
Commun. Math. Phys. 155,523-560 (1993) Communications in 
Mathematical 

Physics 
�9 Springer-Verlag 1993 

Hydrodynamical Limit for a Hamiltonian System 
with Weak Noise 

S. Olla*, S.R.S. Varadhan**, and H.T. Yau*** 

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, 
NY 10012, USA 

Received July 24, 1992; in revised form November 16, 1992 

Abstract. Starting from a general Hamiltonian system with superstable pairwise 
potential, we construct a stochastic dynamics by adding a noise term which exchanges 
the momenta of nearby particles. We prove that, in the scaling limit, the time conserved 
quantities, energy, momenta and density, satisfy the Euler equation of conservation 
laws up to a fixed time t provided that the Euler equation has a smooth solution with 
a given initial data up to time t. The strength of the noise term is chosen to be very 
small (but nonvanishing) so that it disappears in the scaling limit. 

1. Introduction 

Let us begin by considering N particles on /~3, evolving according to a system of 
Hamiltonian equations. If (x~, p , ) ,  c~ = 1 , 2 , . . . ,  N are respectively the positions and 
momenta of the N indivdual particles with components {x~, p~}, i = 1, 2, 3 then the 
Hamiltonian equations of motion in the phase space (R 3 • R3) N are given by 

{ dx~ o.~ 
dt = Op~ (1.1) 

dp~ 0 . ~  

dt Ox~ 

Here .5;bC(x,p) is the Hamiltonian 

3 1 1 
= + V(x  - x g ) .  

i=1 o~=fi/3 
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Here V(x) is a radial function defining the pair interaction which is assumed to be 
short range, i.e. V(x) has compact support on R 3. In addition to the total number 
of  particles which is clearly conserved there are four additional conserved quantities 
of interest. They are the three components of the total momenta and the total energy 
given by the Hamiltonian itself. We have of course assumed tacitly the masses are all 
equal to unity. 

Let e > 0 be a small scale parameter. It enters in several places. The interaction 
V(x) is assumed to have an effective range of  order ~, so that V(x) is taken to be 
of the form V(x/e). The number of  particles N is assumed to be of order e-3 so 
that even as e ~ 0 each particle typically interacts with a finite number of particles. 
We consider the following signed measures representing the spatial distribution of the 
conserved quantities, as a function of  time: 

1 
~~ t )= -~ E 6 ( x -  x~(t))dx, 

OL 

1 
- x.(t))p.(t)dx, 

O~ 

1 
~4(dx, t) = - -~ E 6(x - x•(t))h,(t)dx, 

C~ 

3 
1 + 1 

ha(t) = ~ z_.~,~ -~ ~ Y(x,~ - xz).  

i =  1 ,2 ,3  

(1.2) 

Note that (4 has a negative sign and is the negative of  energy instead of  energy. 
We choose this convention for notational convenience later. We shall disregard this 
negative sign and use energy to refer to ~4 freely without further comment. As e ~ 0, 
(~s(dx, t) is expected to have limits (U(x, t)dx and these spatial densities of mass, 
momenta and energy in the limit are expected to satisfy the system of Euler equations 
for our model, Ida(x) o 

+ J=~ ~ [e(x)Trj(x)] = 0 

3 
d (p(x)Tri(x)) + ~ 0 [O(x)Tri(x)TrJ(x ) + 5 i j P  ] = 0 (1.3) 

j=l oxj 
3 

d (~(x)e(x)) + ~ ~ [O(x)e(x)r - r  = 0. 
--~ j=l uxj 

Here Q is the density; 7r(x) is the velocity per particle; e(x) is the energy per particle. 
P(x) is the pressure which is a function of 6, 7r and e. This is a symmetric hyperbolic 
system of conservation laws. 

Although one expects such a result on physical grounds there is very little in the 
way of rigorous proof that is available (cf. [DeM, Sp, Si]). For the special case of 
one dimensional hard rods with elastic collision the result is known [BDS]. This case 
is however unusual because there are infinitely many conserved quantities. 

To get back to our general 3-dimensional model we have to modify the Hamiltonian 
in three ways before we can establish a result of the type described earlier. 

The first modification is technical in nature and we replace the physical space R 3 
by a finite cube with periodic boundaries i.e. the 3-torus T 3 (with unit volume). The 
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phase space then becomes T 3 • R 3 for each particle. Since V(x/e) has very small 
support it is easily extended as a periodic function on T 3 for all sufficiently small 
e > 0 .  

The second modification is needed because we cannot handle the large velocities 
that might arise in our problem. We do not have effective truncation techniques. This 

1 i)2 forces us to modify the kinetic energy part ~ ~ Q9 to a function r which has a 
bounded gradient, thereby making the velocities uniformly bounded. A good example 
to keep in mind is the relativistic kinetic energy 

3 \ 1/2 
r  c2+i__~l(Pi)2 ) - e  2. 

In the classical limit as c --~ oc, r becomes the classical kinetic energy. 
The final modification is intrinsically more serious. This is the addition of a small 

amount of noise to the Hamiltonian system. This is needed because the Harniltonian 
system in infinite volume has very poor ergodicity properties. One can write a 
family of spatially homogeneous invariant Gibbs measures on the infinite volume 
configuration space of positions and momenta. These are indexed by five parameters 
that correspond to density, the three components of average momenta and the average 
energy or temperature. Excluding complications of phase transition one would like to 
know that any spatially homogeneous invariant probability measure for the infinite 
volume evolution satisfying some mild regularity conditions is a superposition of 
these Gibbs distributions. This fact is essentially a form of a strong ergodic theorem. 
Since such a result is needed, but is unavailable, we modify the dynamics with noise 
so that the ergodic theorem we seek is available in part due to the noise. The noise 
itself is added only to the velocities when two particles are close, i.e. within a distance 
of order ~. They exchange velocities randomly and continuously but in such a way as 
to conserve the combined momenta and energy of the pair of particles. The strength 
of this noisy exchange is carefully regulated. It must be strong enough to provide us 
with the ergodicity that we need but at the same time should be weak enough that it 
does not alter the final Euler equations that one wants to derive. A precise formulation 
of the model and a statement of the results can be found in the next section. 

There is a further restriction in our derivation: even if the initial data for the Euler 
equations are smooth and in the one-phase region, the solution will develop shocks 
or may enter in the region of phase coexistence. Our derivation is valid only in the 
smooth regime of the Euler equations. 

Our approach in this paper is based on the relative entropy method used in [Y] 
for diffusion scaling limits (which simplifies the previous approach of [GPV] in that 
context). 

2. Summary 

2.1. The Model 

The phase space in our model is (T 3 • R3) N. The Hamiltonian is 

E 1 ~ E (xc~-xf~) .~(x,p) = ~ N(x p) = r + ~ v e " (2.1) 
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In this paper, we shall assume that N = e -3 for simplicity of  notation. Since V(.) 
has compact support we can assume that for all sufficiently small e, .~e(z,p) is well 
defined on our phase space. Of  the functions ~b(p) on R 3 defining kinetic energy and 
V(z) on R 3 defining the potential energy we assume the following: 

(i) V E C I ( R  3) is radial with compact support. 
(ii) V can be written as V(z) = Vo(z) + Vl(z) where V 0 > 0, %(0) > 0 and V 1 is 

positive definite. 
(iii) 4 E C2(R3), strictly convex and 

< , < c" Vp. (2.2) 

The assumption that the potential V is radial is not essential, but simplifies notations. 
The Hamiltonian defines a vector field on the phase space which is the Liouville 

operator 
o o 

= F_, Op5 }20x  (2.3) 

If  it were classical evolution then we will have just L~. Our perturbation of L~ is by 
a second order operator involving second derivatives in O/Opt. The precise form is 
not important. Let us just consider two sets of momenta  (pl,p~,p~) and (Pa,1 P2,2 P2)3 
constituting R 3 x R 3 = R 6. The four laws of conservation are 

p~+pi2=ci, i =  1 ,2 ,3 ,  
(2.4) 

~ ( P l )  -~- q)(P2) : C4" 

For each el,C2, c3,c4 in a certain open set we have a hypersurface F~ in IR 6 of 
dimension 2. Observe that the assumption (iii) implies that almost all points in ]1~ 6 

are smooth points of the foliation F c. 
Let "~(c) be a strictly positive function of cl, c2, c3, c 4 that decays fast enough at 

infinity (for example exponentially). Let us consider the operator 

^ 1 
L1,2 = - 2 ")/(c)Ac;1,2, (2.5) 

where Ae;1,; is the Laplace-Beltrami operator on the hypersurface F c. This is just to 
make a canonical choice of the noise we introduced in the dynamics. We can choose 

^ 

in fact a more general operator L~, 2, as long as it is elliptic of second order acting 
^ 

only on tangential directions of  F c. We note that the operator L1, 2 is clearly selfadjoint 

with respect to Lebesgue measure on R 6. The subscript 1,2 in/~1,2 refers to the fact 

that we have used particle labels 1,2 for our momenta  p~ and p~. Clearly there are 
similar operators L~,/3 for every pair c~,/3 and these can all be viewed as acting on 
functions defined on our phase space. Our noisy generator then is of the form 

L~ =L~+L~,  

L e  = 0 ( e )  - (2.6) 

where Ib(e, z~ - z;~) provides control of  the intensity of the noise and spatial cutoff 
f o r  the exchange of velocities by limiting it to particles that are close in position 
space. The choice of the function ~(e,  z) is made as follows. We pick a function 
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~(x) which is smooth, strictly positive for all x in R 3 and decays rapidly at oc. Then 
define 

n 

The summation is over all the lattice points in IR 3 so that ~(e, x) is a function on T 3. 
This essentially turns the interaction on at all distances in the scale ~ but with the 
intensity decaying very rapidly with the distance. Finally 0(c) controls the intensity 
as a function of  c. It will go to infinity as c ---+ 0 but such that e0(e) ---, 0. 

2.2. The Formal Derivation of the Euler Equation 

Let us pretend for the purpose of  our derivation that no noise term is present. We 
will associate with each configuration (Xl, Pl) , .  �9 �9 (XN, PN) a group of five signed 
measures ~(dx),  # = 0, 1,2, 3 ,4  on T3: 

1 
~(dx)  = -~ Z ~(x - x~)~,~dx, (2.9) 

C~ 

where ~o,~ = 1, ~i i ~,~ =Pa, i = 1,2,3 and 

1 (x~-x~ 
(2.10) 

We shall adopt the convention of  using #, u for the indices for conserved quantities; 
i for the three dimensions in R 3 and c~,/3 for the particles from 1 to N = e -3. For 
any test function J(x) on T 3 clearly 

1 
{J'~2) = -N E J(xa)~,s .  

Because of  the evolution, (z~,p~) are functions {x~(t),p,(t)} of t, and this makes 
~(dx)  depend on t as well. We denote these by ~(dx ,  t). We can use the Hamiltonian 
equations to compute d(J, ~ ( t ) )  and write it in the following form: 

3 

d(J, ~( t )}  = E ( J i ,  ~l~(t)}dt + s 
i=1 

(2.11) 

Here 
1 

rl~ (t) = ~ E 5(z - x~(t))O~,~(t) (2.12) 
C~ 
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with 0r  given by 

o~ = r 

O~,~,~(t) = p3~(t)r 

-1 i " 1 E s (x~ - x~)Vj((x~(t) - x~(t))s-1), 
2 

(2.13) 
1 

(x . ( t )  - x}(t))  04,~,~ (t) = ~4(t)r + ~ E -~ 

x ~ v~(e- l (z~( t )  - z~(t)) ~ (r + ej(p~(t)) 
j=l 

We have used the notation e j  = 0 r  ~ and Vj = OV/Oxj. 
The /2~ terms are error terms and they are explicitly given by 

/2 o = 0 ,  

f ~ - -  E2 [ 3 ] 
2 J(x~(t)) - J(x~(t)) - E ( x 2 ( t )  - xS(t))J~(x~(t)) 

r=l 

x V i (~  ( xa ( t ) - x~ ( t ) ) )  ' (2.14) 

r r X t 7 J(x~(t))  - J(xz( t ) )  - ~-~.(x~(t) - xz ( t ) )J  A ~( ) )  
r=l 

We will show that as s ~ 0 the ~ terms become negligible. 
In order to close the equations specified by (2.1 l) we need to express the quantities 

~i~,~ as e ~ 0 back in terms of ~ .  This is done using Gibbs distributions (cf. Sect. 5). 
Given the parameters of  density, the three components of  momenta and average energy 
one expects to have a Gibbs distribution uniquely specified by these parameters. The 
Gibbs distribution describes the statistics of  local configurations as functions of  these 
five parameters. If  one takes averages with respect to the Gibbs distribution then ~i~,~ 

can be replaced by A~(q) as ~ gets replaced by q• in the weak limit as s ~ 0. The 
Euler equations then take the form 

Oq ~ 3 
0--T + ~-~.[A~(q)] = 0,  p = 0, 1,2, 3, 4 .  (2.15) 

r=l 

The matrix A can be computed explicitly. If  r = p2, then by comparing with 
(1.3) A is given by 

o =q j  Aj 

i = 5ijP + qiqj/qo, (2.16) Aj 
4 Aj = qJ(q4 - P)/qo" 
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Note that in order to establish a connection with the Euler equation in (1.3), q# is 
related to density, momenta and energy by 

q0 = Q, qi = ~Tri; q4 = Qe, (2.17) 

in other words ql, q2, q3, and q4 are momenta and energy per volume instead of per 
particle as in the usual Euler equation (1.3). In the general case A is still explicitly 
computable, as seen in the next section. 

2.3. A Precise Statement of  the Results 

We start with our Hamiltonian in the microscopic scale on configurations of N points 
in the phase space (A x R3) N where A is some domain in the physical space R 3. If 
we denote the configuration by (x~, p~) then the Hamiltonian is 

1 
"~N(P'X) ~- Z r -~- -2 Z V(x~ - x,3)" (2.18) 

e, c~#/3 

Taking A to be a bounded cube we can define a partition function 

ZA(/~O/~1, X2 ,~3, X4) = Z ~ l  ' ' '  exp Aur 

N=0 (A X~3)N a=l  

x d X l . . ,  dx  N dPl . . .  dPN , (2.19) 

and the pressure note the definition of pressure where the prefactor T = ~ has 

been omitted) 

~(~0, . ~ 4 ) =  lira 1 lOg ZA " (2.20) 
�9 . ~ A~R3 ~- /  

Here r = ~ e  ~ with ~u defined in (2.10). See Sect. 5 or [R] for the existence of 
the hmtt (2.20). 

The Gibbs measure corresponding to /~0 ~1 ~2 ~3 /~4 is a point process on 
R 3 x R 3 which is invariant under space translations and has the DLR property, 
namely the conditional distribution of the possible configurations in a box A, given 
the configuration outside has density proportional to 

n! exp - ,X4J@~n + Z ~ip~ (2.21) 
i=1 oz=l 

on U (A • ]I~3) n, where ~ is the Hamiltonian of the n-point configuration we 
n 

introduced above to which has been added the interaction energy due to the 
configuration outside the box. This is the term 

Z Z  (xo- 
c~ y 

where (~ runs over the particles inside A and y runs over the locations of all particles 
outside A. The general theory of equilibrium statistical mechanics provides with a set 
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W of possible values of I = (1 ~ 11, 12, 13, 14) in R 5 such that W is an open set in 
R 5 and for each I in W we have a unique Gibbs measure and the Gibbs measure is 
ergodic (with respect to space translations). The five quantities which are averages of 
density, momenta and energy are given as functions of I and they can be computed 
from the free energy. As I varies over W,  these averages q = (qO,. . . ,  q4) vary over 
a set U and the correspondence between 1 and q is one to one and smooth as long as 
1 and q are restricted respectively to W and U. To make the correspondence between 
I and q transparent, let us define the thermodynamic entropy function 

/z=0 

Then I and q are related by the formulae 

Au = O~/OqU , qU = O,~/OA u " (2.23) 

Let us denote the Gibbs measure with chemical potentials I by d#a,  or d#q if one 
specifies the parameter q. The matrix A can now be computed explicitly by 

A~(q) = k--.~lim (2k) -3 f Z O~e, Ik(x,~)d#.'. ,  . (2.24) 

Here Oil, o, = 0~,~=1 and I k is the indicator function of D k = {x E R3I Ixil <_ k, 
i = 1,2, 3}. Explicitly, A is given by 

0 AJ Aj : - - ~  qO , 

i liq j 
Aj - t4 

P 
14 6i, j , (2.25) 

4 l J  l J  
A j -~ - --~44 q4 -t- -'~ P . 

Here A = O~/Oq (2.23) and P is the pressure as a function of  q. By the virial theorem 
for dilations we have a diect relation between P and the interaction V (cf. [V]): 

1 [ 1 6 P , Z V~(x~ x~)x(x~) ~ E q  ~ -- (xc~--xr J = i , j ( - ~  q4) ,  (2.26) 

where X is a non-negative function with compact support and total integral 1. 
In order to see where (2.25) come from, let us compute the expectation of PJr 

with respect to the density da3~ = exp[14r + A �9 p]/Normalization, 

J A i Aij 
pJr = _q3 14 14.  

The second term in the above expression is the contribution of  ideal gas to the pressure 
tensor. This phenomena occurs also in computing Aj and A 4. 

If  we give C ~ initial data to our hyperbolic system, up to a finite positive time, 
there exists a C ~ solution. Then we can assume that we are given a C ~162 solution 
of our hyperbolic system of conservation laws in some time interval 0 < t < T 0, 
such that q(t,x) for t C [0,T0] and x E T 3 lies in a compact set U 1 C U with 
dist(U1,N5\U) > 261, for some constant 61. Then the corresponding s is a C ~ 
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function A(t, x) that lies in a compact set W I C W with dist(W1, ~5 _ W) _> 252 for 
some constant 52 . 

Let us consider the following time dependent density function ~N(t) on the phase 
space of N particles in (T 3 • R3) N, 

1 exp A"(t, za )~ ,~(x  ,p) (2.27) gg( t, x i , ' ' ' ,  XN, Pl , ' ' ' ,  PN) = CN(t ) 
c~=l /z=0 

where ex( t  ) is the normalizing constant. 
We can take ~N(0, X l , . . . , X N , P l , . . .  ,PN) as the initial value at ~ ---- 0 of the 

Kolmogorov or Fokker-Planck equation 

Og ~. 
- -  = LEg, g[t=o = 9It=0 Ot 

and the solution gN(t, Xl,... , XN,Pl,... ,PN) is the actual distribution at time t of 
our noisy evolution. 

Our main theorem is the following: 

Theorem 2.1. Under the hypotheses listed above, for any t C [0, To], 

lim 1 j f gNlOggT_NN dxl.. .dxNdPl.. .dPN=O" 
N~c~ N gg 

(T 3 x R 3)N 

Remark. The above theorem implies hydrodynamic behavior. For instance it is 
1 

elementary to check that under ~N-probability ~ ~ J(xa) is nearly equal to 

f J(x)q~ x)dx and in fact by the theory of large deviation the probability that 
1 

~ J(x~) deviates significantly from f J(x)q~ x)dx is exponentially small under 

~0N (Corollary 5.8). By entropy estimates (2.29) the probability is small under 9N and 
this establishes the correct hydrodynamic behavior. 

More precisely, for any two probability measures c~ and/3 the well known entropy 
inequality (in fact, a special case of Jensen's inequality) states that for any measurable 
function F,  

E ~ [F] < log EZ[exp F] + H(ct//3). (2.28) 

Here H(o~//3) denotes the relative entropy of c~ with respect to/3 [indeed H is defined 
to be the smallest constant for which (2.28) holds]. A special case of (2.28) gives 

E,~(A) <_ log2 + H(c~//3) (2.29) 
log(1 + 1/EZ(A))" 

Hence if N-1H(c~//3) ---+ 0 as N ~ eo then any set A which has exponentially small 
probability with respect to ,/3 will have small probability with respect to c~. In our 
case/3 is local Gibbs state ~0N and A is the set 

A~ = { J{J ,~ )  - (J,q~)[ > 5}. 

For arbitrary 5 > 0, Eg[A6] < exp[-eonst(5)N] for some const(5) > 0 by large 
deviation theory in the appendix (see Corollary 5.8). Hence we conclude the following 

Corollary 2.2. Under the assumption of Theorem 2.1, 
lim E 9N [A6] = 0. 
E---+0 

This corollary establishes the hydrodynamical limit under the usual definition. 
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3. An Outline of the Proof 

On the phase space (T 3 • ~3)N we have two time dependent families of  probability 
densities defined for 0 < t < T 0. One of  them ON(t, X, p) is a family of local Gibbs 
measures constructed from a smooth solution of  the Euler equations, i.e. 

N 4 

log  gN = E E "~tz(t' Xa)~P~, ~ -- log  CN(t), (3.1) 
c~=l /z=0 

where ff was defined by (2.10) and CN(t) is the normalization constant 

CN(t ) = f ON(t, X, p)dx dp.  (3.2) 

The other family gN(t, X, p) is the actual probability density of  the noisy dynamics 
assuming that at time t = 0 the initial distribution is the same as ON(t, X, p) at t = 0. 
In other words gN is the solution of  the Fokker-Planck or Kolmogorov equation 

OffU ~,  
Ot -- L~gN ' gNlt=O ~- ON(O,x,P)  " (3.3) 

Our goal is to show that gN is close to ON for 0 < t < T O by establishing 

1 
f 9__NN. 9NdX dp = N~lim ~ log ON 0.  

Let us define 

f 9NdX dp. (3.4) 
9N 

HN(t) = log ON 

We know by construction that N-IHN(O) = 0. The first step is to establish a 
differential inequality for HN(t ). 

L e m m a  3.1. Let f ( t, x) be a solution of the forward equation of a Markov process with 
generator L, being represented as densities relative to some fixed reference measure IZ. 
Let u(t, x) be any arbitrary family of densities relative to #. We shall assume enough 
smoothness to make our computations valid. Then for every t > O, 

O /  f(t ,x) f (  Ou) l fdp(x )"  0---t log u(-~,x) f(t, x)d# <_ L* u - -~  �9 u 

Proof. Let us differentiate __ y(t,x) f 1u~ ~ �9 f(t, x)d# with respect to t. An elementary 
calculation yields 

c O /  f(t ,x)  / 1 0 u  f L , f l o g f _ d p + / ~ t d #  " O~ log ~ f(t, x)d# = - u -~"  f d# + d u 

of 
The third term f -if[ d# integrates to zero because f f d# = 1 for all t > O. Integrating 

by parts, 

L(f  /u) d# 
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The inequality L log u <_ L u / u  for any nonegative u is a consequence of the maximum 
principle for L that dictates that for any convex function r 

LO(u) _> r [] 

Remark. For the case we are interested in with L given by (2.6) the error term in 
Lemma 3.1 can be computed explicitly, 

Ou 

+ O(E) f ~ r x~ - xz)'~(c) 

X 1~7c;a,~hg IZhNlU(t, x)dx dp,  

where h = gy /u .  The last term is traditionally called the Dirichlet form. In particular 
if we let u = ,0;,N with A constant, then the first term on the right side vanishes. Let 

To 
h = To  I f h(t)dt be the time average and integrate from 0 to To, 

0 

EO)',N [ Z r Xo~ -- Xc~)"/(e) ]~c;o~,~hN,2hN1] < H N ( O )  . (3.5) 
~#r - -  To 

Here we have used the convexity of  the Dirichlet form with respect to h. For a 
more detailed explanation of  this, see [GPV]. 

Lemma 3.1 was first proved in [Y] for the special case of  the Ginzburg-Landau 
model. Our proof here generalizes it to include all stochastic processes. 

Returning to our problem at hand let us write 

log ~N(t , X, p) = UN(t , X, p).  (3.6) 

We want to calculate the function 

0 ^  
r x, p) = gNl fL *gN -- -~ gN] " 

L e m m a  3.2. Recall that Ze = L e + LE, where Le is the contribution from the noise 
terms and Le is the pure Hamiltonian term or the Liouville operator. Then 

lira sup sup (Z~] N) . - -  �9 9Ndx dp = O. 
N--+oc 0<t<T 0 N gN 

Proof Let us note that ge has the form 

L~ = o(e) ~ r x~ - xg)L~, ~ 

and that L,~,Z acts only on the momentum variables. It is easy to estimate, using the 

conservation properties of  L~;~, 

9N1LegN < CeO(e) ~ ~b(e, Xc~ -- x~). 
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We therefore have only to prove 

lim sup -~ ~(e, x~ - x~)gnd # <_ C 
N---+ oo 

in order to establish the lemma, because we have assumed that e0(e) ~ 0. This is a 
consequence of the fast decay of ~ and Lemma 5.9. [] 

We can now concentrate on the Liouville term (L*  O )  - -  2 t  N . 

Lemma 3.3. We can write 

0 U 

where 

and 

= r + CN( t , x ,p ) ,  

4 3 

j [,$' Xa) j,a,r ~- aN( t )  
~ = 0  j = 0  a 

,/ lim sup sup eN(t,  x ,p )gNd  # = 0 
N---+ co 0 < t < T  0 ~ 

Here O~,c,  j = 1,2, 3 was defined in (2.13), 0 u o,~,~ = ~a,~ (see (2.10)), A~ = OA~ /Ot, 

A~ = OAu/Ozj and a N is given by 

aN(t) = ~ -- [log Cu(t)] = -- ~ A~(t, X~)~,~(X, p)~u(t, X, p)dx dp. 
= oe=l 

Proof. Proof is just by direct computation (see computation in Sect. 2.2). The error 
term arises because of terms of the form [cf. (2.14)] 

_,Zv  xo-x   
o~,/3 c~,/3 j = l  

Since V~ is antisymmetric, we can rewrite it as 

o~,/3 j = l  

By Taylor's theorem, it is bounded by 

(2e)-1 Z IVi(x~ - xz )/e)l " O(e2)" 
c~,/3 

By (3.5) and Lemma 5.9, Eg [  ~ V j ( ( x ~ - x z ) / e ) ]  _< constN. Thus we have 
proved Lemma 3.3. [] k ~,~ J 

Another easy consequence of Lemma 5.9 is 
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Lemma 3.4. For some constant C < oc, 

For any configuration (x~,pa) on (T 3 • R3) N and for any x E T 3 we shall expand 
I 

a neighborhood of x by I/e and let y~ = ~ (x~ - x). The resulting configuration 

can be thought of  as a configuration in R 3 although it is a little fuzzy at the edges. 
However the configuration {y~ } is well-defined on compact domains in R 3 provided 
e is sufficiently small. Of course e has to be smaller if the compact domain is larger. 
The configuration so obtained will be denoted by ~ , x .  If F(w) is a functional on 

configuration space in R 3 that depends only on particles in a compact domain, then 
F(~x,~) is well defined if e is small enough. Moreover we can attach the momenta 
p~ to each x~ so the functional F(w) can be a functional of  configurations in the 
phase space. 

Recall 0~ defined in (2.13). We shall denote 0 ~ by 0~ Let X(x) be a 

positive smooth function on R 3 with compact support and total integral 1. Define the 
local functional on the configurations of  phase space by 

O~(a~) = ~ X(x~)O~(~o). (3.7) 

Let I~(x) be the indicator function of  D e = {x E IR3[ [x~[ < k} and let Xk = 
(2k)-JX �9 I k. For any local functional F ,  define F k to be its average over D e, 

= (2k) -3 f Ie(y)F(7-Uw)dy. (3.8) Fe( ) 

Here Tu is the space translation by y. With these conventions, 0 ~ ---- (0~) k is well i ,k 
defined. 

L e m m a  3.5. For any smooth function J and p = O,..., 4, j = 1,2, 3, 

lim lim E g IN -1 Z J(x<~)O~,~(w)-iJ(x)O~'e(~o~'~)dx] =0" (3.9) 
e---+ oo N ---+ o~ 

T 3  

Remark. Similarly we can define (~ = (ff~)e with ~ = f f ~  1 defined in (2.10). 
A parallel identity holds for ft. Intuitively, (~t')e(w~,~) is the local empirical density, 
momenta and energy. 

Proof By definition 

T 3 a T 3 

= __1 E Jee(x~)O~e 
N ~ ~ 

Here Je,~ is defined by 

f J(x)Nxe(e-l(x + z))dx. Je,~(z) 
% 
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We can bound the expectation in (3.9) by 

< ] 
By Lemma3.4, N - 1 E g [ ~  10~,~,~1] is bounded. Lemma 3.5 thus follows from the 

smoothness assumption of J .  [] 

Combining Lemma 3.1-3.5 we have 

L e m m a  3.6. Assume that )d* is smooth up to time T. Then 

lim lim sup N -1 dHN(t) 
k--+oc N - - ~  0 < t < T  d t  

4 3 

+ E g ~j (t, x)Oj,k(aJ~#)dx + N- t a N( t )  <_ 0. 
t,=o j=o 

Furthermore, we can compute a N a s  

4 

lim N - l a N ( t )  = f ~ ( x ,  t)q~(x, t)dx , 
N---+ a~ #=0 

Proof. The only thing that needs to be proved is the formula for a N. But it is a 
consequence of Lemma 3.3 and large deviations in Sect. 5 [cf. (5.20), (5.21)]. [] 

We now introduce some cutoffs. There are two sources of  unboundedness. The first 
kind appears due to the unboundedness of r and p~. Let us introduce a cutoff 1 
and replace r by min{r l} (similarly for p~). Let us denote the resulting 0 
with these replacements by 0#~ ~ t, 0~k z, etc. The next lemma shows that the error 
we made is negligible. Its proof is again an easy application of the entropy inequality 
(2.28). 

L e m m a  3.7. For/z = 0 , . . .  ,4, j = 1, 2, 3, 

IOj,k,z(~x,~) - O~k(Ox,e)ldx = O. 
l---~oc N--+o~ 

Here k is arbitrary positive and ON can either be 9N (3.3) or 9N (3.1). 

The next step we have to be concerned about is that some of the empirical quantities 
~ characterizing the local equilibrium states may not lie in the admissible region U 
defined before (2.22). Let U 2 be a compact set satisfying [with 62 defined before 
(2.22)1 

dist(Ul,IR3\U2) _> 62 ,  dist(U2,IR3\U) _> (5 2 . 

Define an indicator function (r k by 

crk(~z) = 1u2{~(~z) } . (3.10) 

The next lemma states that the error we made from introducing this cutoff is again 
negligible. Its proof relies on large deviation and will be proved in Sect. 5 after (5.22). 
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Lemma 3.8. There exist 6 o > 0 such that for any local functional A of the type (5.18), 

[/ 1 lim lim E gN (1 - a k) (w~,x)A(wc,~)dx "-  601N-XH(9NION) <_ O. 
k ---~ oc N---~ ec  

Now we state the local ergodic theorem to be proved in the next section. 

Definition 3.9. For any local functional F(w) define 

F(q) = E ~'q [F].  

Here #q is the unique Gibbs measure with average density, momenta and energy 
given by q. This is well defined if q E U. 

The next theorem will be proved in Sect. 4. 

Theorem 3.10 (Local ergodic theorem.) For any bounded local functional F we have 

T 

lim lim ffdtEgN[/lFk(w~,z)--_P(~k(we,z))l(rk(O~,~)dxl=O- 

0 

Let us pause to see what we have so far. By Lemma 3.6 and cutoffs in Lemmas 
3.7 and 3.8 we have 

lim lim lim sup N - l  dHN(t) 
1--*oo k ~ r x ~  N--*oo  O < t < T  dt 

4 3 

+ N- laN( t )  -- 5olN-1HN(t)  <_ O. (3.11) 

By Theorem 3.10 we can replace O~k,I(W~,E) by O~,l(~k(W~,x)). By applying Lemma 

3.7 to ON we can replace 0~,l by 0J in the limit l --+ ec and thus we can rewrite 
(3.11) as 

lim lim lim sup N -1 dHN(t) 
1---~ec k---~c~ N---~oc 0 < t < T  d t  

4 3 ] Aj (t, x)Oj �9 Iu2 ) (~k(COx,r dx 
~ = 0  j = 0  

+ N-aau( t )  -- 5o~N-~HN(t) < 0. (3.12) 

The function 0~ can be easily computed. By definition of 0 in Lemma 3.3, (2.24) and 
(2.25), 

O~(q)=A~(q), j = 1,2,3, # = 0 , 1 , 2 , 3 , 4 .  (3.13) 

Clearly, by definition 0 ~ o,~ = ~ and thus 

~ (q )  = qU. (3.14) 
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Observe that, since q(x) is smooth, integrating by parts we have by (2.25) 

4 3 

f Z Z A2(q(x))AJ(q(x))dx = O. 
,a=0 j = l  

Hence we can rewrite the expectation in (3.12) as 

where 

(3.15) 

By (2.15) 

_- I ] r 

Here the sup is over all integrable functions ~(x) and 

with .~ and r defined in (2.21) and (2.20). The function I(~, A) is uniformly strictly 
convex and vanishing at ~ = q = 0~/0A. Also the function f2(A, ~) vanishes if 

= q = 0~/0A. If we have the first derivatives of ~ also vanish at ~ = q, then 
since S? is bounded (thanks to the cutoff Iu: ) the sup is zero. To summarize, (3.17) 
is zero provided 

0s = 0, # = 0 , . . . , 4 .  (3.18) 
r 

A direct computation shows that (3.18) is equivalent to 

~, OA ~ 
A~ + Z Aj ~ = 0. (3.19) 

v,,j  

A~ = Z OAu Oq~ OA# OA] Oq# 
Oq a Ot - ~ Z Z OqC~ Oqr Oxj 

o~ o~ /3 j 

4 3 4 

Aj [Aj (~) - AS(q)] + Z A~(~" - q") Iv2(r (3.16) 
#=0 j = l  /~=0 

with q = 0~b/0A (2.23). By entropy bound (2.28) for any constant 6 > 0, 

EgN[/'Y2dx] >_-('5"N)-llogE#NEexp{-~'NfC2dx}]-~5-1HN/N. 
LT 3 T 3 

By the large deviation theory in Sect. 5 (5.21) the expectation with respect to gN can 
be computed explicitly as 
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Hence (3.19) is satisfied provided the Euler equation (2.15) is satisfied and 

OA" OA] OA ~" OAy 
Z Oq~ OqP - - Z  Oq~ Oq• ' j = 1 , 2 , 3 .  (3.20) 

oz l] 

Since A = 0g/0~, we can write (3.20) as 

02~ OA] 02~ OA~ 
Z OqC, Oqu OqZ - Z OqZOq~, Oqu ' j = 1,2, 3. (3.21) 

OZ 

This means that the Euler equation is symmetric with symmetrizer 02~/0~0~. One can 
check by explicit computation that (3.21) holds and thus conclude our main Theo- 
rem 2.1. In fact consider the rate of change of local entropy and using the Euler 
equation we have [by (2.25)] 

d/s(q)dz:/~dt Oq ~0~ OA]oq p oxjOq~dz:O" (3.22) 

T 3 T 3 

Since (3.22) is zero with respect to all choices of initial conditions, (3.22) is identical 
to zero even if we take q~ as independent variables. Hence the compatibility conditions 
require 

Oq~ Oq ~ OqP J = ~ Oq~ Oq ~j' j =  1,2,3.  (3.23) 

Doing the differentiation and using O~/Oq~Oq ~ = 02~/Oq~Oq ~ we also conclude 
(3.21). 

4. Local Ergodic Theorem 

The aim of this section is to prove Theorem 3.10. To achieve this we proceed in 
several steps. 

Let e > 0 be given. Then we defined earlier (paragraph after Lemma 3.4) a 
local map co~, x which maps a local configuration in the phase space around :c to a 

configuration in N 3. As E--+ 0 the resulting configurations are getting well defined in 
larger and larger cubes around the origin in 1I{ 3. Let us denote the measure obtained 
from the density 9(t, x, p) through the map by Qt,x,E. We define 

% 

Q~=Tool fdtJdxQt'='s 
0 T 3 

(4.1) 

Roughly speaking, if we pick a random time "t" in [0, T 0] and a random point "x" 
in T 3 and blow up the space by a factor of e - t ,  the statistics of the configuration in 
phase space in a large e-vicinity of this point is given by O~. As E --+ 0, Oe gets to 
be well defined as a point process on all of N3: 

The following list contains the main steps in proving local ergodic theorem (3.10). 
(A) The family {O~} is compact. It also follows that any limiting point process has 
finite entropy. 
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(B) Conditioned on the positions x, the distribution of the momenta is a mixture of 
product states 1~ exp{-ar  - bPi}/Normalization. This can be proven with the 

i 
help of the noise introduced in the dynamics. 
(C) We shall define the energy, momenta and density associated with a configuration 
and prove that they are constants of the motion determined by the generator L (in the 
sense specified later). 
(D) By conditioning on energy, momenta and density, any limiting process is invariant 
under the Liouville operator L and hence is Gibbs with potential V. 
(E) The local ergodic Theorem 3.10 is just the law of large numbers for Gibbs states. 

Lemma 4.1. As ~ --~ 0 the family {Oe) of point processes is compact and any limit 
point is a stationary point process in IR" with values in momentum space. 

Proof. To prove compactness we have to prove that: 

EQ~[~ IA(X~)] _<IAI, 

lim limsupEQ~ [ ~  1A(X~)(1- ll(p~)) ] = 0  
l---* cr ~---*0 

(4.2) 

(3.3) 

for any bounded set A in It{ 3. Here lt(p) is the characteristic function of the set 
{p: Ilpll <- l}. In (4.2) actually equality holds. In fact an elementary computation 
yields: 

TO 

E } ' l i  EQ~ ~ 1A(Xa) = To0 dt dx Z 1A(E-I(Xa -x))g(t,x,p)dxdp. 
0 T 3 c~ 

Since 

1A(C 1 (X~ -- x))dx = x3 IAI = N -~ IAI, 
T3 

(4.2) follows. 
1 To 

Let us denote by 0N(X, p) = Too fo g(t, x, p)dt. Then 

0 
T3 o~ 
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4 
We can use as a reference measure a Gibbs measure 9a,N = exp y~ y~ A " ~  c +  

}. Then by the entropy bound (2.28): o~=1 /~=0 ' CN,A 

~ - 5N [ log e a 9),,N(X, p)dx dp 

IAI 
-Jr- ~ HN(gNIg.k, N)" 

Since HN(g(O , x, p)I.OA) _< C N  for some C > O, and decreases in time, by convexity 
we have 

C N  
HN('ONI'0"X'U) --< " ~ 0  (4.4) 

p N We let N --+ c~ and 1 --+ e~. Note that { ~}a=l are independent under ~);~ and the 
first term can be calculated explicitly and goes to zero as l --~ oe. Finally let 5 ~ oe 
and (4.3) follows. [] 

L e m m a  4.2 Let Q be any limit point of {O,~ }. For any 6 > 0 let Ps ihe Poisson 
e--6(b(p) 

process on R 3 x ]K 3 with intensity dx x dp (cf. Sect. 5, c~ is a normalization 
c 6 

constant). Then there exists a constant C < cx~ independent of Q such that the density 
of relative entropy 

h(QIP~) < C (4.5) 

(h is defined by 5.1). 

The proof of Lemma 4.2 is a simple consequence of  4.4 and the results contained 
in Sect. 5. We will postpone the proof to the end of Sect. 5. 

L e m m a  4.3. Let Q be any limit point. Then for any bounded function W with compact 
support contained in D r = {Izl _< r} we have 

E Q ( Z W ( x o ~ - x ~ 3 ) I D ~ , ( x a )  ) < const r  6 . (4.6) 

In particular, let N~ = ~ ID,, (x~). Then 
Oz 

EQ(N 2) < const r 6 . (4.7) 

Lemma 4.3 is the "local version" of  Lemma 5.9 and can be proved in the same way. 

L e m m a  4.4. If Q is any limit point and we restrict Q to any region W then Q is a 
measure on the union of particle spaces ~n. Y2n consists of n copies of the phase-space 
over W, i.e. (W x R3) n. The restriction of Q of O n is invariant with respect to Lc~,~ 
(2.6)for every a,/3 c { 1 , 2 , . . . ,  n} provided n > 2. 

Proof We will use here the assumption made on the random interaction, i.e. 

r if le-lxl<k. 
Using again ~)~,N as reference measure (for any A E V), we have from (3.5), 

EO~, N - [O(c) ~ t~(c, x,~ - x;O~/(c) ]Vr176 < c ' N .  
L a ~ , 8  #N - -  
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Since 0(e) -+ cc as e --+ 0 and ~ is uniformly positive in the sense described 
above, the assertion follows by elementary considerations by taking the limit as 
N ~ e o .  [] 

Lemma 4.5. Let Q be any limit point of {O~}. Then Q, when restricted to g2 n for 
n >_ 2 and given the configuration of positions, is uniform on every energy-momentum 
hypersurface 

= Co,  
o l = l  

n 

 pX=c  
c~=l 

(uniform in the sense of the restriction of the volume element dp). 

Proof. This requires that ~ L,~,~ be elliptic on the above hypersurface and that the 
c~,/3 

hypersurface be connected. Our assumptions on 4) ensure this except for special values 
of co, q ,  c~, c 3 when the hypersurface collapses to a point. [] 

Lemma 4.6. Given the configuration of positions then the configuration of momenta 
is a mixture of product measures of the form 

7r(dplA) = exp E E aiP~ - ~4 (~Q)c~) /Normalization, (4.8) 
i = l  oz 

where Ai are constants restricted to the region where the exponent becomes negative 
as IP~ I ~ oc. 

Proof Lemma 4.6 is just a consequence of Lemma 4.5 and the equivalence of 
ensembles theorem. [] 

In the following L will denote the Liouville operator defined on ~, the space of 
configurations in the infinite volume. 

Lemma 4.7. I f  Q is any limit point of {Or} then 

LF(w)dQ(w) = (4.9) 0 

for all bounded smooth local functionals F. 

Proof By definition we can choose a subsequence such that for any bounded smooth 
local function F 

E Q [LF] = lim E O~ [LF]. 
c---*O 

It is therefore enough to prove that E Q~ [LF] ~ 0 as e ~ 0. Define G(w) by 

3 0/ t?  3 0 / t?  

= = 2 - Z (x -x )opx 
Define gN to be the average of gN 

T 1/ 
9N(x, p) = ~ gm(t, X, p)dt .  

0 
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'Then we can express E ~?~ [G(w)] by 

k T  3 

D e f i n e / ~  to be the space average of F(w~,~),., 

~ ( x ,  p) = f F(w~,:~)dz. 

543  

r 3 

Recall L~ (2.4) is the Liouville operator with scale e. We can compute L~ff'~ as 

L~ff'~ = e -1 / G(w~,x)dz. (4.10) 

T 3 

Recall by I to 's  formula 

T 

0 

= e E  9N [/~ (x(T), p ( r ) ) ]  - e E  9N [/e~(x(0), p(0))].  (4.11) 

Since Fe is bounded, the right side of  (4.11) vanishes as e ---+ 0. By definition of Le 
and (4.10) we have 

lim E o~ [G(w)] = lim E O~v [eL~ff'e(x , p)] .  (4.12) 
e--~O e--~O 

By assumption that F is bounded smooth function we can bound Le/~ e by 

]EON[Leff'e(x, p)]l < e4 constO(~)EON [ ~ ~(e,x~ --x/3)]. 
L c~r 

By Lemma 5.9 and the fast decay of ~b, e3EOu[ 2 ~(e ,z~ - za)]  < const. Since 

e0(e) ---, 0, lim E0~[G(a01 = 0. This proves Lemma 4.7. [] 
e~fO 

L e m m a  4.8. For any configuration w = {(z~,p~)}, let z be the density, momenta 
and kinetic energy associated with the configuration defined by 

N 

z"(~)  " " ~ "  = hm z x 6(w) = lim 53 X(Sx~)~(w) # = O, 1, 2, 3 
6--~0 ' 6--*0 ~ ' 

oe=l ( 4 . 1 3 )  
N 

2'4(0.3) = lim z ~ ~(w) = lim 6 3 Z X(Sx,~)O(Po,). 
6 - * 0  X ' ~  6--+0 

oz= l 

Here (~ was defined in (2.10) and X is a cutoff function of total integral one (cf. (3.7)). 
For any limit point Q, of {Qe }, z;~(w) exist almost everywhere and are independent of 
the cutoff X. Furthermore, z(w) are constants of the motion defined by L in the sense 
that 

h(z(w))LF(w)dQ = 0 (4.14) 
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for all local smooth functionals F and all smooth functions h with compact support. 

Proof. Because of  the stationarity of {x~} as a point process and the conditionals o f p  
being independent (4.8), these limits clearly exist if the moments are finite: essentially 
one needs finiteness of the kinetic energy density or 

f z4(w)dQ < oo. 

This is implied by (4.5) and (2.28). It also follows from (4.7) that z is independent 
of  the cutoff X. 

We now turn to the proof of (4.14). By (4.9), 

= f L(Fh(z~,5(w))dQ 0 

= f(LF)h(z~,gw))dQ + f FLh(z;,~(~))dQ. 

The first term converges to f LFh(z~(w))dQ as (5 --* 0. We only have to show that 
the second term converges to zero as (5 ---+ 0. Clearly, it suffices to show that as (5 ---+ 0, 

f[ Lz~(,5ldQ --~ 0,  # = 0 , . . .  ,4 .  (4.15) 

By definition, 

LzO,6 =(5(53 E ~ i )~i( x~)p~. 
o6 i 

Hence f ILz~ --~ 0 as (5 -~ O. Similarly, 

5 Cz~,~ = (5(5 3 y ~  ~ ( ~ - ) P ~ r  
a , j  

- (5 3 ~ x ( ( sx . )V~(x .  - x , ) ,  i =  1 ,2 ,3 .  (4.16) 

The first term clearly goes to zero as (5 --~ 0. As for the second term we use the 
antisymmetry of V i to write it as 

1 (53 E Vi(x~ - x~)[x((sx~) - x((sx~)]. (4.17) 
2 

Since x is smooth with compact support 

IX((Sx~) - X((Sx~)] _< const(5[l(Ix~l _< ~-1C)  + l(Ix~l _< (5-1C)1, 

for some constant C. So (4.19) is bounded by 

const(5 �9 (5 3 E W(xa - x~)l(lx~] < (5-1C), (4.18) 

where W is a smooth positive function with compact support. By (4.6) we can bound 
the expectations of (4.18) by const (5. Hence 

[ I Lz~,aldQ = O, i = 1,2, lira 3.  
6--~0 J 
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Finally we have to bound f [Lz~ 

The first term on the right side of  (4.19) is easy as before. The second term is trickier. 
Let wi(z) and oi(t) denote the expectation and variance of 4)i(p~) with respect to Q 
conditioned on z. Note that since the extremal measures of  momenta  distribution are 
characterized by (4.8), w i and a i depend on z only and are independent of the other 
parameter or structure of  Q. We can now bound the second term of (4.19) by 

1. 
The second term of (4.20) can be bounded as before. Using the Schwartz inequality 
the first term can be bounded by 

_< const 53E Q )((6Xc~)2 ( Z Vi(xa - x/3) ' (4.21) 

where we use the boundedness of ~ri(z). To bound the second expectation, let us 
divide the set {x[ Ix] < 26 -1} into boxes of  size 2R with R denoting the range of 
V. Let rr index the boxes and let N~ be the number of particles in the cr box. 

By convexity and the inequality 
bounded by 

c~ 53EQ [ ( ~  

21 ] Vi(x~ _ x a ) )  1/2 1/2 

( ~  N3) 1/3 < ( ~  N2) 1/2 we see that (4.21)is  

(4.22) 

By ~47), ~QF~ ~ 1  is bounded by ~3 and ~422)is bounde~ by const~3J4 We 
t_ t J  J 

have thus concluded that (4.17) vanishes as (5 --+ 0 and thus Lemma 4.9. [] 

By Lemma 4.6 we can represent the limit point Q as 

O = f/3(dz)u(dxlz)vr(dplz) , (4.23) 
J 



546 S. Olla, S.R.S. Varadhan, and H.T. Yau 

where 7r is defined in (4.3) with A chosen in such a way as to have average momenta 
and kinetic energy given by z. Furthermore Lemmas 4.7 and 4.8 imply that 

f LF(w)u(dxlz)Tr(dplz) = (4.24) 0 

for almost all z. From (4.24) and the translation invariance of Q, u | 7r is a Gibbs 
state satisfying the DLR equation. We state this as the following. 

Lemma 4.10. Any extremal limit point of the family {Q~} defined in (4.1) is a Gibbs 
state. It is characterized by the five parameters z ~, # = O,..., 4. 
Proof. By the translation invariance of u(dxlz) we can rewrite (4.24) as 

f [ ~ ~ Ox-----~cgF ~ ~ ~'~cOF ] ~(dxlz)Tr(dplz) = O ' - - - 

where wi(z) is the expectation of r with respect to 7r(dplz) (as in the proof of 
Lemma 4.9). Then the proof follows easily along the line of the proof of Lemma 4.5 
in [OV]. In fact the particular form of r does not play any role here. [] 

Now the local ergodic Theorem 3.10 is just a simple corollary of Lemma 4.10. By 
taking the limit e ~ 0 we only have to check that 

li-m sup EQ[IFk(w) - F(~k(w))]~rk(w)] = 0, (4.25) 
k----~c,c Q~A 

where A denotes the set of limit points o f / 5 .  The characteristic function cr k reduces 
the problem to verification of (4.25) with conserved quantities in the single phase 
region of Gibbs states with potential V and kinetic energy r Combining with 
Lemma 4.10 we only have to check (4.25) for Gibbs states in the single phase region. 
This is simply the law of large numbers for Gibbs states. 

5. Large Deviations for Gibbs Point Processes 

We will develop here a large deviation theory for Gibbs point processes, needed for 
the proof of Theorem 2.1 and Corollary 2.2. For Gibbs processes on a lattice this 
theory has already been developed in [O] and [Re]. For an account of general theory 
of large deviation, see [VI]. 

Initially we want to develop a large deviation theory for a Poisson point process P 
on •3 • R3. The intensity of the Poisson process will be the measure dx • f(p)dp. The 
density f(p)  will be nonnegative and f f(p)dp = 1. A point of •3 • i~3 will be denoted 

~3 
by (x,p) and the sample space Y2 will consist of points w, denoting a configuration 
{(x~,p~)}. Any bounded region B in ~3 will have only a finite number of x~ in it 
and one can think of p~ as tags and consider the corresponding finite configuration 
in B • ~3. The configuration x ,  alone will constitute a Poisson point process on 
~3 with intensity given by the Lebesgue measure. The Poisson measure P on Y2 
is invariant with respect to the group of x-translation ~-x" Suppose Q is any other 
~-x-invariant point process measure on Y2. Let D z be a cube of side l in ~3; we can 
define the relative entropy Hz(QIP) of the restriction of Q to D z • ~3, with respect to 
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the same restriction of  P .  By restriction of  course we mean restriction to the ~7-field 
~'t  generated by configurations in that domain. We define then 

Hz(QIP) = sup{EQ(Fz) - log EP(e Ft)}, (5.1) 
Ft 

where the sup is taken over all the bounded continuous ,~-measurable functions F t 
on f2. Because of  independence properties and stationarity of P ,  H t is superadditive 
and one can define the entropy density as 

h(Q/P)  = lim 1 Hz(Qip  ) = sup 1 Hz(Qlp) .  (5.2) 
5 - ~  t J 1 t ~ 

To any configuratioin w C ~9, we can associate a a-finite measure on N 3 • ~3 by 
counting the number of points (x~,p~) in any given set. Then the space ~ can be 
made into a topological space under vague convergence. That is to say that for any 
test function r which is continuous and has compact support in ~3 • N 3  the 
function on 

r 

is continuous on f2. This in turn provides a weak convergence definition for the space 
of  stochastic point processes on Y2 and we shall limit ourselves mainly to the 

T~-invariant ones ~ 0 "  
Let NB(w) be the number of  points of  the configuration ~ in B • ~3, where B is 

a bounded set in ~3. For any stationary point process Q, if for any bounded B c R 3 

EQ[NB] < +<xz, 

then there exists a positive a-finite measure q(dx, dp) on R • R 3 such that 

= f q(dx, EQ[NB] dp) . 
, 1  

B x N  3 

By stationarity we have 

q(dx, dp) = co dx .  7r(dp), 

where 0 is a constant density of  the x-configurations and 7r is the distribution of the 

Theorem 5.1. (i) h(Q]P) is lower semicontinuous. 
(ii) for any finite number l, the set {Q: h(Q]P) < l} is compact. 

(iii) if Q n ~ Q with h(Qn]P) < c for any n, then qn(dx, dp) = p~dx . 7rn(dP) 
converges to q(dx, dp) -- p dx .  7r(dp) of the limiting Q. 

Proof. (i): The lower semicontinuity of  H z follows easily from this definition and, by 
(5.1), h(Q) is also lower semicontinuous. 

(ii) and (iii): By the entropy inequality it is easy to show that if Q E M 0 and 
h(QIP) < c, then for any bounded B C R 3 there exists a constant c B, 

EQ(NB log NB) <_ c B . 

Then (ii) and (iii) follow by standard arguments. [] 

The following Theorems 5.2 and 5.3 are the large deviation theory relative to a 
Poisson point process. For the upper bound contained in Theorem 5.2 let us assume 
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that F(w) is a local function measurable with respect to configurations on some B • ]R 3 
and satisfies a bound 

F(w) <_ e 1 + e2NB0(w) 

for some constant Cl~C 2. 

Theorem 5.2. Under the above assumption 

lim sup 1 EP[ f ] l ~  ~ log exp F(Txco)dx _< sup [EQ[F] - h(QIP)I 
k D l I Q~.ff/'o 

and the right-hand side is finite. 
Proof. Let us first assume that F(w) is bounded in absolute value. Then by the entropy 
inequality we have 

l~ =s;p{EQ'[Jl F('rzw)dx I -HI+lo(Q'IP)}, 

where the supremum is taken over all point processes Q~ on D~+z0 x R 3. Here we are 

assuming that B 0 C Dio. We extend the measure Q~ where the supremum is attained 

to a point process on R 3 x N 3 by taking independent copies on all disjoint translated 
cubes of  N3 • N3. The measure Q" so obtained is not stationary but can be made 
stationary by defining 

1 / .r~QI,dx" 
Ql+l~ - -  ( l  -~- / 0 )  3 

Dl+l o 

By (5.2), convexity of H t and independence properties of the Poisson measure P we 
have 

1 Hn(z+to)(Ql+to ]p) h(Ql+~o]P) = lirn (n(1 +/0)) 3 

1 1 f H~(l+Zo)(~_ Q,, <_ 
lmi___,~ (n(l + lo)) 3 (l + Io)3 ]P)dx 

J 
Dl+lo 

1 H ~'~II IP ~ < (I+1o)3 Z+loV~ I 
1 

(1 + / 0 )  3 Hz+z~ ' " ' ~  " 
I 

Furthermore we have 

EOt(F(~)) - -~ E c2' F('rx~)dx < [[Fi[oo. o(1) 

\ D  l ] 

as l --~ oo. This proves the upper bound for bounded F.  
Now assume F only bounded above and define F k ----- max{F, - k } .  Then we have 

lim.u l ) t - -~  ~ l ~  exp F(~cc)dx < sup {EQ[Fk(W)] - h(Q[P)} = o- k. 
' \ D e  QEJ/~0 
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We need only to establish lim cr k _< sup {EQ(F) - h(QIP) } (the limit exists 
k----* cx~ Q C M o 

since ~r k is decreasing,) If  lim a k = - ~  there is nothing to prove, Let us assume 
k----* oQ 

l i m e  k = cr > - o o .  Since F k is bounded above we can find Qk such that h(QklP) 
k----* cx~ 

is bounded and E Q k [ F  k] - h ( Q k [ P )  --~ a. The boundedness of  h(QklP) means 
that along some subsequence we will have a weak limit Q and moreover Qk ~ Q 
strongly, i.e. for each Borel set in the (7-field corresponding to every B • ]R d. In 
particular 

EQk(F) -+ EQ(F)  

for every bounded measurable F .  Therefore 

l im EQk(Fk) < EQ(F). 
k ---+ oz~ 

The lower semicontinuity of  h(Q[P) completes the argument. 
For  removing the upper bound on F we replace F by F k = min(F,  k) and we 

will  use the fact that EPe)'NBo < +eC for every A < +co .  By H61der's inequality if 
1 1 
- + - = 1  we can bound 
P q 

EP{exp~fF(Txw)  dx <_ (E P exp p Fk(7-zw)dk 

_ D e  

I_ D e  

=T1 "T2. 

If  we take log and divide by 1/13 we get for the first term 

1 1 
limt~sup ~ log T 1 -< P Q~.~0sup {E Q [pF] - h(QIP) } 

while the second term is estimated by 

{ ]}ljq 
L D e  

We can think of  D z of  disjoint union of  translates of  B 0 and if  we denote by 

z3/l~ 

~x(W) = E [C2NDz 0 (Tx+aW) -- (k - Cl)] +, 
o~ 
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then we can bound T 2 by (using Jensen's inequality) 

(EP {exp(ql3[C2NDlo (w) - k - Q)]+)) (t3 /t3)" (1/q) 

We obtain then 

liml__,~sup ~3 log T 2 <_ ~ lq log EP[exp(ql~[c2NDlo(co)- (k - Q)]+)].  

Let k --~ cx~, then the right-hand side goes to zero. Now we let p --~ 1 and we get the 
right bound. [] 

For the following lower bound we can assume F(w) to be an arbitrary function 
measurable with respect to the configurations on some Dto x II{ 3. Then we can prove 

Theorem 5.3. 

~ F l o g  exp F(Txw)dx >_ sup [EQ(F)-h(QIP)], 
Q E.///~O 

where the sup is taken over all Q such that h(QIP) < +~z and EQ(F -) < +cx~. 

Proof. We can take any permissible Q and since h(QIP ) < ~ we know that 

dQ FDt+to 
--~ = ~l+lo 

• ~3 

exists. Then by Jensen's inequality 

>-exp[EQ(~Dz'F(Txw)dx ) -Hl+zo(QIP)] 

> exp[13EQ(F) - (l + lo)3h(QIP)]. 

Taking log, dividing by 13 and letting 1 ~ oc we obtain the lower bound. [] 

Remark. The above proof can be easily modified to yield a lower bound for 

1 - ~  l -g l o g E  Xt exp F(~-xw)dx >_ sup [EQ(F)  - h(QIP)], 
QCAe 
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where Xt is defined by 

{ l f  G(T~w)dz~'z 
Xl ~ 02: ~ D  l 

and 

E (a, b)}  for some - o e < a < b < o c  

Ac={Q:/G(w)dQc(a,b),Qergodic}, 

and by arguments standard in large deviation theory we can replace Ac by 

A={Q:/G(w)dQE(a,b)}. 

We now turn our attention to a similar problem for a Poisson point process P~ 

with intensity 7 dx • f(p)dp on T 3 x IR 3 as 3` ---+ oc. We will have a family F(x, w) of 
functions depending on a fixed domain Dr0 • R 3 in IR 3 x IR 3 and depending in some 

continuous manner on x E T 3 as a parameter. We will think of  3, = r  and c ---+ 0 
as 3` ~ oc. If x is any point in T 3 we can define wx, ~, a configuration in R 3 x R 3 in 
the same fashion as in Sect. 3. Then if  c is small enough F(x, Wx,E) is well defined. 
We will be interested in the behavior of 

as 3` ---, oc. Remember  that 3' = e-3 .  

Theo rem 5.4. Assume that F(w) is a bounded function measurable on Dzo x R 3. Then 

l im llogEP~rexpf3`fF(wze)dx~] sup [EQ[F]-h(QIP)] 
L k T 3 ) J  

Proof. It is no different from that of Theorems 5.2 and 5.3. I f  we ignore strips of size 
~, adding up to a volume O(c -2)  and expand the rest out to a cube of  side nearly 1/c  
we are back to the earlier case. [] 

We now consider integrals of the form 

Z(3`) = E P~ {exp F.y(w)}, (5.3) 

where (~-3 = 3`) 

3 21 ~ ( x ~ - x g )  
F,./(w) = E Ao(X'~) + E E A~(x,~)p: - E A4(xo~) E W 

c~ i=1 

- E As(x~)r + 3̀  / G(x, w~,~)dx. (5.4) 

T 3 

We make the following assumptions: 
1) A j ,  j = 0 , . . . ,  5 are continuous functions of  x c T 3. 

2) V(x) is a continuous function with compact support in R 3 such that V = V 1 + V 2 
with VI(x) _> 0, VI(0) > 0, and V 2 being a positive definite potential. 
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3 
3) ~ Ai(x)p i < A~(x)O(p) for all x and p. 

i=1 

4) G(x, a;) = ~ 9~(x)Gs(w), where 9~(x) are bounded measurable functions depend- 
8 

ing on configurations in some fixed domain Dto • N 3. 
5) A4(x ) ~ a o > 0. 

Theorem 5.5. Under the above assumptions 

lim - log Z(~/) = sup [EQ(P~(co)) - h(Q[P)]dx, 
"~-~ '7 Q~,~o 

T3 

where 
5 

L(w)  = ~ A,(x)~(w) + ~ gs(x)Gs(w) 
i=0  8 

and 

~'o(~) = ~ u(x . ) ,  
Ot 

~Pi(w) = E u(x.)p~, i =  1 ,2 ,3 ,  

1 
~4(~) = - 5  ~ u(x~)V(x~ - x~),  

~'5(~) = - ~ ~(x~)r 
O~ 

Here u is a positive function of compact support supported in Dto with f u(x)dx = 1. 
N3 

Remark. The assumption that V is bounded and is of  finite range is not essential. 
The proof we give in the following is taken from [CLY] where one needs to control 
Coulomb potential. We prefer to keep our proof in a simple form. 

Proof. The proof is just an easy step away from Theorems 2, 3, and 4. First let us 
remark that we can find approximations for A~(x) and 9i(x) that are constant on some 
cubic partition of  T 3, both from above and below, and we can assume without loss 
of generality that all these functions are piecewise constant. 

The only restriction on the function u is that it has compact support, is non- 
negative and is of total integral one. It is not hard to see that by the stationarity of  Q 
the variational formula gives the same value independent of the choice of u (subjected 
to the previous conditions, of  course). In the following we prove Theorem 5.5 with 
u being a characteristic function of  a cube. 

Divide T 3 into disjoint boxes B~ of  size el. We can translate the boxes by ~- with 
0 <_ "r i < el, i = 1,2, 3. Let F~+~_(w) denote the contributions of F~ in the box 
B~ translated by 7-. There are ambiguities in this definition which we shall clarify 
as follows. First of  all we can assume Aj is constant in the box c~ + ~- and replace 
Aj(x~) by Aj(o- + T). Next V(x~ - x/~/~) is replaced by 

V(x~ - x~/E)l~+Ax~)l~+~_(xz), 



Hydrodynamical Limit for a Hamiltonian System with Weak Noise 553 

namely, we neglect the interactions between neighboring boxes. Certainly we made 
certain errors. I t ' s  not hard to see that there is a bounded function with compact 
support W such that 

F(o2) ~ (c/) -3 + W(x  - X ~ / C )  . 

The last term is in general of  order N 2 but one can control it in the following way. 
Let 

F (~ = F + 0 ~ V(x~ - z z / s ) .  

Apply previous bound to F (~ 

F ( ~ )  _< (el) -3 f dv ~ (F(~ + s 
0 .  

~2 = Z / - 1 ( 1  § O)W(x~ - x~/e) - OV(x~ - xz/e).  

By assumption V = V 1 + V 2 with V 2 positive definite and V 1 nonnegative with 
VI(0) > 0. By Lemma 5.7 below, for / large enough there exists a (5 > 0 such that: 

Y2 <_ ~-l l- l  N - 0 Z V2(x~ - xz/e) <_ ((5-1/-1 + c o n s t 0 ) N .  

Hence 
log Z(7  ) < (~5-1/-1 + cons t0 )N 

+ l o g E  P'~ [exp Avr Z (F(~ 

By Jensen's inequality the last expectation is bounded by 

A%-logEP'r[exp(E(F(~ 

Note that for T fixed there is no interaction between neighboring boxes. So the last 
expectation is nothing but 

Av,. Z EP'y [exp((F(~ ~-(~))] ' 
o+-i- 

We can now apply Theorem 5.2 and let l --~ oc and then 0 ---+ 0 to conclude our 
upper bound. 

The lower bound is much easier. First let us divide T 3 into disjoint cubes of  size 
el. Let A s denote such a typical cube and let B~ C A s be defined by 

B~ = {x] dist(x, A~) > 10}. 

Since we need only lower bound, we can restrict to the set that no particle exists in 
the corridors T 3 \  U B~. The probability of  such an event under P.~ is exp[-C(1)N], 

where C(1) --+ 0 as l ---+ oc. Moreover, the integrand factors into product over cubes 
as no interaction presents in this event. We now use Theorem 5.3 for each cube 
and sum them up to the right side of  Theorem 5.3. Note that the errors caused by 
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restricting to the specific event mentioned above is negligible in the limit ",/ ~ oc 
and l ---, oc. [] 

Consider now the canonical partition function with the number of  particles fixed 
at N that goes to oc as c-3:  

Z~v = E eu {exp[F.r(co)]}, (5.5) 

where PN is the measure on (T 3 x R3) N defined by 

N 

dPN = H dxc~ • f(p~)dp~. 

Then the previously defined [see (5.3)] grand canonical partition function is related 
to the canonical one by 

Z.y = e - ' r  ~ Z~v. (5.6) 
N = 0  

T h e o r e m  5.6. Suppose that lim N T - 1  : 1. Then 
N - - + ~  

sup 
N --+ a~ N { Q x }  

f o(Qx)dx=l 
T 3 

(here e(Q) is the density of Q). 

Proof. If  we consider 
e - , ~  N 

a,b E e Z,~ = N! ZN ' 
q'a<N<q'b 

then the remark after Theorem 5.3 yields 

lim inv.r~o~ 17 l~ Z'~'b--> sup / J dx[EQx{F~(c~ h(Q,]P)]; 
k T  3 

Qx: a < f Q(Qx)dx < b} �9 
T 3 

We note that 
Z~_ K <_ (const)/~Z~v. 

To see this, let us integrate out one particle, say x 1, in Z~v. For any distribution 
of x 2 , . . . ,  x N we can always find a set A of measure at least a with a > 0 such that 

N 

sup ~ [V(x - xj)[ < const . 
xE A  j = 2  

for some constant independent of N.  By restricting x I integration to A we get the 
desired bound for k = 1. The general case follows by induction. 
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Now let us choose a = 1 - 6 and b = 1 to have a lower bound for Z~ 'b. We obtain 
a lower bound for Z~v by using the upper bound on Z~v_ k. Finally let/5 ---+ 0 at the 
end to conclude the lower bound of Theorem 5.6. 

To obtain the upper bound we define 

oo 7N eXN z~v 
Z~ = ~ e-~ ~ .  

N=O 

Our methods can evaluate 
1 

lim sup log Z )  
"/----+ OG 

for any real A. We then note that 

1 e - N N  N 
lim log - -  

N - ~  N N! 

Therefore 

- - 0 .  

l i m s u p l  l~ < limsup [ l l ~  - A ] N - - - ~ o ~  N - -  N---*oo 

- < i n f l i m s u p [ l l ~  N - , ~  

which yields the right-hand side of our theorem. [] 

Lemma 5.7. Suppose W is a positive bounded function with compact support on IR 3. 
Then there is a/5 > 0 such that 

N N 
w(x  - <_ - + N .  

Proof Proof of Lemma 4.2 in [V] generalized to more dimensions. [] 

We will review now certain facts from thermodynamics of continuous systems, 
based partly on the large deviation theory developed earlier. 

Suppose we are given a kinetic energy function r for p E N 3, which is 
continuous nonnegative, and growing at least linearly at ec. We consider the set 
L of (A1, A2, A3, A 4) in IR 3 x IR+ satisfying 

f exp - dp < + o c .  

Let L ~ be the interior of L. Suppose V is a pair potential of the class described 
earlier, then for any configuration (x~,p~) in a bounded cube D the grand canonical 
partition function is defined, for A = (Ao, A1, . . . ,  A4), A 0 E IR and (A1,... , A4) E L o, 
by: 

ZD(A) = e - l~  N!  "'" exp Z )kipi-)k4~N H dx ,dp , ,  (5.7) 
N = 0  ( D x R 3 )  N i=1  c~=l 

where 
1 
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The pressure is defined by 

r  lim 1 lOg ZD(A). (5.8) 
D ~ 3  ~-~ 

Although the existence of this limit can be proved in many ways we will use large 
deviation theory to see it. We can pick 5 such that (.Xl,)~2,)~3,)~ 4 - 5) E L ~ and 
normalize e -~(v)  to be a probability density. We then see by large deviation theory 
that r exists (Theorems 5.2 and 5.3, observe that the integrand is bounded above) 
and 

r = sup {EQ(Fx,~) - h(QIPe) } , (5.9) 
Q E ~ 0  

where (recall u from Theorem 5.5) 

3 

= E E E - - 
a i=1 

u(x,)V(x~ - x z) 2 (~r 

- -  ()~4 --  6) E 'tt(X~162176 § ( log  % )  E u ( x ~ ) .  

Here c 6 = f e-6r and u > 0 is a compactly supported function with f u(x)dx = 
R3 R3 

1. Pe is the Poisson process with intensity dx x exp(-6r It is 
easy to check that 

h(O'P6) - 6EO [ ~a u(x~)r ] - (log cs)EQ ( ~ u(xc~)) 

is independent of 6 and defines a functional s(Q). Then 

r = sup [EQ[Fx] - s(q)]. (5.10) 
Q~J/~o 

Here 
4 3 

i=0 ~ i=1 a 

1 - x z ) ]  U(Xc~) . 
3 Z#c~ 

We can fix EQ(FO = qi for i = 0, 1 , . . .  ,4 and define the thermodynamic entropy 
function 

~(q) = inf s(Q). (5.11) 
Q : EQ [Fi]=q i 

Then ~(q) is a convex function of  q E ]R 5 and r and g are related by 

~b(~) = sup ~iqi - ~(q) �9 (5.12) 
q 

There is an open subset of  U of  L 0 x IR and an open subse t / ]  of  1R 5 such that V~b 
and Vg map each onto the other in a smooth one-to-one manner (cf. JR]). Moreover 
by restricting to a smaller nonempty subset we can assume that the variation in (5.10) 
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is attained at a unique measure Q~ and Q~ is the "Gibbs" measure corresponding to 
the activity ~. From the uniqueness it follows that Q~ is ergodic as a stationary point 
process. 

Now we want to study local "Gibbs" families of  measures. Let ~(x) be a smooth 
map of T 3 • U. Let q(x) be the corresponding map into U. Assume f qo(x)dx = 1. 
Let us define on (T 3 • I~3) N T 3 

3 

G(X,p__) ~- Z )ko(Za) ac Z Z )~i(X~ - Z ~4(xo~)ha' ( 5 . 1 3 )  

c~ o~ i=1 

where 

ho~ = r + ~ ~ V (  x`~ - x~ (5.14) 

and N --+ oc as e --+ 0 with N e  3 --+ 1. 
We define on (T 3 • R3) N a local Gibbs measure fiN = 9NdX--dP_ with density given 

by 
1 

0N(x, p) = Z--~N exp[G(x,_p)]. (5.15) 

Note that ON is the same function as defined in 2.27. According to Theorem 5.6 

~ o  N log Z N = sup dx[E Q~ [Fx(c~)] - s(Qx)]; {Qx} : Q(Qx)dx = 1 
k T 3  

Since the supremum is attained anyway at a ~0(x) with f ~o(dx) = 1, we can drop 
the restriction and 

1 log Z~vp, = f r (5.17) 

Let us take a function [h a defined in (5.14)] 

3 

= + + 

+ a / K ( x ,  aJx,E)dx , (5.18) 

where bi(x ) are continuous, b 4 < )k 4 and K(x, w) is bounded and local. Then if we 
define the partition function 

/ exp[f2(x, p_)]dftN, (5.19) ZN 

then 

N--~oo {Ox }; f  ~O(x)dx=l i 

- / ~b()~(x))dx, (5.20) 
J 
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where ( i (x)  = E Q~ [Fi]. Clearly one can move the sup inside and drop the constraint 
f ~o(x)dx = 1 to have an upper bound. Together with (5.11) we have 

lim N-11og2N 
N--~eo 

<_[sup{EQ(K(x ,a~ ,~) )+Zbu(x )~u- I (~ ,A(x ) ) }dx .  (5.21) 
d Q u 

Here 

I ( ( ,  ~) = ~(() + ~(A) - A ( .  

These estimates provide an easy corollary. 

Coro l l a ry  5.8. The measures fiN have a law of large numbers. If 

m = / Efe'(x)(f2x(co))dx, 

where f~:~(x) is the Gibbs point process corresponding to A(x) then 

{ 1 } 
PN (z,/9): ~ g2(x,/9) - > 6 ~ o 

N - ~  

exponentially fast in N for each ~ > O. 

Let us map the configuration (x_,/9) into the set of maps from T 3 into the stationary 

point processes on R 3 • R 3. Let K be an arbitrary number. We map the configuration 
in a box of  size r  around x c 7 3 to a configuration in a box of  size K in R 3 by 
y~ = (x~ - x)r -1.  Then {(y~,p~)} = ~{ is a configuration in B k • ~3. We can 
extend it periodically to a configuration ~ in R 3 • R 3, and averaging over translations 
o n / 3  k we obtain a stationary random point process Rx,~,k, ~ defined by 

E R  . . . .  k,~ [ A ( J ) ]  - 
1/ 

iBk[ dy A('~u~). 
Bk 

Let ~N,k be the measures induced by this map by dft N = ~Ndxd/9 on the space of 
maps 

x E T 3--~ R x E M o. 

Our basic result can be thought of as a large deviation result for ~-N,k" Then the 

estimate (5.20) can be rewritten as (~ . (x)  = EQx(Fu) ) 

1 . (  / ) 
lim lim ~ l o g E  N,k e x p N  dxERx,~(g2x) 

k ---,cr e$0 
T 3 

= sup . /dx[EQx( f2x)+~A, (x ) (~ , (x )  
(Qx} : f r ~, 

-- s(Qx) - ~(A(x)) ] .  (5.22) 
/ 
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Proof of Lemma 3.8. By entropy bound (2.28) the expectation with respect to 9N is 
bounded by 

N - l ( 5 o l l o g E b N [ e x p l 6 o N f ( 1 - c ~ k ) A d x } ]  + ( 5 - 1 N - I H .  

k T 3 

The first term can be bounded using (5.21) in the limit N ---+ co and k ~ cc by 

(5o' f supr [~(5~ Eu bu(x)~t,(x)(1 - l~2(~(x)) -I(~(x),A(x)) }dx.  (5.23) 

Since I(~(x), A(x)) > e > 0 in the region 1 - l~,2(~(x)) r 0 and I is convex in ~(x), 
the sup in (5.23) is zero if (50 is small enough. We have thus proved Lemma 3.8. [] 

We can now prove Lemma 4.2. 

Proof of Lemma 4.2. Let Q be any limit of Q~. By (5.9) 

h(QIP6) < EQ(Fx,e) - ~(A). 

By the entropy inequality and 4.4 

EQ(Fx,e) <_ lim 1 ( ) N ~  N log E PN e N f Fx,e( . . . .  )dx -~- C ~ ~(A) 'F C ,  

where the last inequality is due to 5.17. [] 

Finally we state: 

Lemma  5.9. If gN(x, p_) is a symmetric probability density on (T 3 • ~3)N such that 
the relative entropy with respect to ON,;~ 

H(gN]ON,A) ~_ cN 

Then 

EgN E g ~ c t , 
E 

and therefore by Lemma 5.7 

(ar162 

for all W continuous and having compact support. 

Proof. It is an easy consequence of the entropy inequality and the theory developed 
above. [] 
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