from Vacuum Representations of Loop Groups 

We conclude this chapter by explaining how the conformal nets constructed in Sect. 
III.9 fit in the usual framework given by the algebraic theory of superselection sectors. 
We proceed by analogy with well-known results of algebraic and conformal quantum 
field theory. 

Fix a positive level m and consider the set p(+m) of irreducible representations 

of LG o. Let (Trr~Ao , '~-~A0) be the vacuum representation of LG o at level m, 

'/(~0 : =  { ~ m A o ( I ) } I c S  1 the conformal net constructed in Sect. Ill.9 and ~0 M 
the unitary representation of the Moebius group on .:'7~%~A0 which implements the 

corresponding automorphisms of LG o. In the context of loop groups, we obtain 
representations of the conformal net ,//~0 by the following lemma. 

Lemma 4.49. Let fl r P~_"~). The representations 7rmA ~ : ,/Z~(I) ~ 7rmA0(,//~(I)) and 

Ir A : , ~ ( I )  ~ 7rA(.~(I)) of L~-G o determine a representation zc A = {TrA,i}icsl of the 

vacuum conformal net ,~o = {'~//~mAo(I)} I c s  1 such that for each I C S l, 

7r A, I : ~A~mao (I) ---+ ~ a ( I )  

is an isomorphism. 

Proof. It follows from the proof of Theorem 3.3 that for each interval / C S 1 there 
exists a unitary operator U : ' ~ A 0  --+ t~A such that 

U~r~Ao ( f )  = 7r A( f )U , V f E ~ (  I)  . 

Hence the map 

~rA,r(Tr,,~Ao(f)) := 7rA(f), Vf E . ~ ( I )  (4.28) 

extends to an isomorphism 7rA, x = , S~Ao( I  ) ---+ ~//~A(I) for all intervals I C S 1 . The 
consistence of these representations, Moebius covariance and the spectrum condition 
are immediate consequences of Eq. (4.28). This verifies all properties of Definition 
4.1 and completes the proof of the lemma. 

If ~ E P(+'~), we will also denote by ~ the corresponding superselection sector 
obtained by the preceding lemma. It follows from Lemma 4.49 and Lemma 4.6 that 
every representation {TrA,i}icsl of S 0 can be obtained by composing the vacuum 
representation ~rmA ~ with a localized endomorphism p of / 0 .  We may therefore 
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apply the general theory presented in Sects. IV.l-IV.5 to define a composition of 
representations, unitary braid group representations, etc. 

What is missing to complete the picture is a mathematically rigorous result 
showing that the statistical dimension, d(l[), of every sector 1[ is finite and permitting 
to compute d(~) explicitly. However, assuming that the conjecture described in 
Eq. (4.27) of the previous section holds, this gap can be filled. From Eq. (4.27) 
and formulas in [62] we obtain the following expression for d(~): 

d(~) = lim XA(r; ~)  
-~o X.~Ao (r; ~)  ' 

where XA(r; ~)  are the specialized characters of Kac and Wakimoio (see ref. [62], 
Sect. 4.8). It follows from the asymptotic expansion given in Sect. III.8 and Eq. (2.2.1) 
of ref. [62] that 

a(-/~) (27 r i / ] -  1 (p)'~ 
d(A) - a(mAo) - tr aexp \ m + 9  J 

where the trace is taken in the irreducible, finite-dimensional J~5~-module with highest 
z 

weight A, and v- l (p)  is the inverse image of p = ~ A i in the Cartan subalgebra 
i=1 

of ,T/by the isomorphism v introduced in Sect. III.1. Due to Theorem 4.35, this 
formula coincides with a conjecture of Wassermann formulated in ref. [29] 

Explicit formulas for the S and T matrices are also well-known in this context; 
(see ref. [62], Eqs. (2.1.5)-(2.1.11)): 

T = (Tfiq][2)fi_l,fi_ 2 r p(+m), TA1A 2 = e 2~i=& 6fi_1~2 ' 

where 

SA :=- 2 ( m + 9 )  -- 29 

is called the modular anomaly by Kac and Wakimoto. Applying the so-called "strange" 
formula (see ref. [621, Eq. (1.1.1)), we obtain that 

s A = h A - or, 

(see Sect. III.7 for the definition of h A and ~r) so that h A coincides with the spin of 
Definition 4.47 and a with the constant defined in Eq. (4.23). 

For the S matrix one has 

S = (S][1][2)][! ,/[2 ~ P~(~) ' 

SAiA2 = a(Ti,)tr& ( exp -27riu-'(A' + p) ) 
m + g  

--27rip-1(P)~ . ( t r z  --2rcil"-X(p)~2~ -1/2 
a ( ~ l ) = t r &  ( exp m + 9  / ( E exp - - - - -  

Given 1[ E P(+'"), let tA := m~ ~ + tA, where for a .~-module with highest weight A, 
tA is defined as the highest weight of the contragredient CJ-module. It follows from 

C S 2 = = ( 5 ~ ) ,  
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where the first equality is given by Eqs. (4.24), (4.26) and the second follows by Eq. 
(2.1.11) of ref. [62] that t~  is the conjugate sector to ~. 

Finally, we remark that the braid group representations of Sect. IV.3 are expected 
to be of Hecke [72] or of Birman-Wenzl [73] type in these examples. 

In conclusion, we have proven partial results strongly suggesting that the irre- 
ducible representations of a loop group at fixed level provide examples of algebraic 
conformal field theories with finitely many superselection sectors corresponding to 
chiral WZW-models [74]. 

For a complementary approach to these problems and complete results in the 
examples of the chiral Ising model and a class of level-one Kac-Moody algebras see 
[80]. 

Appendix I. Notation and Geometry 

Let S 1 := {z �9 C I lzl -- 1} be the unit circle in C and S+ := {z �9 S l I lmz  ~ 0} 
its upper and lower part. If we denote by 1 any open, non-dense interval of the circle 
then, 

I '  := (SI\I) ~ 

is the interior of its complement in $1: The group SU(1; 1), 

SU(1 ;1 ) :=  ( A =  ( ~  6~/3)EM2(C)ic~12_l /312=l} 

acts as a transformation group on Sl: 

(A;z) E S U ( 1 ; 1 ) x S I ~ - - ~ A . z = ( ~  ~ ) . z  

o~z + /3 
: -- /~z § 5~" (hi . l)  

This action factors to a transitive action of PSU(1; 1) = SU(1; 1)/{+1 }. PSU(1; 1) 
is the group of fractional linear transformations of the circle (Moebius group). 

The geometric interpretation of the action of SU(1; 1) on S 1 is most easily seen 
by performing the stereographic projection of $ 1 \ { - 1 }  onto 1I( which maps - 1  �9 S 1 
on oc: 

it is given by 

2 C SI\{--1} ~ x(z) E R,  

x := (-i)  z -  1 x(~i) = • 
z + l '  
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Setting T := 1 we may write 

x = T .  z (AI.2) 

using the same notation as in Eq. (ALl). Conjugation of SU(1; 1) by T provides an 
isomorphism of SU(1; 1) onto SL(2; N), 

r  )SL(2;IR) 

A, > A := r 
:= T A T  -1 . (AI.3) 

In general, we will denote elements of SU(1; 1) by capital latin letters and the 
/ 

corresponding elements in SL(2;IR)by the same letter tilded. If A =  (~- ~ ) c  
x t - -  

( R e c k - R e / 3  I m a + I m / 3 )  ( ;  bd) 
SU(1;1) then ii = \ I m / 3 - I m a  Reck+Re/3 := E SL(2;R). It 

follows from Eqs. (AI.1)-(AI.3) that the action of SU(1; 1) on S 1 corresponds to 
the action of SL(2; IR) on R as fractional linear transformations, 

(A;x) c SL(2;R) x R .  x,  
a x + b  

> ~ i . x . -  cRu{oo}. 
c x + d  

Only the subgroup of SU(1; 1) which leaves -1  fixed corresponds to well-defined 
transformations of R onto itself. This subgroup is mapped by ~ onto the subgroup 

of matrices of the form 0 a - I  of SL(2; R). We call this subgroup the Poincard 

subgroup, since it corresponds to translations and dilatations (see below). 
We now define the one-parameter subgroups of SL(2; R) which are used in Chap. II 

of this work. We also exhibit the corresponding subgroups of SU(1; 1) (obtained by 
applying the isomorphism ~-1). 

(i) Translations 

pE]R ,  

-_ ( 1 + ip/2 ip/2 "~ 
T(p) - i p / 2  1 - i p / 2 ]  c s u ( 1 ;  1). 

\ 

~(p)  . x = x + p ,  x c R .  

(ii) Dilatations. 

t E I R ,  
0) 

e~ t E SL(2; ~) < 

(chTrt shTrt) 
D(t)  = shTrt chTrt ~ SU(1;1). 

/)( t) .  x = e -27re �9 x,  x c IR. 
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(iii) Special conformal transformations 

Sin) = (1  - in~2 in~2 
- i n ~ 2  l + in/2  ] E SU(1;1). 

9? 
& n ) .  x - -  ~ I~ u { o ~ } ,  x c R. 

n x +  1 

(iv) Rotations on IR. 

�9 t E R /2Z ,  
cosvrt s invr t )  

/~(t)= - s i n r r t  coster ESL(2 ;R)<  

e_i~ t c SU(1; 1). 

cos rctx + sin rot 
/ ~ ( t ) . Z = _ s i n r r t . x + c o s r c t  E R U { o c } ,  x E R .  

The following elementary facts about the structure of SL(2; 1R) will be useful. 
SL(2; iR) is a simple, real, non-compact Lie group. Each element A of SL(2; R) can 
be uniquely decomposed as a product of translations, dilatations and rotations: 

= c: + d e �9 (c2 + 0 . 1 d - 
1 0 (e 2 -{- d2) 1/2 ~ e 

(Iwasawa decomposition). That is, as a manifold, 

SL(2; R) --- T • D x __R, where 

{ ( 1  p ) [  } 
T : =  T ( p ) =  0 p E R  , 

D : =  / ) ( t )  = 0 e '~t t ~ R , 

{ ( sin' / / 
_R:= ( t ) =  -s invr t  cosrrt t E R / 2 g  , 

are the one-parameter subgroups of translations, dilatations and rotations, respectively. 
It follows that SL(2; R) is connected and that its fundamental group is infinite cyclic. 

The Iwasawa decomposition of a special conformal transformation is 

( 1 ~ )  = ( ~  s i n 0 c o s 0 ) ( C o O  01 ) ( c o s 0  - s i n 0 )  
tg 0 1 cos-~ sin 0 cos 0 J 

2) for 0 E -~-,  . This implies that the one-parameter subgroups of translations, 

dilatations and special conformal transformations generate SL(2; N). 
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The following convention will be used to describe intervals on S 1. If  z, w E S 1 
then (z; w) is defined as the interval on S I which is covered by walking from z to w 
in ant• direction (direction of increasing angle coordinate): 

The interval (w; z) is then the complement of  (z; w) : (w; z) = (z; w)/. For 
example, S+ = (l; - 1 )  and S_ = ( - 1 ;  1) = S~_. 

We now introduce two geometric transformations on R and on S 1 which will be 
of  importance. 
(i) The reflection about (0; co) on R. x ~-+ - x .  

( - 1 0  ~ )  If we define i(0;~) :=  , then I(0;~) " x = - x  holds, where I(0;~) acts 

a s a f r a c t i ~ 1 7 6 1 7 6 1 7 6 1 7 6  ' b y ~ - l i s  ( ~  ; ) "  

This induces a map of S 1 onto itself, z ~ �9 z = - ,  which is a reflection 
z 

about the axis passing through - 1  and 1. We define 

1 
(ii) The reflection about ( - 1 ;  1) on ~. x ~-+ - ~ R U  {cx~}. 

X 

We set /(-1;1) :=  , so that I(-1;1)" x = - .  The corresponding 
- -  X 

fractional linear transformation on S 1 is given by the matrix I(-i;i) :=  ~ -1  (I(-1;,)) = 

�9 The map z ~ I(-~;i) ' z = - -  is a reflection about the axis going 
z 

through •  
We define the group of improper Moebius transformations, PSU(1;  1)• as the 

group of  transformations of S 1 generated by the Moebius group and the inversion 
Is+. This group is obtained from 

{ (~ ~)~Mz(C) 1~12-1r SU(1; 1)• :=  A =  /~ 

by factoring out the subgroup which corresponds to the identity transformation, that 
is, {-4-1 }. Hence, 

PSU(1 ;  1)• = SU(1; 1)• 



632 F. Gabbiani and J. Fr6hlich 

The image of PSU(1; 1) 1 by ~ = adT is 

PSL(2; IR) i = SL(2; ]R)1/{~=1 }, 

SL(2;]K) 1 : =  { A =  (ac bd)�9 I d e t - 4 = i l } .  

SU(1; 1) is a normal subgroup of SU(1; 1)1 of order two. Let r be the outer 
automorphism of SU(1; 1) defined by 

where the bar over A means complex conjugation. It then follows that SU(1; 1) 1 is 
the semi-direct product of SU(1; l) and {1; Is+ } with respect to 4). 

We now proceed to define a reflection about two arbitrary points z, w �9 S 1. Let 
N(z;~,) E SU(1; 1) be a transformation which maps +1 in z, - 1  in w and the interval 
(1; - 1 )  = S+ onto the interval (z; w). Then we set 

-1 I(z;~) := N(z;~,)I(1;-1)N(z;~) �9 SU(1; 1) 1 . 

If N (1) and N (2) (z;w) (z;w) are two transformations which map 1 in z, - 1  in w and S+ onto 
(z; w), then 

AT(l)-1 A/(2) B = ~,(~;~) .,(~;~) �9 SU(1; 1) 

maps S+ onto S+ and leaves =kl fixed. Hence B = +D(t) for some t �9 R and, 
since BIs+B -1 = Is+. it follows that I(z;~) is independent of the particular choice 
of N(z;w ). 

Since I(-x;l) = R(1/Z)I(1;-1)R(-1/2) = - I ( 1 , - 1 ) i t  follows that I(~;~o) = 

-I(~;z)Vz, w c S 1, so that I(z;~) and I(w;z) induce the same fractional linear 
transformation in PSU(1; 1) 1. This transformation is the reflection about z and w. 

In the real picture it is easy to compute I(x;y) := ~(I(~;~o)), where x and y are the 
images of z and w by stereographic projection. If x, y �9 R, x < y, then 

- 1 ( - ( x + v )  2xy 
I(xw)-- y - z  - 2  x + y /  ' (AI.4) 

whereas, 
1 
0 , x ClR. (AI.5) 

The group SU(1; 1)+ is generated by reflections. This fact is most easily checked 
in the real picture using Eqs. (AI.4), (AI.5). It is sufficient to write translations, 
dilatations and special conformal transformations as products of reflections: 

= 

= 

/)(t) = {(_r ~t;~-~t)/(-1;1)" (AI.6) 
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Appendix II. Proof of Lemma 2.22 

Proof of Lemma 2.22. Let U C ~ .  Since SU(1; 1)• is generated by reflections and 

J(~;3) = ~-0(I(~;Z) ) '  
Air (-;3) = 7ro(N(~;Z))Tro(D(t))Tro(N(~;3))* 

for N(~;;~) C SU(1; 1) such that N(,~;3) �9 S+ = (~; 3), it follows that U E ~ is 
equivalent to 

U J  I = J i  U , UA~ t = A~tU, VI C S 1 �9 (AII.1) 

By the elementary result of Takesaki already used in the proof of Theorem 2.19, every 
U E ,~ commutes with A~ t, JI,  VI C S 1. Hence U satisfies (AII.1). 

This completes the proof of the lemma. 

Proof of Lemma 2.24. We only need to prove that if U E ~ and s is cyclic for .~  
then U c ~'~. 

Since Y2 is cyclic for 2 ,  it follows from the Reeh-Schlieder theorem (Corollary 
2.8) that Y2 is cyclic and separating for ~ v ( j ) ,  YJ C S 1. For each I C S 1 we define 
a yon Neumann algebra ,•(I) by 

.//~(I) := U ~ ( I ) U * .  

Since U leaves the vacuum vector invariant Y2 is cyclic and separating for ~ ( I ) ,  so 
that ] I ,  z~  t, the modular conjugation and the modular group associated with .~ ( / )  
and Y2, are well defined. Clearly, 

f~t  = UA~tU* ]I = UJIU* 

But by assumption U commutes with Ji  and A~ t, that is, ] I  = JI, fi~t = A}t. 
Since Y2 is cyclic and separating for 

~ v ( I ' )  = .~ ( I ' )  n J ( I ' ) ,  

it follows that Y2 is cyclic and separating for 

:= J~(I) V ~ ( I )  

I A 112 ~ /~1/2 SZ and f2 is separating for. by taking commutants. Since S 1 = ~ ' i ~  = ~ z ~  = 
~ ,  it follows that ~ ( I )  = J~(1). This is a variant of Lemma 3 of ref. [75], Sect. 
10.5. This completes the proof of the lemma. 

Proof ofLemma 2.27. It is sufficient to find a conjugation J~ satisfying Eq. (2.22). 
Clearly, if J~ and j2  satisfy Eq. (2.22) then J~J~ is a unitary operator commuting 
with the irreducible representation 7r of SU(1; 1) and consequently a phase factor. 
Hence J~, if it exists, is unique up to an uninteresting phase factor. 

We now construct J~ explicitly in the real picture. When SU(1; 1) is mapped onto 
SL(2; N), the outer automorphism A --+ A, A E SU(1; 1) corresponds to conjugation 

( 10 01) by I(0;oo) = (see Appendix I). The one-parameter subgroups 

( ) 0) cos 0 sin0 /)(t) := etl2 , 
/~(0):= - s i n 0  cos0 ' 

( c h s / 2  shs /2  
A(s ) :=  \ s h s / 2  c h s / 2 )  
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have infinitesimal generators 

~(0), 
0=0 

with the Lie algebra relations 

a : = d  / ) ( t ) ,  b : = d  H ( s )  
t=O s=O 

1 
[ 3 ; a ] = 2 b ,  [ a ; b ] = - 2 a ,  [ a ; b ] = - ~ 3 .  

L e t x + : = a - i b ,  x _ : = a + i b .  
An irreducible representation re of  SL(2; IR) of the holomorphic discrete series de- 

composes into a direct sum of one-dimensional eigenspaces of re(a) with orthonormal 
basis vectors {vk}k=n,~+2,.. n E Z+ satisfying 

re(a)% = ik  v k , 

re(X+)V k ~ O~ k Vk+ 2 

re(x_)%+2 = --C~k Vk, (AIL2) 

where a k := 2 [(k + l) 2 - ( n -  1)2] 1/2. The commutation relations (2.22) are equivalent 

to the infinitesimal relations 

re(3)J~ = - J~re (3) ,  re(x+)J~ = J~re(x• (AII.3) 

so that if we define J~ as the unique antilinear conjugation which maps v k to % ,  one 
checks using Eqs. (AII.2) that Eqs. (AII.3) are satisfied. This completes the proof of 
the lemma. 

L e m m a  AII.1,  Let r be a corepresentation of  SU(1; 1):~ on P7r assume that its 
restriction re to SU(1; 1) has positive generator of  rotations. Then there exists a Hilbert 
space . ~ ' ,  a corepresentation r o f  SU(1; 1): L on . ~ '  and an invertible isometry 
V : ~ ~ flU' intertwining r and #'  such that 

(i) , ~ '  = .~1 | . ~ 1  @ ,~2 @ ~~Tr 2 0 - . .  �9 ~V/cx~ @ .~(~J~r~, dim ,~,i = i, 
(ii) re' = ~t | re1 | 12 | 71.2 @ . . . @ ~'oc @ 71"~176 

where the reP's are disjoint, multiplicity-free direct sums of  holomorphic discrete series 
representations of  SU(1; 1). 8 

(iii) r = Jrcl(e 1) • Jrc2(e 2) @. . .  • JvreC (g~176 , (AII.4) 

the notation being just as in Theorem 2.26. 

Proof. Every direct sum of discrete series representations of SU( I ;  1) can be brought 
into the form given in (i), (ii), [761, so that we may assume that , ~  = , ~ '  and re = rd. 
It remains only to prove that there exists a unitary operator U commuting with re and 
such that 

UCr(Is+)U* = # '(Is ,+) .  

Choose orthonormal bases e i in ~ and define r by means of  Eq. (ALIA). It 
then follows that 

rd(Is+)re(A)re'(Is+) = re(A) VA 6 SU(1; 1). 

8 possibly trivial 
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Hence r commutes with 7r(SU(1; 1)) and by Schur's Lemma, 

PC(Is+) = W .  PC'(Is+) , (AII.5) 

where W is unitary and 

W:Ul@PTrl @U2@VTr2@...@Uoo @Vrroo 

for U i E , ~ ( ~ )  and V~k = ~e iO(k 'a )~k ,~ ,  O(k, a)  C R. Defining I)~k :=  
o~ 

~ e  -1/2~ ~) l~k,~, ~" :=  11 | V~I �9 . . .  O ~  | l ) ~  and conjugating both sides 
o~ 

of (AII.5) by 1), we are reduced to the case of 

PC(Is+) = W '  PC' (Is+ ) , (AII.6) 

where W ~ = U 1 | 1 ~1 O �9 �9 �9 �9 U ~  | U ~ .  Let Ei  be the orthogonal projection on 
| , ~ i  and set PC(Is+) i :=  Eipc(Is )E  i. 

Since Pc(Is+) = Or(Is+) 1 0 . . .  | Pc(]s+)oo it is sufficient to check that each 

^ i Or(Is+) i = (U~ | ~ ~ ) J ~ ( e  ) i = 1, 2, . . .  oc (1II.7) 

^ i is unitarily equivalent to J~, (e) .  Squaring both sides of  (AII.7) and using the fact 
that 

Pc(Is+)~ = 2~(e~) 2 = ~ . ~ |  

one sees easily that 
i i (AII.8) UzJ(e )UiJ(e  ) = l ~g~ , 

where J(e  i) is the conjugation on . ~  associated to e i. If  i < ~ ,  Eq. (AII.8) is 
Ui ' (7i = ~ ~ ,  where the bar means complex conjugation. Hence Ui is a symmetric 
matrix and can be diagonalized by means of an orthogonal transformation R~: 

RiU, iR~ = D~, 

where D i is diagonal. Conjugating both sides of (AII.6) by R~ | ~ ~ we see that 

(R| ~)Pc(Is+)~(R ~ | ~ ) *  = (D~ | ~ d J ~ ( e  ) 

and we get rid of  the remaining phase factors just as we did in Eqs. (AII.5), (AII.6). 
If i = ~ ,  then U ~  has the spectral decomposition 

/0 ' U ~  = e2~) 'dE(A),  

and in this case Eq. (AII.8) implies that E()0  commutes with J (e  ~ )  for all )~. We 
define 

woo = e-~'dE(.X),  w ~  = u *  

and obviously, 

J ( e ~ ) W o ~ J ( e  ~ = W * .  



636 F. Gabbiani and J. FrShlich 

Hence conjugating both sides of (AII.7) by W ~  | ~ ~ we obtain 

( W ~  | ~ ~ ) ~ ( I s + ) ~ ( W *  ~ | ~ ~ )  

= ( w ~  |  |  |  

= ( w ~ v ~ o w ~  |  ~ )  

This completes the proof of the Lemma.  

Proof  o f  Theorem 2.26. Parts (i)-(iii) follow immediately from Lemma AIL 1 and (iv) 
is an easy consequence of Lemma 2.22, we omit the proof. 

Appendix III. Proof of Theorem 4.42 

Proof of  Theorem 4.42. Ad (i). It follows from Theorem 2.19 that the modular 
conjugation JK of .J~(K) implements antiunitarily the inversion I K on ~ .  Hence 
JK o ah_l ( . /~(J ) )  = "/~([K ' h - I  " J )  and the right-hand side of Eq. (4.21) is well- 
defined. Since p ----- { p j } J c s 1  is a representation of "~0, it follows at once that 
f iK, h -K ,h  :-  { p y  }jCS1 satisfies property (i) of  Definition 4.1; properties (ii) and (iii) of 
Definition 4.1 follow from point (iii) of the theorem which will be proven below. 

If A E JC~(h. I K �9 1 I) then 

Ph.-K'hIk . r ' (A) = ~j  o j K  o PI' ~ JK o ah_ , (A)  = A ,  

since PI '  I.~(I') = id [~r It follows that  fiK,h is localized in h .  I K �9 I. 
Finally, local irreducibility follows from 

~K,h t(.f~(h " IK . I ) ) '  (7 ./{~(h. [K " 1) h. I k , 

= ah o JK o P~JK o a h _ l ( . ~ ( h  �9 I k �9 I ) )  / N . ~ ( h .  I K �9 I)  

= ah o JK o p i ( .~(1))  t n J g ( h .  I K �9 I)  

ps ( .~( I ) ) '  M JK o a h _ l ( ~ ( h -  I K . I)) 

= p i ( . / ~ ( I ) ) '  n ~/~(I) 

Ad (ii). By definition, 

f i ~ : # ~ ( A ) = c % o j K o p o j K o c % - l ( A ) ,  A E ~  o, 

f i K ' Y  (A) = c%, o jk,  o p o  j i  (, oc~h- l (A) ,  A E ~ o .  

An easy calculation shows that 

pK'h(A) = ad[o~ h o j~:(:rM (g)):roM (h �9 I K �9 I K, �9 h-1)] f iK"h' (A) ,  

where g E PSU(1;  l) is chosen in such a way that s = IKh- lh~ IK ,  E PSU(1 ;  1). 
K h  Ad (iii). Plugging in the left-hand side of  Eq.(4.22), the definitions of  f ig:~j(A) and 

of :r~:, h (~), we obtain the right-hand side by direct computation, using the covariance 

of p. 
Ad (iv). Let h E PSU(1;  1) be chosen in such a way that h . I j . I  = I. By Lemma 

2.1 of ref. [33], it is sufficient to show the existence of a unitary implementing p j  on 
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-J,h . A ( J )  such tha t  j j ( u * )  implements f l j  on J~(J ) .  Since p is localized in the interval 
I ,  the shifted representation 

P I j .  h. I j ( A )  = ad[Fp(adIj(h))]  o p ( A ) ,  A �9 'J~o (AIII. 1) 

is localized in I j  �9 h �9 I j  �9 [ = I j  �9 I .  In this last equation, ad l j  denotes the 

unique extension to P S U ( 1 ;  1) of  the automorphism h H I j h I j  of P S U ( 1 ;  1). 
If  A �9 J ~ ( I j F )  it follows from Eq. (AIII.1) that 

P I j - z ' ( A )  = ad[Fp(adl j (h ) )*]  ~ PI j . h. I j ,  I j . I ' (A )  

= ad[Fp(ad i j (h ) )*] (A  ) . 

Since I j I '  D_ I j  �9 J '  = J we may choose u = l"p(adlj(~t))*. 
Moreover 

j j ( u * )  = j j (Fp(ad l j (? t ) ) )  = j j  o oQj.  h. 1 j (Fp(ad lg ( f t -1 ) )* ) ,  

by the cocycle identity for Fp( .  ); and 

j j  o ozlj" h. I j (Fo(adI  g([t-1)) *) = Oth o ja (Fp(ad ia ( l z - l ) ) )*  , 

= [a h o j y ( T r M ( I j ,  h - I  �9 I j ) z rM(ad l j (h ) ) ) ]  * 

= [Tr0M(h-1)ah o jj(TroM(adzj(h)))]* 

J,h 

by definition of 7r~, h. 

Since the representation f i J ,  h is localized in h �9 I j  �9 I ,  it follows that the shifted 
representation 

-J,h = a d r ~ j , h ( / - 1 )  o tSj, h Ph-1 

is localized in Ig  �9 I .  Hence on ~ ( I j  �9 It) ,  

-J ,h  = = (h ) P I j . z ' ( A ) ,  A P h _ l ,  I j I , ( A )  ad l~fiy, h ~--1 -g,h 

A E S ( I j I t ) .  This means that 

ad j g ( u * ) ( A )  = ad[Fpj, h([ t -1)*](A)  

- J , h  . A .  V A  e .J~,(IjI  t) 
= Pijil(s ~ 

so that j j ( u * )  implements fiJ, h on ~ ( I j  �9 I ' )  ~_ ~ ( J ) .  This completes the proof  of 
the theorem. 
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