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Abstract. A "system of coordinates" on a set A of selfdual lattices in a two- 
dimensional p-adic symplectic space (~ / ' , .~ )  is suggested. A unitary irreducible 
representation of the Heisenberg group of the space (~ ' ,  ,~ )  depending on a lattice 
._U/ c A (an analogue of the Cartier representation) is constructed and its properties 
are investigated. By the use of such representations for three different lattices 
~1, ~ ~ 3  C A one defines the Maslov index # = #(~Yl, o~2, ~ 3 )  of  a triple of  
lattices. Properties of  the index # are investigated and values of  # in coordinates for 
different triples of  lattices are calculated. 

1. Introduction 

As it is known one of the profitable methods to study a quantization procedure is to 
construct and to investigate topological characteristics associated with this procedure. 
An example of such a characteristic is the Maslov index [Ma]. Let us discuss generally 
one way to obtain such characteristics. Let G be a group and (Hi,  Ui), i = 1, 2, 3 be 
its unitary irreducible representations in the Hilbert spaces H i, i = 1,2, 3 respectively. 
Let us assume that these representations are unitary equivalent and F21, F32 and F13 
be unitary intertwining operators. That is, say for F21, F 2 1 : H  1 --+ H 2 and for all 
9 c G the relation 

F2~IU2(g)F21 = Ul(g ) 

holds (and similarly for operators F32 and Fa3). By the last formula the operator 
F = F13F32F21 : H  1 ~ H 1 commutes with all operators U1(9), 9 E G. In view of 
irreducibility of  (H1, U 1) the operator F is proportional to the identity operator, that is 
F = / z  Id for some # c T (T denotes a unit circle in the field C of complex numbers). 
Hence we obtain a numerical characteristic # of  a group G and a triple of  its unitary 
irreducible representations. 
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Let us take an example, see [LV]. Let (TJ', .~)  be a two-dimensional symplectic 
vector space over the field R of real numbers and ~" be the Heisenberg group 
of the space (~ ' , .~ ' )  (that is ~ '  is the three-dimensional Heisenberg group). Let 
also L be a lagrangian (that is one-dimensional for dim'Y" = 2) subspace of 
T~ provided with the natural Haar measure din(L). As it is known there is a 
unitary irreducible representation (H(L), UL) of the group -~f" in the Hilbert space 
H(L) = L2(L, din(L)). For two different lagrangian subspaces L 1 and L 2 these 
representations are unitary equivalent. Let now L 1, L 2 and L 3 be different lagrangian 

subspaces in TJ'. By applying the procedure discussed above for the group 
and for the representations UL~, UL2 and UL3 we obtain a numerical characteristic 
/~(Ll, L2, L3) of these representations. It turns out that in this case # = exp(iTrT/4), 
where "r = "r(Ll, L2, L3) E Z is the Maslov index of lagrangian subspaces L 1, L 2 
and L 3, see [LV]. 

As a different example we consider the Cartier representation [C] of the Heisenberg 
group ~ ' .  This representation is unitary, irreducible and depends on a selfdual 
Z-lattice ~ in the space ~ ' .  By using the procedure discussed above for the Cartier 
representations associated with lattices, ~1, ~2  and •3 we obtain an index of a triple 
(c f l ,~2 ,  .~3) of selfdual Z-lattices, see [LV]. 

As p-adic numbers find expanding applications in mathematical physics (the active 
advancement began from the paper [V]) it is interesting to extend the construction 
discussed above for the field Qv of p-adic numbers. Let now ( Y , . ~ )  be a two- 

dimensional symplectic vector space over Qp and ~ '  be the Heisenberg group of this 

space (for the definition of the group ~ see Sect. 3 of this paper). As for the field 
there is a unitary irreducible representation of ~" in the space LZ(L, din(L)), where 
L is a lagrangian subspace of the space ~" and din(L) is the Haar measure on L, as 
to the corresponding index see [LV] and bibliography there. 

There exist also a unitary irreducible representation of the p-adic Heisenberg group 
depending on a selfdual Zp-lattice in the space ~ ' .  (Zp denotes a ring of p-adic 
integers.) This representation is an analogue of the Cartier representation mentioned 
above. By applying the procedure discussed above for the p-adic Heisenberg group 
and a triple of its representations associated with lattices S 1, .Us 2 and S 3 we obtain 
a complex number # = #(.UJ1, ~ ,  Y3) E qF. This number # we call the Maslov 
index of a triple (-~1, .~2, -~3) of selfdual Zp-lattices. This index is the subject of our 
investigation. It is not improbable that this index will be useful for p-adic quantum 
mechanics constructed in [VV] (see also [Me, R]). 

The structure of this paper is the following. In Sect. 2 one considers Zp-lattices 
and their properties. In particular one constructs a "system of coordinates" on a 
set A of selfdual Zp-lattices in a two-dimensional symplectic space (~/',.c/2) over Qp 

(Proposition 1). In Sect. 3 we define the Heisenberg group ~ '  of the space (~J, .7s and 
construct a unitary irreducible representation (H(5~3, W z)  of this group depending 
on a lattice S E A. We prove also some properties of this representation (Proposition 
2). In Sect. 4 an intertwining operator of two such representation is constructed and 
its properties are investigated (Proposition 3). In Sect. 5 we construct the Maslov 
index of a triple of selfdual Zp-lattices. We also obtain an explicit formula for this 
index (Proposition 4) and prove some natural properties of the index (Proposition 5). 
Section 6 is devoted to calculations of the Maslov index in coordinates defined in 
Sect. 2. 
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2. Lattices 

Let (~ ' ,  .1~) be a two dimensional symplectic space over Qp and o~: be a lattice in 
(~/', .~) (that is ~_5~ is a finitely generated Zp-submodule of the space ~" containing 

a basis of ~ ') .  A dual lattice ~ *  is defined as follows: 

o5~'* = {x C '~ ' : .~ (x ,  y) C ZpYy C ,~} .  

If oS = ,Z"*, then S is a selfdual lattice. Let A = A(~/', .~) denote the set of all 
selfdual lattices in (~z/', .~). Note that if . ~  C A(~ ' ,  .2),  then ( ~ ,  ~ )  is a space with 
symplectic inner product. 

As Zp is a local ring, then there exists a symplectic basis {e, f}  of the space 
(~ ' ,  .J3) (symplectic means that .~(e, f )  = l) wherein (see [MH]) 

S = Zve | Z p f .  

Moreover for any , .~,  ~'2 E A there is a symplectic basis {e, f}  wherein these lattices 
have the form 

. ~  = Zpe @ Zpf  , .Z~ = pmZpe @ p - m Z p f  

for some nonnegative integer m. For the proof of existence of such basis (but is not 
of necessity symplectic) see for example [W1], reduction to symplectic case is rather 
obvious. 

Now we define a "system of coordinates" on the set A. Let Sp(~ ' )  denote the 
group of all linear automorphisms of T / preserving the form ..,~ (symplectic group) 
and Sp( . f )  be a stabilizer of a selfdual lattice Y d in Sp(~/'). Sp(~')  acts on A 
in a standard manner, this action is transitive. Thus A can be identified with the 
homogeneous space Sp(~/ ' ) /Sp(S) .  

Proposition 1. Let {e, f}  be a symplectic basis in (~/', .5(/2). Then the map ~: Z x 
Qp/zp --+ A, 

Z X Qp/Zp ~ (7~, fz) ~+ Zppme 0 Zp(upme Jr- p-m f )  E A 

defines a one-to-one correspondence between Z x Qp/Zp and A. (In the right-hand 
part of the last formula # denotes an arbitrary element of a coset p.) 

Proof. Let -~0 denote the following lattice: 

~ ----- Zpe + Zp f .  

In the basis {e, f }  Sp(Y/') and Sp(Y/o) have the matrix realizations: Sp(~'}~ ") -~ 
SL(2, Qp), Sp(Sgfo) -~ SL(2, Zp). Let ~ :  be an arbitrary lattice from A. Then there is 
an element 9 C SL(2, Qp) such that Y = 94/~. By the Iwasawa decomposition (see 
[PR]) g can be represented in the form: 

( :  o )(; .) 
g = p-m 1 go 

for some m E Z, # E Qp and go C SL(2, ZB). Thus ~ has the form 

~.~ = Zppm e @ Zp(ppm e -k p-m f )  
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and the map ~ is surjective. As for m, m ~ E Z and #, #' E Qp we have 

[ ( P o '  0 ) ( 1  ~ , ) ] - 1  ( O  m pOre) (10  ~ )  
p -ml 0 

: (p,,~-m' p m - m ' p _ p r a ' - m # , )  
0 p,~,_,,~ C SL(2, Zp) 

if and only if m = m ~ and p - #~ �9 Zp, then the definition of the map ~ is correct 
(that is it doesn't depend on a choice of p in a coset/2). This finishes the proof. 

Corollary. For any ~/r ~5S~2, ,~3 �9 A there is a symplectic basis {e, f}  wherein 

S 1 -= Zpe | Z p f ,  

~2  = pmZp e �9 p - m Z p f  , 

f-~3 = ZpP n e | Zp(uP n e q- p -n  f )  

for some m E Z>0, n �9 Z, u �9 Qp. 

3. p-Adic Heisenberg Group 

Let Xp be an additive character of Qp of rank 0 (that is Xp(X) = 1 if and only if 

x E Zp), q? be a unit circle in the field C of complex numbers. Heisenberg group "~" 
of a space (Y/, .P'2) is the set of pairs 

= { (a ,  x) ,  ~ �9 ~r, x E ~ }  

with the composition law 

(a, x) (/3, y) = (a/3Xp(1/2.22(x, y)), x + y).  

We assume that p ~ 2 below. Now we construct some representation of ~ ' .  This 
representation depends on a lattice ~ E A and therefore we call it ~-representation. 
L e t / t ( ~ )  denote the space of finite complex valued functions on ~/" satisfying the 
relation 

f ( x  + u) = Xp(l/2.P2(x, u)) f ( x )  

for all x E ~/" and u �9 fi'~. Note that if f ,  g E / t ( S )  then l f] and f.0 are constant 
on every coset in ~ ' / o~  and nonzero only on a finite number of such cosets. For 
f ,  g �9 H(.~)  the formula 

(f ,g)  = ~ f(a)~0(a) 

defines a nonnegative hermitian form on /~ (S)  and thus H ( S )  is provided by 
a prehilbertian structure. The space H ( S )  of S-representation is defined as the 
completion of H(5'Y,) with respect to the norm II" II 2 = ( ' ,  "). As 7 / ' / S  is a countable 
set, then H ( S )  is a separable Hilbert space. 

On the space/~(,Y) we define the following set of operators, x, y E ~/': 

( W ~ ( z )  f )  (y) = xp(1/2J2(x, y)) f ( y  - x) .  
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These operators satisfy the co-called Weyl relation 

W~(x)  W~(y) = Xp(1/2_Y2(x, y)) W~ (x + y). 

It is easy to see that W~(x), x E 9" are isometric operators on / ] ( .~ -  ) and therefore 
are uniquely extended to unitary operators on H ( S )  (for these operators we retain 
the same notation VV~(x)). S-representation of ~ is defined as a pair (H(,_~), 1/]7~,), 
where lTd,(a, x) = aW~(x) .  From the Weyl relation we see that this pair is in fact 

a unitary representation of "~. For the sake of convenience we use the term " S -  
representation" for a pair (H(,~) ,  W~(x)). A similar representation was considered 
in [W2]. Note that ,~-representation is a p-adic analogue of the Cartier representation 
[C] of the Heisenberg group over real numbers. 

Let r  denote the following element of H( ,~) :  

1, U E o ~ ,  

r  O, u r  

We call it a vacuum vector of ( H ( S ) ,  W~(x)). It is easy to see that this vector 
satisfies the property 

Wz(x)r = ~ (1) 

for all x E _S. 
Let ~7~ : ~" --~ qr be a function satisfying the property 

~7~(x + u) = Xp(1/2J2(x, u ) ) ~ ( x )  

for all x E ~/" and u C S .  It is quite easy to prove that the map ~" ~ H(JcS~): 

"T" ~ x ~ ~ ( x ) W ~ ( x ) r  

is constant on every coset in ~ ' / ~  and thus one defines a map r  ~ ' / f~-  ---+ H ( S )  
by the same formula. The range of values of the map r we call a set of coherent 
states of S-representation. 

Proposition 2. The representation ( H ( S ) ,  W~(x))  has the properties: 
(i) (W~(x)r r = r 

(ii) the set of coherent states forms an orthonormal basis in H(.~); 
(iii) the representation (H(~) ,  W z.(x)) is irreducible. 

4. Intertwining Operator 

Let for <~l, •2 c A ~)-20~c~l, ~2)  denotes the number of elements of the group 

~1/(~i n $9. 
Proposition 3. Let (H(S1)  , W~i ) and ( H ( S2 ) , W~2) be cS 1- and S2-representations. 
Then the operator F ~ , z i  : H ( ~ l )  -* H(._5~2) defined by the formula 

F~,.~l f (u)  = Q(~S~l, $2)  E Xp(1/2.P2(a, u)) f (u  + a) (2) 
a E ,~2 / (~ i  n.~,3) 

is a unitary operator. It satisfies the property 
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and it is an intertwining operator for the S l- and S2-representations, that is for all 
z E ~" the following relation holds." 

F - 1  W~2 (z) F ~  2,.~1 = W %  (x).  (4) -~2 ,=~1 

Proof At first we check that the definition (1) is correct, that is the right-hand part of  
the formula (2) doesn ' t  depend on a choice of  an element in coset a E ~Z~l/(,5~.l N=~2). 
In fact taking into account that f C H(._~q) for a '  E 5:2] n ~ 2  we have 

E Xp (1 /2" '~(a+a ' 'u ) ) f (u+~ 
~e ~2/C~n~2) 

= E Xp ( 1 / 2 2 ( a + a ' ' u ) +  1/2'~ 

= E Xp(1/2.2(oe, a'))Xp(1/2..Y2(c~, u))f(u + ee) 
c,~ C~NC c~c ~2/(& $2) 

= Z Xp (1/2J'Y(a, u)) f (u  + a). 
,~co~2/ ( ~i n~x2) 

It is easy to check that for f C H ( ~  l) the condition F ~  g.f  C H(,,~ 2) holds. 
Let us prove unitarity of  Fz2 ,~  ~ From the definition oi~'tiae operator F~>s1 we 

get 

F~>~f(u)  = .o(~z~l, ~2) Z Xp('~(a'u))Wxl(-a)f(u)" (5) 
ac~2/(~ n ~  2) 

From the definition of o~-representation, orthogonality of  coherent states, Parseval- 
Stokes relation and the last formula we have 

F~ 2 = , = f 2  < II &,&/[]HC~2) 502(~(~ 1 $2) ~ IIW~l(-a)/ll~/(s p II IIHc~) 
,~e g2/(,~ln,~) 

Now we prove the formula (3). Taking into account the condition f ~ H(ffr we 
get 

x E XP (1 /2~  
oe ~,_c~2 / (54"1 n ~2 ) 

c~e,g~2/(~ n&) 

x Xp(1/2.~(/3 , u) + 1 /2J2(a ,  u +/3)  + 1 /2 .~ (u  + a ,  t3))f(u + oe) 

= + 

a ~.g~2/(~1 n~z~2) ~ / ( ~ 1  n~2) 



p-Adic Heisenberg Group and Maslov Index 495 

and (3) follows from the formula 

{~, o~ ~ ~1 n~2,  
~,2C~, o~) ~ __ x,,(..~(c~, ~)) = o, c~ ~ ~ n ~ , .  (5) 

3~,~/(~ln,~,) 

For a ~ 2~q N $2 (6) obviously follows from the definition of 0(o5~1,,~2). For 
c~ r ~2  N ,Z~I let us choose /3' ~ ,c,~: 1 satisfying the condition Xp(.~(a,/3')) r 1 
(by virtue of selfduality of .Zq such/3' always exists). Then 

02(~1,.~2) 
/~e/i/(~i n~2) 

~--- ~02 ( ~ 1  ' ' ~'c'c~P2 ) Z 
~e .~  1 / (5"f~1N&) 

xp(..~(c~,/3)) 

xp(~(ch/3 +/3')) 

xp(.~(a, /3)) 
I ~  Z~I /(oZ" 1N~2) 

and therefore (6) is valid. The property (4) of the operator F/2,~ ~ can be proved by 
analogy to that of (3). 

The operator F~,2,o~ ~ we call a canonical intertwining operator. 
In particular from the last proposition it follows that ,~1- and =~-representations 

are unitary equivalent. 

5. Maslov Index 

Let o~1, .c~2,-5'~3 E A. Then the corresponding representations ( H ( ~ l )  , Ws.~ q ), (H(S2),  
W~2 ) and (H(.Ce~), Ws3) are unitary equivalent. Let us consider the unitary operator 

.~z" = F~I,o~3F~3,.~2F~2,,~ 1 on the space H(55Jl). By using the formula (4) for 
intertwining operators E ~ ,  ~ ,  F~3,.~ and F~2,~ ~ it is easy to see that the operator 
g "  commutes with all operators W~q (x), x E 9 r" and by virtue of irreducibility of the 
o~l-representation (H(~'I)  , W~I) it is proportional to the identity operator on H(S1).  
Thus we have 

,5~ : #($1,  cJ2,5~3) Id .  

The number #fi~l, ,fz,Sg3) C T we  call the Maslov index of a triple of selfdual 
lattices. 

Let us take an explicit formula for the Maslov index. 

Proposition 4. Let $1,  ~2, o~3 c A. Then the following formula holds: 

o(~1, ~-~- 2) o(Y-2, ~ ~ '  xpO/22(c~,/3)). 
o~ EY2 / (f-/S2 N,~ 3 ) 
,6E,~3/($3 n &  ) 

,~+3cS1 
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Proof leans upon the formula (2) for a canonical intertwining operator. Let 
f E H ( ~  1), then we have 

t i f f (u)  = P(~l ,  ~2)  P(~2, ~3)  ~(~3, tiff l) ~ X p ( l l 2 ~ ( %  u) 

/3EZ~/(<cf.2 n,~3) 

+ 1/2.,~(/3, u + 7) + 1/2fl'f(ch u +/3 + 7 ) ) f (u  + c~ +/3 + 7) 

x Xp(1/222(~,/3) + .~(o~ +/3, 7) ) f (u  + ~ +/3). 

By using the last formula for f = C zi we get the needed formula: 

_ e(z,, Z [ ]  

Proposition 4 shows that the Maslov index of a triple of selfdual lattices does 
depend on only the "relative positions" of lattices, although in its definition one uses 
a representation of the Heisenberg group. 

Proposition 5. Let -~l , o~e, 5~3, o5;~4 E A. The following statements are valid. 
(i) /z(~l, ~,C~2, $3)  = #(g~l ,  gS2, g-~3) for all g E Sp(~/); 

(ii) #(_~c~l, ~2,  $3)  = 1 if at least two lattices in the triple coincide; 
(iii) #(o~'l, $2,  o~3) remains the same under an even permutation of lattices in the 
triple and transfers to a conjugate expression under an odd one; 
(iv) the following cocycle relation holds: 

Proof. (i) follows directly from the explicit formula for /z (Proposition 4). The 
statement (ii)-(iv) one proves in a similar manner immediately from the definition of 
#. Let us prove the statement (iv). From the definition of the Maslow index we have: 

p(~l ,  ~2, -~3) #(-~.CT~J 1, .~3, c~4 ) Id 

: Fc/sl ,S~$4 Fc.s~4,o(9~ 3 F)~3, c~ 2 Fc~.~;),.c~ l ~- F~:,Sr (F;/&,.z, Fc~l ,<~ 4 Fsf~4,<c/>;~) 

6. Calculations of the Maslov Index 

Let us remind that any x E ~*  can be uniquely represented in the following form: 

X : p~162 
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where ordp : Qp ~ Z and ixlp = t )~- ordp(x)., e :Qp ---* Zp* and r = x o -t- xlp + �9 , 
xj  = O, 1, . . . ,  p -  1, x 0 # O. Fractional part {X}p equals 0 if x E Zp and for x @ Zp 
is defined by the formula 

{X}p  = p~ 0 "-~ X lP  -4- . . .  -~ X_  ordp(x)--lP--ordp(x)- l)  . 

Let Ap :Qp ---+ ~ be a function defined by the formula (see [VV]): 

Ap(O) = 1. 

Ap(X) = , ordp(x) = 2k + 1, k E Z,p  = 1 (mod4), 

| ~ / x \ 

( ~ - ~ )  * This function has where is the Legendre symbol of a p-adic unit ~(x) E Zp. 

the following properties. 

Lemma 1. Func t ion  )tp has the properties: 

(i) Ap(-x) = Ap(x); 
(ii) Ap(a2x) = Ap(X), a E Q*; 

k 

(iii) Ap(X) Ap(y)= p \  xy ] 

(iv) Ap(X)Ap(y) = (x, y) Ap(xy), where (x, y) is the Hilbert symbol. 

Proof. For the proof of the properties (i)-(iii) see [VV]. Taking into account that 
. Ap(X) ---- 1 for x E Zp, statement (ii) and the symmetry of (iv) it is sufficient to check 

(iv) f o r t h e c a s e s x = y = p , x = y = ~ p , x = p , y = T l p ,  w h e r e ~ l E Z * , ( ~ ) = - I  

that can be done by direct calculations. 
From the definition of Ap it is easy to make out the connection of this function 

with the Gauss sum 

E exp 2rcia-~ = pn/2Ap(apn), (7) 
k = 0  

where a c Z, n C Z>_ 0 and a is not divisible by p. 
Let m, n E Z, #, ~, E Qp and {e, f}  he a symplectic basis of (~ ' ,  J~). We consider 

now the following triple of selfdual lattices in (~ ' ,  J~): 

~1 = Zpe �9 Zp f  , 

S 2 = Zppme �9 Zp(#pme + p -m  f ) ,  

~3 = ZpP n e 0 Zp(Vpn e + p--n f ) .  

AS it is evident from the foregoing the Maslov index of these triples can be represented 
as function of m, n, # and v, that is # ( ~ l ,  ,~2, ~3) = M(m,  #; n, t~) for some function 
M : ( Z  • Qp) • (Z x Qp) ---+ ']I". The explicit formulas for the function M in simplest 
cases is given by the following theorem. 
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Theorem.  The following formulas are valid: 

(i) M ( m , O ; n , O ) = l  for all m, n E Z ;  
1, m > O  or 1]EZp, 

(ii) M(m,O;O, 1]) = s m < O, 1 < I1]Ip < p-2m 

1, m < O,p -ira <_ I1]lp ; 

1 # C Zp or 1] E Zp or # - -  l] E Z p  , 
(iii) M(0,  #; 0, 1]) = ' 

A p ( p U ( > -  u)) in other cases. 

Proof. Since I>(SYq, 5~z, Y3)l = 1, then all calculations can be carried out up to some 
real positive factor and instead of  the equality sign we shall write the sign ~ .  By 
virtue of  Proposition 4 and the last remark we have 

M(m,  #, n, 1]) ~ ~ Xp(1/2~](o~, ~)). 

(i) Taking into account Proposition 5 (ii) it is sufficient to consider the case ra ~ 0, 
m ~ n, n # 0. Besides that we can reduce the general case to the case of  m > n, 
m > 0 by means of changes of order of  lattices in the triple and transformation of  
basis e ---+ f ,  f ~ - e  if it is necessary. Since c~ C f-~f2 and /3 E ~3  they can be 
represented in the following form: 

o~ =- c~lP~ e + c~2p-~ f , 
/3 =/~lpne + ~32p-n f ,  

where cq,a2,~l, /32 E Zp. As pm~ 1 C Zp if m > 0 and cq E Zp then the condition 

c~ + /3  E S 1 has the form: 

pn/31 E Zp, p-mo~ 2 -t- p-n~32 E Zp. (8) 

Since Xp is of  rank 0 and taking into account the condition m - n > 0 and the formula 
(8) we get: 

Xp(.fi~( Oz,/3)) = Xp(pm-noz1/32 --pn-mo~2/31 ) -~ )(.p(--pn-mo~2/31 ) 
= xp(_p~/3~(p-n& + p - m %  _ p-n&))  

= Xp(-P'~/31(P-'~/32 -}-P-m~ --- 1 

and therefore M(ra, 0; n, 0) = 1 for all m, n E Z. 
(ii) Taking into account Proposition 1 and 5 (ii) it is sufficient to consider the 

case ra r 0, 1] ~ Zp. Let oe E ~ 2  and/3 E ~Y3- Then we have 

= c~lp~e + oz2p-mf, 

/3 =/31e + &(ue + f ) ,  

where C~l, c~2,/31,/32 c Zp. The condition c~ + /3  c ~1  has the form: 

P~al  + u/32 E Zp, p-~(x  2 E Zp. (9) 
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Since of  Xp is a character of  rank 0 and taking into account the formula (9) we get: 

) ( 'p (~(O~, /3) )  = Xp(prr~ctl/~2 - -  p-m/ /o~2/32 ) 

-'~ XpQOm~ - p- -mo~z(PraOq + /Y/32 --  PmOZl)) 

= Xp(pmOZl/32 -- p-raO~2(,prno q -I'-/"/32) -~- OZlOL2) = Xp(prnoq/32)  �9 (10)  

If  m _> 0 then as it follows from (10) Xp(2(c~, 3))  = 1 and M ( m ,  0; 0, u) = t. Let  

now m < 0 and ]Ulp _> p-Zm, that is ordp(u) < 2m. By virtue of (9) and (10) we 
have 

~p(. f~(Ol ,  ~ ) )  ~- Xp(pm- -~  -~- /"~2 --  pmo~l ) )  

: Xp(pm-ordpO. ' ) s  1 (/./) O~ 1 ( p m o q  _[_ /2~2) - -  p2m--ordp(u)~-- l (I]) 0~21) 

= X p ( - P  2 m - ~  1 (u)  o~ 2) = 1 

and M ( m , 0 ; 0 ,  u) = 1. In the last case m < 0 and 1 < lulp < p-2m the proof  

is given below for the case 1 < lU[p _< p - m  (the case p - ' ~  < tUlp < p-Zm one 
considers analogously). Let a and b denote c~ 1 and/3 2 respectively, n denotes ordp(U) 
and e denotes e(u). As any x E Zp can be represented in the form 

x = x o + x lp  + cc2P 2 + . . .  , x j  = 0, 1, . . . ,  p - 1, 

then the condition (9) takes the form 

pm(a o + a l P + . . . )  + p~(b o + blP + . . .)e C Zp . 

From the last formula we get that the formula (9) is equivalent to the set of  equations: 

a o = a I = . . .  - -  a n _ m _  1 = O~ 

an_ m + (be) o = 0 ,  

a _ m _  1 + (b~)_~_ 1 = O, 

thus from (10) we have 

Xp(,7~(o~,/3)) = Xp(pn(a,~_m + a~_m+lp + . . . )  (b o + blp + . . . ) )  

= Xp(-pn((be)o + (be)lp + . . .  + (b~)_n_lP -n -~ )  

• (b o + b l p + . . .  + b _ n _ l p - n - 1 ) )  

= Xp(-pn(bo + blP + . . .  + b_n_~p-~-a)2r ] ) ,  (11) 

- - n - - 1  where r] = ~0 + QP + " �9 + c - n - l P  . It is easy to see that the set S(~ 3 N S 1 has 
the form: 

S 3 nJC~l = { /31e+/32(ue+f) , /31  E Zp, u/32 E Zp} ,  

and from the last formula and (11) we have 

p--I 
- - n - - 1  2 M(m,O;O,  u) ,~ E Xp (-pnz](bo + "'" + b - n - l P  ) ), 

bo,bl, ..., b _ n _ l=O 
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whence it follows that 

M ( m ,  0;0, u ) ~  E exp - 2 7 r i r j ~  . 
k=0 

(Here we use the explicit form for the character Xp(~) = exp(27ri{~}p). Taking into 
account the formula (7) we get the needed formula M ( m ,  0; 0, u) = A p ( - p - % ] )  = 
Ap(-U). 
(iii) Taking into account Propositions 1 and 5 (ii) it is sufficient to consider the case 
# ~ Zp, # - u ~ Zp, u ~ Zp. We present here the proof  only for the case of  
Iplp # I~lp, otherwise (iii) can be proved analogously. By the symmetry we can 
suppose that ]Ulp < [Pip" Let c~ C 'ff~2, /~ E ~ 3 ,  then 

a = % e  + c~2(pe + f ) ,  

/3 = /31 e -'[-/32(/~e -~ - / ) ,  

where cq, c~2,/31,/32 E Zp. The condition c~ + / 3  E ~1  takes the form: 

POZ2 -[- /]/32 E Z p .  

Since the rank of Xp equals 0 we have: 

)('p(~/~(O~,/3)) = Xp(pO~2/32 -- //O~2/32 ) ----- X p ( ( P  - /2)ol2/32) �9 (12) 

Let ordp(#) - m, ordp(U) = - n, c~ 2 = a,/3z = b. As for the proof  of the statement 
( i i)  from the formula (12) we get: 

p-me(p)  (a o + alp + . . .)  + p-he(u)  (b o + blP + . . . )  6 Zp. 

In the case of  m > n _> 1 from the last formula we have: 

(e(p( a) o = (e(p)a) 1 = ( S ( p ) a ) m _ n _  1 : O, 

(e(p)a)m_,~ + (e(u)b) o = O, 

: (13) 

(e(p)a)m_ 1 + (e(u)b)~_ 1 = O. 

As for the proof of  (ii) from (12) and (13) we have: 

Xp(2(c~,/3)) = Xp - (p - u) ~ p to o + blp + . . .  + bn_lpn-~)  2 . 

Since ordp(p - u) = ordp(#) from the last formula we obtain: 

Xp(2(c~,/3)) = Xp(p-~rl(b0 + blp + . . .  + br~_lp~-l)2),  

where 

?7 = e( l /  p )  e (P) . ]  O + e(t] -- . .  e ( u  p n - 1 .  
-- p)  "Z-~ ) lp-{'- . -'l- -- P) "~--~ J n  

The set ~ 3  rh ~1  has the form 

~'3 f-) ~5~1 = {/31e-q-/32(ue + 1),/31 E Zp,  P/32 E Z p } ,  
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and as for the proof of (ii) we have: 

M(0, #; 0, u) = Ap(p'%). 

Taking into account the properties of the function Ap and the relation ordp(u - #) = 
ordp(#) we derive from the last formula: 

M(O, #; O, v) = Ap p'%(v - #) - - ~ j  

= Ap(pne(u)pme(#)p~e(u  - #)) = Ap(u(u - #)) .  

The proved theorem makes possible to calculate the Maslov index in the general 
case. By Proposition 1 for an arbitrary triple (~1,.~2, ~U6) of selfdual lattices there 
is a symplectic basis {e, f}  wherein 

o~1 = Xpe | X p f ,  

~J2 = ZpP me @ Zpp_m f , 

~ 3  = ZpP n e @ Zp(UP ne + p - n  f ) ,  (14) 

where m 6 Z>o, n E Z, u C Qp. Therefore the Maslov index of this triple is given 
by the relation 

#(~1,  ~2 ,  ~3)  : m ( m ,  0; n, u). 

Let S 4 = Zpp~e | Z p p - n f .  In the symplectic basis {~ = pne, f = p - ~ f }  we have 
~ 

-~1 = 7/~pP - n ~ @ Zppn f , 

-S" 2 = Z p p m - n  c 0 Z p p n - m  f , 

= Xp~ �9 z;(u~ + f ) ,  

Taking into account Proposition 5(i), (iii), (iv) we have 

= s 0  

= 37/(-m, 0; 0, u ) M ( m  - n, 0; 0, u ) M ( - n ,  0; m - n, 0). 

By virtue of the theorem and the last formula the following corollary is valid. 

Corollary. For the lattices o~1, $ 2 ,  ~Us o f  the form (14) we have 

1, m = 0  or u E Zp of  n _ < 0 ,  

Ap(u), 0 < n _ < m , l <  P l p < P 2 n ,  

1, O < n < m , p  2n < [Ulp, 

# ( ~ l ,  5~2, ~3)  = 1, ra < T6, 1 < Ib'lp < p 2 ( n - m )  

Ap(U), m < n , p  2(n-m) < Ivlp < p2n, 

1, m < n , p  2n < Iv[p. 
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