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Abstract. A “system of coordinates” on a set A of selfdual lattices in a two-
dimensional p-adic symplectic space (#Z7,.%) is suggested. A unitary irreducible
representation of the Heisenberg group of the space (77,.%) depending on a lattice
Z € A (an analogue of the Cartier representation) is constructed and its properties
are investigated. By the use of such representations for three different lattices
£,%,, % € A one defines the Maslov index p = p(%],.%,.%,;) of a triple of
lattices. Properties of the index p are investigated and values of y in coordinates for
different triples of lattices are calculated.

1. Introduction

As it is known one of the profitable methods to study a quantization procedure is to
construct and to investigate topological characteristics associated with this procedure.
An example of such a characteristic is the Maslov index [Ma]. Let us discuss generally
one way to obtain such characteristics. Let G be a group and (H,,U;), ¢ =1,2,3 be
its unitary irreducible representations in the Hilbert spaces H,, ¢ = 1,2, 3 respectively.
Let us assume that these representations are unitary equivalent and F),, F3, and Fi,
be unitary intertwining operators. That is, say for F,,, F,;:H — H, and for all
g € G the relation

Fy'Uy9) Fy = Uy(g)

holds (and similarly for operators F, and F);). By the last formula the operator
F = F,F,F, H — H; commutes with all operators U,(g), g € G. In view of
irreducibility of (H;, U,) the operator F" is proportional to the identity operator, that is
F = p1d for some p € T (T denotes a unit circle in the field C of complex numbers).
Hence we obtain a numerical characteristic p of a group G and a triple of its unitary
irreducible representations.
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Let us take an example, see [LV]. Let (77,.%) be a two-dimensional symplectic
vector space over the field R of real numbers and 7" be the Heisenberg group
of the space (7,.%) (that is 7 is the three-dimensional Heisenberg group). Let
also L be a lagrangian (that is one-dimensional for dim?” = 2) subspace of
7" provided with the natural Haar measure dm(L). As it is known there is a
unitary irreducible representation (H(L),U;) of the group 7 in the Hilbert space
H(L) = L*(L,dm(L)). For two different lagrangian subspaces L, and L, these
representations are unitary equivalent. Let now L, L, and L, be different lagrangian

subspaces in 7. By applying the procedure discussed above for the group Z~
and for the representations Uy, , Uy, and U, we obtain a numerical characteristic
w(Ly, Ly, Ly) of these representations. It turns out that in this case p = exp(in7/4),
where 7 = 7(Ly, L,, L) € 7Z is the Maslov index of lagrangian subspaces L, L,
and L,, see [LV].

As a different example we consider the Cartier representation [C] of the Heisenberg
group 7. This representation is unitary, irreducible and depends on a selfdual
Z-lattice % in the space 7. By using the procedure discussed above for the Cartier
representations associated with lattices .%, .%, and .%; we obtain an index of a triple
(5, %, %) of selfdual Z-lattices, see [LV].

As p-adic numbers find expanding applications in mathematical physics (the active
advancement began from the paper [V]) it is interesting to extend the construction
discussed above for the field Qp of p-adic numbers. Let now (#77,.%) be a two-

dimensional symplectic vector space over Q,, and 7 be the Heisenberg group of this

space (for the definition of the group 7 see Sect.3 of this paper). As for the field R
there is a unitary irreducible representation of 7 in the space LA(L, dm(L)), where
L is a lagrangian subspace of the space 7 and dm(L) is the Haar measure on L, as
to the corresponding index see [LV] and bibliography there.

There exist also a unitary irreducible representation of the p-adic Heisenberg group
depending on a selfdual Z,-lattice in the space 7. (Z,, denotes a ring of p-adic
integers.) This representation is an analogue of the Cartier representation mentioned
above. By applying the procedure discussed above for the p-adic Heisenberg group
and a triple of its representations associated with lattices %], %, and .%; we obtain
a complex number p = p( %, %, %4,) € T. This number p we call the Maslov
index of a triple (%},.%,, .%;) of selfdual Z -lattices. This index is the subject of our
investigation. It is not improbable that this index will be useful for p-adic quantum
mechanics constructed in [VV] (see also [Me, R}).

The structure of this paper is the following. In Sect.2 one considers Z,-lattices
and their properties. In particular one constructs a “system of coordinates” on a
set A of selfdual Z -lattices in a two-dimensional symplectic space (7, .B) over Qp

(Proposition 1). In Sect. 3 we define the Heisenberg group " of the space (7, .%) and
construct a unitary irreducible representation (H (%), W) of this group depending
on a lattice % € A. We prove also some properties of this representation (Proposition
2). In Sect.4 an intertwining operator of two such representation is constructed and
its properties are investigated (Proposition 3). In Sect.5 we construct the Maslov
index of a triple of selfdual Z, -lattices. We also obtain an explicit formula for this
index (Proposition 4) and prove some natural properties of the index (Proposition 5).
Section 6 is devoted to calculations of the Maslov index in coordinates defined in
Sect. 2. '
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2. Lattices

Let (77,.%) be a two dimensional symplectic space over Q,, and %" be a latfice in
(77,.#) (that is £ is a finitely generated Z,-submodule of the space 7" containing
a basis of 2). A dual lattice #™* is defined as follows:

I ={ze 7 B,y €L,y e L}

If & = %*, then ¥ is a selfdual lattice. Let A = A(Z",.#) denote the set of all
selfdual lattices in (77,.%). Note that if ¥ € A(Z", %), then (%, %) is a space with
symplectic inner product.

As Z, is a local ring, then there exists a symplectic basis {e, f } of the space
(7", %) (symplectic means that .%(e, f) = 1) wherein (see [MH])

L =1L,eDL,f.

Moreover for any .%,,.%, € A there is a symplectic basis {e, f} wherein these lattices
have the form

H=Le®Lyf, L=p"ZL,edp "L,f

for some nonnegative integer m. For the proof of existence of such basis (but is not
of necessity symplectic) see for example [W1], reduction to symplectic case is rather
obvious.

Now we define a “system of coordinates” on the set A. Let Sp(Z”) denote the
group of all linear automorphisms of 7~ preserving the form .% (symplectic group)
and Sp(¥) be a stabilizer of a selfdual lattice % in Sp(Z"). Sp(Z”) acts on A
in a standard manner, this action is transitive. Thus A can be identified with the
homogeneous space Sp(77)/Sp(%).

Proposition 1. Let {e, f} be a symplectic basis in (7, #5). Then the map p:7 x
Q,/Z, — A
ZxQ,/Z, > (m, i) L,p"e® L, (up™e+p " f) € A

defines a one-to-one correspondence between 7 x Q, / Z, and A. (In the right-hand
part of the last formula y denotes an arbitrary element of a coset [i.)

Proof. Let %, denote the following lattice:
Sy =Z,e+Z,f.

In the basis {e, f} Sp(Z") and Sp(%,) have the matrix realizations: Sp(7") =
SL2,Q,), Sp(Zy) =2 SLQ2, Z,). Let % be an arbitrary lattice from /. Then there is

an element g € SL(2,Q,) such that &£ = ¢.%,. By the Iwasawa decomposition (see
[PR]) g can be represented in the form:

_(r 0 1w
9=\ o pm)lo 1)%
for some m € Z, p € Q,, and g, € SL(2,Z,). Thus £ has the form

F=ZL,p"edZL,(up"e+p " f)
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and the map  is surjective. As for m,m’ € Z and p, ' € Q,, we have

0 1@\ 0 1 op
o pm™/)\0 1 0 pm™/)\o 1
m—m' m—m’ _ m' —m
~ (p proe e > € SL(2,Z,)
0 pm —m

if and only if m =m’ and p — ' € Z,, then the definition of the map ¢ is correct
(that is it doesn’t depend on a choice of p in a coset ji). This finishes the proof.

Corollary. For any £, %,, %, € A there is a symplectic basis {e, f} wherein
P =L,eDL,f,
2y =p"ZL,e® p‘mpr ,
Fy=Lp e DL, wp e +p "f)

for some m € ZZO, necZ ve Qp.

3. p-Adic Heisenberg Group

Let x,, be an additive character of Qp of rank O (that is x,(z) = 1 if and only if

z € Z,), T be a unit circle in the field C of complex numbers. Heisenberg group 7
of a space (77, %) is the set of pairs

7 ={(,z),acTze?}
with the composition law

(o, ) (B, y) = (aBx,(1/2.8(z,y)), T+ y).

We assume that p # 2 below. Now we construct some representation of 7. This
representation depends on a lattice 2" € A and therefore we call it .%7-representation.
Let H(%) denote the space of finite complex valued functions on 7 satisfying the
relation

f@ +u) = x,(1/2.8(, v) f(z)

for all z € 7" and u € Z. Note that if f,g € H(%) then |f| and fg are constant
on every coset in 7°/.Z" and nonzero only on a finite number of such cosets. For
f,9 € H(%) the formula

=Y fl@ga)

Q€T | %

defines a nonnegative hermitian form on H(%) and thus H(%) is provided by
a prehilbertian structure. The spacer H(%) of % -representation is defined as the
completion of H (%) with respect to the norm ||-||> = (-, ). As 7°/.% is a countable
set, then H(%) is a separable Hilbert space.

On the space H (%) we define the following set of operators, =,y € 7

W@ ) @) = x,(1/28(, y) fly — @) .
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These operators satisfy the co-called Weyl relation
W @)Wy (y) = x,(1/28@, Y)Wy (z +y) -

It is easy to see that W (x), & € 7" are isometric operators on H (%) and therefore
are uniquely extended to unitary operators on H(%) (for these operators we retain
the same notation W .(z)). £-representation of 7" is defined as a pair (H (%), Wf),
where W%(a, z) = aWy(z). From the Weyl relation we see that this pair is in fact
a unitary representation of 7. For the sake of convenience we use the term “.%-
representation” for a pair (H(%), W (z)). A similar representation was considered
in [W2]. Note that .%-representation is a p-adic analogue of the Cartier representation
[C] of the Heisenberg group over real numbers.
Let ¢, denote the following element of H(¥):

1, ue¥,
¢‘%(u)—{0, ug¢F.

We call it a vacuum vector of (H(%), W (x)). It is easy to see that this vector
satisfies the property

Wy@)py = ¢y €]

forall z € £.
Let ny,: 7" — T be a function satisfying the property

N (@ + u) = x,(1/2.8(x, u)) N (x)
for all x € 7" and u € .Z. It is quite easy to prove that the map 7" — H(Z):
7 23z - ng@Wy @)y

is constant on every coset in 7°/.% and thus one defines a map ¢:7"/.% — H(%)
by the same formula. The range of values of the map i we call a set of coherent
states of % -representation.

Proposition 2. The representation (H(Z), W (x)) has the properties:
) Wy @), bsp) = bp(a);

(ii) the set of coherent states forms an orthonormal basis in H(%),

(iil) the representation (H(%), W ,(x)) is irreducible.

4. Intertwining Operator

Let for %4, %, € A 07%(%,,%,) denotes the number of elements of the group
VAR
Proposition 3. Let (H(%)), W%’i Yand (H(%,), W) be - and %,-representations.
Then the operator Fy, o :H(Z)) — H(%,) defined by the formula
Fy ufw =0, %) > x(1/28(,w) fu+a) ¥)
a€%H /(FANE)

is a unitary operator. It satisfies the property

—1 .
Eﬁ?z A FZI ) 3



494 E.I Zelenov

and it is an intertwining operator for the %,- and %,-representations, that is for all
x € 7 the following relation holds:

Py s W@ Figy 5 = Wy @), @
Proof. At first we check that the definition (1) is correct, that is the right-hand part of

the formula (2) doesn’t depend on a choice of an element in coset o € .Z, /(% N.%)).
In fact taking into account that f € H(%)) for o/ € %, N.%, we have

> (/28 +d W) flu+a+a)

€% [(F1N%)
= > x(/280+d,u)+1/28u+a,a) flu+ )
A€ [(F1N%)
= Y x(1/280,aNx,(1/2B(0, ) fu + o)
aEZ [(HNFs)
= > x,(280,w) fu+a).
€% [(FB1NF)

It is easy to check that for f € H(%)) the condition F'y, o f € H(%;,) holds.
Let us prove unitarity of Fy, o . From the definition of ‘the operator Fy, o, we
get

Fy ot =0%,%) Y,  xBla,y)Wyafw. 6

A€ [(£1NH)

From the definition of %-representation, orthogonality of coherent states, Parseval-
Stokes relation and the last formula we have

> 2
||F“%2,$1f”§1($2) = (%, %) Z W, (=) fll ¢y = ||f||%{(,%‘1)'
A& % [(F1N%)

Now we prove the formula (3). Taking into account the condition f € H(%;) we
get

Fo 2Pz, f (W

=% %) Y, x(1/25(8,u)
BEF /(F1NF)

x> x(1/2B,u+ B) fluta+ )
aEsz/(LZl N%)
=M. %) Y
€% [(H1NH)
BEZF [(£1N%)

X Xp,(1/28(B,u) + 1/28(c, u + B) + 1/28u + o, B)) f(u + @)
=%, %) Y, (128 @ufute) D x(FB)

a€.% [(H1N%) BEF [(F1N%)
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and (3) follows from the formula

1, aeZ NS,

0, a¢ HNF. ©

0A(Z,,. %) Z Xp(Fla, ) = {

BEH [(H1NE)

For o € %, N %, (6) obviously follows from the definition of ¢(.%4),.%,). For
a ¢ %, N % let us choose ' € Z, satisfying the condition x,(#(c, () # 1
(by virtue of selfduality of %% such 3’ always exists). Then

AHEL, %) Y x(Be,B)
Be X /(A NH)
=0, %) Y, X B, B+08))
BESE, J(F1N%)

=X (B, BN, %) Y. xp( Bl B)
BEF [(£1NF)

and therefore (6) is valid. The property (4) of the operator F%L%l can be proved by
analogy to that of (3).
The operator Fy, o, we call a canonical intertwining operator.

In particular from the last proposition it follows that .%|- and .%,-representations
are unitary equivalent.

5. Maslov Index

Let 4,,.%,, %, € A. Then the corresponding representations (H (%)), W), (H (£,
W%z) and (H(%,), W%) are unitary equivalent. Let us consider the unitary operator
F = Fg 4 Fg #Fy, 4 on the space H(%)). By using the formula (4) for
intertwining operators Foo o, F'o o and Foy o it is easy to see that the operator
% commutes with all operators W, (z), z € 7" and by virtue of irreducibility of the
%, -representation (H (%)), W, ) it is proportional to the identity operator on H(%)).
Thus we have

F =, %y ) d

The number (%, %,, %;) € T we call the Masilov index of a triple of selfdual
lattices.

Let us take an explicit formula for the Maslov index.
Proposition 4. Let %, %,, %, € A. Then the following formula holds:

Q(D%I’ %) Q("%a 5-’/3) Z

WG 2 2 = (%5, 2)

(/2.5 ).
Q€% [(HNH3)
BES[(HNZY)

at+PBEA
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Proof leans upon the formula (2) for a canonical intertwining operator. Let
f € H(#)), then we have

F W) = o %, %) (%, LYo Fy £ D x,(1/28(,0)
YEL [ (BNEFY)
BEA/(HNF3)
a€% [(F1NF)

+ 12806, u+7 +1/28(,u+ B+ M flut+a+B+7y)
= %, B) o, By B D

YEF [(HNF)
BE %3/ (5N %3)
Q€ Yy [(F1N%)

X Xp(1/28(e, B) + Bla+ B, M) flu+a+ 5).

By using the last formula for f = ¢, we get the needed formula:

B, 5y, F3) = (6/7¢§5] ) ¢«%1)H(«Z})

_ MR DG E) 5
o, )

X,(1/28@,8) O
a€¥ [(%N%3)
BE L (HNH)

a+Be%

Proposition 4 shows that the Maslov index of a triple of selfdual lattices does
depend on only the “relative positions” of lattices, although in its definition one uses
a representation of the Heisenberg group.

Proposition 5. Let %, .%,, %, %, € A. The following statements are valid.
W) (%), Sy ) = g5, 9%, 9.5 for all g € Sp);
(i) (£, %, %) = 1 if at least two lattices in the triple coincide;
(iii) p(F,, %, %) remains the same under an even permutation of lattices in the
triple and transfers to a conjugate expression under an odd one;
(iv) the following cocycle relation holds:

M(D%l?b%)%)ﬂ(“% ) =-%3a %1) = /"’(;0{/27 c%a 59/)4)#(»%27 92/)47 gl) .

Proof. (i) follows directly from the explicit formula for u (Proposition 4). The
statement (ii)—(iv) one proves in a similar manner immediately from the definition of
u. Let us prove the statement (iv). From the definition of the Maslow index we have:

p’(glan%yu%)ﬂ'(glv%a%) Id

_ _ -1
=Fo a0 Fy v Fo 5Fe 0 = Fy o Fo v Fo 9, e, 2)
X (Foy 2 Fe, o Fo o) Fg o = (%, 23, 2) (%), %4, £ 1d .

6. Calculations of the Maslov Index

Let us remind that any « € Q;‘ can be uniquely represented in the following form:

z =" De(z),
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where ord,, :Qy — Z and |z|, = p~ (@) ¢:Qy — Z% and e(x) = Ty + TP+ ...,
x;=0,1,..., p—1, 25 # 0. Fractional part {z}, equals 0 if z € Z,, and for z ¢ Z,
is defined by the formula

{.T}p = pordp(m)(xo + zp +...+z_ ordp(x)—lp- Ordp(w)—l) .

Let A, :Qp — T be a function defined by the formula (see [VV]):

A0y =1.
1, ord(z) = 2k, k € Z,

e(x) B B
M) = (7) ord, (@) = 2k + 1,k € Z,p = 1 (mod4),

Z(:rs(_;Q)’ ord,(z) =2k + 1,k € Z,p = 3(mod 4),

where <—€@> is the Legendre symbol of a p-adic unit e(z) € Z:. This function has
the following properties.
Lemma 1. Function X, has the properties:
@ A () = X, (@);
(i) A (a*x) = A\ (2), a € Qj;
(i) A, (@A, @) = A, (%) (@ +y);
iv) A, (@) )\p(y) =(z,y) )\p(acy), where (x,vy) is the Hilbert symbol.
Proof. For the proof of the properties (i)—(iii) see [VV]. Taking into account that
A(z)=1forz € Z:, statement (ii) and the symmetry of (iv) it is sufficient to check

(iv)forthecases z =y = p, z = y = np, * = p, y = np, where n € Z*, (g) =1

that can be done by direct calculations.
From the definition of A, it is easy to make out the connection of this function
with the Gauss sum

p"~1 2
Z exp <2m’a —n) = p"/z)\p(ap"), @)
p
k=0
where a € Z, n € Zzo and ¢ is not divisible by p.
Letm,n€Z, u,v € Qp and {e, f} be a symplectic basis of (7", .%). We consider
now the following triple of selfdual lattices in (7, .%):
Ly =LeDL,f,
% =L,p"e®L,(up™e+p "),
Fy=L,p e ®Ly(vp e +p " f).
As it is evident from the foregoing the Maslov index of these triples can be represented
as function of m, n, u and v, that is u(%}, %,, %) = M(m, u; n, v) for some function

M:(Z x Qp) X (Z x Qp) — T. The explicit formulas for the function M in simplest
cases is given by the following theorem.
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Theorem. The following formulas are valid:

@) M@m,0;n,0) =1 foral m,neZ;

1, m20 or veZ,,
.. 2
(i) M@m,0;0,v) = A,(-v), m<O0,1< |y, <p™*™",
L, m < 0,p~"™ < v,

l, nw€z, or veZl, or p—vek,

(iii) MO, 15;0,v) = { )\p(,w/(/,t — V) in other cases.

Proof. Since |u(.4,, . %,,.%;)| = 1, then all calculations can be carried out up to some
real positive factor and instead of the equality sign we shall write the sign ~. By
virtue of Proposition 4 and the last remark we have

M@m,pn,v)~ > x,(1/28(, 8).
€L [(FHNH)
BEL/(YANL)
at+pBes

(i) Taking into account Proposition 5 (ii) it is sufficient to consider the case m 3 0,
m # n, n # 0. Besides that we can reduce the general case to the case of m > n,
m > 0 by means of changes of order of lattices in the triple and transformation of
basis e — f, f — —e if it is necessary. Since o € %, and § € %, they can be
represented in the following form:

oa=opetop "f,

8= ﬁ1pne -+ /sz_nfa

where o, a5, 8,5, € Z,. As p™a, € Z,, if m > 0 and o, € Z,, then the condition
a+ B € % has the form:

P'BEZL,, p Ta,tp "BEL,. (8)

Since Y, is of rank 0 and taking into account the condition m —n > 0 and the formula
(8) we get:

Xp(B(a, B) = x, @™ "8, — """y 8y) = X, (—p" "y 8y)
= Xp(_pnﬂ1(p_n/32 +p_ma2 - p_nﬁz))
= xp(—P"B "B +p M)+ 815) =1

and therefore M(m,0;n,0) =1 for all m,n € Z.
(it} Taking into account Proposition 1 and 5 (ii) it is sufficient to consider the
case m # 0, v ¢ Z,,. Let o € %, and (8 € .#;. Then we have

a=apme+ap "f,

B:ﬁle_‘—ﬂZ(Ve"-f)’

where oy, oy, By, 8, € Z,,. The condition a + € %] has the form:

pray+vB€Z,, p "oy€Z,. )
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Since of x, is a character of rank 0 and taking into account the formula (9) we get:

Xp(%)(av p) = Xp(PmOﬁﬁz —p Tvayf,)
= Xp(@" B, —p ", ("o + v, — pMay))
= Xp(pmalﬂZ - p_maz(pmoﬁ + Vﬂz) + oo, = Xp(Pmalﬂz)- (10)

If m > 0 then as it follows from (10) Xp(%’(a, 8 =1and M(m,0;0,v) = 1. Let

now m < 0 and |1/|p > p~?™, that is ordp(z/) < 2m. By virtue of (9) and (10) we
have

Xp(Bla, B)) = x, @™ "M W) oy Py + 1B, — pTayy))
— Xp(pm—ordp(u)a—](y)al(pmal + VSOZ) _ p2m—0rdp(U)E—I(y)a%)
— Xp(_p2m—0rdp(l/)6-1(y) a%) — 1
and M(m,0;0,v) = 1. In the last case m < O and 1 < |1/|p < p~?™ the proof
is given below for the case 1 < [z/[p < p™™ (the case p™™ < fy[, < p~2™ one

considers analogously). Let a and b denote o, and (3, respectively, n denotes ord,(v)
and ¢ denotes £(v). As any x € Zp can be represented in the form

x=x0+m1p+x2p2+..., :1:]-=0,1,...,p—1,
then the condition (9) takes the form
p"ag+ap+..)+p by +bp+..)e€ZL,.
From the last formula we get that the formula (9) is equivalent to the set of equations:

Q=0 = ... =y =0,
Gy +(bE)y =0,

Qg +08)_,_; =0,

thus from (10) we have

Xp( B, B) = X, (P @y, + Cpp P+ ) (bp + O+ .. )
= X, (—p"((be)y + (be)p + ... + (be)_,,_;p" )
X (by+bp+...+b_,_p7"N)
= Xp(=p by + byp+ ... +b_,_p "), (11

where n =gy +ep+...+¢e_,
the form:

p~ "L It is easy to see that the set %, N %, has

LyNF = {Be+ Byve+ ), B, € Z,, vp, € Zp} ;
and from the last formula and (11) we have

p—1
M@m,0;0,1) ~ > X0+ ... +b_,_p",
bg,b1s ey By =0
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whence it follows that

-n_,4

P 2
k
M(@m,0;0,v) ~ E exp(—ZwinF> .

k=0

(Here we use the explicit form for the character x,(§) = exp(2mi{¢ }p). Taking into
account the formula (7) we get the needed formula M(m,0;0,v) = A,(—p™"n) =
A (=)

(i]i)i) Taking into account Propositions 1 and 5 (ii) it is sufficient to consider the case
b & Zy p—v ¢ Z, v ¢ Z, We present here the proof only for the case of
|ul, # vl,, otherwise (iii) can be proved analogously. By the symmetry we can
suppose that |v|, < |u|,. Let & € %, 3 € Z;, then

a = aje+ ay(pe + f),
B =P+ Byve+f),
where a;, @, B, 8, € Z,. The condition o + 8 € 4] takes the form:
poy +vp, € Z, .
Since the rank of x,, equals 0 we have:
Xp( B, B)) = X, (pou 3y — v, 3) = x, (1 — )y 0;) . (12)

Let ordp(,u) — m, ord,(v) = —n, &, = a, B, = b. As for the proof of the statement
(ii) from the formula (12) we get:

p e (@g+ap+ ..y +p "e@)(bg+bp+...) € Z,.
In the case of m > n > 1 from the last formula we have:
(e(u(a)y = (e(Wa); = e(wa),, ,_, =0,
(W) a)y,_, + €EW)b)y =0,
: (13)
ewWa), | +E)b),_ =0.
As for the proof of (ii) from (12) and (13) we have:

Xp(Bla, B)) = xp( —(u—-v) % P bt bn—lp"“1)2> :

Since ord,, (1 — v) = ord, (1) from the last formula we obtain:
Xp( B, B) = x,(®@ by + byp + ...+ b, "),

where

0 1 n

The set £, N %] has the form
HyNF = {fe+ Bve+ f), B €L, vB, € L,},
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and as for the proof of (ii) we have:
MO, p;0,v) = A, (")

Taking into account the properties of the function A, and the relation ord (v — p) =
ord,, (1) we derive from the last formula:

MO, 1:0,) = A, (p"eo/ — %’3)

= A, B )P (WP EW — 1) = A, (v — ).

The proved theorem makes possible to calculate the Maslov index in the general
case. By Proposition 1 for an arbitrary triple (£),.%,,.%;) of selfdual lattices there
is a symplectic basis {e, f} wherein

F =L, dL,f,
Ly =L,p"e@ZL,p "f,
Fy=Lp"e®L,wp e +p " f), (14)

where m € Zo4,n € Z, v € Qp. Therefore the Maslov index of this triple is given
by the relation
WEy, Ly, H) = M(m,0;n,v).

Let %, = Z,p"e ® Z,p~" f. In the symplectic basis {& = p”e, f=p™f} we have
% =L,p "ESLp"f,
Ly =L, p" DL S,
Ly =L €D L WVE [),
Fy =L, DL,f.
Taking into account Proposition 5(i), (iii), (iv) we have
TR AR C R AN AN A A
= M(—m,0;0,v)M(m —n,0;0,v) M(—n,0; m — n,0).
By virtue of the theorem and the last formula the following corollary is valid.
Corollary. For the lattices 5, %,, %5 of the form (14) we have

1, m=0 or veZ, of n<0,
A, ), 0<n§m,1<|u|p<p2",
1, 0<n<mp™< |y,

W, 2, 23) = 1, m<n,1< |y, <p=m,

AW), m < n,pPmm <yl < P,

1, m < n,p*™ < |y,
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